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Abstract: The lack of model-based information in bioreactor monitoring and control can have a 
profound impact on biological systems. We therefore aim to develop a model using elementary modes 
(EMs) that represents the observed phenotype in given environmental conditions suited for bioprocess 
control. Challenges in the model development were the high number of possible phenotypes of 
stoichiometric models and the high computational intensity.  
Two methods were compared to reduce the number of EMs to match the observed cellular phenotype. 
The first method is based on ranking modes and the second is a controlled random search (CRS) 
algorithm. Since we wish to obtain a biologically realistic subset of EMs, the objective function to be 
minimized is a trade-off between the error, efficiency of the modes, and model size. 
The case study considered the central carbon metabolism of Escherichia coli. The original model 
containing 2706 modes for case 1 and 11718 for case 2 was reduced to a system of one for case 1 and 
three modes for case 2 giving a good correlation with the measured data. Furthermore, considering also 
intracellular besides extracellular metabolites, results in a better fit of the measured rates. Finally, the 
CRS outperformed the ranking algorithm.  
Keywords: Elementary modes, model reduction, metabolism, Escherichia coli, biomass growth. 

 

1.  INTRODUCTION 

Most mathematical models used for optimization and control 
of biotechnological processes are relatively simple and the 
complex interactions between the extracellular environment 
and the thousands of intracellular enzymes and metabolites 
are generally ignored. The lack of this information in 
bioreactor monitoring and control can have a profound 
impact on biological systems and lead to poor bioreactor 
control performance.  

Nevertheless, the use of methods based on large models in 
process monitoring and control is nowadays limited due to 
their complexity and the lack of appropriate methodologies. 
The challenge of the development of a large-scale modelling 
strategy that predicts cellular phenotypes is not yet solved 
and will be addressed here in the view of bioprocess control.  

Genome-scale stoichiometric models are currently the best 
approximation to a representation of the metabolic 
capabilities of the cell. However, stoichiometric models 
represent an infinite number of possible phenotypes and 
systems biology tools need to be applied such that the 
simulation matches the phenotypes in given conditions. Also, 
most tools in systems biology are designed for steady-state 
applications, whereas the aim of process control requires a 
dynamic approach. Although dynamics are not addressed 
explicitly in this work, the model is formulated such that it 
can be easily extended as such. Moreover, as a consequence 
of the complexity of the models, the computational intensity 
is high. The model simulations are too slow for some 
applications, such as online monitoring and control. Several 
model reduction approaches can be used to simplify models 
for use in process control, like the use of lumped reactions, 

sensitivity analysis tools (Smets et al., 2002), singular 
perturbation theory (Bastin and Dochain 1990), and 
elimination of the dynamics of some processes based on their 
time scales (Haag et al., 2005). 

A tool that has the potential to solve some of the above 
problems is Elementary Modes (EMs) (Schuster et al., 1999). 
EMs analysis identifies all minimal functional pathways 
inherent to a metabolic network. However, EMs analysis for 
large metabolic networks has the problem of combinatorial 
explosion of possible routes across the networks. In many 
situations, more EMs exist than necessary to construct all 
admissible flux distributions. Therefore, some of them can be 
taken as a generator set of the whole admissible region. A 
challenging task is how to select these EMs to describe a 
physiological state of interest. In literature, several 
approaches are described. Trinh et al. (2009) give an 
overview of this problem.  

In the last years, several approaches that combine the use of 
EMs with experimental data have been used to predict 
cellular phenotypes and maximum production capabilities. 
Provost and Bastin (2004) achieved a model reduction by 
deriving a dynamic model based on EMs. The model is based 
on the elimination of intracellular rates to obtain a 
macroscopic model connecting substrates and products. The 
dynamic model, compatible with the underlying metabolic 
network, is built on these macro-reactions. The basic 
assumption is that the main dynamics are contained in the 
extracellular metabolites and that the intracellular metabolites 
are in steady-state. This approach of combining EMs with 
experimental data is the basis for the model in this work, 
subject to several modifications. 
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In modelling metabolic systems through EMs, usually some 
metabolites are considered “external” in the sense that they 
are available for uptake or can be secreted from the cell. 
Those metabolites are the sources of the network and their 
concentrations are assumed to be buffered. Internal 
metabolites have to be balanced with respect to production 
and consumption at steady state. In many cases, there are 
biochemical reasons to treat a metabolite as balanced or 
unbalanced (based, for example on known membrane 
transporters). Often, however, the classification is 
ambiguous, since the buffered condition can also be assumed 
for metabolites that are not secreted. Given that the higher the 
number of external metabolites the larger the number of EMs, 
Dandekar et al. (2003) propose a classification method of 
metabolites as external or internal that minimizes the number 
of EMs.  

Our ultimate goal with a view on bioprocess control is, 
besides minimizing the number of EMs, capturing the 
essential process dynamics. In this work therefore, we 
propose to classify a metabolite as unbalanced or balanced 
based on time-scale separation, rather than on the physical 
presence of the metabolite, since the various reactions operate 
on different time scales, from milliseconds to hours or days. 
Hence, we classify the metabolites based on the time scale of 
interest: the slow metabolites are treated as unbalanced, the 
fast metabolites as balanced. In order to compare this 
methodology with the standard classification, we analyse two 
cases: in case 1 the distinction between extracellular 
(unbalanced) and intracellular (balanced) metabolites is the 
standard one while in case 2 it is based on time-scale 
separation. Time-scale separation in metabolic pathways has 
been studied by, amongst others, Delgado and Liao (1995).   

An issue not addressed in most literature on the calculation of 
the elementary rates, is that of reversibility of EMs. It will be 
addressed in more detail in the methods section 2.1.  

In the sequel, two methods will be compared to select a 
limited number of EMs matching the phenotype in given 
conditions. The first method is based on ranking modes and 
the second on a controlled random search (CRS) algorithm.  

2.  MODEL  

2.1  Stoichiometric model and experimental data 

The network model was reconstructed to represent 
Escherichia coli growing on glucose minimal media. The 
starting point this model was the reduced model for the 
central carbon metabolism of E. coli of Suthers et al. (2007). 
This model was modified in the following way: amino-acid 
metabolism is not included; biomass formation was modelled 
by acknowledging the metabolic drain from the central 
metabolic pathways according to Fischer et al. (2004); and 
oxidative phosphorylation was lumped and modelled 
according to Carlson and Srienc, (2004). The resulting model 
contains glycolysis, pentose phosphate pathway, TCA cycle, 
anaplerotic reactions, biomass formation, oxidative 
phosphorylation, maintenance energy, and membrane 
transport reactions. Energy requirements for biomass 
formation and energy production are also included. The 
model contains 45 metabolites and 48 reactions of which 23 

are irreversible. The number of degrees of freedom is 10 (t 
there are linearly dependent balance equations).  

The steady-state metabolite concentrations during continuous 
cultures (extracellular glucose (GlcEX), biomass, and acetate 
(AceEX); and intracellular glucose-6-phosphate (G6P), 
pyruvate (PYR), and 6-phosphogluconate (6PG)) were taken 
from Hoque et al. (2005); oxygen uptake rate (OUR) and 
carbon dioxide evolution rate (CER) were taken from Hua et 
al. (2003) and adjusted for the different biomass 
concentration and yield.  

2.2 Model based on elementary modes 

The classical dynamical model of a bioreactor can be 
established on the basis of a set of macro-reactions (Bastin 
and Dochain, 1990): 
ξ     (1) 

 
where ξ is the vector with concentrations of the chosen 
metabolites in the reactor liquid volume, r(t) the vector of 
reaction rates, and u(t) the net exchange of the metabolites 
with the outside. The stoichiometric matrix K of the macro-
EM reactions reads (Provost and Bastin, 2004):  

·      (2) 
 
where E is the  elementary mode matrix, computed 
using METATOOL 5.1.0 (Pfeiffer et al., 1999). Each column 
of E represents one EM. N denotes the corresponding  
matrix of the chosen metabolites. At steady state, there is no 
accumulation of metabolites in the system and (1) can be 
simplified to: 

·       (3) 
 
Any steady-state flux pattern can be expressed as a 
nonnegative linear combination of these modes (section 3). In 
underdetermined or overdetermined systems the matrix K is 
not-invertible. Some authors applied the Moore-Penrose 
inverse to calculate the elementary rates (Poolman et al., 
2004). An issue, not addressed in some literature on the 
calculation of the elementary rates, is that of reversibility of 
EMs. An EM is considered reversible if all its reactions are 
reversible. Conversely, EMs containing one or more 
irreversible reactions are irreversible. As a consequence the 
elementary rates of the irreversible modes should be greater 
than or equal to zero: 

0 if  is irreversible    (4) 
 
Poolmanet al. (2004) tackled this by simply removing the 
columns of K that lead to negative rates in irreversible modes 
and recalculating the assignment. Schwartz and Kanehisa 
(2005) took into account the reversibility constraints in a 
quadratic programming problem to calculate the elementary 
rates. Another method, based in linear programming, is the 
concept of the α-spectrum (Wiback et al., 2003). The α-
spectrum encloses all possible solutions, but is not intended 
to find a reduced set of modes. In this work we compute the 
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rates r using a nonnegative least squares algorithm (Lawson 
and Hanson, 1974).  

2.3  Two case studies 

The proposed methods are illustrated on two cases. In case 1 
the distinction between balanced and unbalanced metabolites 
in the EM computation is based on the standard definition. In 
case 2 it is based on time-scale separation. The vectors of the 
unbalanced metabolites (ξ1) are given below. 

Case 1: 
 T , , , ,    (5) 
 , µ, µ · , ,  
 
Case 2: 
 , , , , , , ,  (6) 

µ · , µ · , µ · ,
, µ, µ · , ,   

 
Where CGlcEX is the extracellular glucose concentration, CX 
the biomass concentration, CAceEX the extracellular acetate 
concentration, CO2 the oxygen concentration in the liquid, 
CCO2 the carbon dioxide concentration, D the dilution rate, 
which is equal to the specific growth rate µ, CG6P the 
intracellular glucose-6-phosphate concentration, CPYR the 
intracellular pyruvate concentration, and C6PG the 
intracellular 6-phosphogluconate concentration. Note that in 
this particular case of continuous culture both the internal and 
external metabolites are in steady-state. For bioprocess 
control, e.g. fed-batch cultures, external metabolites are not 
considered in steady-state.  

3.  REDUCTION OF THE NUMBER OF EMS 

For case 1 computation of the EMs using METATOOL gives 
2706 EMs, of which 1622 are biomass producing modes. A 
way to select the EMs that describe a particular phenotype 
with biomass production could be based on the biomass yield 
on glucose and oxygen according to Carlson and Srienc 
(2004). Song and Ramkrishna (2009) chose a fixed number 
of EMs based on yield analysis using quadratic 
programming. Based on Fig. 1 (showing part of the data for 
illustration), a single EM or a linear combination of EMs 
could be selected to match experimental data. 

 

Fig. 1. Biomass yield on oxygen versus biomass yield on 
glucose for each EM (x). The circle (o) is the measured yield. 

In this work, however, we wish to consider more metabolite 
measurement. Furthermore, we wish to consider all possible 
EMs (for instance also non-biomass producing modes), 
model size, and efficiency of the EMs. Hence, we reduce the 
number of EMs on the basis of an objective function that 
takes into account these aspects.  

We aim to reduce the number of EMs such that we yield a 
realistic subset of K (corresponding to a subset of EMs) that 
matches the observed phenotype. In general, increasing the 
model size (or the number of selected EMs) is likely to 
improve the estimation errors. On the other hand, our 
assumption is that only a small number of EMs is active 
under defined process conditions. Besides, in our search for a 
biologically meaningful subset, we think that the more 
efficient EMs, in terms of investment in enzymes, are more 
likely to be active in practice. The proposed objective 
function therefore is a trade-off between the error RMSE, the 
average efficiency of the selected elementary modes P, and 
the model size MS:  

· ·     (7) 
 
where c1 and c2 are factors to weight the importance of 
efficiency and model size against the actual error. RMSE 
denotes the weighted root mean squared error between the 
measured um and fitted rates u: 

· ∑      (8) 

 
where n is the number of measurements and w the weights, 
computed by the absolute value of um. Efficiency P is defined 
as the investment required to establish the EM, that is, to 
produce the enzymes and is calculated by the average sum of 
the absolute stoichiometry of the rates through the selected 
EMs (e) (modified from Stelling et al., 2002):  

· ∑       (9) 
 
where j denotes the reaction. The fluxes have to be 
normalized by the units of substrate consumed. Model size is 
defined by the number of nonzero components of the 
elementary rates r: 

      (10) 
 
We are now left with the problem of selecting the best subset 
of overall elementary modes K, which minimizes the 
objective function (7). Hereto we compare two algorithms: 
ranking (section 3.1) and CRS (section 3.2).  

3.1 Ranking of elementary modes 

The approach “ranking of EMs” is based on the idea of 
adding one column of K (representing the macro-reaction of 
one EM) to the current subset of K to give the largest 
improvement of the objective function until a minimal 
objective function is found. The algorithm uses this approach 
to expand the model, starting with a single term which 
minimizes the objective function. 
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3.2 Controlled random search algorithm 

Price (1977) developed a CRS procedure, which searches for 
global minima in an iterative procedure. A drawback of the 
method is the computational time; nevertheless, it is more 
efficient than a pure random search. This procedure is applied 
here to select a limited number of EMs and their index from 
K on the basis of the objective function in an iterative search 
containing three steps: 

1. First, a set of NT trial points is generated at random using 
n inputs (number of EMs and their column index) from 
the search domain V. The search domain V is defined by 
specifying limits on each of the n variables and a 
predetermined number of trial points NT. In this work, 
the constraints were set by a maximum of ten EMs and 
the maximum index defined by the number of calculated 
EMs. The objective function (7) is evaluated for each 
trial point and stored in array A together with the inputs.  

2. Then the search starts by generating for each iteration a 
new trial point as follows: new points are generated by 
choosing n+1 random distinct points RP1, RP2, … RPn+1 
from the set of NT stored points. The next trial point TP 
is computed from the centroid G of the n points RP1,… 
RPn minus the last point RPn+1: 

2 ·      (11) 
 

Provided that the new trial point TP satisfies the 
constraints the goal function is evaluated (JTP). 

3. The stored point M from matrix A with the greatest value 
is determined (JM). JTP is compared with the JM in point 
M. If JTP < JM, M is replaced by TP in A. 

Step two and three are repeated until the stop criterion is 
satisfied (all penalties J in the stored matrix A are identical, 
the maximum J is smaller than a certain value, or the 
maximum number of function evaluations is reached).  

4.  RESULTS AND DISCUSSION 

The choice of the weighting factors c1 and c2 in (7) indicate 
the importance of efficiency and model size against the error 
and influences the selection of the number and index of the 
EMs. Since we intend to achieve a huge model reduction and 
to select biological relevant modes, we chose significant 
values for both ( 2 · 10 , 1 · 10 ). In section 4.1-
4.3 we present the results for the specific cases. In section 4.4 
we compare both methods. 

4.1  Ranking and CRS for case 1 

Both algorithms reduced the original model containing 2706 
EMs to a system based on one and the same mode for 
biomass growth. The corresponding macro-reaction that 
connects the extracellular substrates and the end-products is: 

EM 267: 3.1 6.5 0.27 7.3 
0      (12) 
 

with an elementary rate of 0.50. Simulation of the reduced 
model gives an appropriate match with the data (Fig. 2A). 
Note that acetate formation is fitted to be zero in the reduced 
model. Application of the algorithms to a different data set, in 
which acetate is produced in significant amounts, would 
probably lead to the selection of different mode(s).   

4.2  Ranking of EMs for case 2 

The ranking algorithm reduced the original model containing 
11718 EMs to a system based on three modes (Fig. 3). Since 
case 2 considers three additional metabolites as 
“unbalanced”, the macro-reactions are now split into other 
macro-reactions containing the linkage with those 
metabolites as well (besides the linkage of the extracellular 
substrates with the extracellular products): 

EM 778: 0.10 6 0.60 0.60  
EM 2029: 1.1 0.82 

0.056 0.40 6 0.24 0.87  
EM 6351: 1.4 2.8 1.9 6 4.5 
0.28 1.7 5.9    (13) 
 
with elementary rates of 3.0; 1.5; and 0.057. Figure 3 shows 
that increasing the model size from one to three selected EMs 
improved the objective function. Adding more EMs did not 
improve the error sufficiently to compensate for the higher 
value of the objective function with the increased model size.  

   

 

 

 

 

 

Fig. 2. Measured versus fitted rates for the reduced models 
using ranking (x) and CRS (O). A. case 1. B. case 2.     

 

Fig. 3. Selection plot of the model size for case 2.    

4.3  Controlled random search for case 2 

The CRS procedure was applied several times and converged, 
during each run, to the same model size (3 EMs), but not to 
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the same set of EMs. All sets of EMs have close J (7), but not 
all the same. Convergence to global instead of local optima 
could be improved by increasing the number of trial points 
NT in the search (at the expense of increasing computational 
time) or by modifying the algorithm in different ways. As an 
example, Fig. 4 shows that the iterative search converges to a 
set of three EMs. The corresponding macro-reactions are the 
following, with elementary rates of 1.9; 0.059; and 0.41: 

EM 1359: 0.92 0.0031 0.68 
0.044 0.36 6 0.28 0.67  

EM 3502: 1.5 6 1.9 3.0 
0.084 1.3 3.4  

EM 2522: 1.1 6 0.71 4.4 
0.091 6.3 · 10  5.1   (14) 
 

 

Fig. 4. Controlled random search to select a limited number 
of EMs for case 2. The lines represent the maximum and 
minimum values within the dataset A. A. Model size B. Index 
of the three selected EMs C. Penalty J (7). 

4.4 Comparison of methods and discussion 

An overview of the results from EMs reduction based on 
ranking EMs and CRS is shown in table 1 and Fig. 2. For the 
sake of a fair comparison of the results between cases 1 and 
2, the penalty (7) was also computed using only the 
extracellular metabolites (Jext). Note that Jext was not used as 
a selection criterion and might therefore be slightly larger. 

Extending the states vector of case 1 with a few intracellular 
metabolites resulted in an improved fit of the measured rates 
for the presented dataset. For some of the other tested 
datasets, the obtained fit was only slightly better using the 
extended states vector. We think that this result may be 
obtained due to the larger pool of EMs for case 2 and hence 
the higher possibility of finding EMs matching the data 
better: before reduction, case 2 contained 11718 EMs and 
case 1 2706.  

The deteriorated results for case 1 in comparison with case 2 
may suggest that the assumption behind case 1 was wrong, 
i.e., that the concentrations of G6P, PYR, and 6PG. are not 
balanced. However, since the differences for both cases were 
not that obvious on all datasets, more experiments are 
necessary to achieve more supported conclusions  

Table 1. Overview of the results  

 J Jext  Model Size 
Ranking case 1 0.14 0.14 1 
Ranking case 2 0.15 0.083 3 
CRS case 1 0.14 0.14 1 
CRS case 2 0.098 0.11 3  

Table 1 furthermore shows that the CRS algorithm 
outperformed the ranking algorithm for a model size larger 
than one EM. If the optimal model size is one, both methods 
select the same EM, at the expense of a slightly larger 
computational time for the CRS. The ranking algorithm is 
based on expanding the model from the fixed “best” EM with 
the “next best” EM and so on. However, the set of EMs 
giving the best J does not necessarily include the best EM. 
So, the ranking algorithm may not find the best set, which the 
CRS is able to find. In other words, the ranking approach 
may easily fall in local minima. Conversely, the CRS may 
find the global minima. However, this is not guaranteed and 
the algorithm should be run several times to find the best 
solution. 

This finding is in line with other authors. Crampin et al. 
(2004) already stated that the non-orthogonality of the matrix 
K means that the optimal subset of size K+1 is not necessarily 
the optimal subset K plus the “next best term” and that the 
selection process must therefore be iterative. Also Judd and 
Mees (1995) already stated: “It appears that finding the 
optimal model of size k is NP-hard - related to the feasible 
basis extension problem. If this is the case, we cannot expect 
to obtain the optimal solution easily.” 

We used data from one particular experiment (8 measured 
metabolites) to illustrate the results. Interestingly, the 
approach is flexible enough to be of use - at higher 
computational cost - if more datasets are simultaneously 
taken into account (e.g. different studies, at different 
conditions, etc.). In this way, the selection of EMs becomes 
less dependent on a single instance of measurements (more 
reliable) and the model will be able to represent a wider range 
of actual phenotypes. Furthermore, when inferring dynamics 
of the elementary modes (r(t) in (1)) -to be able to model the 
time evolution of the metabolites ξ and ultimately control in 
real-time- informative datasets representing a variety of 
conditions are crucial for accurate estimation of the reaction 
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mechanisms and parameters of the elementary rates. A 
feature of the controlled random search algorithm (in contrast 
to the ranking algorithm) is that it can be easily extended with 
the simultaneous selection of reaction mechanisms.  

As an alternative to elementary modes, the convex basis or a 
“minimal set of generating vectors” may be more suitable to 
represent a particular phenotype. The convex basis is a subset 
of the elementary modes and suffices to represent each 
feasible flux distribution in the network by a nonnegative 
linear combination of the convex basis vectors (Urbanczik, 
2007; Song and Ramkrishna, 2009). Besides the computation 
of the EMs, METATOOL also facilitates the computation of 
the convex basis vectors. For instance, case 1 yields 2706 
elementary modes as opposed to 433 generating vectors. 

5.  CONCLUSIONS 

The development of methodologies to improve real-time 
process optimization, monitoring, and control based on large-
scale metabolic models has the potential to raise process 
efficiency and productivity. This work is a first step towards 
the use of metabolic models in real-time by presenting a 
methodology to capture a large metabolic network by only a 
small number of elementary modes that are active under 
defined process conditions. 
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