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PERFORMANCE OF RICHARDSON EXTRAPOLATION

ON SOME NUMERICAL METHODS FOR

A SINGULARLY PERTURBED

TURNING POINT PROBLEM

WHOSE SOLUTION HAS BOUNDARY LAYERS

Justin B. Munyakazi and Kailash C. Patidar

Abstract. Investigation of the numerical solution of singularly perturb-
ed turning point problems dates back to late 1970s. However, due to the
presence of layers, not many high order schemes could be developed to
solve such problems. On the other hand, one could think of applying
the convergence acceleration technique to improve the performance of
existing numerical methods. However, that itself posed some challenges.
To this end, we design and analyze a novel fitted operator finite difference
method (FOFDM) to solve this type of problems. Then we develop a
fitted mesh finite difference method (FMFDM). Our detailed convergence
analysis shows that this FMFDM is robust with respect to the singular
perturbation parameter. Then we investigate the effect of Richardson
extrapolation on both of these methods. We observe that, the accuracy
is improved in both cases whereas the rate of convergence depends on the
particular scheme being used.

1. Introduction

We consider the problem

(1.1) Lu := εu′′ + a(x)u′ − b(x)u = f(x), x ∈ Ω = (−1, 1),

(1.2) u(−1) = A, u(1) = B,

where A and B are given real constants and ε ∈ (0, 1], and the coefficients
a(x), b(x) and f(x) are sufficiently smooth functions in Ω̄.

The distinct zeros αi, i = 1, 2, . . . , r of a(x) in the interval Ω̄, if they exist,
are called the turning points of (1.1)-(1.2), provided that a(−1)a(1) 6= 0.
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Berger et al. [7] showed that the bounds of the solution u(x) near a given
turning point αi depend on ε and the constants βi = b(αi)/a

′(αi). For βi < 0,
u(x) is “smooth” near x = αi whereas βi > 0 indicates that u(x) has a large
gradient at x = αi resulting in an “interior layer”. On the other hand, u(x) has
a boundary layer at x = −1 and x = 1 if and only if a(−1) > 0 and a(1) < 0,
respectively.

In the rest of this paper, we assume that

a(0) = 0, a′(0) ≤ 0, a(−1) > 0, and a(1) < 0,

thus ensuring that the classical solution to (1.1)-(1.2) has two exponential
boundary layers. Also it is required that b(x) ≥ b0 > 0 so as to ensure
that the solution of (1.1)-(1.2) satisfies a minimum principle. The condition
|a′(x)| ≥ |a′(0)/2|, −1 ≤ x ≤ 1 guarantees the uniqueness of the turning point
in the interval [−1, 1]. Furthermore, we assume that |a(x)− xb(x)| ≥ η > 0 to
ensure the stability of the solution.

Under the above assumptions, the operator L admits the following continu-
ous minimum principle.

Lemma 1.1. Let ξ be a smooth function satisfying ξ(−1) ≥ 0, ξ(1) ≥ 0 and

Lξ(x) ≤ 0, ∀x ∈ (−1, 1). Then ξ(x) ≥ 0, ∀x ∈ [−1, 1].

Proof. Let x∗ ∈ [−1, 1] such that ξ(x∗) = minx∈[−1,1] ξ(x) and assume ξ(x∗) <
0. Then, obviously, x∗ /∈ {−1, 1}, ξ′(x∗) = 0 and ξ′′(x∗) ≥ 0. We have

Lξ(x∗) = εξ′′(x∗) + a(x∗)ξ′(x∗)− b(x∗)ξ(x∗) > 0,

which is a contradiction. It follows that, ξ(x∗) ≥ 0 and thus, ξ(x) ≥ 0, ∀x ∈
[−1, 1]. �

The minimum principle implies the uniqueness and existence of the solution.
(as for linear problems, the existence of the solution is implied by its unique-
ness.) We use this principle to prove the following results which states that the
solution depends continuously on the data.

Lemma 1.2. Let u(x) be the solution of (1.1)-(1.2). Then, we have

||u|| ≤ C
(

b−1
0 ||f ||+max{|A|, |B|}

)

, ∀x ∈ [−1, 1],

where || · || denotes the maximum norm.

Proof. Consider the comparison function

Π±(x) = b−1
0 ||f ||+max{|A|, |B|} ± u(x).

Then we have

LΠ±(x) = ±f(x)−
b(x)

b0
||f || − b(x)max{|A|, |B|} ≤ 0.

implying that Π±(x) ≥ 0, ∀x ∈ [−1, 1], which completes the proof. �
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Numerous works have been devoted to studying singularly perturbed turning
point problems (SPTPPs) of which we give some examples below.

Abrahamsson [1] and Berger et al. [7] derived a number of a priori estimates
for solutions of SPTPPs. Adžić in [2], [3] and [5] developed modified standard
spectral methods for singularly perturbed problems without turning points,
with turning point and boundary layers and with turning point and interior
layer, respectively. The same author used a domain decomposition method
(in [4]) to solve some turning point problems via the asymptotic behavior of
the exact solution. Patidar [22, 23] designed a fitted operator finite difference
method (FOFDM) and a fitted mesh finite difference method (FMFDM), both
along with the Numerov’s method to solve a singularly perturbed self-adjoint
problem. Some other works were considered in [11, 10] for various classes of
singular perturbation problems. However, as far as the fitted finite difference
methods are concerned, very little work is seen for the SPTPPs. Readers may
wish to refer to [15, 16, 25, 28] for some additional readings on TPPs.

Recently, we designed a FOFDM to solve problem (1.1)-(1.2) [20]. In this pa-
per, we propose a FMFDM to solve the problem above. Then we will study the
effect of Richardson extrapolation on these two methods in order to determine
whether this procedure improves the accuracy and/or the rate of convergence
of these methods.

Richardson extrapolation is a procedure through which numerical approxi-
mations of a particular quantity are computed on different but nested meshes.
A linear combination of these approximations yields a better accuracy as com-
pared to when each of them taken separately. It is also expected that this
procedure will improve the rates of convergence of these numerical approxi-
mations [27]. In the past, an almost first order convergence is improved to
an almost second order convergence in [21] via extrapolation based on fitted
mesh finite difference method for a convection diffusion problem. Likewise, we
studied in [18], the convergence acceleration properties of extrapolation based
on two different FOFDMs to solve a self-adjoint problem. We observed some
improvement in one case. Also, we investigated the effects of this technique
on a FMFDM to solve a self-adjoint problem in [19] and no improvement were
observed. Note that, in all the cases, Richardson extrapolation improves the
accuracy of the underlying method. For more details about Richardson extrap-
olation, the interested reader are referred to [6, 12, 13, 24, 26, 27].

The rest of this paper is organized as follows. In Section 2, we state some a

priori estimates for the bounds on the solution and its derivatives, the use of
which will be apparent in the analysis of the numerical methods. We consider
the FOFDM of [20] in Section 3 where we present the error estimate before
applying Richardson extrapolation on this method. The construction, analysis
and Richardson extrapolation of a FMFDM are presented in Section 4. Nu-
merical results to support our theoretical findings are displayed in Section 5.
A discussion on the main results of this paper is provided in Section 6.
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2. Some a priori estimates for the bounds on the solution and its
derivatives

In this section, we present the bounds on the solution of the problem (1.1)-
(1.2) and its derivatives.

We shall denote by Ωl = [−1,−δ], Ωc = [−δ, δ], Ωr = [δ, 1], where 0 <
δ ≤ 1

2 ; the left, central and right part of the domain, respectively. Note that
β = b(0)/a′(0) < 0.

Let k be a positive integer. We define

S1 = {||a||, ||b||, ||f ||, 1− δ, |B|, u(δ), k},

S2 = {||a||, ||b||, ||f ||, 1− δ, |A|, u(−δ), k}

and
S3 = {||a||, ||b||, ||f ||, βs, b0, |A|, |B|, k}.

Depending on whether x belongs to Ωl, Ωc or Ωr, the appropriate bounds are
provided in the following lemmas [7].

Lemma 2.1. If u(x) is the solution of the SPTPP (1.1)-(1.2) and a, b and

f ∈ Ck(Ω̄), k > 0, then there exist positive constants η and C depending only

on S1 such that

|u(j)(x)| ≤ C[1 + ε−j exp(−2η(1− x)/ε)], j = 1, 2, . . . , k + 1, x ∈ Ωr.

Proof. See [7]. �

Lemma 2.2. If u(x) is the solution of the SPTPP (1.1)-(1.2) and a, b and

f ∈ Ck(Ω̄), k > 0, then there exist positive constants η and C depending only

on S2 such that

|u(j)(x)| ≤ C[1 + ε−j exp(−2η(1 + x)/ε)], j = 1, 2, . . . , k + 1, x ∈ Ωl.

Proof. See [7]. �

Lemma 2.3. If u(x) is the solution of the SPTPP (1.1)-(1.2) and a, b and

f ∈ Ck(Ω̄), k > 0, then there exists a positive constant C depending only on

S3 such that

|u(j)| ≤ C, ∀x ∈ Ωc, j = 0, 1, . . . , k.

Proof. See [7]. �

The following lemma gives the bounds on the derivatives of the components
of the solution of the SPTPP (1.1)-(1.2).

Lemma 2.4. The solution u of the SPTPP (1.1)-(1.2) can be decomposed as

u = v + w,

where, for all j, 0 ≤ j ≤ k, and all x ∈ [−1, 1], the smooth component v
satisfies

∣

∣

∣
v(j)(x)

∣

∣

∣
≤ C(1 + ε−(j−2) exp(−2η(1 + x)/ε), x ∈ [−1, 0],
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∣

∣

∣
v(j)(x)

∣

∣

∣
≤ C(1 + ε−(j−2) exp(−2η(1− x)/ε), x ∈ [0, 1],

and the singular component w satisfies
∣

∣

∣
w(j)(x)

∣

∣

∣
≤ Cε−j exp(−2η(1 + x)/ε), x ∈ [−1, 0],

∣

∣

∣
w(j)(x)

∣

∣

∣
≤ Cε−j exp(−2η(1− x)/ε), x ∈ [0, 1],

for some constants η and C independent of ε.

Proof. By Lemma 2.3, there exists a constant D such that u(0) = D. The
SPTPP (1.1)-(1.2) can therefore be regarded as a juxtaposition of two problems,
namely:

(2.3) εu′′ + a(x)u′ − b(x)u = f(x), x ∈ (0, 1), u(0) = D, u(1) = B,

and

(2.4) εu′′ + a(x)u′ − b(x)u = f(x), x ∈ (−1, 0), u(−1) = A, u(0) = D.

(each of which features like the convection-diffusion problem of [17] at page
53.) We follow [17]. Firstly, let us consider the problem (2.3) which we can
write as

(2.5) −εu′′(x) − a(x)u′ = g(x), x ∈ (0, 1), u(0) = D, u(1) = B,

where g(x) = −f(x)− b(x)u.
The solution u of (2.5) can be written under the form

(2.6) u = v0 + εy1 + w0,

where v0 is the solution of the reduced problem

−a(x)v′0 = g(x), v0(0) = D;

y1 satisfies

Ly1 = v′′0 , y1(0) = −w0(0)/ε, y1(1) = 0

and w0 is the solution of the homogeneous problem

Lw0 = 0 w0 = w0(1) exp(−2η/ε), w0(1) = B − v0(1).

It is clear that |w0(0)|, |w0(1)|, |y1(0)| and |v′′0 | are all bounded by a constant
independent of ε. It follows that y1 is the solution of a problem similar to
(1.1)-(1.2), thus for j = 1, 2, . . . , k + 1,

|y
(j)
1 (x)| ≤ C

(

1 + ε−j exp(−2η(1− x)/ε)
)

.

(see bounds in Lemma 2.1.) To obtain bounds on the singular component
of the solution w0 and its derivatives, we proceed as follows. We define the
comparison functions

Ψ±(x) = |w0(1)| exp(−2η(1− x)/ε)± w0(x).
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Applying the minimum principle to these functions, we see that Ψ±(x) ≥ 0
and consequently,

|w0(x)| ≤ C exp(−2η(1− x)/ε) for all x ∈ [0, 1].

The singular component w0 of the solution can be written in the form

w0 = w0(0)ϕ+ w0(1)(1− ϕ),

where

ϕ(x) =

∫ 1

x
exp(−A(t)/ε)dt

∫ 1

0 exp(−A(t)/ε)dt

and A(x) = −
∫ 1

x
a(s)ds. And so, w′

0 = (w0(0)−w0(1))ϕ
′. Taking into account

the bounds on the coefficient a(x) and the fact that

ϕ′(x) =
− exp(−A(x)/ε)
∫ 1

0 exp(−A(t)/ε)dt
,

we have
|ϕ′(x)| ≤ Cε−1 exp(−2η(1− x)/ε)

leading to the bound

|w′

0(x)| ≤ Cε−1 exp(−2η(1− x)/ε).

Since Lw0 = 0, the higher order derivatives of w0 can be estimated immediately
from the estimates of w0 and w′

O. Thus, for 0 ≤ j ≤ k:

|w
(j)
0 (x)| ≤ Cε−j exp(−2η(1− x)/ε).

Since u(j) = v
(j)
0 + εy

(j)
1 + w

(j)
0 , we have

|(v
(j)
0 + εy

(j)
1 )(x)| ≤ C

(

1 + ε−j exp(−2η(1− x)/ε)
)

and
|w

(j)
0 (x)| ≤ Cε−j exp(−2η(1− x)/ε)

for 0 ≤ j ≤ k and all x ∈ [0, 1].
The component y1 can also be decomposed in the same manner as was u:

y1 = v1 + εv2 + w1 where for 0 ≤ j ≤ k, and for all x ∈ [0, 1], we have

|v
(j)
1 (x)| ≤ C,

|v
(j)
2 (x)| ≤ C

(

1 + ε−j exp(−2η(1− x)/ε)
)

,

|w
(j)
1 (x)| ≤ Cε−j exp(−2η(1− x)/ε).

We combine these two decompositions and obtain:

u = v + w,

where v = v0 + εv1 + ε2v2 and w = w0 + εw1. The components v and w satisfy

Lv = f, v(0) = D − w(0), v(1) = B − w(1);

Lw = 0, w(0) = w(1) exp(−2η/ε),
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where w(1) is chosen so that the successive derivatives of v (up to order k) are
bounded uniformly in ε.

In virtue of the above, the following estimates hold for the components v
and w.

|v(j)(x)| ≤ C
(

1 + ε−(j−2) exp(−2η(1− x)/ε)
)

,

|w(j)(x)| ≤ Cε−j exp(−2η(1− x)/ε).

Following the same lines as above, it can be easily shown that the solution
u of problem (2.4) can also be written in the form u = v + w where

|v(j)(x)| ≤ C
(

1 + ε−(j−2) exp(−2η(1 + x)/ε)
)

,

|w(j)(x)| ≤ Cε−j exp(−2η(1 + x)/ε)

for all 0 ≤ j ≤ k. �

3. Richardson extrapolation on fitted operator finite
difference method

Here we first present the FOFDM which is developed in [20] and the associ-
ated error estimates. Then we analyze the effect of Richardson extrapolation
on this scheme.

3.1. The fitted operator finite difference method (FOFDM)

Let n be a positive and even integer. Consider the following partition of the
interval [−1, 1]:

x0 = −1, xj = x0 + jh, j = 0, 1, . . . , n− 1, h = xj − xj−1, xn = 1

and denote the numerical solution on this partition by Uj , j = 0, 1, . . . , n. Also,
we denote the above uniform mesh by µn.

On µn, the following FOFDM has been designed and analyzed for (1.1)-(1.2)
in [20]:

(3.7) r−j Uj−1 + rcjUj + r+j Uj+1 = ˜fj , j = 1, 2, . . . , n− 1,

(3.8) U0 = A, Un = B,

where

r+j =
ε

˜φ2
j

+
ãj
h
, rcj = −

2ε

˜φ2
j

−
ãj
h

−˜bj, r−j =
ε

˜φ2
j

for j = 1, 2, . . . ,
n

2
− 1,

and

r+j =
ε

˜φ2
j

, rcj = −
2ε

˜φ2
j

+
ãj
h

−˜bj, r−j =
ε

˜φ2
j

−
ãj
h

for j =
n

2
,
n

2
+ 1, . . . , n− 1.
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The mesh function ˜φj is given by

(3.9) ˜φ2
j =















hε
ãj

(

exp
(

ãjh

ε

)

− 1
)

, j = 0, 1, . . . , n
2 − 1,

hε
ãj

(

1− exp
(

−
ãjh

ε

))

, j = n
2 + 1, n

2 + 2, . . . , n,

h2, j = n
2 ,

where

ãj =
aj + aj+1

2
, ˜bj =

bj−1 + bj + bj+1

3
and ˜fj =

fj−1 + fj + fj+1

3
.

The following theorem regarding FOFDM (3.7)-(3.8) was proved in [20]:

Theorem 3.1. Let a(x), b(x) and f(x) be sufficiently smooth functions in the

problem (1.1)-(1.2) and so that u(x) ∈ C4([−1, 1]). The numerical solution U
obtained via the FOFDM (3.7)-(3.8) satisfies the following estimate:

(3.10) sup
0<ε≤1

max
0≤j≤n

|uj − Uj| ≤ Mh.

Hereafter, M denotes a positive constant which may take different values in
different equations/inequalities but is always independent of h and ε.

In this paper we would like to see whether Richardson extrapolation can
improve the estimate provided in (3.10) above.

3.2. Richardson extrapolation on FOFDM

Richardson extrapolation consists of taking a linear combination of k solu-
tions (k ≥ 2) corresponding to different but nested meshes on the intersection
of these meshes which is in fact the coarsest mesh [9]. In order to achieve bet-
ter accuracy, we compute two numerical solutions via our FOFDM on two but
nested meshes. We show that with a suitable choice of a linear combination of
these two solutions, one can improve the accuracy and the order of convergence
[6, 27].

To begin with, let us denote by µ2n the mesh obtained by bisecting each
mesh interval in µn, i.e.,

µ2n = {x̄j} with x̄0 = −1, x̄n = 1 and x̄j − x̄j−1 = h̄ = h/2, j = 1, 2, . . . , 2n.

We denote the analytical and numerical solutions on the mesh µ2n by uj and

U j , respectively.
From estimate (3.10), we have on one hand

uj − Uj = Mh+Rn(xj), 1 ≤ j ≤ n− 1.

On the other hand, we have

uj − U j = Mh̄+R2n(x̄j), 1 ≤ j ≤ 2n− 1.

Therefore,
uj − (2U j − Uj) = o(h), ∀1 ≤ j ≤ n− 1.

Let
U ext
j := 2U j − Uj.
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Thus U ext
j is another numerical approximation of uj .

Now, for j = 1, 2, . . . , n/2− 1 we have

Lh(uj − Uj) =
(

r−j uj−1 + rcjuj + r+j uj+1

)

− ˜fj

= T0uj + T1u
′

j + T2u
′′

j + T3u
′′′

j + T4u
(iv)(ξj),(3.11)

where ξj ∈ (xj−1, xj+1) and

T0 = r−j + rcj + r+j + bj +
h2

3
b′′j ,

T1 = h
(

r+j − r−j
)

− aj −
h2

3

(

a′′j − 2b′j
)

,

T2 =
h2

2

(

r+j + r−j
)

− ε−
h2

3

(

2a′j − bj −
h2

2
b′′j

)

,

T3 =
h3

6

(

r+j − r−j
)

−
h2

3

(

aj +
h2

2
a′′j

)

,

T4 =
h4

24

(

r+j + r−j
)

−
h2

3
ε.

Similarly, for j = 1(1)n/2− 1, we have

(3.12) Lh̄(uj − U j) = T 0uj + T 1u
′

j + T 2u
′′

j + T 3u
′′′

j + T 4u
(iv)(ξ̄j),

where ξ̄j ∈ ((xj−1 + xj)/2, (xj + xj+1)/2) and the T s are obtained from the T s
by substituting h by h̄.

Some algebraic manipulations yield
∣

∣Lh(uj − Uj)
∣

∣ ≤ Mh,

and
∣

∣

∣
Lh̄(uj − U j)

∣

∣

∣
≤ Mh.

The inequality
∣

∣Lh(uj − Uext
j )

∣

∣ ≤
∣

∣Lh(uj − Uj)
∣

∣ + 2
∣

∣

∣
Lh̄(uj − U j)

∣

∣

∣

leads to

(3.13)
∣

∣Lh(uj − Uext
j )

∣

∣ ≤ Mh.

The following lemmas (see [20] for the proof) are required in this analysis.

Lemma 3.2 (Discrete minimum principle). For any mesh function ξj such

that Lhξj ≤ 0, ∀j = 1, 2, . . . , n− 1, ξ0 ≥ 0 and ξn ≥ 0, we have ξj ≥ 0, ∀j =
0, 1, . . . , n.

Lemma 3.3. If Zi is any mesh function such that Z0 = Zn = 0, then there

exists a positive constant η such that

|Zi| ≤
1

η
max

1≤j≤n−1
|LhZj| for 0 ≤ i ≤ n.
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Using the lemma above, equation (3.13) leads to

(3.14)
∣

∣uj − U ext
j

∣

∣ ≤ Mh for all j = 1, 2, . . . ,
n

2
− 1.

Following the same procedure, it is easy to see that

(3.15)
∣

∣uj − U ext
j

∣

∣ ≤ Mh for all j =
n

2
,
n

2
+ 1, . . . , n− 1.

Consequently, combining equations (3.14) and (3.15), we obtain the following
result.

Theorem 3.4. Let a(x), b(x) and f(x) be sufficiently smooth functions in the

problem (1.1)-(1.2) and so that u(x) ∈ C4([−1, 1]). Then the numerical solution

U ext obtained via Richardson extrapolation based on FOFDM (3.7) along with

(3.8) satisfies the following estimate:

sup
0<ε≤1

max
1≤j≤n−1

|uj − U ext
j | ≤ Mh.(3.16)

4. Richardson extrapolation on fitted mesh finite difference method

The idea from Chapter 8 of Miller et al. [17] is used in this section to develop
a fitted mesh finite difference scheme. The convergence of the scheme is ana-
lyzed before embarking on the study of the effect of Richardson extrapolation
on its accuracy and rate of convergence.

4.1. The fitted mesh finite difference method (FMFDM)

It is assumed that there are two boundary layers, one at each end, and let
the interval [−1, 1] be partitioned as

[−1, 1] := [−1,−1 + τ ] ∪ [−1 + τ, 1− τ ] ∪ [1− τ, 1],

where τ denotes the mesh transition parameter.
Let n be a positive integer such that n = 2m with m ≥ 3.
To construct the piece-wise uniform mesh (of Shishkin type), we subdivide

both intervals [−1,−1 + τ ] and [1 − τ, 1] into n/4 equal mesh elements while
we subdivide the interval [−1 + τ, 1 − τ ] into n/2 equal mesh elements. This
gives

[−1, 1] := −1 = x0 < x1 < · · · < xn/4 < · · · < xn/2

= 0 < · · · < x3n/4 < · · · < xn = 1.

The parameter τ is defined by

(4.17) τ = min

{

1

4
,
ε

η
ln
(n

4

)

}

,

where η is a positive constant. The mesh spacing hj = xj − xj−1 is given by

hj =

{

4τn−1, j = 1, 2, . . . , n/4, 3n/4 + 1, 3n/4 + 2, . . . , n− 1, n
4(1− τ)n−1, j = n/4 + 1, n/4 + 2, . . . , 3n/4.

(4.18)
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We denote this mesh by µn,τ .
Using the above conventions, we discretize the problem (1.1)-(1.2) on µn,τ

as






ε ˜DUj + ajD
+Uj − bjUj = fj, aj > 0;

ε ˜DUj + ajD
−Uj − bjUj = fj, aj ≤ 0;

(4.19)

(4.20) U0 = A, Un = B,

where

D+Uj =
Uj+1 − Uj

hj+1
,

D−Uj =
Uj − Uj−1

hj

,

and

˜DUj =
2

hj + hj+1

(

D+Uj −D−Uj

)

.

Equations (4.19) can be written in the form

(4.21) Ln(Uj) := r−j Uj−1 + rcjUj + r+j Uj+1 = fj, j = 1, 2, . . . , n− 1,

where, for j = 1, 2, . . . , n
2 − 1, we have

r+j =
2ε

hj+1(hj+1 + hj)
+

aj
hj+1

,

rcj = −
2ε

hjhj+1
−

aj
hj+1

− bj ,

r−j =
2ε

hj(hj + hj+1)
,

and for j = n
2 ,

n
2 + 1, . . . , n− 1, we have

r+j =
2ε

hj+1(hj+1 + hj)
,

rcj = −
2ε

hjhj+1
+

aj
hj

− bj ,

r−j =
2ε

hj(hj + hj+1)
−

aj
hj

.

The discrete operator Ln satisfies the following minimum principle:

Lemma 4.1. For any mesh function ξj such that Lnξj ≤ 0, ∀j = 1, 2, . . . , n−1,
ξ0 ≥ 0 and ξn ≥ 0, we have ξj ≥ 0, ∀j = 0, 1, . . . , n.
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Proof. Let k be such that ξk = min0≤j≤n ξj and suppose that ξk < 0. It’s clear
that k /∈ {0, n}. Also ξk+1 − ξk ≥ 0, and ξk − ξk−1 ≤ 0.
On one hand we have

Lnξk = ε ˜Dξk + akD
+ξk − bkξk > 0, 1 ≤ k ≤ n/2− 1.

On the other hand

Lnξk = ε ˜Dξk + akD
−ξk − bkξk > 0, n/2 ≤ k ≤ n− 1.

Thus Lnξk > 0, 1 ≤ k ≤ n− 1, which is a contradiction. It follows that ξk ≥ 0
and thus ξj ≥ 0, 0 ≤ j ≤ n. �

This minimum principle is used to prove the following lemma.

Lemma 4.2. If Zi is any mesh function such that Z0 = Zn = 0, then

|Zi| ≤
1

η
max

1≤j≤n−1
|LnZj| for 0 ≤ i ≤ n.

Proof. Let us define two comparison functions Y ±

i by

Y ±

i =
xi

a∗
max

1≤j≤n−1
|LnZj | ± Zi, 0 ≤ i ≤ n,

where

a∗ =

{

−η if 0 ≤ i ≤ n/2− 1,
η if n/2 ≤ i ≤ n.

It is clear that Y ±

0 ≥ 0 and Y ±

n ≥ 0. Also, observe that

LnY ±

i =
ai − bixi

a∗
max

1≤j≤n−1
|LnZj| ± LnZi, 0 ≤ i ≤ n.

If 0 ≤ i ≤ n/2 − 1, then (ai − bixi)/(−η) ≤ −1. Likewise, if n/2 ≤ i ≤ n,
then ai − bixi/η ≤ −1. In either case, LnY ±

i ≤ 0. By the discrete minimum
principle (Lemma 4.1), we conclude that Yi ≥ 0, ∀0 ≤ i ≤ n and this completes
the proof. �

Convergence analysis of FMFDM

The restrictions of problem (1.1)-(1.2) to the intervals [0, 1] and [−1, 0] fea-
ture like the convection-diffusion problem considered in Chapter 8 in [17]. In
our analysis, we will implement the ideas provided in this work, for the interval
[0, 1]. The analysis on [−1, 0] follows similar steps.

We decompose the solution U of the discrete problem (4.19)-(4.20) in its
regular part V and singular part W . The components V and W of U are
solutions of the problems

LnV = f, V (−1) = v(−1), V (1) = v(1)

and
LnW = 0, W (−1) = w(−1),W (1) = w(1),

respectively.
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We can write the error in the form

(4.22) U − u = (V − v) + (W − w)

and estimate the components of the error separately.
We start with the regular component.
The local truncation error is given by

Ln(V − v) = ε

(

d2

dx2
− ˜D

)

v + a

(

d

dx
−D−

)

v.

Using Lemma 1 (p. 21 of [17]), we obtain

(4.23)
|Ln(Vj − vj)| ≤

ε

3
(xj+1 − xj−1) |v

′′′

j |

+
aj
2

(xj − xj−1) |v
′′

j | for
n

2
≤ j ≤ n− 1.

Since hj = xj − xj−1 ≤ 4n−1 for any j, therefore using Lemma 2.4,we obtain

|Ln(Vj − vj)| ≤ Mn−1.

Hence, by Lemma 4.2

(4.24) |Vj − vj | ≤ Mn−1.

The estimate on Ln(W −w) depends on whether τ = 1/4 or τ = (ε/η) ln(n/4).
If τ = 1/4, the mesh is uniform and 1/4 ≤ (ε/η) ln(n/4). The local trunca-

tion error Ln(W − w) is given by

(4.25)
|Ln(Wj − wj)| ≤

ε

3
(xj+1 − xj−1)|w

′′′

j |

+
aj
2
(xj − xj−1)|w

′′

j | for
n

2
≤ j ≤ n− 1.

By Lemma 2.4 and the fact that hj = xj − xj−1 = 4n−1, the above inequality
gives

(4.26) |Ln(Wj − wj)| ≤ Mε−2n−1.

Now since ε−1 is less than (4/η) ln(n/4), we have

|Ln(Wj − wj)| ≤ Mn−1(ln(n/4))2.

Using Lemma 4.2 then we obtain

(4.27) |Wj − wj | ≤ Mn−1(ln(n/4))2.

If τ = (ε/η) ln(n/4), then the mesh is piecewise uniform. In each of the
subintervals [0, 1 − τ ] and [1 − τ, 1], a different argument is used to bound
W − w.

Both W and w are small on the subinterval with no boundary layer, namely
[0, 1− τ ]. Therefore, since |W −w| ≤ |W |+ |w|, we will bound W and w sepa-
rately. Before we move any further, let us note that w can also be decomposed
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as w = w0 + εw1 (see [17], p. 59). Introducing the function ϕ by

ϕ(x) =

∫ 1

x
exp(−A(t)/ε)dt

∫ 1

0 exp(−A(t)/ε)dt
, A(t) =

∫ 1

x

a(s)ds.

It can be shown that w0 can be written in the form

w0(x) = w0(0)ϕ(x) + w0(1)(1− ϕ(x))

and therefore

w′

0(x) = (w0(0)− w0(1))ϕ
′(x).

But w0(0) = w0(1) exp(−η/ε) and hence

w′

0(x)

w0(1)
= −(1− exp(−η/ε)ϕ′(x) > 0.

It follows that w0(x)/w0(1) is positive and increasing in the interval [0, 1].
Thus

0 ≤
w0(x)

w0(1)
≤

w0(1− τ)

w0(1)

and hence

|w0(x)| ≤ |w0(1− τ)|, ∀x ∈ [0, 1− τ ].

The same is true for w1(x) and since w = w0 + εw1, it follows that

|w(x)| ≤ |w(1 − τ)|, ∀x ∈ [0, 1− τ ].

Using the estimates for w0, w1, given that w0(1− τ) = w0 exp(η(1− τ)/ε), and
the fact that τ = (ε/η) ln(n/4), we obtain

(4.28) |w(x)| ≤ M exp(−ητ/ε) = Mn−1.

Now we define an auxiliary mesh function ˜W analogous to W except that
the coefficient a in the difference operator Ln is replaced by η. Then Lemma 5
on p. 53 of [17] suggests that

|Wj | ≤ |˜Wj |, ∀0 ≤ j ≤ n.

Thus by Lemma 3 (p. 51 of [17]), we conclude that

(4.29) |Wj | ≤ Mn−1 for n/2 ≤ j ≤ 3n/4.

Hence, from inequalities (4.28) and (4.29), we have

(4.30) |Wj − wj | ≤ Mn−1 for n/2 ≤ j ≤ 3n/4.

In the subinterval [1− τ, 1], an argument analogue to (4.25) leads to

|Ln(Wj − wj)| ≤ Mε−2|xj+1 − xj−1| = 8Mε−2τn−1.

But also, we have

|Wn − wn| = 0

and from the inequality (4.30),

|W3n/4 − w3n/4| ≤ |W3n/4|+ |w3n/4| ≤ Mn−1.
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By introducing the barrier function

Φj = (xj − (1− τ))M1ε
−2τn−1 +M2n

−1,

we see that the mesh functions

Ψ±

j = Φj ± (Wj − wj)

satisfy

Ψ±

3n/4 ≥ 0, Ψ±

n = 0,

provided that the constants M1 and M2 are chosen suitably.
Note that

LnΨ±

j ≤ 0, 3n/4 + 1 ≤ j ≤ n− 1.

By the discrete minimum principle (Lemma 3.2) on [1− τ, 1] we get

Ψ±

j ≥ 0, 3n/4 ≤ j ≤ n.

Consequently,

|Wj − wj | ≤ Φj ≤ M1ε
−2τ2n−1 +M2n

−1,

and making use of the inequality τ ≤ (ε/η) ln(n/4), we obtain

(4.31) |Wj − wj | ≤ Mn−1(ln(n/4))2.

Combining (4.30) and (4.31), we obtain the following estimate on the singular
component of the error over the interval [0,1]:

(4.32) |Wj − wj | ≤ Mn−1(ln(n/4))2, n/2 ≤ j ≤ n.

Estimates (4.24) and (4.32) along with the inequality (4.22) immediately gives

(4.33) |Uj − uj | ≤ Mn−1(ln(n/4))2, n/2 ≤ j ≤ n.

Similarly,

(4.34) |Uj − uj| ≤ Mn−1(ln(n/4))2, 0 ≤ j ≤ n/2− 1.

We therefore have the following result.

Theorem 4.3. Let a(x), b(x) and f(x) be sufficiently smooth functions in the

problem (1.1)-(1.2) and so that u(x) ∈ C4([−1, 1]). The numerical solution U
obtained via FMFDM (4.21) along with (4.20) satisfies

(4.35) sup
0<ε≤1

max
0≤j≤n

|uj − Uj | ≤ Mn−1(ln(n/4))2.
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4.2. Richardson extrapolation for FMFDM

We bisect each mesh sub-interval of µn,τ and obtain a new mesh which we
denote by µ2n,τ .

µ2n,τ = {x̄j , 0 ≤ j ≤ 2n+ 1} ⊃ µn,τ and x̄j − x̄j−1 = h̄j = hj/2.

We denote the numerical solution computed on the mesh µ2n,τ by ˜U .
From the estimate (4.35), we have

(4.36) uj − Uj = Mn−1(ln(n/4))2 +Rn(xj), ∀xj ∈ µn,τ

and

(4.37) uj − ˜Uj = M(2n)−1(ln(n/4))2 +R2n(x̄j), ∀x̄j ∈ µ2n,τ .

The remainders Rn(xj) and R2n(x̄j) are of O(n−1(ln(n/4))2). It is to be noted
that in practice, we assume

(4.38) τ =
ε

η
ln
(n

4

)

,

because the possibility τ = 1/4 suggested in equation (4.17) means that 1/4 <
(ε/η) ln(n/4), and so n−1 is very small relative to ε. This unlikely situation
can be dealt with using the standard techniques.

The presence of the factor ln(n/4) in both (4.36) and (4.37) explains the fact
that the two meshes µn,τ and µ2n,τ use the same parameter τ given by (4.38).

A combination of equations (4.36) and (4.37) suggests that

uj − (2˜Uj − Uj) = O(n−1(ln(n/4))2), ∀j = 1, . . . , n− 1

and therefore we set

(4.39) U ext
j := 2˜Uj − Uj , ∀j = 1, . . . , n− 1,

as the numerical approximation of u at the grid point xj ∈ µn,τ resulting from
the extrapolation process.

The decomposition of the error after extrapolation in a similar manner as
in (4.22) gives

(4.40) U ext − u =
(

V ext − v
)

+
(

W ext − w
)

,

where V ext and W ext are the regular and singular components of U ext, respec-
tively. We will estimate the components of the error separately.

For the reasons mentioned in the previous subsection, we will provide the
analysis only on the interval [0, 1].

The local truncation error of the scheme (4.21) along with (4.20) at the grid
point xj after extrapolation is given by

Ln(u− U ext) =
[

2Ln
∗
(vj − ˜Vj)− Ln(vj − Vj)

]

+
[

2Ln
∗
(wj − ˜Wj)− Ln(wj −Wj)

]

,(4.41)
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where, like Ln, Ln
∗

is a discrete operator associated with (4.21) along with
(4.20) but on the mesh µ2n,τ .

For the regular part of the local truncation after extrapolation, we use
Lemma 1 (p. 21 of [17]). An analogous result as in (4.23) is
∣

∣

∣
2Ln

∗
(vj − ˜Vj)− Ln(vj − Vj)

∣

∣

∣
≤

2ε

3
(xj+1/2 − xj−1/2)|v

′′

j |+ aj(xj − xj−1/2)|v
′

j |

+
ε

3
(xj+1 − xj−1)|v

′′′

j |+
aj
2
(xj − xj−1)|v

′′

j |

for
n

2
≤ j ≤ n− 1.

Using Lemma 3.3, we therefore have

(4.42)
∣

∣vj − V ext
j

∣

∣ ≤ Mn−1 for
n

2
≤ j ≤ n− 1.

For the estimates on wj −W ext
j , we discuss two different cases.

If τ = 1/4, the mesh is uniform and we have ε−1 ≤ (4/η) ln(n/4). Therefore,
by Lemma 4.21, we have

∣

∣

∣
2Ln

∗
(wj − ˜Wj)− Ln(wj −Wj)

∣

∣

∣
≤ Mn−1ε−2 ≤ Mn−1(ln(n/4))2.

An application of Lemma 3.3 then gives

(4.43)
∣

∣wj −W ext
j

∣

∣ ≤ Mn−1(ln(n/4))2 for
n

2
≤ j ≤ n− 1.

If τ = (ε/η) ln(n/4), the mesh is piecewise uniform with mesh spacing of 4(1−
τ)/n in the interval [0, 1− τ ] and 4τ/n in the interval [1− τ, 1].

In the subinterval [0, 1−τ ], the functions w, W and ˜W are small and therefore
we have

∣

∣wj −W ext
j

∣

∣ ≤ |w|+ 2|˜W |+ |W |.

The bounds on |w| and |W | are obtained in the previous subsection. Also,

bounds of |W | are those of |˜W |. Hence,

(4.44)
∣

∣wj −W ext
j

∣

∣ ≤ Mn−1 for
n

2
≤ j ≤

3n

4
.

In the subinterval [1 − τ, 1], we use the discrete minimum principle (Lemma
3.2) to bound

∣

∣wj −W ext
j

∣

∣. For 3n/4 + 1 ≤ j ≤ n− 1, we have

Ln(wj −W ext
j ) ≤ Mε−2|xj+1 − xj−1| = Mε−2τn−1.

Furthermore,
∣

∣

∣
w3n/4 −W ext

3n/4

∣

∣

∣
≤ Mn−1 and |wn −W ext

n | = 0.

Defining the barrier function

Φ̄j = (xj − (1− τ))M1ε
−2τn−1 +M2n

−1,

we notice that, for a suitable choice of M1 and M2, the mesh function

Ψ̄±

j = Φ̄j ± (wj −W ext
j )
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satisfies
Ψ̄±

3n/4 ≥ 0, Ψ̄±

n = 0

and

LnΨ̄±

j ≤ 0 for
3n

4
+ 1 ≤ j ≤ n− 1.

It follows, by the discrete minimum principle (Lemma 3.2) that on the interval
[1− τ, 1]

Ψ̄±

j ≥ 0 for
3n

4
+ 1 ≤ j ≤ n− 1.

Therefore
|wj −W ext

j | ≤ Φ̄j ≤ M1ε
−2τ2n−1 +M2n

−1.

Hence

(4.45) |wj −W ext
j | ≤ Mn−1(ln(n/4))2 for

3n

4
+ 1 ≤ j ≤ n− 1.

Combining estimates (4.44) and (4.45), we obtain

(4.46) |wj −W ext
j | ≤ Mn−1(ln(n/4))2 for

n

2
≤ j ≤ n.

By virtue of (4.40), estimates (4.42) and (4.46) lead to

(4.47) |uj − U ext
j | ≤ Mn−1(ln(n/4))2 for

n

2
≤ j ≤ n.

Following the similar lines on the interval [−1, 0], i.e., when a > 0, we obtain
the same estimates.

Combining the two, we have:

Theorem 4.4. Let a(x), b(x) and f(x) be sufficiently smooth functions in the

problem (1.1)-(1.2) and so that u(x) ∈ C4([−1, 1]). The numerical solution

U ext obtained via FMFDM (4.21) along with (4.20) after extrapolation satisfies

(4.48) sup
0<ε≤1

max
0≤j≤n

|uj − U ext
j | ≤ Mn−1(ln(n/4))2.

In next section, we provide test examples to support these theoretical esti-
mates.

5. Numerical results

For the following two test examples we provide comparative numerical results
before and after extrapolation using the two fitted methods.

Example 5.1 ([14]). Consider problem (1.1)-(1.2) with

a(x) = 2(1− 2x), b(x) = 4, f(x) = 0

for 0 < x < 1.
The exact solution is

u(x) = exp

(

−2x
1− x

ε

)

.

The solution to this problem has a turning point at x = 0.5.
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Table 1. Results for Example 5.2: Maximum errors via
FOFDM (3.7) along with (3.8) before extrapolation.

ε n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 n = 1024

1.0E-04 3.60E-02 1.45E-02 6.37E-03 2.99E-03 1.45E-03 7.12E-04 3.53E-04
1.0E-05 3.60E-02 1.45E-02 6.37E-03 2.99E-03 1.45E-03 7.12E-04 3.53E-04
1.0E-06 3.60E-02 1.45E-02 6.37E-03 2.99E-03 1.45E-03 7.12E-04 3.53E-04
1.0E-08 3.60E-02 1.45E-02 6.37E-03 2.99E-03 1.45E-03 7.12E-04 3.53E-04
1.0E-09 3.60E-02 1.45E-02 6.37E-03 2.99E-03 1.45E-03 7.12E-04 3.53E-04
1.0E-10 3.60E-02 1.45E-02 6.37E-03 2.99E-03 1.45E-03 7.12E-04 3.53E-04

en 3.60E-02 1.45E-02 6.37E-03 2.99E-03 1.45E-03 7.12E-04 3.53E-04

Table 2. Results for Example 5.2: Maximum errors via
FOFDM (3.7) along with (3.8) after extrapolation.

ε n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 n = 1024

1.0E-04 2.42E-02 9.78E-03 4.28E-03 2.00E-03 9.67E-04 4.75E-04 2.36E-04
1.0E-05 2.42E-02 9.78E-03 4.28E-03 2.00E-03 9.67E-04 4.75E-04 2.36E-04
1.0E-06 2.42E-02 9.78E-03 4.28E-03 2.00E-03 9.67E-04 4.75E-04 2.36E-04
1.0E-08 2.42E-02 9.78E-03 4.28E-03 2.00E-03 9.67E-04 4.75E-04 2.36E-04
1.0E-09 2.42E-02 9.78E-03 4.28E-03 2.00E-03 9.67E-04 4.75E-04 2.36E-04
1.0E-10 2.42E-02 9.78E-03 4.28E-03 2.00E-03 9.67E-04 4.75E-04 2.36E-04

eext
n

2.42E-02 9.78E-03 4.28E-03 2.00E-03 9.67E-04 4.75E-04 2.36E-04

Table 3. Results for Example 5.2: Rates of convergence via
FOFDM (3.7) along with (3.8) before extrapolation nk =
16, 32, 64, 128, 256, 512.

ε r1 r2 r3 r4 r5 r6

1.0E-04 1.32 1.18 1.09 1.05 1.02 1.01
1.0E-05 1.32 1.18 1.09 1.05 1.02 1.01
1.0E-06 1.32 1.18 1.09 1.05 1.02 1.01
1.0E-08 1.32 1.18 1.09 1.05 1.02 1.01
1.0E-09 1.32 1.18 1.09 1.05 1.02 1.01
1.0E-10 1.32 1.18 1.09 1.05 1.02 1.01

rn 1.32 1.18 1.09 1.05 1.02 1.01

Example 5.2. Consider problem (1.1)-(1.2) with

a(x) = −2x3, b(x) = exp(x2),

f(x) =

[

2

(

1 +
2x2(1 − x2)

ε

)

− exp(x2)

]

exp

[

x2 − 1

ε

]

.

Its exact solution is given by

u(x) = exp

[

−
(1− x)(1 + x)

ε

]

.

The solution has a turning point at x = 0.
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Table 4. Results for Example 5.2: Rates of convergence
via FOFDM (3.7) along with (3.8) after extrapolation nk =
16, 32, 64, 128, 256, 512.

ε r1 r2 r3 r4 r5 r6

1.0E-04 1.31 1.19 1.10 1.05 1.02 1.01
1.0E-05 1.31 1.19 1.10 1.05 1.02 1.01
1.0E-06 1.31 1.19 1.10 1.05 1.02 1.01
1.0E-08 1.31 1.19 1.10 1.05 1.02 1.01
1.0E-09 1.31 1.19 1.10 1.05 1.02 1.01
1.0E-10 1.31 1.19 1.10 1.05 1.02 1.01

rext
n

1.31 1.19 1.10 1.05 1.02 1.01

Table 5. Results for Example 5.1: Maximum errors via
FMFDM (4.21) along with (4.20) before extrapolation.

ε n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 n = 1024

1.0E-04 1.43E-01 9.44E-02 6.04E-02 3.77E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-05 1.43E-01 9.44E-02 6.04E-02 3.77E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-06 1.43E-01 9.44E-02 6.04E-02 3.77E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-08 1.43E-01 9.44E-02 6.04E-02 3.77E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-09 1.43E-01 9.44E-02 6.04E-02 3.77E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-10 1.43E-01 9.44E-02 6.04E-02 3.77E-02 2.29E-02 1.36E-02 7.84E-03

en 1.43E-01 9.44E-02 6.04E-02 3.77E-02 2.29E-02 1.36E-02 7.84E-03

Table 6. Results for Example 5.1: Maximum errors via
FMFDM (4.21) along with (4.20) after extrapolation.

ε n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 n = 1024

1.0E-04 6.46E-02 4.35E-02 2.56E-02 1.61E-02 1.13E-02 8.51E-03 6.69E-03
1.0E-05 6.45E-02 4.35E-02 2.56E-02 1.61E-02 1.13E-02 8.51E-03 6.69E-03
1.0E-06 6.45E-02 4.35E-02 2.56E-02 1.61E-02 1.13E-02 8.51E-03 6.69E-03
1.0E-08 6.45E-02 4.35E-02 2.56E-02 1.61E-02 1.13E-02 8.51E-03 6.69E-03
1.0E-09 6.45E-02 4.35E-02 2.56E-02 1.61E-02 1.13E-02 8.51E-03 6.69E-03
1.0E-10 6.45E-02 4.35E-02 2.56E-02 1.61E-02 1.13E-02 8.51E-03 6.69E-03

eext
n

6.45E-02 4.35E-02 2.56E-02 1.61E-02 1.13E-02 8.51E-03 6.69E-03

The maximum errors before extrapolation at all mesh points are evaluated
using the fomulae

eε,n := max
0≤j≤n

|uj − Uj |

for both FOFDM (3.7) along with (3.8) and FMFDM (4.21) along with (4.20).
After extrapolation, the maximum errors are calculated as

eextε,n := max
0≤j≤n

|uj − U ext
j |.
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Table 7. Results for Example 5.1: Rates of convergence via
FMFDM (4.21) along with (4.20) before extrapolation nk =
16, 32, 64, 128, 256, 512.

ε r1 r2 r3 r4 r5 r6

1.0E-04 0.60 0.64 0.68 0.72 0.76 0.79
1.0E-05 0.60 0.64 0.68 0.72 0.76 0.79
1.0E-06 0.60 0.64 0.68 0.72 0.76 0.79
1.0E-08 0.60 0.64 0.68 0.72 0.76 0.79
1.0E-09 0.60 0.64 0.68 0.72 0.76 0.79
1.0E-10 0.60 0.64 0.68 0.72 0.76 0.79

rn 0.60 0.64 0.68 0.72 0.76 0.79

Table 8. Results for Example 5.1: Rates of convergence via
FMFDM (4.21) along with (4.20) after extrapolation nk =
16, 32, 64, 128, 256, 512.

ε r1 r2 r3 r4 r5 r6

1.0E-04 0.57 0.77 0.67 0.51 0.41 0.35
1.0E-05 0.57 0.77 0.67 0.51 0.41 0.35
1.0E-06 0.57 0.77 0.67 0.51 0.41 0.35
1.0E-08 0.57 0.77 0.67 0.51 0.41 0.35
1.0E-09 0.57 0.77 0.67 0.51 0.41 0.35
1.0E-10 0.57 0.77 0.67 0.51 0.41 0.35

rext
n

0.57 0.77 0.67 0.50 0.41 0.35

Table 9. Results for Example 5.2: Maximum errors via
FMFDM (4.21) along with (4.20) before extrapolation.

ε n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 n = 1024

1.0E-04 9.85E-02 8.58E-02 5.88E-02 3.75E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-05 9.85E-02 8.58E-02 5.88E-02 3.75E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-06 9.85E-02 8.58E-02 5.88E-02 3.75E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-08 9.85E-02 8.58E-02 5.88E-02 3.75E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-09 9.85E-02 8.58E-02 5.88E-02 3.75E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-10 9.85E-02 8.58E-02 5.88E-02 3.75E-02 2.29E-02 1.36E-02 7.83E-03

en 9.85E-02 8.58E-02 5.88E-02 3.74E-02 2.29E-02 1.35E-02 7.83E-03

The numerical rates of convergence are computed by using the formula [8]:

rk ≡ rε,k := log2(ẽnk
/ẽ2nk

), k = 1, 2, . . . ,

where ẽ stands for eε,n, and eextε,n, respectively.
Furthermore, we compute

en = max
0≤ε≪1

eε,n and eextn = max
0≤ε≪1

eextε,n
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Table 10. Results for Example 5.2: Maximum errors via
FMFDM (4.21) along with (4.20) after extrapolation.

ε n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 n = 1024

1.0E-04 3.83E-02 3.53E-02 2.40E-02 1.58E-02 1.13E-02 8.50E-03 6.69E-03
1.0E-05 3.83E-02 3.53E-02 2.40E-02 1.58E-02 1.13E-02 8.50E-03 6.69E-03
1.0E-06 3.83E-02 3.53E-02 2.40E-02 1.58E-02 1.13E-02 8.50E-03 6.69E-03
1.0E-08 3.83E-02 3.53E-02 2.40E-02 1.58E-02 1.13E-02 8.50E-03 6.69E-03
1.0E-09 3.83E-02 3.53E-02 2.40E-02 1.58E-02 1.13E-02 8.50E-03 6.69E-03
1.0E-10 3.83E-02 3.53E-02 2.40E-02 1.59E-02 1.13E-02 8.54E-03 6.69E-03

eext
n

3.83E-02 3.53E-02 2.40E-02 1.59E-02 1.13E-02 8.54E-03 6.69E-03

Table 11. Results for Example 5.2: Rates of convergence
via FMFDM (4.21) along with (4.20) before extrapolation
nk = 16, 32, 64, 128, 256, 512.

ε r1 r2 r3 r4 r5 r6

1.0E-04 0.27 0.54 0.63 0.75 0.97 0.98
1.0E-05 0.24 0.55 0.64 0.70 0.75 0.79
1.0E-06 0.22 0.54 0.65 0.71 0.75 0.79
1.0E-08 0.20 0.54 0.65 0.71 0.76 0.79
1.0E-09 0.20 0.54 0.65 0.71 0.76 0.79
1.0E-10 0.20 0.54 0.65 0.71 0.76 0.79

rn 0.20 0.54 0.65 0.71 0.76 0.79

Table 12. Results for Example 5.2: Rates of convergence via
FMFDM (4.21) along with (4.20) after extrapolation nk =
16, 32, 64, 128, 256, 512.

ε r1 r2 r3 r4 r5 r6

1.0E-04 0.12 0.56 0.60 0.49 0.41 0.35
1.0E-05 0.12 0.56 0.60 0.49 0.41 0.35
1.0E-06 0.12 0.56 0.60 0.49 0.41 0.35
1.0E-08 0.12 0.56 0.60 0.49 0.41 0.35

1.0E-09 0.12 0.56 0.60 0.49 0.41 0.35
1.0E-10 0.12 0.56 0.60 0.49 0.40 0.35

rext
n

0.12 0.56 0.60 0.49 0.40 0.35

whereas the numerical rates of uniform convergence is computed as

rn := log2(en/e2n) and rextn := log2(e
ext
n /eext2n ).

6. Discussion and concluding remarks

With the view of checking the performance of some convergence acceleration
techniques, in this paper, we designed a fitted mesh finite difference method
(FMFDM) to solve a class of singularly perturbed turning-point problems
whose solutions have boundary layers. The analysis shows that this method is
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robust with respect to the singular perturbation parameter ε and is of order
almost one. We also considered the fitted operator finite difference method
(FOFDM) which we designed in [20]. This FOFDM is also robust with re-
spect to ε. Then we investigated the effect of Richardson extrapolation on
these methods and observed that, in both cases, this procedure improves the
accuracy of the methods. However, the rates of convergence of these meth-
ods remain unimproved. This is in disagreement with a statement found in
[27]. These conclusions drawn from our analysis are further confirmed by the
numerical results found in tables 1-12. Moreover, comparing results in Table
1 to those in Table 9 we notice that the FOFDM is more accurate than the
FMFDM.

Acknowledgment. Authors would like to acknowledgment anonyms referees
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tation of this work.
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