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Abstract 

TiO2 is a wide bandgap semiconductor material used as the photo anode in dye sensitized 

solar cells (DSSC). The fabrication of TiO2 on conductive glass substrates plays an important 

role in the solar cell efficiency, since the thickness of the TiO2 coating affects the transmission, 

photoconductive properties and the efficiency of solar cells. The uncorrected transmission in our 

fabricated films is as high as 80 %, and the bandgap obtained is similar to that of bulk anatase 

TiO2, confirming that sol-gel prepared films in this work can be used effectively for DSSC. 
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1. Introduction 

Titanium dioxide (TiO2) or titania has been a subject of interest for decades due to its 

chemical properties, such as stability and non-toxicity, as well as its physical properties such as 

high transmittance in the visible spectral region, wide bandgap, high refractive index and 

permittivity. Although, titania shows photocatalytic activity only under UV light irradiation, 

because of its wide bandgap ~ 3.0 eV for rutile and ~3.2 eV for anatase, it has been proven a 

good window material in photovoltaic applications.  In fact, TiO2 is extensively used in the 

applications of dye sensitized solar cells (DSSC) [1]. The anatase phase has been preferred for its 

photocatalytic properties and widely used in solar cell applications, primarily owing to its wider 

bandgap [2]. One most important requirement of widegap materials for the application of solar 

cells is to have maximum possible transmission. The optical properties and the electronic 

transport properties of TiO2 thin films depend on the fabrication process and the phase of the 

material.  

The sol gel technique has extensively been used together with doctor blade method to 

produce nanoparticle structures of wide bandgap materials.  Some of the advantages of such 

methods include the ability to deposit pre-determined structures by varying experimental 

conditions, homogeneity, low temperature preparation and low production cost [3]. It is 

noteworthy that thin films and nano- and poly-crystalline samples deposited by sol gel method 

can have different characteristics of compositional distribution and phase stability.  The 

solubility range of as-prepared thin films appears significantly wider than that in the crystalline 

phases, because thin-film growth processes are substantially affected by kinetic parameters. 

Other low-cost wet chemical techniques have also been successfully used in depositing wide 
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bandgap materials such as ZnO [4]. Straumal et al [4] used a dip coating method to deposit a 

nanocrystalline thin film in a mixture of liquid organic acids at 150ºC. Annealing at higher 

temperature (550ºC) has lead to grain growth. Thus in order to understand and to explore the 

fabrication process of nanocrystallineTiO2 on fluorine- doped tin oxide (FTO) conducting glass 

for the applications in solar cells, we have investigated different properties which are presented 

in this paper. A simple low-cost and an efficient method for the deposition of anatase TiO2 thin 

films were used in this work.  

2. Experimental  

 The TiO2 nanoparticles were prepared by a sol–gel method [5]. TiO2 nonporous thin 

films on fluorine doped tin oxide (FTO) glass were fabricated using the doctor blade method. 

The structural characterization of the prepared thin films was carried out using a Bruker AXS D8 

advanced high resolution X-ray diffractometer (HRXRD) (wavelength λ=1.542 Å). The 

morphology of powder and thin films was observed using a Hitachi SU-70, high resolution 

scanning electron microscope (HR-SEM). The transmission spectrum was measured using a 

Schimadzu UV-3101 PC spectrometer for optical characterization. The dielectric measurements 

were carried using a Wayne Kerr 6440A in the frequency range 20Hz-3MHz with Precision 

Component Analyzer. The sample set up was connected as a parallel plate capacitor. 

 

3. Results and discussions 

 Fig.1 (a) shows the X-ray diffraction patterns of TiO2 nanoparticles and TiO2 coated on 

FTO glass. All the XRD peaks of TiO2 clearly indicate the unique phase of anatase. The 

microstructure of the prepared anatase TiO2 nanoparticles is shown in Fig.1(b). The HR-SEM 
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image clearly shows the nanocrystallinity of the samples. The cross-section and the plane view 

microstructure of TiO2 coated on FTO glass is as shown in Fig. 1(c) and (d). The TiO2 coating on 

FTO glass can be clearly seen in Fig.1(c). The plane view of the FTO/TiO2 image (Fig.1(d)) 

shows the uniform distribution of the TiO2 coating on the FTO glass.  

 Dielectric measurements at room temperature were performed for FTO/TiO2 using a 

silver electrode at the top. Fig. 2 shows the variation of dielectric constant (ε′) versus frequency. 

Generally, ε ′, decreases with increasing frequency.  The value of the dielectric constant is very 

high at lower frequencies and decreases with increasing frequency. The higher values of ε′ at 

lower frequencies were due to the simultaneous presence of space charge, dipolar, ionic, and 

electronic polarizations. At lower frequencies the grain boundaries are more effective than grain 

electrical conduction. The decrease in the ε′ with increasing frequency can be explained on the 

basis of the mechanism of polarization process as in ferrites [6], which is similar to that in the 

conduction process [7]. The inset of Fig.2 shows the variation of dielectric loss tangent (tan δ) 

and dielectric loss factor (ε′′) with frequency for FTO/TiO2 sample. The tan δ and the ε′′ decrease 

rapidly at lower frequencies and then slowly at higher frequencies.  Kramer and Panova [8] 

explain that the increase of loss factor at higher frequency would be attributed to the 

phenomenon of domain wall relaxation. The occurrence of high value of loss factor at lower 

frequency is due to the different types of wall relaxation processes [9]. The maximum loss occurs 

at a frequency τ = 1/ω, which is proportional to the conductivity [10]. Our observed variation 

appears to have a similar behavior. 

Fig. 3 shows the measured transmittance (T) spectra of three TiO2 thin films in the 

spectral region with interference fringes. One spectrum has two adjacent maxima and minima 

marked TM and Tm respectively. Assuming the TiO2 samples to be homogeneous and uniform, 

http://www.sciencedirect.com/science/article/pii/S0254058408006433#ref_fig1
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thin films with thickness d, deposited on transparent substrates, whose thickness was several 

orders of magnitude larger than d, is given by the basic equation for the interference fringes:  

2nd = mλ                               (1) 

Here, n is the refractive index of TiO2 and m takes the form of an integer for interference 

maxima and half integer for minima. Taking into account two adjacent maxima and a minimum 

(TM  and Tm), according to Swanepoel's method [11] following Aly et al[12], the thickness of the 

TiO2 films (d), can be expressed as: 
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where n1 and n2, are the refractive indices and λ1 and λ2 are the photon wavelengths of the 

adjacent maxima and minima as labeled in Fig.3. In these calculations, it was assumed that the 

refractive indices n1 = n2 = n. As described by Aly et al [12], the refractive index n in the spectral 

region of medium and weak absorption can be derived from the formula. 
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where τs is the measured glass transmittance [13]. The raw values of Ts and calculated S values 

that were used in the thickness calculation corresponding to λmax are also given in Table 1.  

The absorption coefficient (α)  in the high-absorption region (α ≥ 10
4
 cm

−1
), is given by the Tauc  

equation (equation 5). 
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where B, hν, and Eg are a parameter that depends on the transition probability, the photon energy 

and the optical bandgap respectively. The transmission data were used to derive α (α = -

(1/d)lnT)and the Tauc plot ((α.hν)
1/2

 vs hν) for the three spectra A,B,C in Fig.3 are plotted in 

Fig.4. 

Optical bandgaps Eg extrapolated using Tauc plot (Fig.4) for three samples considered are ~3.2 

eV, which corresponds to an indirect transition and of almost the same as that of the bulk TiO2 at 

room temperature. Usually, nanocrystalline anatase TiO2 thin films show larger bandgap values 

than that of the bulks, presumably due to axial strain effects and furthermore, to the difference in 

the density of carriers [14]. A more accurate value for the bandgap may be achieved by including 

the loss factors due to scattering of light and considering more accurate refractive indices for 

maxima and minima. The films are of similar thickness, suggesting the method of deposition to 

produce consistently uniform thin films. However, as shown in Table 1, the refractive indices of 

the three samples at maxima are 2.14 (955 nm), 2.15 (963 nm) and 2.23  (945 nm), which are 

typical of TiO2 at near infra-red wavelengths.  

 

 

http://www.sciencedirect.com/science/article/pii/S0254058408006433#ref_bib12
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Conclusions: 

Stable anatase TiO2 nanoparticles were synthesized by using a low-temperature sol-gel method. 

Nanoporous thin films on fluorine doped tin oxide (FTO) glass were made by a conventional 

doctor blade method. XRD and HR-SEM analyses confirmed that the films were uniform and of 

anatase phase TiO2 nanostructures (with ~30 nm particle size). The dielectric constant of TiO2, 

was found to be very high at lower frequencies, and it decreases with increasing frequency. 

Optical transmission studies further confirm the bandgap of TiO2 film to be similar to that of 

bulks. The transmission of our films could achieve as high as 80%. Optical constants derived 

from the transmission spectra are also typical of bulk TiO2 at near infra-red wavelengths. TiO2 

films made by this simple method indeed can be used as a part of future solar cells. 
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Fig.1. (a) XRD patterns of TiO2 nanoparticles, TiO2 coated on FTO glass, HR-SEM images of 

(b) TiO2 nanoparticles, (c) Cross-section view and (d) plane view of TiO2 coated on FTO glass. 

 

 

 

 



10 

 

 

 

4 6 8 10 12

1.6

1.8

2.0

2.2

2.4

D
ie

le
c
tr

ic
 c

o
n

s
ta

n
t 

[ 
 

' 
 ]

ln [ f ]

4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

 Tan 

 ''

ln [ f ]

 D
ie

le
c

tr
ic

 l
o

s
s

 [
 T

a
n

 
 ]

0

1

2 D
ie

le
c

tr
ic

 lo
s

s
 fa

c
to

r [ 
'' ] 

 

Fig.2. Variation of dielectric constant (ε′ ) of FTO/ TiO2 and the inset shows the variation of 

dielectric loss (tan δ) and dielectric loss factor (ε′′) of FTO/ TiO2 
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Fig.3. Transmission spectra of TiO2 thin films deposited on FTO glass substrates. 
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Fig.4. Tauc plots for samples A, B and C 

 

 

 

 



13 

 

 

 

Table 1: Values of λmax, λmin, τs, TM, Tm, S, N, n and d, for TiO2 thin films from transmission 

spectra of Figure 3. 

  Sample      λmax   λmin     τs         TM Tm             S     N         n          d (nm) 

     A       955 1202  0.8739     0.6863      0.6360     1.87     2.6794      2.14        540 

     B       963 1195  0.8645     0.7029      0.6425     1.92     2.8568      2.23        553 

     C       945 1184  0.8659     0.7354      0.6952     1.96     2.7290      2.15        544 

 

 


