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Abstract: Asphalt road pavements are usually dark and, consequently, have a low albedo. Therefore,
they absorb energy as heat, increasing the Urban Heat Island (UHI) effect, which impacts the environ-
ment, energy consumption, and human health. Through the functionalization with thermochromic
materials (TM), this work aims to develop a smart asphalt pavement able to change its surface color,
increasing the reflectance, and thus mitigate this phenomenon. To achieve this goal, asphalt substrates
were functionalized by a surface spray coating of a thermochromic solution (TS) containing aqueous
solution of thermochromic microcapsules (thermocapsules), dye, and epoxy resin. To evaluate the
functionalization features, Fourier Transform Infrared Spectroscopy (FTIR), and Thermal Differential
test (TDT) with cyclic temperature variation were performed in the functionalized asphalt binder.
Moreover, Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectrometry (EDS), a
Quick Ultraviolet Accelerated Weathering Test (QUV) with Colorimetry test, and an adaptation of the
Accelerated Polishing Test (APT) were performed on the functionalized asphalt mixture. The results
indicate that the functionalization of asphalt substrates with TS exhibits a reversible color-change
ability, higher luminosity values when subjected to temperatures above 30 ◦C, and wear resistance.

Keywords: thermochromism; smart asphalt pavement; cool pavements; thermocapsules; Leuco dyes

1. Introduction

Urban Heat Islands (UHI) are defined by the occurrence of higher temperatures in
urban areas compared to the surrounding rural environment and have been considered
one of the most significant problems in the current century. This phenomenon has as main
causes human activities, such as: replacement of vegetation by infrastructure (buildings
and road pavements) with high solar absorption, soil impermeability, energy storage, and
heat release, presenting a high impact on the environment, energy needs, and human
health [1–3]. The dark coloration of road pavements, which presents a low albedo, is
a strong contributing factor to increased temperatures in urban centers [4]. Albedo is
the fraction of solar energy received by the Earth that is returned scattered to space and
ranges from 0 (100% absorption and 0% reflection) to 1 (0% absorption and 100% reflection).
The albedo of a surface is the fraction of incident sunlight that this surface reflects; the
fraction not reflected is absorbed, which causes the increase in surface temperature [5,6].
Some mitigation measures have been studied to avoid the UHI effect, such as: increasing
the use of green spaces within the urban area, exploring the cooling effects of wind and
water, and designing cool pavements with more reflective (increased albedo), permeable
porous, and water-retaining properties [7,8]. The solar reflective coating is one common
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alternative concerning cool pavements due to its ease of implementation and its cost-benefit
advantages [9].

Thermochromic (TM) materials show color changes in their visible optical properties
upon temperature changes and, due to this, can be used in solar reflective pavement
coatings. The color change process occurs at a specific transition temperature (TT) as
a result of a chromogenic core. TM can be classified into two groups concerning the
mechanisms of thermochromic behavior: (i) dye-based, and (ii) non-dye. The first group
works through proton transfer of dyes embedded in a polymer matrix or through proton
transfer reactions in Leuco dyes. The second group presents a color change associated
with nanometric scale and molecular rearrangements by temperature change [10–15]. The
Leuco dye systems can go from the colored state to the colorless and consist of three
components: color former (Leuco dye), color developer, and co-solvent. The melting point
of the co-solvent determines the TT; the material is colored below its melting point and
becomes colorless above this temperature (Figure 1). These systems have a low production
cost and a TT compatible with the temperature range of the construction sector. For this
reason, they have been widely used in this industry [16] as well as in the aerospace, military,
textile, and other industries [17]. Their main disadvantage is the fast aging [18] due to
ultraviolet radiation exposure, which decreases the thermochromic capacity [19]. For this
reason, microencapsulation is a strategy to hold the entire thermochromic system together,
protecting it from the surrounding environment, reducing its volatility, and improving its
stability [20,21].
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Figure 1. The thermochromic mechanism in Leuco dyes [11].

In general, reflective pavements can be developed by applying a coating with highly
reflective, infra-red reflective, or thermochromic properties, as well as by using heat reflec-
tive coated aggregates, or fly ash and slag in the case of concrete cement pavement [22].
For example, titanium dioxide (TiO2) and epoxy resin were used in the asphalt pavement
as a solar reflective coating and reduced the surface temperature from 71.3 to 57.9 ◦C [23].
In another study, silica, TiO2, diatomite, hollow glass beads, and epoxy resin were used as
the solar reflective coating, and a reduction of about 11 ◦C of the surface temperature was
achieved [24]. Reversible thermochromic microcapsules were used in the development of
reflective pavements and achieved a cooling effect that could reach 10.57 ◦C [25]. Asphalt
binders were also functionalized by mixing thermochromic microcapsules, and optical
and mechanical properties were improved; recommended concentrations were around
5%–6% [26]. However, most studies concern the temperature variation control and are
mainly focused on the durability of the asphalt pavements and the mechanical characteris-
tics of asphalt mixtures once high temperatures contribute to the permanent deformation
process of the asphalt pavements, and the low temperatures are associated with cracking
and ice formation [1,27–30].

Therefore, in the asphalt paving field, the functionalization with TM is still scarce,
but controlled color variation and increased reflectivity of thermochromic pavements can
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mitigate the UHI effects [1]. However, this modification can be achieved by functionalizing
the asphalt mixtures with a thermochromic capability. Figure 2 compares a conventional
asphalt pavement (low albedo) and a thermochromic pavement (high albedo). In con-
ventional asphalt, due to its dark color, a large amount of the incident solar radiation is
absorbed by the pavement, contributing to the heating of urban centers [1]. In contrast,
by incorporating a thermochromic layer, a higher solar reflectivity at high temperatures is
achieved, which lowers the surface temperature and reduces energy absorption in the form
of heat by the pavement [25].
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Considering that the reflectivity of asphalt mixtures can be increased with the intro-
duction of TM due to the color change based on temperature variation [27], this work aims
to develop a solution capable of reducing the absorption of energy in the form of heat by as-
phalt pavements, and, consequently, reduce the UHI effects. To this end, it is proceeded by
the functionalization of asphalt substrates (asphalt binder and asphalt mixture) by spraying
a thermochromic solution (TS) containing thermochromic particles (thermocapsules), dye,
and epoxy resin, whose temperature sensitivity leads to color change.

2. Materials and Methods
2.1. Materials

The materials used in this research were: (i) commercial thermocapsules
(ChromaZone®—color-changing, heat-sensitive) (Flintshire, Great Britain), (ii) yellow dye,
(iii) epoxy resin, (iv) asphalt binder Elaster 13/60, and (v) asphalt mixture AC 10.

2.2. Sample Preparation

The asphalt binder and the asphalt mixture were functionalized by spraying the
surface with TS containing thermocapsules and dye at concentrations recommended by
the suppliers and previously indicated in the literature to have better optical, mechanical,
and surface performance [24,26,31–36]. In order to improve the immobilization of the
thermocapsules over the asphalt pavements, a resin was also used to compose the solutions
for spraying. Thus, two approaches were carried out; one without resin and another with.
The first is composed of an aqueous solution of thermocapsules (3% w/v) and yellow dye
(0.5% w/v). The second one consists of thermocapsules (3% w/v), yellow dye (0.5% w/v),
and epoxy resin (20 mL). The insertion of the yellow dye in the TS is justified by the color
of the pavement. When the temperatures are above 30 ◦C, the thermocapsules, initially
with a dark coloration (similar to the pavement), become colorless, showing the yellow dye.
After the discoloration of these thermocapsules, the color of the dye will be perceived over
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the asphalt substrate. If the dye had not been inserted into the TS, only the dark color in
the substrate would be perceived. The behavior of the TS on the asphalt substrate is shown
in Figure 3.
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2.3. Test Methods, Experimental Equipment, and Conditions

The tests occurred in two stages. First, the functionalization with TS was performed
over the asphalt binder and then over the asphalt mixture. Thus, the characterization of the
functionalized asphalt substrates was performed by observing the functioning of the TS,
the consequences of its application on the substrates, and its conditions of immobilization.

For the characterization of the functionalized asphalt binder, the Fourier Transform
Infrared Spectroscopy (FTIR, Shimadzu, Kyoto, Japan) in a spectral range from 400 to
4000 cm−1 was performed to obtain the information about the chemical bonds resulting
from the functionalization [32]. The Thermal Differential test was carried out to analyze
macroscopically the thermal activation and reversibility of the TS above the asphalt sub-
strate. The samples were subjected to temperatures from approximately 20–25 ◦C (ambient)
to −10 ◦C, then to +40 ◦C and again to −10 ◦C.

The asphalt binder specimens functionalized with solutions containing the combina-
tion of thermocapsules, dye, and resin, were labeled as follows:

• AB: Asphalt binder.
• AB+T: Asphalt binder sprayed with an aqueous solution of thermocapsules.
• AB+D: Asphalt binder sprayed with an aqueous solution of dye.
• AB+R: Asphalt binder sprayed with a solution containing resin.
• AB+T+D: Asphalt binder sprayed with an aqueous solution of thermocapsules and dye.
• AB+T+D+R: Asphalt binder sprayed with an aqueous solution of thermocapsules, dye

and resin.

For the characterization of the functionalized asphalt mixture, the analysis of the
surface morphological characteristics through Scanning Electron Microscopy (SEM, FEI,
Hillsboro, OR, USA) and the semi-quantitative analysis of the chemical composition
through Energy-Dispersive X-ray Spectrometer (EDS, EDAX, Mahwah, NJ, USA) were
performed. The simulation of environmental degradation was tested via the Quick Ul-
traviolet Accelerated Weathering Test (QUV) through the incidence of fluorescent lamps
and UV lamps, at a temperature of 30 ◦C and for a period of 48 h. The Colorimetry test
analysis was performed by measuring color coordinates for residence times in the QUV
test equal to 0 and 48 h to numerically measure the color changes of the specimens when
subjected to the QUV test conditions. The color coordinates were measured using the
Minolta CM-2600d portable Spectrophotometer equipment, providing a perception of the
color values of the samples at the end of this time interval, in terms of L*, a*, and b*,
as defined by the Comissione Internationale de l’ Éclairage (CIE), as well as ∆E*, which
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works as a perceptibility factor and indicates the value of the color difference, but not the
direction [14,37,38] (Equation (1)).

∆E∗ =
√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (1)

L* represents the variation from black (L* = 0) to white (L* = 100), a* the variation
from red (+) to green (−), and b* the variation from yellow (+) to blue (−). The variation
of each coordinate will be calculated by comparing the initial and final coordinates of the
functionalized asphalt mixture surfaces.

Finally, the wear resistance was studied through the Accelerated Polishing test (ASTM
D3319-97) [39]. This test was adopted to simulate aggressive road traffic conditions. The
functionalized asphalt mixtures with TS containing thermocapsules, dye, and resin were
subjected to a period of immersion in water of three days at 40 ◦C. Subsequently, the
samples were subjected to three cycles of a duration of one hour each at 300 rpm, and the
TS immobilization conditions on the asphalt mixture surface were evaluated.

The asphalt mixture specimens functionalized with solutions containing the combina-
tion of thermocapsules, dye, and resin were labeled as follows:

• AM: Asphalt mixture.
• AM+T: Asphalt mixture sprayed with an aqueous solution of thermocapsules.
• AM+D: Asphalt mixture sprayed with an aqueous solution of dye.
• AM+T+R: Asphalt mixture sprayed with an aqueous solution of thermocapsules

and resin.
• AM+D+R: Asphalt mixture sprayed with an aqueous solution of dye and resin.
• AM+T+D: Asphalt mixture sprayed with an aqueous solution of thermocapsules

and dye.
• AM+T+D+R: Asphalt mixture sprayed with an aqueous solution of thermocapsules,

dye, and resin.

Figure 4 schematizes the steps of this investigation concerning the tests performed on
each functionalized asphalt substrate to achieve the desired goals.
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3. Results and Discussion
3.1. Fourier Transform Infrared Spectroscopy on Asphalt Binder

Figure 5 shows the Fourier Transform Infrared Spectroscopy (FTIR) spectra of the
asphalt binder samples AB+T+D+R, AB+D, AB+T, AB, and AB+R. The spectra allow sev-
eral transmittance peaks to be distinguished and associated with the vibration modes of
the molecular bonds, and the main aspects of the functionalization are observed. Trans-
mittance concerns the fraction of incident light which passes through the sample and is
transmitted [40].
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Figure 5. FTIR spectra of the asphalt binder sample AB and the functionalized asphalt binder samples
AB+T+D+R, AB+D, AB+T, and AB+R.

Among the prominent peaks identified, it can be noticed that the FTIR spectra of the
samples present strong bands attributed to the asphalt binder and the epoxy groups. The
bands at 1300–1500 and 2675–3115 cm−1, in which are identified the peaks at 1457, 2920 and
2851 cm−1, respectively, are characteristic of the stretching and bending modes of saturated
aliphatic hydrocarbons [41,42]. These peaks exist in most samples analyzed; however, in
samples AB and AB+R, the peaks have a higher intensity, indicating the absence or lesser
influence of the thickness of the functionalization layer on the representative bonds of the
asphalt binder elements. The samples AB+R and AB+T+D+R, which contain resin in the
functionalization solution, show peaks at 1246 cm−1 due to ether bonds [43], strong bands
at 1121 and 1160 cm−1 corresponding to the stretching CO-C asymmetric and symmetric
vibrations, and at 1727 cm−1 regarding C=O stretching of esters, which can be useful
for epoxy group identification [44,45]. The peaks at 741 and 1380 cm−1 correspond to
the characteristic vibrations of CH2 and CH3, respectively [46,47]. Finally, the peaks at
1023 and 851 cm−1 are also due to the resin insertions on the surface functionalization
and correspond, respectively, to phenolic C-O stretching of the epoxy group and C-O-C
stretching of the oxirane group [45,48].

In general, the samples in which resin was added to the surface functionalization
(AB+R and AB+T+C+R) have the characteristic peaks of the epoxy groups. The charac-
teristic peaks of the chemical bonds from the elements that compose the asphalt binder
appear with considerably less expressiveness when there is a layer of TS on it, mainly
containing thermocapsules or dye, such as AB+T, AB+D, and AB+T+D+R. The reduction of
the characteristic peaks of the asphalt binder is weaker in the AB+R sample, and the peaks
from the epoxy groups are the highest of all the samples.

This technique proved the presence of solutions that contain the combination of resin,
thermocapsules, and dye on the surface of the asphalt substrate. Therefore, it ensured the
occurrence of the surface functionalization.

3.2. Thermal Differential on Asphalt Binder

In order to demonstrate the thermochromatic capacity of the surface coating under
study, as well as its color reversibility, the asphalt binders functionalized with the so-
lution combinations AB+T+D+R, AB+T+D, AB+T, and AB+D were subjected to varied
temperature conditions.

First, the samples, which were at approximately 20 to 25 ◦C, were cooled to −10 ◦C.
Subsequently, the samples were heated to 40 ◦C. Then, again, the temperature was reduced
to −10 ◦C, as indicated in Figure 6. In this way, it was possible to analyze the thermal
activation and color reversibility of the TS over the asphalt binder.
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Figure 6. Thermal differential test of the functionalized asphalt binder samples AB+T+D+R, AB+T+D,
AB+T, and AB+D.

A visual analysis of the functionalized samples submitted to thermal gradient iden-
tified a color variation during this process. Confronted with a negative temperature of
−10 ◦C, up to approximately 10 ◦C, in the solutions AB+T+D+R, AB+T+D, and AB+T, the
color observed is predominantly dark, while the thermocapsules (dark-colored) are still in
their colored state. From 20 to 40 ◦C, the solutions AB+T+D+R and AB+T+D show large
differences in coloration, becoming lighter once the thermocapsules start their discoloration
process, going from colored to colorless. At low temperatures, the thermocapsules suppress
the color of the dye. At about 30 ◦C, the thermocapsules become colorless and, consequently,
the visualization of the dye is possible. The solution AB+T is susceptible to coloration
changes only at temperatures above 30 ◦C, consequently causing the color to disappear
at lower temperatures. The sample AB+D maintained the same coloration throughout
the thermal transition due to the absence of thermocapsules. After reaching 40 ◦C, the
temperature was reduced again to −10 ◦C, and the color reversibility was verified.

3.3. Scanning Electron Microscopy and Energy-Dispersive X-ray Spectrometer on Asphalt Mixture

The asphalt mixture samples AM, AM+T, AM+D, AM+T+D, and AM+T+D+R were
subjected to Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectrome-
ter (EDS) tests. Inferences concerning changes in their surface morphology and chemical
composition can be drawn from the SEM micrographs, and the EDS spectra are shown in
Figure 7.

In the SEM micrograph of the specimen without functionalization, AM, the elements
of the asphalt mixture surface can be seen: the asphalt binder and the aggregates. In the
EDS spectrum, it is possible to identify the most significant peaks of the chemical elements
present in the asphalt mixture, especially those existing in the aggregates, such as calcium
(Ca) and silicon (Si).

By comparing the SEM micrographs of sample AM with AM+T and AM+D, it is
possible to visually notice that there is a change in their surface and the substrate became
less visible due to the functionalization layer. The EDS spectra corroborate this inference,
since the peaks of the elements constituting the asphalt mixture aggregates, Si and Ca,
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are less intensive, mainly in specimen AM+T. It can also be noted that the specimen that
receives the thermocapsules in the functionalization layer has a significant increase in the
carbon (C) amounts attributed to the TM presence.
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In AM+T+D and AM+T+D+R, the micrographic and spectral changes are even more
pronounced compared to AM. The asphalt mixture elements become less evident (lower
peaks and smoother surface) in both functionalized samples due to the layer formed by
TS, especially in the specimen containing resin. The AM+T+D combination results in a
decrease of the Si peak in the spectrum and an increase in C amounts (from the TM). In
the spectral analysis of AM+T+D+R, the elements belonging to the constitution of the
asphalt mixture aggregates have practically no intensity, indicating that the insertion of
the resin in the TS causes a greater morphological and chemical change in the specimen
surface. The carbon peak in specimen AM+T+D+R is also pronounced due to the presence
of thermocapsules.

Thus, the SEM and EDS tests show the changes that functionalization leads to on
the surface of the asphalt mixtures, especially in AM+T+D+R. Also, the particles are
visually better immobilized in the samples where there is resin within the TS. This is the
reason it was added to the TS to be sprayed to improve the immobilization process of the
thermocapsules over the substrate.

3.4. Quick Ultraviolet Accelerated Weathering Test and Colorimetry on Asphalt Mixture

The color coordinates values, L*, a*, and b* were collected for dwell times of 0 and
48 h in the Quick Ultraviolet Accelerated Weathering Test (QUV test). The variations ∆E*
(see Equation (1)), as well the ∆L*, ∆a*, and ∆b* were calculated for the mentioned dwell
times in the QUV test, as shown in the results in Table 1.

Table 1. Results of the Colorimetry test.

Coordinates AM+T AM+D AM+T+D AM+D+R AM+T+R AM+T+D+R

∆L* 0.58 −2.33 1.54 −10.93 −3.29 4.69
∆a* −2.12 0.25 −0.51 0.11 −2.09 1.62
∆b* 0.50 −1.55 0.17 −3.24 3.09 4.50
∆E* 1.20 2.36 1.54 10.93 7.26 8.66
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As expected, the sample AM+T showed the lowest ∆E* values, since both thermocap-
sules and asphalt mixtures present a dark color at room temperature. Therefore, if there
is a degradation of the thermocapsules, the phenomenon cannot be measured using this
analysis, since the ∆L* value is relatively low (close to 0), due to the equally dark color of
the thermocapsules and the asphalt mixture.

The ∆L* parameter is relevant for observations in the Colorimetry test, since it repre-
sents the color variation from black to white. High positive variations in the ∆L* parameter
are desirable for the purpose of this functionalization, which is to modify the color of
the asphalt mixture surface to lighter colors and thus to reduce its heat absorption and,
consequently, the UHI effects.

For sample AM+T+D there is a small increase in the ∆L* parameter, which is due
to the degradation of the thermocapsules and thus the exposure of the dye. As for the
AM+T+D+R sample, a considerable increase in the ∆L* parameter is observed, as is one of
the highest perceptibility factors, ∆E*. This sample is distinguished from the previous one
by the inclusion of resin. The addition of resin contributed to a higher degradation of the
thermocapsules and, consequently, a higher exposure of the dye.

However, the sample AM+D showed a significant decrease in the ∆L* parameter,
indicating that the QUV test also promotes dye degradation. The samples AM+D+R and
AM+T+R showed a greater decrease in the ∆L* parameter, which may mean that the QUV
test can trigger photochemical reactions between the resin and the other components and
thus contribute to their degradation.

3.5. Accelerated Polishing Test on Asphalt Mixture

The asphalt mixtures functionalized with TS containing thermocapsules, dye, and
resin, after the immersion time, were submitted to three cycles of one hour each in the
accelerated polishing equipment. Figure 8 shows the images taken at the beginning of the
test and at the end of each cycle.
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Figure 8. Aspect of the specimens functionalized with TS submitted to the Accelerated Polishing Test
after t (hours): (a) t = 0, (b) t = 1, (c) t = 2, and (d) t = 3.

At the end of the cycles, traces of the surface solution are observed, as can be seen
in Figures 8 and 9. It is possible to verify macroscopically that the color emerging from
the sample surface is yellowish, coming from the dye in the asphalt mixture. Thus, it
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can be assessed that its wear resistance has been ensured. Also, at the end of the test,
the asphalt mixtures were partially disintegrated, resulting from the high severity of the
wearing conditions, degrading not only the surface coating but also the substrate.
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4. Conclusions

This article was devoted to developing a functionalization coating with TM capable of
helping to reduce the UHI effects aggravated by the dark coloration of asphalt pavement.
Asphalt substrates (asphalt binder and asphalt mixture) were superficially modified by
spraying thermochromic solutions composed of a combination of thermocapsules, dye, and
resin. Subsequently, they were subjected to various tests, and the following conclusions
were reached:

• From the Fourier Transform Infrared Spectroscopy (FTIR), the characteristic peaks
characterize the surface functionalization and, consequently, the presence of the TS
over the asphalt substrate.

• The Thermal Differential test confirmed that the activation temperature of the TS
occurs at about 30 ◦C and the reversibility of the thermochromic effect of the TS was
ensured.

• The Scanning Electron Microscopy (SEM) micrographs showed that the functional-
ization caused morphological changes in the surface of the samples, and Energy-
Dispersive X-ray Spectrometer (EDS) spectra show the variation of the chemical
elements placed on the specimen surface. Such results point to the occurrence of the
functionalization, as well as the permanence of the TS on the asphalt surface.

• From the Quick Ultraviolet Accelerated Weathering Test (QUV test), the samples
containing solutions sprayed with thermocapsules, dye, and resin showed high values
of ∆E* and the largest increases in ∆L*, indicating higher luminosity values, which
are potential results to mitigate UHI. The performance of the sample containing only
dye on the asphalt mixture surface suggests that the QUV test also promotes some
degradation of the dye.

• In the Accelerated Polishing test, the asphalt mixture functionalized with TS presented
dye traces on the surface. It is indicative that the functionalization resisted the wear
condition even though this is a test that promotes severe wearing and removal of part
of the asphalt binder and aggregates.

In summary, the functionalized asphalt substrates showed surface morphological
and chemical evidence of TS presence; thermochromic capacity and color reversibility; a
noticeable change in the color perceptibility factor and increased luminosity after simu-
lation of environmental degradation; and wear resistance concerning TS immobilization
to the substrate was partially conclusive and satisfactory. Thus, it is noticeable that the
functionalization has the potential to contribute to reducing energy absorption in asphalt
pavement, being a new and feasible capability for mitigating UHI effects, once it is expected
that a higher percentage of the light will be reflected more (mainly in the infrared range),
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having as a main consequence the mitigation of the sharp rise in pavement temperature.
Thus, if used in strategic regions, since more than half the area of urban centers is road
pavement and parking lots (and usually asphalt), the effects of the UHI can be mitigated.

However, it is plausible to devote future efforts to studying the effect of this func-
tionalization on pavement friction values, since this impacts the safety of vehicle driving.
Furthermore, new methods for immobilization of the TS need to be studied and an analysis
carried out of the maintenance of the thermochromic capacity of the functionalized asphalt
mixture after mechanical wear. Finally, a study of the behavior of the surface temperatures
of the functionalized pavement is needed to verify the real gains in terms of decreasing
energy absorption compared to non-functionalized pavements.
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