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ABSTRACT

EEG data is often contaminated with artifacts and noise from various sources,
such as eye blinks, jaw movement and AC outlets. VR opens up many new
interesting opportunities for EEG research. However, VR usually involves head
movement, which can also cause notable artifacts in EEG data. We need an
effective method to remove the head movement related artifacts, so that VR can
be effectively used in EEG experiments. In this study, we apply independent
component analysis (ICA) for removing head movement artifacts from EEG data.
We constructed an experiment where a subject is placed into a VR environment
that incentivizes them to move their head. At the same time, the subject is
performing a conventional auditory oddball experiment, which is known to cause
an ERP containing a measurable P300 component. We attempt to remove head
movement related artifacts from the data without removing ERP components of
interest, such as the P300, as a side effect. Our data processing pipeline was
implemented using Matlab with the EEGLAB and ERPLAB toolboxes, along
with AMICA as our chosen ICA implementation. We explain the design and
implementation of both the experiment and the following data processing. We
then discuss the results and how they could help future research. We were able
to distinguish head movement related components with ICA, but the impact of
their removal ended up being fairly limited. We also found out that the head
movements seem to have an effect on the shape and amplitude of the P300
component.

Keywords: EEG, ERP, independent component analysis, VR, oddball, head
movement artifacts



Kuistio L., Meriläinen J. (2023) Independent Component Analysis -menetelmän
käyttö pään liikkeistä aiheutuvien häiriöiden havaitsemiseen EEG:ssä. Oulun yli-
opisto, Tietotekniikan tutkinto-ohjelma, 54 s.

TIIVISTELMÄ

EEG-data sisältää tyyppillisesti useista eri lähteistä peräisin olevia häiriöitä.
Näitä lähteitä voivat olla esimerkiksi silmänräpäytykset, leuan liikkeet
sekä koetilassa olevat vaihtovirtaa kuljettavat sähköjohdot ja pistorasiat.
VR avaa uusia mielenkiintoisia mahdollisuuksia EEG-tutkimuksia varten,
mutta VR-ympäristöissä koehenkilö tyypillisesti liikuttelee päätään, mikä
voi aiheuttaa merkittäviä häiriöitä EEG-dataan. Tämän takia tarvitaan
menetelmä poistamaan pään liikkeistä aiheutuvia häiriöitä, jotta VR:n käyttö
voi yleistyä EEG-tutkimuksissa. Tässä tutkimuksessa pyrimme käyttämään
ICA-menetelmää pään liikkeistä aiheutuvien häiriöiden poistamiseksi.
Rakensimme koeasetelman, jossa koehenkilö asetetaan VR-ympäristöön,
joka kannustaa häntä liikuttamaan päätään. Samaan aikaan koehenkilö
suorittaa tavanomaista "oddball-koetta", jonka tiedetään aiheuttavan
P300-komponentin sisältävän ERP:n. Pyrimme poistamaan pään liikkeistä
aiheutuvat häiriöt ilman että poistamme samalla kertaa mahdollisesti
kiinnostavia komponentteja, kuten P300:n. Data-analyysin toteuttamiseen
käytimme Matlab-ohjelmistoa yhdessä EEGLAB- ja ERPLAB-lisäosien kanssa.
Käyttämämme ICA-algoritmi oli AMICA. Kerromme sekä koeasetelman että
sitä seuranneen data-analyysivaiheen suunnittelusta ja toteutuksesta. Lisäksi
käymme läpi tutkimuksen tulokset ja pohdimme miten ne voivat auttaa
tutkimustyötä tulevaisuudessa. Onnistuimme erottelemaan pään liikkeisiin
liittyviä komponentteja ICA-menetelmän avulla, mutta niiden poistamisella
oli hieman odotettua pienempi vaikutus. Havaitsimme myös, että pään
liikkeillä näyttää olevan jonkinlaista vaikutusta P300-komponentin muotoon ja
amplitudiin.

Avainsanat: aivosähkökäyrä, eeg, erp, ica, VR
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1. INTRODUCTION

In 1929, a German physiologist and psychiatrist Hans Berger published a set of
experiments in which he demonstrated that the electrical activity of the human brain
could be measured and recorded by placing an electrode on the scalp, amplifying the
signal, and plotting the changes in voltage over time. These findings lead to a method
that we nowadays know as electroencephalography, or EEG [1].

During the following decades, EEG was found to be useful in many scientific
applications [2]. Researchers discovered that embedded within the EEG, there
are neural responses associated with specific sensory, cognitive, and motor events.
These specific responses, event-related potentials, could then be extracted from the
data. Today, researchers understand that these ERPs provide high-resolution temporal
information about the mind and brain that cannot be obtained any other way, which
has lead to the growth of the field of ERP research [3].

However, in its raw unprocessed form, EEG is a fairly crude measurement of brain
activity. EEG is a mixture of countless different neural sources, making it impossible
to isolate specific neuro-cognitive processes. The unfortunate reality is that other
electrical activity from the body and the environment can contaminate the measured
signal. EEG data is prone to a multitude of so-called artifacts that are caused by natural
human behaviour, such as eye movement, blinking and muscle activity. For example,
a typical eye blink can be 100 times larger than many ERP experimental effects. The
artifacts and noise can easily drown out the actual interesting EEG signal. The solution
is to either prevent them during the data collection session or remove them from the
data afterwards via software [1].

Over time, science has progressed and new methods for research have emerged. One
notable example being the use of virtual reality [4]. The use of VR and EEG has been
proven as a valid method of conducting experiments with plenty of potential for the
future [5]. However, the use of VR in ERP research can often lead to the previously
mentioned issue where the data gets contaminated by noise and artifacts.

In ERP research, many have opted to restrict the behavior of the subject in order to
avoid causing too many artifacts in the data. But this is a very limiting option when
using VR as a part of the experiment. In order to have as accurate and realistic results
as possible, limitations need to be set to a minimum. This leads to finding ways to
effectively post-process the data to clean up the unwanted artifacts and noise without
affecting the underlying brain activity data.

One relatively new approach for artifact correction is the use of independent
component analysis (ICA). It is a statistical and computational technique for revealing
hidden factors that underlie sets of random variables, measurements, or signals. It
is a very powerful technique which is capable of finding underlying sources when
classic methods fail completely. ICA attempts to decompose a multivariate signal into
independent signals in order to enable a separation of the unwanted signals [6].

Since EEG is a mixture of signals, ICA manages to identify and eliminate artifacts
in the data, without altering the actual brain activity. This method has been proven to
be successful before. Particularly, high voltage artifacts such as eye movements have
been proven to be easily removed [7].

In the experimental study covered in this paper, we aim to discover if ICA can also
isolate components related head motions caused by interacting with a VR environment.
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The ability to effectively isolate these components would help with a design of a
comprehensive post-processing pipeline for EEG data. This would then promote the
idea of having less restricted experiments with VR and EEG in the future.
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2. RELATED WORK

2.1. EEG

A book called "An Introduction to the Event-Related Potential Technique" by Steven J.
Luck [1] and its 2nd edition [3] are a great introduction to the world of EEG and ERP
technique. In addition, "Foundations of Signal Processing" by Vetterli, Kovacevic and
Goyal [8] is a good resource for basic signal processing methods and concepts. These
two books, and especially Luck’s books, provide a basic body of knowledge and a
foundation for our study.

2.2. VR and EEG

VR and EEG have been successfully combined in multiple previous studies. The
studies have been conducted on various topics, such as driving behavior (Bayliss
& Ballard, 2000), spatial navigation (e.g., Bischof & Boulanger, 2003), and spatial
presence (Baumgartner, Valko, Esslen, & Jänke, 2006)[5].

Krokos and Varshney [9] studied the application of EEG for quantifying VR
cybersickness and found out that certain EEG activities are associated with VR
cybersickness. In addition, Grassini et. al. [10] used EEG and ERP to evaluate the
sense of presence in an immersive virtual environment, and found out that certain ERP
components correlate with a sense of presence reported through questionnaires.

According to Bohil et. al. [4], VR is being increasingly used by neuroscientists
because it provides ways to simulate natural events and social interactions while
maintaining a relatively good level of control over the research environment. Keeping
the environment and all possible variables under control, while at the same time trying
to make the experience as natural as possible for the test subject, can be difficult in
traditional experiments [4].

Baumgartner et. al. [11] successfully used noninteractive VR to study the
neurophysiological underpinnings of spatial presence as early as 2006. Also, Bischof
et. al. [12] used VR and EEG to study spacial navigation.

All these examples show that VR and EEG has been successfully combined in many
previous studies. But there are still many topics to experiment with, so the possibilities
for the future are very broad.

2.3. Artifacts in EEG

"A new method for off-line removal of ocular artifact" [13] is a classic paper related
to so called ocular artifacts: artifacts caused by eye movements and blinks. The paper
mentions that during its time, a common procedure to remove ocular artifacts was
to simply discard all the data that has those artifacts in them. However, this is not
always possible, because eye movements and blinks may have an important connection
with the underlying cognitive processes that are under study. Some subjects may also
be unable to consciously avoid eye movements for various reasons. Furthermore,
telling test subjects to keep their eyes still and not blink effectively assigns them an
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additional task, which may take focus away from something else. The paper describes
a method that essentially tries to remove the disturbances caused by eye movements
by subtracting the disturbances from the EEG data.

A paper by Ochoa and Polich supports the idea that asking subjects not to blink
assign them a secondary task that changes the resulting EEG signal [14]. They found
out that asking subjects not to blink results in a decreased P300 amplitude. The fact
that this kind of an effect can be observed in the ERP suggests that asking subjects not
to blink does in some way affect the underlying cognitive processes. This is generally
something that we do not want to happen, because we want the EEG signal to reflect
the phenomena under study instead of these sort of superfluous aspects.

Regan et. al. [15] support the notion that detecting and removing artifacts in
EEG signals is important. They point out that this is important in ambulatory EEG
applications where limiting movement can be almost impossible. They suggest a
method based on Mutual Information Evaluation Function and Linear Discriminant
Analysis to detect head movement artifacts. However, instead of trying to remove the
artifacts from the EEG data, they only focus on classifying them. Christoph et. al. [16]
studied the suppression of head movement artifacts in a VR setting, which is very close
to what we are trying to do in our study. They note that countering movement artifacts
is crucial for EEG to be a viable measurement tool in VR experiments, because VR
usually inherently involves some amount of movement. The method for removing
artifacts they investigate is a bit unclear, but it is based on a warp correlation filter.

Mumtaz et. al. [2] reviewed the different challenges commonly faced when
dealing with EEG artifact removal methods. In simple terms, the main challenge
with artifact removal methods is that they usually remove something else in addition
to the artifact itself. This can cause valuable data to be lost. Chen et. al. [17]
reviewed some different methods for removing muscle artifacts from EEG signal.
According to their paper, traditional methods include filtering and linear regression.
In addition to these traditional methods, there are source separation algorithms and
single channel signal decomposition techniques. Source separation algorithms include
ICA (independent component analysis), CCA (canonical correlation analysis) and IVA
(independent vector analysis). Single channel signal decomposition techniques include
prior-knowledge-based signal decomposition and data-driven signal decomposition
methods. In our own study, we are going to look at ICA.

2.4. Independent Component Analysis

The 2002 article "Independent component analysis: an introduction" [18] gives an
introduction to the ICA method. The article is not related to EEG specifically but gives
a good introduction to what ICA is. ICA is one case of blind source separation, which
attempts to decompose a signal formed through the linear combination of signals from
different sources, into the original source signals [19]. Blind source separation tries
to achieve this with no knowledge of the structure of the original source signals or
their linear combination [19]. ICA is based on the assumption that the source signals
are uncorrelated, statistically independent and non-Gaussian [18]. Makeig and Orton
[20] give an overview of ICA’s relation to specifically EEG and ERP. Hoffman and
Falkenstein [21] compare ICA and EMCP. EMCP is the technique that was used in the
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1983 paper "A new method for off-line removal of ocular artifact" [13]. EMCP stands
for "eye movement correction procedure" and it removes eye-movements by regressing
them away. Urigüen et. al. [22] found out that if there is no prior knowledge about the
EEG signal and the types of artifacts it will include, then ICA is the safest option for
removing artifacts from EEG data. According to Xue et. al. [23], ICA is an effective
method for removing eye-blink artifacts and also power line noise. We therefore expect
it to also work for other muscle sources that are statistically independent from brain
sources.
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actiCAP snap and the included silver/silver chloride (Ag/AgCl) electrodes. The cap
includes slots for the electrodes. 32 electrodes in total were used. Most of the electrode
locations adhered to the international 10-20 system. Those electrodes included Fp1,
Fz, F3, F7, FC5, FC1, C3, M1, CP5, CP1, Pz, P3, P7, O1, Oz, O2, P4, P8, M2, CP6,
CP2, Cz, C4, FC6, FC2, F4, F8 and Fp2. In addition, we used four other electrodes.
Two for above and below the left eye, and two for the left and right temples. We used
the Cz electrode as the online reference. This was due to it being located near the
center of the scalp and us being interested in the activity related to head motion that
presumably happens near neck muscles. Figure 2 shows an illustration of most of the
electrode locations on the scalp.

Figure 2. Electrode locations on the scalp.

The electrodes were connected to a Brain Products ActiCHamp Plus, which is a
24-bit amplifier. The amplifier was connected to a laptop running the BrainVision
Recorder software, which is used to record the EEG data and also to measure the
electrodes’ impedances during the setup phase. The amplifier records the data at a
1000 Hz sampling frequency.

We also used an additional device called a TriggerBox to create markers in the data
when the auditory stimulus is given or the subject turns their head. The device in
use was the Brain Product’s TriggerBox. It was connected to the amplifier and to the
computer where the virtual reality environment and the software used to provide the
auditory stimulus were running.
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Figure 3. Amplifier (further back) and TriggerBox (in front).

3.1.2. Oddball Experiment

In addition to the artifacts, the EEG data should contain brain activity that is unrelated
to the artifacts. This is required for us to be able to investigate whether our noise and
artifact removal was successful or not. Without any interesting data, we cannot know
whether our data processing methods successfully removed the disturbances or if they
just removed everything.

To have the data contain measurable brain activity that is unrelated to the head and
eye movements, we used a so-called oddball paradigm. In an experiment that follows
the oddball paradigm, a subject is provided with two types of stimulus: a standard
stimulus that occurs more frequently and a target stimulus that is less frequently
occurring. The subject needs to keep track of the less frequently occurring target
stimulus. This way the target stimulus is known to cause a different amplitude in the
brain response’s P300 component when compared to the P300 caused by the standard
stimulus [24]. The P300 component is a good choice for this purpose, because it
has a relatively high amplitude and is therefore easier to recover compared to other
components in the presence of noise. It is also a very well known component, and a lot
of research has been done on it. Figure 4 shows what the P300 (a.k.a. P3) and earlier
sensory components (P1, N1, P2, N2) should approximately look like.
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the movement detection works by reading the orientation of the camera object every
50 milliseconds, calculating the deltas (differences between two successive readings)
for the previous 20 readings and then calculating the average of those deltas. This
is done separately for the three axes that the camera object can rotate along. If the
average delta along any axis is greater than a certain threshold, then a head movement
is detected to have begun. When the average delta along all three axis drops below
a certain threshold, then the head movement is detected to have ended. Suitable
threshold values were found by experimentation. The C# code that implements the
head movement detection and sending the triggers to the trigger server can be found in
Appendix B.

3.1.6. Experiment Session

During the experiment, a subject is performing the oddball task while also looking at
the video playing on one of the VE TV’s, with said TV changing randomly. At the
same time, they should keep track of the higher toned beeps. As mentioned before, the
VR environment and the oddball experiment were not synchronized in any way.

For testing purposes, we first conducted a pilot experiment with a simpler VR
environment where we had just two TVs. It confirmed that our setup was working
properly but we wanted to expand to using four TVs in order to have more variety to
the motions of the subject’s head.

3.2. Data Processing

After the data collection, the data processing phase can begin. In simplified terms,
the data processing includes applying ICA in combination with filtering, to remove
the unwanted artifacts and noise, such as line noise caused by electrical outlets in the
lab. After processing the data with the appropriate methods, we should be able to see
whether the artifacts and noise were removed and if the brain activity was preserved.

3.2.1. Tools

Our preferred method to post-process the data was by using Matlab. Matlab has a
great toolbox called EEGLAB [27] that makes dealing with EEG data easier compared
to generic signal processing tools. With this toolbox, we also used a plugin called
ERPLAB Toolbox [28] that gives some important additional and improved features,
such as event lists.

There are many ways to run ICA in Matlab, notably RUNICA and AMICA. Both of
them are different implementations for ICA. RUNICA is included in the EEGLAB
Toolbox which makes it a very accessible choice. AMICA however, needs to be
downloaded separately but it integrates into EEGLAB seamlessly after acquiring the
required files.

Delorme et. al. compared the performance of different ICA algorithms in separating
different sources from EEG data, and found out that AMICA is generally the best
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performing algorithm available [29]. In addition, judging by the results from our pilot
runs, it seemed to do a better job of removing blinks compared to RUNICA. Therefore
we decided to run AMICA. However, it can relatively slow, so we would recommend
using a relatively powerful PC for it in order to make the process less painful.

3.2.2. Data Processing Pipeline

In detail, our way of processing the data went as follows.

1. Downsample the data to 250 Hz
2. Edit channel locations to match the used 10-20 system
3. Aggressively high-pass filter (fc = 1 Hz)
4. Remove miscellaneous artifacts from the data
5. Run AMICA
6. Run a correlation script to find a relationship between the ICA components and

head turns
7. Give the ICA weights to the dataset constructed prior to the aggressive filtering
8. Label ICA components with ICLabel
9. Inspect the ICA components and remove eye and head related components based

on the correlation script’s results and ICLabel
10. Bandpass filter (0.1 Hz - 30 Hz)
11. Re-reference to M1 and M2
12. Create an event list, bin epochs and extract them
13. Average the data

First of all, we want to downsample the data in order to compress the data size which
can help speed up the processing. As mentioned earlier, our amplifier collected data at
1000 Hz. Chapter 16 in Steven Luck’s book suggests that 250 Hz is a suitable sample
rate for most EEG experiments [3].

In turn, high-pass filtering aggressively is mainly for removing baseline drift. The
high pass filter that was used was an IIR Butterworth filter with a half-amplitude (-6dB)
cutoff at 1Hz frequency and an order of 2.

Removing miscellaneous artifacts from the data is probably the most eye catching
step here. Steve J. Luck calls these artifacts "crap" or “commonly recorded artifactual
potentials" [3]. This can be done through ERPLAB’s artifact rejection with the
following settings.

• 250 uV threshold

• 500 ms window

• 250 ms step

• Pre-filter from 20 to 120 Hz

• Connect segments of less than 1000 ms gap

• Give a 100 ms buffer
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After AMICA, we used a custom script that looks through each of the components
and tries to find a correlation between the components and head motions. The script
generates a vector that contains zeros for the length of the EEG data except the times
between head motions. The periods between head motion trigger marks are filled
with ones. The script then finds correlation values for each of the ICA components
compared to the vector. The source code for the script can be found in Appendix D.

After ICA is done, you should pass the weights to a dataset constructed prior to the
aggressive filtering and proceed with that. Otherwise you will have a dataset with 1 Hz
high-pass and chunks removed.

Usually, ICLabel in EEGLAB does a good job of labeling eye related components.
Still, you should use caution when observing the generated labels. In the case of head
motions, there are no labels for them in the standard EEGLAB labeling.

After finally removing the components that were determined as unwanted, we band-
pass filter the data. This is to filter out high and low frequency oscillations that do not
necessarily have much to do with cognitive processes. The filter used for this was an
IIR Butterworth filter with a half-amplitude (-6 dB) lower cutoff at 0.1 Hz frequency
and a half-amplitude (-6 dB) higher cutoff at 30 Hz frequency, and an order of 2.

Then we bin and extract epochs based on the events that we have in the data. In our
case, they are the standard stimulus and oddball stimulus, which are the events that the
data should contain brain responses to.

We used the Cz electrode as our reference during the data collection. This was to
make sure that head motion related components are well included in the data. The
assumption is that those components come from the electrodes near the neck so we
used a reference electrode that is located near the top of the scalp. For the purpose of
observing the ERPs in a graph, we re-referenced the data to the two mastoid electrodes
(M1 and M2). This is the most commonly used reference in ERP research done on
cognition, which makes our results easier to compare to the results of others.

The implementation and results of this data processing pipeline are explained in
more detail in the later data processing chapter.
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4. EXPERIMENT IMPLEMENTATION

The design section covered the design and reasoning behind the our study. In this
chapter, we explain the conducted experiment session during which the data collection
happened.

4.1. Experiment

4.1.1. Participants

Since our study is rather experimental and demonstrative, we did not feel the need for
having a large participant pool. Motivating people to participate in our study during
a limited time period also would have been rather difficult, especially considering the
relatively complex experiment type and long setup times. The scope of a bachelor’s
thesis also does not allow for an extensive study and we were using a shared laboratory
space.

We ran one comprehensive session, in which we collected all the necessary data
for our purposes. The sole participant was a 31-year-old male who had previous
experience with VR and EEG. This was great for our purpose since the technology
used was not a distracting factor and the subject felt comfortable.

4.1.2. Procedure

The subject was seated in a chair while they wore an EEG cap under an Oculus Rift
S. In front of them was the PC running the software of the experiment which we
controlled.

First, the subject was explained the setup procedure. They had a chance to use the
restroom before the electrode cap setup. Everyone in the room made sure their phones
were on silent to not disturb the experiment.

The subject was instructed to comb or brush their hair which is helpful when it comes
to getting a proper connection between the scalp and the electrodes. The subject’s
head was measured in order to determine the correct cap size. To prepare for the face
electrodes, the electrode locations were cleaned with NuPrep gel and alcohol pads. A
syringe with a dull needle was used to place gel to make a connection between the
scalp and the electrodes. The needle is also helpful for spreading hair to see the scalp
though each electrode hole.

Once all the electrodes were on the cap and the impedances showed below 10 kOhm,
the HMD was carefully placed on the head. No disturbed impedances appeared during
this process so we were ready to proceed.

Before wearing the HMD, the subject was explained their tasks. They were asked to
listen to the beeps and count the amount of high pitch beeps that they hear. At the end
of a block, they would then be asked for the amount they managed to count.

During every other block, they were also instructed to follow the cartoon that was
being played on the TVs inside the VE. During the other blocks, they could just stare
at a motionless red X that was visible on the same wall with the TVs.



24

After the experiment, the subject was given the ability to wash their hair in the
bathroom provided with shampoo and a clean towel.

4.2. Outcome

Overall, the experiment was carried out successfully. We observed the subject’s actions
throughout the session and they seemed to do extremely well with following the given
instructions.

4.2.1. Beep Counting

The subject managed to stay focused and counted the high tone oddball beeps quite
accurately, as shown in the table below. There was some concern that the experiment
task could be a bit too demanding considering having two tasks at the same time.
However, judging by these results, it was not a huge issue.

During blocks 1, 3, 5 and 7 the oddball experiment was used but the subject was
asked to not track the TV’s. In turn, during blocks 2, 4, 6 and 8, the oddball experiment
was used but the subject was also asked to track the TV’s. Even though the subject was
able to count the beeps with good precision even while tracking the TV’s, they always
missed some with the simultaneous tasks. Overall the accuracy seems great and we
could determine the experiment successful.

The accuracy shown in the table was calculated with the formula (120 -
abs(subjects_answer - real_answer)) / 120.

Block # Subject’s answer Real answer Accuracy %
1 23 23 100%
2 27 28 99.2%
3 30 30 100%
4 26 29 97.5%
5 35 35 100%
6 33 32 99.2%
7 34 35 99.2%
8 32 36 96.7%

Table 1. The amount of high tone beeps counted by the subject compared to the real
value (Odd block no. = without head turning; Even block no. = with head turning).
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5. DATA PROCESSING

5.1. Overview of the Data

By manually examining the data, we could determine that it was sufficient for our
needs. We managed to capture a decent amount of artifacts and noise.

Figure 8. Significant artifacts when the subject is moving their head freely before the
experiment.

Figure 8 shows an extreme example of noticeable artifacts. This was right after
starting the recording but before starting the experiment. The subject was still moving
their head around freely and clenching their jaw. This type of noisy data is also present
during the breaks between blocks. As explained in the design section, step 4 of the data
processing pipeline attempts to remove these types of artifacts before running AMICA
because do not want the ICA algorithm to focus on them.

During the actual experiment, the head motion of the subject was more limited.
During the blocks with the TV task, major head movement occurred only when the
subject switched to look at a different TV. This can be seen in Figure 9, where the
disturbance is between the head turn trigger marks S5 and S6.

As seen in the figures, head motion can indeed be problematic when it comes to
getting clean EEG data. However, Figure 10 demonstrates that even if the subject is
holding their head still, the data still gets contaminated with artifacts. In this example,
we can see two noticeable blinks during a block when the subject was only facing
towards the motionless X on the wall.
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Label Meaning
S 1 Standard stimulus without TV task
S 2 Oddball stimulus without TV task
S 3 Standard stimulus with TV task
S 4 Oddball stimulus with TV task
S 5 Head motion start
S 6 Head motion end

Table 2. Trigger mark labels explained.

5.2. Baseline - Removing Only Eye Related Artifacts

Our goal was to see if we can remove head movement related artifacts from the data
using ICA. However, in order to analyze our results, we first needed some baseline
data. As discussed before, ICA has been found to be effective and useful especially
with ocular artifact removal [7]. Therefore for the baseline, we processed the data with
this more of a standard approach. Here we only remove ICA components related to
eye movements and blinks, in addition to other common noise sources, such as line
noise.

Figure 11. ICA components separated by AMICA and labelled by ICLabel.
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Figure 11 shows the ICA components that AMICA was able to separate. The
components have been labelled with ICLabel. Starting from 1 and counting towards
31, each component accounts for a smaller portion of the total electrical activity. Or
in other words, the closer a component is to 1, the more significant it is, while the
components at the end of the list are relatively insignificant.

Manual inspection of the components in addition to the labels is necessary to make
a reasonable decision on which components to remove.

Components 1 and 2 are labeled by ICLabel as eye related with nearly 100%
probability, and their scalp distribution also suggests that they are related to eye
movements. These two can be confidently removed.

Component 5 was identified as "line noise" by ICLabel. Also, from Figure 12 it
can be seen to contain a huge spike at 50 Hz. This suggests that the component very
probably is noise from the AC outlets in the room, so it was also marked to be removed.

Component 10 also looks to be heavily eye movement related, similar to components
1 and 2. This could also be removed without a reason for doubt.

Finally, the activity in component 31 suggests to be coming from a bad electrode, so
it was also removed. We suspect that the headband of the VR headset might have been
rubbing against this electrode. It was labeled as "channel noise" by ICLabel. And as
Figure 13 shows, it also has a prominent spike at 50 Hz, so it can also be marked for
removal.

So in total, components 1, 2, 5, 10 and 31 were removed.

Figure 12. Closer view of component 5.
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Figure 13. Closer view of component 31.

Figure 14. ERP waveforms for different channels.

After removing the unwanted components, we proceeded with the rest of our data
processing pipeline.
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ICA Component number correlation
1 0.086
2 0.245
3 0.008
4 0.118
5 0.039
6 0.014
7 0.160
8 0.118
9 0.056

10 0.090
11 0.020
12 0.036
13 0.079
14 0.024
15 0.001
16 0.068
17 0.056
18 0.022
19 0.003
20 0.063
21 0.079
22 0.000
23 0.016
24 0.008
25 0.142
26 0.009
27 0.044
28 0.043
29 0.013
30 0.009
31 0.064

Table 3. Correlation of each ICA component with head turn markers.

For the head motions, we also want to consider the labels produced by ICLabel.
ICLabel tends to do a good job at labeling eye related components and often other
noise sources, as could be seen in the baseline section. However, ICLabel has not
been trained to separate head movement related components so the labels should be
considered as indicative guesses. Some head movement related components might be
labeled as "muscle", but again, we cannot blindly trust the labels.

Judging by the correlation value, component 4 correlates with the head turns, but
because of the topography and temporal distribution, we had suspicions that it might
contain a lot of brain activity as well, so it was not removed. Components 7 and 8 also
correlated with head turns. But in addition, their scalp distribution also suggests that
they could have something to do with head movements, so they were also removed.
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6. DISCUSSION

6.1. Result Analysis

Our goal was to use ICA to remove head movement related artifacts from the EEG
data, while not affecting ERP components of interest, such as the P300.

Already during the baseline processing phase, it could be seen that the P300 is nearly
nonexistent for the oddball with head turns. This was a bit surprising to us since we
were expecting clear P300s for both oddball stimuli.

There are a couple of reasons we think could be behind the missing P300. The
TVs randomly switching could cause a P300 component of its own. The different
components could then get mixed up and attenuate each other, or cause some other
effect to make the component disappear from the ERP. Further research would be
needed to more confidentially tell whether this is true or not.

Already during the design phase, we had a concern that the experiment could be
very demanding for the subject during the blocks with active TVs. The subject had
to concentrate on the audio stimuli while following the visual cues at the same time.
And as mentioned in the related work chapter, Ochoa and Polich discussed in their
paper that asking subjects not to blink results in a decreased P300 amplitude [14]. The
tasks used in our experiment may have had the same effect. This is also backed by the
fact that the less demanding blocks of the experiment did have a clearly visible P300.
However, the subject was able to count the oddball beeps with relatively high accuracy
even in the more demanding blocks, but it is still possible that tracking the TV’s takes
too much focus away from the oddball task.

However, the missing P300 is not really an issue in the context of this paper. We
only initially chose P300 as our point of interest due to its high amplitude compared
to other ERP components. As we can see from the graphs, other components, such as
N1, are present in each ERP. This suggests that the brain data was not removed with
our processing methods. This also leads us to suppose that the missing P300 was not
there in the first place, so the problem was with our experiment design rather than data
processing.

We could determine that ICA was indeed able to distinguish head movement related
components that we then were able to remove. However, the significance of the
removal of them ended up very underwhelming. In Figure 23, we can see that the
wave forms are not very different from each other. The ERPs for the head movement
block’s events did lose some fluctuation due to the additional component removal, but
for example the N1 component is clear regardless of the methods used. And if we
compare our conservative approach with the more aggressive one, we can see that
they produced essentially identical results, even though manual examination of the
scroll data showed that the aggressive method removed a bigger chunk of the examined
artifacts.
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Figure 23. Comparison of the ERPs.

As mentioned in previous chapters, ICA should not be expected to get a perfect
separation between components, so there is always a chance that there will be some
brain activity that is also being removed. The P300 that we were able to recover is
from the blocks during which the subject kept their head still, but the component still
changes shape from the head movement component removal. This could confirm the
idea of ICA’s imperfect separation.

These results could also indicate that a big portion of the head movement artifacts
could to be tangled with the eye components. The difference between the baseline
and the two approaches are not significantly different, so maybe the "eye related
components" found during the baseline creation already contained a big portion of
the head movement related artifacts as well. This also backs the idea that people tend
to move their eyes a lot while moving their head.

All in all, it appears that removing head movement artifacts might not be a huge
concern even while utilizing VR. By limiting the amount of subject’s head movements
to not occur continuous throughout the experiment might be an effective way to keep
the ERPs clean. In addition to that, traditional methods for ERP research, such as
averaging, should take care of the outliers anyway, especially with a large participant
pool.

6.2. Limitations and Concerns

In this section we discuss the factors to consider when interpreting our results.
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6.2.1. Experiment Design

Obviously, one of the main limitations was also the extremely small amount of
subjects. With a large sample size, we could get more comprehensive results and
maybe even see the missing P300 that did not happen to appear from our only subject’s
brain response. Or alternatively, we could have a stronger reason to believe that
tracking the TVs is the cause for the nonexistent P300 or its lower amplitude.

We were initially planning to carry out the experiment for more subject. However,
we faced a surprising amount of difficulties with getting our experiment setup working.
Neither of us had previously done anything EEG related, so this was an entirely new
field for both of us. We had to learn a lot by trial and error. Because of this, getting
started took us quite a lot of time. We also had to stay in the scope of a bachelor’s
thesis. Because we also did not have much experience with VR in Unity, we wanted to
have a relative simple VR environment.

This type of an EEG experiment is also something that extensive research has not
previously been done on. The traditional oddball experiment has been widely studied
and applied, but combining it with VR and asking the subject move their head is
something newer. We hope that even though our study ended up being fairly limited
and somewhat inconclusive, it might still provide useful information for someone who
wants to carry out a similar experiment in the future.

6.2.2. Other Limitations

As mentioned in the design chapter, we lacked the proper physical equipment to send
triggers for both the head movements and the oddball sound cues. That was the reason
for implementing the local server setup, which turned out great in the end. However,
it created more possible points of error. We cannot be 100% sure whether all head
motion triggers were captured and forwarded accurately. Also, all the forwarding of
the data might have caused additional fluctuating delay compared to a setup with two
separate ports and wires.

However, minor delay is not a concern, especially if it stays somewhat constant.
Even if inaccurate, the head motion trigger marks were more than close enough to see
which disturbances were head related. And since the focus of this paper was not the
brain response itself but the data processing leading to it, perfectly precise timing was
not necessary anyway.

Also, as was found out in the data processing chapter, it looked like the head band of
the HMD might have been rubbing against the Pz electrode. This probably decreased
the quality of our data, especially since the P300 is strongest in the parietal lobe region.

6.3. Future Work

There is plenty of room for trying different types of VR applications and experiments
combined with EEG. One example being an experiment where the VR application
would make sure that the subject moves their head more frequently and for longer
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periods of time. Designing a good one is a tough task but it would make sure that the
brain response portions of the data get properly contaminated with artifacts.

Another topic of research that could utilize EEG would be measuring the eye activity
while using VR. What do people do with their eyes and muscles when rotating their
head while wearing an HMD? From our experience, people also tend to clench their
jaw and tense their face and neck muscles while wearing a relatively heavy HMD,
which most likely has an effect on the collected EEG data as well.

Since it looks like the P300 somewhat correlates with the head turns, at least in our
experiment, it could be interesting to run this same experiment with either trying to
somehow make the P300 and head movements not correlated, or by finding something
other than a P300 to look for. It could also be interesting to just run this same
experiment with more subjects. Different kinds of data processing pipelines could
also be applied.

Even though this study ended up being fairly limited, we hope that this paper might
be useful for someone who wants to carry out similar experiments in the future. The
possibilities in this area of research seem endless.
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7. SUMMARY

In the end, it turned out that our experiment design was not entirely successful. But
regardless, we still demonstrated a way to remove head movement related components
without also removing brain activity from the data.

When it comes to researching ERPs in this manner, careful considerations must
be taken with the design of the experiment. If our conclusions are correct, divided
attention seems to be able to ruin the P300 component relatively easily.

We could at least determine that ICA is capable of distinguishing head movement
related components. But we also found out that the significance of those components is
quite low. The results also suggest that a large portion of the head movement artifacts
might be included in the eye related components found by ICA, so specifically looking
for head movement components might not be necessary very often.

After all, it appears that head movement might not be a huge concern in experiments
where both VR and EEG are utilized. However, more research needs to be done on
the topic before drawing further conclusions. We hope that this study can inspire new
ideas for future research, and might be of use for someone who wants to carry out
similar experiments in the future.
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10. APPENDIX

Appendix A: Code for the trigger server
import s o c k e t
import s e r i a l
import t i me

def s e n d _ t r i g g e r ( d ) :
" " "

W r i t e s a h e x a d e c i m a l t o t h e p o r t and w a i t s a c e r t a i n t i m e

t o a l l o w t h e w r i t e t o f i n i s h . Then w r i t e s a z e r o t o t h e p o r t t o r e s e t i t .

d : i n t e g e r f o r t h e t r i g g e r mark ( e . g . d=4 adds an ’ S4 ’ t o t h e EEG da ta )

" " "

i f d == 0 :
p o r t . w r i t e ( [ 0 x00 ] )
p r i n t ( " {} s e n t " . format ( d ) )

e l i f d == 1 :
p o r t . w r i t e ( [ 0 x01 ] )
p r i n t ( " {} s e n t " . format ( d ) )

e l i f d == 2 :
p o r t . w r i t e ( [ 0 x02 ] )
p r i n t ( " {} s e n t " . format ( d ) )

e l i f d == 3 :
p o r t . w r i t e ( [ 0 x03 ] )
p r i n t ( " {} s e n t " . format ( d ) )

e l i f d == 4 :
p o r t . w r i t e ( [ 0 x04 ] )
p r i n t ( " {} s e n t " . format ( d ) )

e l i f d == 5 :
p o r t . w r i t e ( [ 0 x05 ] )
p r i n t ( " {} s e n t " . format ( d ) )

e l i f d == 6 :
p o r t . w r i t e ( [ 0 x06 ] )
p r i n t ( " {} s e n t " . format ( d ) )

t i me . s l e e p ( . 0 0 5 )
p o r t . w r i t e ( [ 0 x00 ] )
t i me . s l e e p ( . 0 0 5 )

# S e t up s o c k e t

s = s o c k e t . s o c k e t ( s o c k e t . AF_INET , s o c k e t .SOCK_DGRAM)
s . b i nd ( ( " l o c a l h o s t " , 9 9 8 8 ) ) # IP = l o c a l h o s t / 1 2 7 . 0 . 0 . 1 ;

# S o c k e t = 9988

# ( make s u r e t h a t c l i e n t s use t h e s e f o r s e n d i n g ! )

# S e t up com p o r t

p o r t = s e r i a l . S e r i a l ( "COM4" )

p r i n t ( " S e r v e r s t a r t e d . " )

whi le True :
message , a d d r e s s = s . r e c v f r o m ( 1 6 )
s e n d _ t r i g g e r ( i n t ( message . decode ( " u t f −8 " ) ) )
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Appendix B: Rotation detection script used with Unity
u s i n g System . C o l l e c t i o n s ;
u s i n g System . C o l l e c t i o n s . G e n e r i c ;
u s i n g Un i tyEng ine ;
u s i n g System . Linq ;
u s i n g System ;
u s i n g System . IO ;
u s i n g System . IO . P o r t s ;
u s i n g System . T h r e a d i n g ;
u s i n g System . Net ;
u s i n g System . Net . S o c k e t s ;
u s i n g System . Text ;

p u b l i c c l a s s R o t a t i o n D e t e c t i o n S c r i p t : MonoBehaviour
{

/ / Queues f o r o r i e n t a t i o n samples c o l l e c t e d

Queue < f l o a t > o r i e n t a t i o n X = new Queue < f l o a t > ( ) ;
Queue < f l o a t > o r i e n t a t i o n Y = new Queue < f l o a t > ( ) ;
Queue < f l o a t > o r i e n t a t i o n Z = new Queue < f l o a t > ( ) ;

/ / Boo leans t o s e t what i s done d u r i n g a s e s s i o n

p r i v a t e boo l s e n d T r i g g e r s = f a l s e ;
p u b l i c boo l s e n d S e r v e r = t r u e ;

/ / I n t e r v a l f o r o r i e n t a t i o n da ta c o l l e c t i o n

p r i v a t e f l o a t i n t e r v a l = 0 . 0 5 f ;

/ / T h r e s h o l d above which t h e averaged v a l u e s s h o u l d g e t t o f o r a head mot ion t o

be d e t e c t e d

p r i v a t e f l o a t t h r e s h o l d = 0 . 6 f ;

/ / T h r e s h o l d below which t h e averaged v a l u e s s h o u l d g e t f o r t h e end o f a head

mot ion t o be d e t e c t e d

p r i v a t e f l o a t l o w T h r e s h o l d = 0 . 3 f ;

/ / Average o f t h e s u b s t r a c t i o n s o f t h e queue v a l u e s

p r i v a t e f l o a t xAverage = 0 ;
p r i v a t e f l o a t yAverage = 0 ;
p r i v a t e f l o a t zAverage = 0 ;

/ / Boolean which i s t r u e d u r i n g a head mot ion

p r i v a t e boo l t u r n i n g = f a l s e ;

/ / S e r i a l p o r t f o r s e n d i n g t h e t r i g g e r s i f done d i r e c t t l y

S e r i a l P o r t s e r i a l P o r t = new S e r i a l P o r t ( "COM4" , 115200 , P a r i t y . None , 8 , S t o p B i t s .
One ) ;

/ / A s e p a r a t e t h r e a d i s needed f o r s e n d i n g t h e t r i g g e r s d i r e c t l y t h r o u g h a

s e r i a l p o r t

Thread s e r i a l T ;

/ / S o c k e t f o r s e n d i n g t h e t r i g g e r s i f done v i a a s e r v e r

S o c k e t sock ;
I P E n d P o i n t e n d P o i n t ;

void S t a r t ( ) {
/ / I f t r i g g e r s are s e n t d i r e c t l y v i a a s e r i a l p o r t

i f ( s e n d T r i g g e r s == t r u e ) {
/ / CLose t h e p o r t i f i t was l e f t open f o r some r e as on

i f ( s e r i a l P o r t . IsOpen )
s e r i a l P o r t . C lose ( ) ;

/ / Open t h e p o r t

s e r i a l P o r t . Open ( ) ;

/ / T imeout f o r w r i t i n g t o t h e p o r t i n c a s e i t f a i l s or t a k e s t o o l ong

s e r i a l P o r t . Wr i t eT imeou t = 100 ;

/ / R e s e t t h e p o r t by w r i t i n g z e r o t o i t

b y t e [ ] d a t a = new b y t e [ ] { 0 } ;
s e r i a l P o r t . Wr i t e ( da t a , 0 , d a t a . Length ) ;
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}

/ / I n i t i a l i z e queues w i t h z e r o s t o g e t t h e r i g h t l e n g t h s f o r them

f o r ( i n t i = 0 ; i < 2 0 ; i ++) {
o r i e n t a t i o n X . Enqueue ( 0 ) ;
o r i e n t a t i o n Y . Enqueue ( 0 ) ;
o r i e n t a t i o n Z . Enqueue ( 0 ) ;

}
}

void Update ( )
{

/ * Update i s c a l l e d e v e r y frame b u t we have a c o r o u t i n e t o c r e a t e a d e l a y

which i s t h e i n t e r v a l f o r t h e o r i e n t a t i o n samples * /

/ * E . g . I f t h e i n t e r v a l i s 0 . 5 s , we c o l l e c t t h e o r i e n t a t i o n da t a e v e r y 0 . 5 s

which l e a d s t o t h i s f u n c t i o n b e i n g c a l l e d e v e r y 0 . 5 s * /

/ / Deque t h e o l d e s t o r i e n t a t i o n samples and sample new ones

d e q u e u e A l l ( ) ;
e n q u e u e A l l ( ) ;

/ / C a l c u l a t e t h e a v e r a g e s f o r t h e o r i e n t a t i o n d e l t a s

xAverage = a v e r a g e ( o r i e n t a t i o n X ) ;
yAverage = a v e r a g e ( o r i e n t a t i o n Y ) ;
zAverage = a v e r a g e ( o r i e n t a t i o n Z ) ;

i f ( t u r n i n g == f a l s e ) {
i f ( xAverage > t h r e s h o l d ) {

p r i n t ( " t u r n s t a r t x " + xAverage ) ;
t u r n i n g = t r u e ;

i f ( s e n d S e r v e r == t r u e ) {
s e n d T o S e r v e r ( 5 ) ;

}

i f ( s e n d T r i g g e r s == t r u e ) {
/ / p r i n t ( " s e n t " ) ;

s e r i a l T = new Thread ( ( ) => w r i t e S e r i a l ( s e r i a l P o r t , 5 ) ) ;
s e r i a l T . S t a r t ( ) ;

}
} e l s e i f ( yAverage > t h r e s h o l d ) {

p r i n t ( " t u r n s t a r t y " + yAverage ) ;
t u r n i n g = t r u e ;

i f ( s e n d S e r v e r == t r u e ) {
s e n d T o S e r v e r ( 5 ) ;

}

i f ( s e n d T r i g g e r s == t r u e ) {
/ / p r i n t ( " s e n t " ) ;

s e r i a l T = new Thread ( ( ) => w r i t e S e r i a l ( s e r i a l P o r t , 5 ) ) ;
s e r i a l T . S t a r t ( ) ;

}
} e l s e i f ( zAverage > t h r e s h o l d ) {

p r i n t ( " t u r n s t a r t z " + zAverage ) ;
t u r n i n g = t r u e ;

i f ( s e n d S e r v e r == t r u e ) {
s e n d T o S e r v e r ( 5 ) ;

}

i f ( s e n d T r i g g e r s == t r u e ) {
/ / p r i n t ( " s e n t " ) ;

s e r i a l T = new Thread ( ( ) => w r i t e S e r i a l ( s e r i a l P o r t , 5 ) ) ;
s e r i a l T . S t a r t ( ) ;

}
}

} e l s e {
i f ( xAverage < l o w T h r e s h o l d && yAverage < l o w T h r e s h o l d && zAverage <

l o w T h r e s h o l d ) {
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p r i n t ( " t u r n end " ) ;
t u r n i n g = f a l s e ;

i f ( s e n d S e r v e r == t r u e ) {
s e n d T o S e r v e r ( 6 ) ;

}

i f ( s e n d T r i g g e r s == t r u e ) {
/ / p r i n t ( " s e n t " ) ;

s e r i a l T = new Thread ( ( ) => w r i t e S e r i a l ( s e r i a l P o r t , 6 ) ) ;
s e r i a l T . S t a r t ( ) ;

}
}

}

/ / I n t e r v a l

S t a r t C o r o u t i n e ( w a i t I n t e r v a l ( ) ) ;
}

void s e n d T o S e r v e r ( i n t i ) {
/ / Send t h e t r i g g e r i n f o r m a t i o n t o t h e s e r v e r which s e n d s t h e da ta t o t h e

t r i g g e r b o x

/ / S e t up t h e UDP s o c k e t

sock = new S o c k e t ( Addres sFami ly . I n t e r N e t w o r k , SocketType . Dgram , P r o t o c o l T y p e .
Udp ) ;

/ / I P d d r e s s o f t h e s e r v e r

IPAddre s s s e r v e r A d d r = IPAddres s . P a r s e ( " 1 2 7 . 0 . 0 . 1 " ) ;

/ / S o c k e t number

e n d P o i n t = new I P E n d P o i n t ( s e r ve r A dd r , 9988) ;

s t r i n g t e x t = " " ;

/ / S e t t h e da ta a c c o r d i n g l y

i f ( i == 5) {
t e x t = " 5 " ;

} e l s e i f ( i == 6) {
t e x t = " 6 " ;

} e l s e {
t e x t = " 0 " ;

}

/ / Send da ta v i a UDP

b y t e [ ] s e n d _ b u f f e r = Encoding . ASCII . Ge tBy tes ( t e x t ) ;
sock . SendTo ( s e n d _ b u f f e r , e n d P o i n t ) ;

}

void w r i t e S e r i a l ( S e r i a l P o r t s , i n t i ) {
/ / Send t h e t r i g g e r depend ing on t h e ’ i ’ t h a t i s pa s s e d t o t h i s f u n c t i o n

i f ( i == 0) {
b y t e [ ] d a t a = new b y t e [ ] { 0 } ;
s . Wr i t e ( da t a , 0 , d a t a . Length ) ;
Thread . S l e e p ( 1 0 0 ) ; / / A l low some t i m e f o r t h e w r i t i n g

b y t e [ ] d a t a 1 = new b y t e [ ] { 0 } ; / / R e s e t p o r t a f t e r use

s . Wr i t e ( da ta1 , 0 , d a t a 1 . Length ) ;
} e l s e i f ( i == 5) {

b y t e [ ] d a t a = new b y t e [ ] { 5 } ;
s . Wr i t e ( da t a , 0 , d a t a . Length ) ;
Thread . S l e e p ( 1 0 0 ) ;
b y t e [ ] d a t a 1 = new b y t e [ ] { 0 } ;
s . Wr i t e ( da ta1 , 0 , d a t a 1 . Length ) ;

} e l s e i f ( i == 6) {
b y t e [ ] d a t a = new b y t e [ ] { 6 } ;
s . Wr i t e ( da t a , 0 , d a t a . Length ) ;
Thread . S l e e p ( 1 0 0 ) ;
b y t e [ ] d a t a 1 = new b y t e [ ] { 0 } ;
s . Wr i t e ( da ta1 , 0 , d a t a 1 . Length ) ;

}
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}

void d e q u e u e A l l ( ) {
/ / Dequeue t h e o l d e s t v a l u e s from each o f t h e l i s t s

o r i e n t a t i o n X . Dequeue ( ) ;
o r i e n t a t i o n Y . Dequeue ( ) ;
o r i e n t a t i o n Z . Dequeue ( ) ;

}

void e n q u e u e A l l ( ) {
/ / Sample o r i e t a t i o n v a l u e s and enqueue them i n t o t h e l i s t s

/ / O r i e n t a t i o n v a l u e s are be tween 0 −360 , b u t we want them t o be be tween −180

and 180

/ / Sample x−a x i s o r i e n t a t i o n

i f ( gameObject . t r a n s f o r m . r o t a t i o n . e u l e r A n g l e s . x <= 180) {
o r i e n t a t i o n X . Enqueue ( gameObject . t r a n s f o r m . r o t a t i o n . e u l e r A n g l e s . x ) ;

} e l s e {
o r i e n t a t i o n X . Enqueue ( gameObject . t r a n s f o r m . r o t a t i o n . e u l e r A n g l e s . x − 360) ;

}

/ / Sample y−a x i s o r i e n t a t i o n

i f ( gameObject . t r a n s f o r m . r o t a t i o n . e u l e r A n g l e s . y <= 180) {
o r i e n t a t i o n Y . Enqueue ( gameObject . t r a n s f o r m . r o t a t i o n . e u l e r A n g l e s . y ) ;

} e l s e {
o r i e n t a t i o n Y . Enqueue ( gameObject . t r a n s f o r m . r o t a t i o n . e u l e r A n g l e s . y − 360) ;

}

/ / Sample z−a x i s o r i e n t a t i o n

i f ( gameObject . t r a n s f o r m . r o t a t i o n . e u l e r A n g l e s . z <= 180) {
o r i e n t a t i o n Z . Enqueue ( gameObject . t r a n s f o r m . r o t a t i o n . e u l e r A n g l e s . z ) ;

} e l s e {
o r i e n t a t i o n Z . Enqueue ( gameObject . t r a n s f o r m . r o t a t i o n . e u l e r A n g l e s . z − 360) ;

}
}

f l o a t a v e r a g e ( Queue < f l o a t > q ) {
/ / C a l c u l a t e t h e average o f t h e d e l t a s be tween s u b s e q u e n t o r i e n t a t i o n sample s

/ / The o r i e n t a t i o n sample l i s t i s pa s s e d t o t h i s f u n c t i o n

/ / R e t u r n s t h e average o f t h e d e l t a s

/ / L i s t f o r t h e d e l t a s ( E . g . a l i s t o f 20 samples has 19 d e l t a s )

f l o a t [ ] s u b t r a c t i o n s = new f l o a t [ 1 9 ] ;

/ / S u b s t r a c t t h e s u b s e q u e n t v a l u e i n t h e l i s t which are t h e d e l t a s

f o r ( i n t i = 0 ; i < 1 9 ; i ++) {
s u b t r a c t i o n s [ i ] = Math . Abs ( q . ElementAt ( i +1) − q . ElementAt ( i ) ) ;

}

f l o a t sum = 0 ;

/ / Sum t h e d e l t a s f o r t h e average c a l c u l a t i o n

f o r ( i n t i = 0 ; i < 1 9 ; i ++) {
sum += s u b t r a c t i o n s [ i ] ;

}

/ / R e t u r n t h e average

re turn sum / 1 9 ;
}

I E n u m e r a t o r w a i t I n t e r v a l ( ) {
/ / Delay f o r t h e up da t e f u n c t i o n i n o r d e r t o have an i n t e r v a l f o r t h e

o r i e n t a t i o n s a m p l i n g

y i e l d re turn new Wai tForSeconds ( i n t e r v a l ) ;
}

}
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Appendix C: Script used with Unity to switch the TV’s
u s i n g System . C o l l e c t i o n s ;
u s i n g System . C o l l e c t i o n s . G e n e r i c ;
u s i n g Un i tyEng ine ;
u s i n g System . IO . P o r t s ;

p u b l i c c l a s s T V S w i t c h S c r i p t : MonoBehaviour
{

p u b l i c M a t e r i a l o n M a t e r i a l ;
p u b l i c M a t e r i a l o f f M a t e r i a l ;
p u b l i c boo l onOff ;
p u b l i c GameObject L ;
p u b l i c i n t lowTimerValue = 0 ;
p u b l i c i n t h ighTimerVa lue = 1 ;
p u b l i c i n t c y c l e C o u n t = 5 ;
p r i v a t e i n t c y c l e s = 0 ;

p u b l i c GameObject x ;

void S t a r t ( ) {
c y c l e s = 0 ;
S t a r t C o r o u t i n e ( s t a r t W a i t e r ( ) ) ;

}

void Change ( ) {
i f ( onOff == t r u e ) {

onOff = f a l s e ;
GetComponent <MeshRenderer > ( ) . m a t e r i a l = o f f M a t e r i a l ;
L . GetComponent <MeshRenderer > ( ) . m a t e r i a l = o n M a t e r i a l ;

} e l s e {
onOff = t r u e ;
GetComponent <MeshRenderer > ( ) . m a t e r i a l = o n M a t e r i a l ;
L . GetComponent <MeshRenderer > ( ) . m a t e r i a l = o f f M a t e r i a l ;

}
c y c l e s ++;
i f ( c y c l e s < c y c l e C o u n t ) {

S t a r t C o r o u t i n e ( w a i t e r ( ) ) ;
} e l s e {

S t a r t C o r o u t i n e ( s t a r t W a i t e r ( ) ) ;
}

}

I E n u m e r a t o r w a i t e r ( ) {
i n t wai tTime = Random . Range ( lowTimerValue , h ighTimerVa lue ) ;
y i e l d re turn new Wai tForSeconds ( wai tTime ) ;
p r i n t ( "SWITCH " + " ( " + wai tTime + " ) " ) ;
Change ( ) ;

}

I E n u m e r a t o r s t a r t W a i t e r ( ) {
y i e l d re turn new Wai tForSeconds ( 5 ) ;
i f ( c y c l e s == 0) {

p r i n t ( "START" ) ;
Change ( ) ;

} e l s e {
p r i n t ( "END" ) ;

}
}

}
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Appendix D: Matlab correlator script used to compute the correlations between ICA
components and head turn markers. The pointbiserial function is written by Frederik
Nagel [30].

% use w i t h c o n t i n u o u s da ta once ICA w e i g h t s have been computed

c o r r _ m a t = [ ] ;

% i f u s i n g EEG c h a n n e l

m a s t o i d _ c h a n = 2 1 ;

% i f u s i n g head t u r n t r i g g e r s

t u r n _ c h a n n e l = z e r o s ( l e n g t h (EEG . t i m e s ) , 1 ) ; % empty v e c t o r which we w i l l f i l l w i t h 1 s

and 0 s t o s i g n i f y ongoing t u r n s

t u r n _ s t a r t = 0 ; % has t h e pe r s on s t a r t e d t u r n i n g t h e i r head ?

t u r n _ e n d = 0 ; % have t h e y s t o p p e d t u r n i n g t h e i r head ?

f o r i = 1 : l e n g t h (EEG . e v e n t )
% w a i t f o r t u r n o n s e t and n o t e t h e l a t e n c y

i f strcmp (EEG . e v e n t ( i ) . type , ’S 5 ’ )
t u r n _ s t a r t = 1 ;
t _ t u r n _ s t a r t = i n t 6 4 (EEG . e v e n t ( i ) . l a t e n c y ) ;

end
% w a i t f o r t u r n o f f s e t and n o t e t h e l a t e n c y

i f strcmp (EEG . e v e n t ( i ) . type , ’S 6 ’ )
t u r n _ e n d = 1 ;
t _ t u r n _ e n d = i n t 6 4 (EEG . e v e n t ( i ) . l a t e n c y ) ;

end
% once o n s e t and o f f s e t are comple te , f i l l f rom t u r n o n s e t u n t i l t u r n

% o f f s e t w i t h 1 t o i n d i c a t e p r e s e n c e o f t u r n

i f t u r n _ s t a r t == 1 && t u r n _ e n d == 1
t u r n _ c h a n n e l ( t _ t u r n _ s t a r t : t _ t u r n _ e n d ) = 1 ;
t u r n _ s t a r t = 0 ;
t u r n _ e n d = 0 ;

end
end

% g e t c o r r e l a t i o n c o e f f i c i e n t s be tween ICA components and t u r n s i g n a l s

f o r i = 1 : s i z e (EEG . i c a a c t , 1 )
[ r , h , p , c i ] = p o i n t b i s e r i a l ( t u r n _ c h a n n e l , abs (EEG . i c a a c t ( i , : ) ) ) ;
c o r r _ m a t ( i , 1 ) = abs ( r ) ;
c o r r _ m a t ( i , 2 ) = p ;
i f p < 1*10^ −20

c o r r _ m a t ( i , 3 ) = 1 ;
e l s e c o r r _ m a t ( i , 3 ) = 0 ;
end
c o r r _ m a t ( i , 4 ) = abs ( c i ( 1 ) ) ;
c o r r _ m a t ( i , 5 ) = abs ( c i ( 2 ) ) ;

end

f u n c t i o n [ r , h , p , c i ] = p o i n t b i s e r i a l ( d , x , a lpha , t a i l )
%POINTBISERIAL C a l c u l a t e P o i n t b i s e r i a l c o r r e l a t i o n

% R = POINTBISERIAL ( X , Y ) c a l c u l a t e s t h e c o r r e l a t i o n w i t h

% D l o g i c a l ( boo lean ) v a r i a b l e , v a l u e s 0 or 1 . I f v a l u e s are numeric , a l l

% v a l u e s ~=0 are s e t t o 0 and

% X as c o n t i n u o s v a r i a b l e .

%

% [R , H, P , CI ] = POINTBISERIAL (D, X )

% H = 1 means t h a t you can r e j e c t t h e n u l l h y p o t h e s i s , t h e means are

% e q u a l a t t h e 5% s i g n i f i c a n c e l e v e l . P h o l d s t h e p−v a l u e a s s o c i a t e d

% w i t h t h e t − s t a t i s t i c , CI i s a 95% c o n f i d e n c e i n t e r v a l f o r t h e t r u e

% d i f f e r e n c e i n means .

% A t − t e s t i s computed t o check f o r t h e d i f f e r e n c e o f bo t h groups . Note

% t h a t a normal d i s t r i b u t i o n i s d e s i r e d f o r t h e c o m p u t a t i o n o f t h e

% t − t e s t . For a non−p a r a m e t r i c t e s t use t h e 4− parame te r c a l l below .

%

% [ . . . ] = POINTBISERIAL (D, X , ALPHA) can be used t o s e t a d i f f e r e n t v a l u e f o r

% alpha . D e f a u l t i s 5%.

%

% [ . . . ] = POINTBISERIAL (D, X , ALPHA , TAIL ) p e r f o r m s t h e t e s t a g a i n s t t h e a l t e r n a t i v e

% h y p o t h e s i s s p e c i f i e d by TAIL : ( t a k e n from t t e s t 2 )
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% ’ both ’ −− " means are n o t e q u a l " ( two− t a i l e d t e s t )

% ’ r i g h t ’ −− " mean o f X w i t h D == 1 i s g r e a t e r t han mean o f X w i t h D == 0" (

r i g h t − t a i l e d t e s t )

% ’ l e f t ’ −− " mean o f X w i t h D == 1 i s l e s s t han mean o f X w i t h D == 0" ( l e f t −

t a i l e d t e s t )

%

% [R , H, P , STATS ] = POINTBISERIAL (D, X , ALPHA, ’ np ’ ) p e r f o r m s a non−p a r a m e t r i c Wi lcoxon

rank sum

% t e s t (2− t a i l e d ) . STATS c o n t a i n s t e s t r e s u l t s t r u c t ( s e e ranksum ) .

%

% Example :

% parm = rand ( 1 0 0 , 1 ) ;

% gender = rand ( 1 0 0 , 1 ) ;

% gender ( gender <=.5) =0;

% [ r , h ] = p o i n t b i s e r i a l ( gender , parm , . 0 5 ) ;

% Uses :

% Matlab S t a t i s t i c s Too lbox

%

% F r e d e r i k Nagel

% I n s t i t u t e o f Music P h y s i o l o g y and Mus ic ians ’ Med ic ine

% Hanover U n i v e r s i t y o f Music and Drama

% Hannover

% Germany

%

% e−mai l : f r e d e r i k . nagel@hmt−hannover . de

% homepage : h t t p : / / www . immm . hmt−hannover . de

%

% May 29 , 2006 .

%

% See a l s o CORR, TTEST2 , RANKSUM

error ( nargchk ( 2 , 4 , nargin ) )
i f ( nargin ==2)

a l p h a = . 0 5 ;
t a i l = [ ] ;

e l s e i f ( nargin ==3)
t a i l = [ ] ;

end

% Conver t numer ic v a l u e s t o l o g i c a l s

d = l o g i c a l ( d ) ;

% Length

n = l e n g t h ( d ) ;

% L e n g t h s o f groups 0 and 1

n1 = sum ( d ) ;
n0 = sum (~ d ) ;
i f ( n0 ==0)

error ( ’ There a r e no d a t a wi th x =0! ’ ) ;
e l s e i f ( n1 ==0)

error ( ’ There a r e no d a t a wi th x =1! ’ ) ;
e l s e i f ( n0+n1 ~= n | | sum ( i snan ( d ) ) >0 | | sum ( i snan ( x ) ) >0)

error ( ’ Data may n o t c o n t a i n NANs ’ ) ;
end

% Mean o f groups 0 and 1

x1 = mean ( x ( d ) ) ;
x0 = mean ( x (~ d ) ) ;

% SD o f y

sx = s t d ( x ) ;

%C o r r e l a t i o n c o e f f i c i e n t

r = ( x1−x0 ) / sx * s q r t ( n0*n1 / n ^2 ) ;

i f ( i sempty ( t a i l ) )
[ h , p , c i ] = t t e s t 2 ( x ( d ) , x (~ d ) ) ;

e l s e i f ( strcmp ( t a i l , ’ np ’ ) )
[ p , h , c i ] = ranksum ( x ( d ) , x (~ d ) , a l p h a ) ;

e l s e
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[ h , p , c i ] = t t e s t 2 ( x ( d ) , x (~ d ) , a lpha , t a i l ) ;
end


