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A B S T R A C T

The 2D convection-diffusion is a well-known problem in scientific simulation that often uses
a direct method to solve a system of N linear equations, which requires N3 operations.

This problem can be solved using a more efficient computational method, known as the
alternating direction implicit (ADI). It solves a system of N linear equations in 2N times with
N operations each, implemented in two steps, one to solve row by row, the other column by
column. Each N operation is fully independent in each step, which opens an opportunity to
an embarrassingly parallel solution. This method also explores the way matrices are stored in
computer memory, either in row-major or column-major, by splitting each iteration in two.

The major bottleneck of this method is solving the system of linear equations. These
systems of linear equations can be described as tridiagonal matrices since the elements are
always stored on the three main diagonals of the matrices. Algorithms tailored for tridiagonal
matrices, can significantly improve the performance. These can be sequential (i.e. the Thomas
algorithm) or parallel (i.e. the cyclic reduction CR, and the parallel cyclic reduction PCR).

Current vector extensions in conventional scalar processing units, such as x86-64 and
ARM devices, require the vector elements to be in contiguous memory locations to avoid
performance penalties. To overcome these limitations in dot products several approaches
are proposed and evaluated in this work, both in general-purpose processing units and in
specific accelerators, namely NVidia GPUs.

Profiling the code execution on a server based on x86-64 devices showed that the ADI
method needs a combination of CPU computation power and memory transfer speed. This
is best showed on a server based on the Intel manycore device, KNL, where the algorithm
scales until the memory bandwidth is no longer enough to feed all 64 computing cores. A
dual-socket server based on 16-core Xeon Skylakes, with AVX-512 vector support, proved to
be a better choice: the algorithm executes in less time and scales better.

The introduction of GPU computing to further improve the execution performance (and
also using other optimisation techniques, namely a different thread scheme and shared
memory to speed up the process) showed better results for larger grid sizes (above 32Ki x
32Ki). The CUDA development environment also showed a better performance than using
OpenCL, in most cases. The largest difference was using a hybrid CR-PCR, where the OpenCL
code displayed a major performance improvement when compared to CUDA. But even with
this speedup, the better average time for the ADI method on all tested configurations on a
NVidia GPU was using CUDA on an available updated GPU (with a Pascal architecture) and
the CR as the auxiliary method.
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R E S U M O

O problema da convecção-difusão é utilizado em simulaçãos cientificas que regularmente utilizam
métodos diretos para solucionar um sistema de N equações lineares e necessitam de N3 operações.

O problema pode ser resolvido utilizando um método computacionalmente mais eficiente para
resolver um sistema de N equações lineares com N operações cada, implementado em dois passos,
um solucionando linha a linha e outro solucionando coluna a coluna. Cada par de N operações
são independentes em cada passo, havendo assim uma oportunidade de utilizar uma solução em-
baraçosamente paralela. Este método também explora o modo de guardar as matrizes na memória do
computados, sendo esta por linhas ou em colunas, dividindo cada iteração em duas, este método é
conhecido como o método de direção alternada.

O maior bottleneck deste problema é a resolução dos sistemas de equações lineares criados pelo
ADI. Estes sistemas podem ser descritos como matrizes tridiagonais, visto todos os seus elementos se
encontrarem nas 3 diagonais interiores e a utilização de métodos estudados para este caso é necessário
para conseguir atingir a melhor performance possível. Esses métodos podem ser sequenciais (como o
algoritmo de Thomas) ou paralelos (como o CR e o PCR)

As extensões vectoriais utilizadas nas atuais unidades de processamento, como dispositivos x86-64
e ARM, necessitam que os elementos do vetor estejam em blocos de memória contíguos para não
sofrer penalizações. Algumas abordagens foram estudadas neste trabalho para as ultrapassar, tanto
em processadores convencionais como em aceleradores de computação. Os registos do tempo em
servidores baseado em dispositivos x86-64 mostram que o ADI necessitam de uma combinação de
poder de processamento assim como velocidade de transferência de dados. Isto é demonstrado
especialmente no servidor baseado no dispositivo KNL da Intel, no qual o algoritmo escala até que
a largura de banda deixe de ser suficiente para o problema. Um servidor com dois sockets em que
cada é composto por um dispositivo com 16 cores baseado na arquitetura Xeon Skylake, com acesso
ao AVX-512, mostrou ser a melhor escolha: o algoritmo faz as mesmas operações em menos tempo e
escala melhor.

Com a introdução de computação com GPUs para melhorar a performance do programa mostrou
melhores resultados para problemas de maiores dimensões (tamanho acima de 32Ki x 32Ki celulas).
O desenvolvimento em CUDA também mostrou melhores resultados que em OpenCL na maioria
dos casos. A maior divergência foi observada ao utilizar o método CR-PCR, onde o OpenCL mostrou
melhor performance que em CUDA. Mas mesmo com este método sendo mais eficaz que o mesmo em
CUDA, o melhor performance com o método ADI foi observado utilizando CUDA no GPU mais recente
estudado com o método CR.

Palavras-chave: Dissertação de mestrado, Computação em GPU, Física, HPC, Matemática
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Part I

I N T R O D U C T O R Y M A T E R I A L



1
I N T R O D U C T I O N

The main objective of this dissertation is to develop a method to efficiently solve a system of linear
equations that describe the convection-diffusion equations on a given domain. These can be translated
into heat flow or shallow water simulations. These systems of linear equations are commonly used to
solve problems such as petroleum reservoir simulation, subsurface contaminant remediation, among
others [Saif and Al-Saadawi (2011)].

The convection-diffusion equations are parabolic partial equations that combine the convection
equation and the diffusion equation [Strang (2006)]. Since solving these equations directly can be
computationally time-consuming, a better approach is to use an iterative method. This method will
not produce exact results, but it will repeatedly work on improving an approximation to the solution.

Among several competitive well-known methods to computationally solve these equations, the
Alternating Direction Implicit (ADI) method seemed the most adequate to lead to a faster solution.
When compared to some other known methods it shows better accuracy and it is better suited for
parallel environments. It can also be applied to all domains without requiring specific conditions
[Islam (2010)].

Figure 1: Example of a 2D domain.

The (ir)regular domain in this work is described through a structured n-dimensional mesh, always
padded with at least 1 extra empty row/column next to the border, to simplify the algorithm. Figure 1
shows a simple 2D example, clearly identifying the border cells of the domain that will need special
treatment and padded with two extra rows and columns in the mesh border.

The advantage of the ADI method to solve the convection-diffusion equations is that the equations
that have to be solved in each step have a simpler structure and can be efficiently solved with a
tridiagonal matrix solver.
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1.1. Challenges and Goals 5

This approach splits the 2D grid into simpler 1D lines to minimise the data dependency between
iterations. First, it resolves the heat dispersion through rows and then columns, one at a time. An
attempt to develop efficient parallel code was already pursuit [Lopes et al. (2019)], for shared and
distributed memory parallel systems based on multicore Central Processing Unit (CPU) devices, but
few attempts were yet tried on computing accelerators, such as Graphics Processing Unit (GPU) devices
[Wei et al. (2013)].

Theoretically, these techniques can also be expanded to a 3D environment. It would need more
iterations since instead of subdividing the problem into various 1D problems it would be necessary to
first divide the domain into 2D subproblems and these into 1D subproblems.

1.1 C H A L L E N G E S A N D G O A L S

Most experimental work on evaluation was on servers, nodes in a cluster system, based on Intel x86-64
CPU devices, while only a few of them took advantage of additional computing accelerators, namely
GPU devices. A GPU algorithm was developed based on the sequential version of the code, with both
Compute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL) versions, stressing
the difference between these two approaches. The code in itself does not differ much, so studying how
to port CUDA code to OpenCL code was pertinent. The performance of the algorithms was measured
and compared on different architectures, using the best practices tailored for each.

The original execution performance was compared to an efficient parallel version of the code on
a server based on Intel manycore Knigths Landing (KNL) and a dual-socket server based on Intel
multicore Skylake devices. The study took into consideration the Non-Uniform Memory Access (NUMA)
architecture on the dual-socket servers and tests used different parallel configurations for a more
efficient method.

1.2 D I S S E R TAT I O N O U T L I N E

The current chapter identified the key challenges and goals of the dissertation work. The next chapter
explains why the ADI method was chosen for this specific problem, how the domain is interpreted and
what tridiagonal methods were chosen. The third chapter is dedicated to the computational efficiency
issues, stressing the vector extensions and how it works on both CPU and GPU devices, identifying
potential bottlenecks. The fourth and fifth chapters are the core of this dissertation: the former
describes the implementation of the ADI using C++ and using the CUDA and OpenCL Aplication
Programming Interface (API) for the GPU devices; the latter discusses the comparative evaluation of
their performance on different computing platforms, without and with computing accelerators. The
sixth and last chapter presents some conclusions, giving suggestions for future work to enrich the
obtained results.



2
T H E A L T E R N A T I N G D I R E C T I O N I M P L I C I T M E T H O D

In this chapter the main problem will be studied and transformed into a numerical problem, being
discretised as a system of linear equations. To solve this, various approaches to solve this problem are
studied. Since the best approach for the problem is the ADI method [Islam (2010)], possible tridiagonal
solvers will also be studied as they are used as auxiliary methods. At the end of the chapter, the various
algorithms will be compared and some will be discarded due to constraints that some algorithms may
have.

2.1 C O N T E X T

The main problem of this dissertation is the simulation of the convection-diffusion equations in a
computational domain. These equations can simulate real-world problems like heat transfer or shallow
waters. These equations can be described as a system of linear equations.

To simulate these problems on a computer it is necessary to discretise the continuous domain into a
subset of problems, these being measurable and quantified, which transforms the real-world problem
into a computable problem.

When discretising the problem, two main approaches are possible. Dividing the problem into small
triangles, which is one of the main approaches in computer graphics, filling the whole domain with a
finite number of triangles, or using a grid, therefore dividing the problem into rows and columns.

Figure 2: Alternative ways to discretise a domain: a) With triangles; b) With squares.

While using triangles the domain representation can be closer to reality, more calculations are
needed per cell. This happens because the data is not structured and extra computations are required
to verify the neighbouring triangles. While using a grid that is overlaid on top of the real problem,
the simulated domain will become less likely to the real domain. This grid makes the memory
management of the cells become trivial since they can be stored as a matrix, retaining the original order.
Therefore finding the neighbouring cells is less expensive, since they are stored in the neighbouring
indexes.

6
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Using a grid to store the domain information has a major downside because since the domain is
not regular, there might be a lot of empty cells. These empty cells still need to be processed and
stored, since without them the grid stops having the neighbours indexed next to each other, therefore
removing the best advantage of using a grid. This discretised grid, storing only the information of the
epicentre of each cell.

Figure 3: Domain example: outer cells are white, boundary or ghost cells are blue and inner cells
are green.

Each discretisation method has some advantages and disadvantages. While using triangles have a
more realistic approach, using a grid lets the usage of more efficient methods. It is also possible to
make the grid more likely to the real counterpart by having more cells and more information of the
whole domain at a time. Because of this, the discretisation method chosen is the grid. With this in
mind, a study will be made to discover efficient methods based on this approach.

Due to the matrix being composed of rows and columns it is possible to describe the problem
in each row/column with simple linear equations. These equations will simulate the convection-
diffusion equations through all the cells from the frontier to the inner cells. These will be spread in
rows/columns so it is possible to create a system with all the equations to be solved. Making a system
of linear equations in this environment is easy since the matrix can be divided into linear equations,
making the transformations between the matrix and the system of linear equations easy [Lopes et al.
(2019)].

2.2 S O LV I N G S Y S T E M S O F L I N E A R E Q U AT I O N S

Gaussian Elimination

A simple direct method to solve a system of linear equations is the Gaussian elimination [Gauss (1809)]
[Robert (1990)] [Grcar (2011)].

This is one of the most used and most well-known method to find a direct solution to a system
of equations in the form of A~x =~b where A is a matrix and b is a known vector (from now on, this
system of linear equations will be treated called as Ax = Z). First of all the algorithm starts by clearing
the lower tridiagonal of the matrix A.

After eliminating the lower tridiagonal, the algorithm transforms the matrix into a diagonal matrix
by also nullifying the upper diagonal of the matrix by using the lower lines to create zeros in the upper
lines.
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After having a diagonal matrix the algorithm simply divides both remaining elements of each line
(the element from the matrix A’s diagonal and the element in the vector~b).

This method is used as an auxiliary method to help solve problems like the computation of partial
differential equations. It is also known to be a time-consuming method, so optimisations were studied
[Zhou et al. (2018)].

Using the Gaussian elimination on the whole problem would be computationally intensive since the
complexity of this algorithm with the Gaussian elimination method would be O(N) = N3 [Strassen
(1969)]. Other methods were studied [Islam (2010)], some of these being ADI method, Jacobi, and
Gauss-Seidel method.

LU Algorithm

The Lower Upper (LU) decomposition is another algorithm used to solve systems of linear equations.
This algorithm decomposes, as the name suggests, the system Ax = z into LUx = z by decomposition
of the matrix A into the upper diagonal matrix U and the lower diagonal matrix L, and it is strictly
sequential [Lindfield and Penny (2019)].

This algorithm has three steps: the decomposition of A into LU; solving the equation Ly = z, then
solving the equation LUx = Ly or Ux = y.

In the first step, the algorithm decomposes the matrix A into the matrices L and U using the
following equations1:

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1 c1

a2 b2 c2

a3 b3 c3

...
aN−1 bN−1 cN−1

aN bN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
L =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
m2 1

m3 1
...

mN−1 1
mN 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
U =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1 c1

u2 c2

u3 c3

...
uN−1 cN−1

uN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣{
ui = bi i = 1

ui = bi − ai∗ci−1
ui−1

2 ≤ i ≤ N
mi =

ai
ui−1

2 ≤ i ≤ N

After decomposing the matrix A, the algorithm solves Ly = z using a simplified forward sweep. To
solve this step the algorithm performs the following operations:

1 These example equations are used for a tridiagonal matrix [Ömer EGECIOGLU et al. (1990)], but the base
algorithm can be used on regular matrices.
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L =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
m2 1

m3 1
...

mN−1 1
mN 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y = [y1, y2, ..., yN−1, yN ]z = [z1, z2, ..., zN−1, zN ]

{
yi = zi i = 1

yi = zi −mi ∗ yi−1 2 ≤ i ≤ N

After those two steps, the algorithm solves the vector ~x by doing the following equations in the
system Ux = y:

U =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1 c1

u2 c2

u3 c3

...
uN−1 cN−1

uN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y = [y1, y2, ..., yN−1, yN ]x = [x1, x2, ..., xN−1, xN ]

{
xi =

yi
ui

i = N
xi =

yi−xi+1∗ci
ui

i 6= N

The LU Decomposition can be used to solve regular matrices, but this algorithm is more difficult to
parallelise, which would make it a bad choice to use on parallel environments like Manycore CPU and
GPU architectures.

Jacobi and Gauss-Seidel methods

The Jacobi method is an iterative method used to solve systems of linear equations [Adsuara et al.
(2016)] [Yang and Mittal (2014)].

First of all, an initial guess is given for the possible solution. The closer the guess is to the solution,
the faster is the convergence. This method is considered finished when the difference between 2
iterations is smaller than a given threshold. The matrix A can be divided into 2 different matrices, one
with the diagonal (D) and the other with the remaining values (R), such as A = D + R.

In every iteration the following equation is used to get a more precise solution, the variable xk is the

solution of iteration k, xk
i is the solution of the element xi on iteration k, variable zi is the element i of

the vector z, and variable aij is the element from the matrix A in the position (i, j):

x(k+1) = D−1(z− Rxk)

x(k+1)
i = 1

ai
(zi −∑j 6=i aijxk

j ), 1 ≤ i ≤ n

In every iteration, the termination criteria is evaluated to check that the method is converging. The
method checks the difference between each iteration and if this difference is smaller than the given
threshold, the solution is considered valid and the algorithm stops.
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This algorithm does not update the values of ~x and needs to have at least 2 vectors saving the values
of ~x, one for the updated values and one for the values that will be updated this iteration.

The Jacobi algorithm also needs to make sure that the system is converging each iteration, and not
all systems can be solved with this algorithm.

There is also another similar algorithm called Gauss-Seidel method [Yang (2018)]. This method
differs from the Jacobi method because it uses updated values as soon as they are available. This
little change makes it so that some systems of linear equations take fewer iterations to complete. This
method also uses less memory space than the Jacobi method since it does not need to store the updated
values and the non-updated values both at the same time.

The Gauss-Seidel, as the Jacobi method, can also not converge, so some systems can not be solved
by it, and even if it takes fewer iterations to solve a system and takes less memory space, this method
is strictly sequential [Islam (2010)].

2.2.1 The ADI Method

A potentially faster approach to solving the system of linear equations is using the ADI method [Islam
(2010)]. This method partitions the grid into individual rows and columns, transforming a single large
problem into various smaller independent problems.

Dividing the 2D grid into 1D lines, the algorithm becomes embarrassingly parallel because every
line is independent from all others and that can be exploited by multi-threading environments [Wei
et al. (2013)]. The ADI method splits each line/column and using its internal equations (explored
below) creates a tridiagonal matrix and a solution vector. Each cell is deconstructed into 4 different
variables (each fitting on each diagonal and one for the solution vector), these cells are deconstructed
based on what type of cells they are. The three types of cells are:

• Inner cell - These cells are the unknown cells to be solved, they start with a pre-determined
value and in every iteration, their value is updated.

• Boundary cell - These cells are the only truly known cells, their value never changes between
iterations and will be the ones to determine the final solution. These are also known as ghost
cells.

• Outer cell - These cells are also known as outside cells, these cells are used mostly for padding
the grid and fitting the domain into it. Their values are nullified and do not contribute to the
problem.

With this setup, an auxiliary method can be used to solve this system. The auxiliary methods used
in these problems are tridiagonal solvers which are used to solve Ax = z.

This matrix and result vector are built using each cell in the line/column. The first row is composed
of the information on the first cell, the second row on the second cell, and so on. The ADI method
creates tridiagonal matrices from a single line/columns by following the next equations, once for
every cell in the current line:

ai = ci =

{
ySize
xSize , inner cell

0, i f cell is not inner cell
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bi =

{
alpha + 2 ∗ ySize

xSize , inner cell
1, i f cell is not inner cell

zi =


xi−1 + xi+1 − 2 ∗ xi ∗ Cell Area− 5ePx+2Py∗xSize

ySize + alpha ∗ xi, Inner Cell
0, Outter Cell

Cell Solution, Ghost Cell

These formulas are used when computing the rows, The values of Px and Py are the position of the
cell and the xSize and ySize are the width and height of the cell respectively. When computing the
values for the columns, the xSize and ySize are switched due to the problem being transposed. The
element i is the respective position in the current row/column, x is the solution of the last iteration
and alpha is a predetermined value.

2.3 E F F I C I E N T LY S O LV I N G T R I D I A G O N A L M AT R I C E S

Using Gaussian Elimination is not efficient for solving tridiagonal matrices [Bottoni (1994)]. The
Gaussian Elimination has a complexity of O(N) = N2 and most of the computations done are
unnecessary since most values of a tridiagonal matrix are zeros. Some better methods were developed
for this specific matrices, namely the Thomas algorithm, Cyclic Reduction (CR),Parallel Cyclic Reduction
(PCR) between others [Zhang et al. (2010)].

2.3.1 Thomas Algorithm

The Thomas algorithm can replace the Gaussian elimination since it is optimised to only operate on a
small part of the matrix. This is because it only needs to compute the values for the diagonals of the
matrix. Thomas algorithm is based on LU Decomposition [Lee] and designed to be more efficient by
having fewer steps. ∣∣∣∣∣∣∣∣∣

a1 b1 0 0
c2 a2 b2 0
0 c3 a3 b3

0 0 c4 a4

∣∣∣∣∣∣∣∣∣ ∗
∣∣∣∣∣∣∣∣∣
x1

x2

x3

x4

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
z1

z2

z3

z4

∣∣∣∣∣∣∣∣∣
The Thomas algorithm is subdivided into two different phases, the forward sweep and the back-

wards substitution. The first phase eliminates the information on the lower diagonal of the matrix,
changing the values of the main diagonal, the next equations are used on every row but the first one 2:

ci = ci − ci
ai−1
∗ ai−1 = 0

ai = ai − ci
ai−1
∗ bb−1

bi = bi − ci
ai−1
∗ 0 = bi

zi = zi − ci
ai−1
∗ zi−1

2 Based on https://www.cfd-online.com/Wiki/Tridiagonal_matrix_algorithm_-_TDMA_(Thomas_algorithm)
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∣∣∣∣∣∣∣∣∣
a1 b1 0 0
0 a∗2 b2 0
0 0 a∗3 b3

0 0 0 a∗4

∣∣∣∣∣∣∣∣∣ ∗
∣∣∣∣∣∣∣∣∣
x1

x2

x3

x4

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
z1

z2

z3

z4

∣∣∣∣∣∣∣∣∣
After the first step is finished the matrix only has 2 diagonals with information. In the second phase

of the algorithm the upper diagonal of the algorithm is set to zero and the last computation per row is
done. The following equation is used to compute the x values.{

xi =
zi
ai

i = N − 1

xi =
zi−bi∗xi+1

ai
i 6= N − 1

After finishing this step, the solution is stored on the respective memory.
With this algorithm studied, the table 1 has the gathered information about the theoretical operation

and iteration number.

#Operations/Iteration #Iterations Total Operations

Per Step
Forward Sweep 5 N-1 5N-5
Backward Substitution 3 N-1 3N-3

Whole Algorithm 4 2N-2 8N-8

Table 1: Number of operations and iterations in the Thomas algorithm

As seen in table 1, the complexity of the Thomas algorithm is O(N) = N and is strictly sequential.
Therefore, in a parallel environment, the complexity is the same.

2.3.2 Cyclic Reduction

A method to solve a tridiagonal matrix system in a parallel environment is CR [Hockney (1965a)]
[Hockney (1965b)] [Zhang et al. (2010)] [Hwu (2011)] [Bini and Meini (2009)].

This method reduces the number of unknowns in a system of linear equations by half every iteration.
When there are only 2 unknowns, the algorithm solves them independently. With these unknowns
solved, the algorithm solves the remainder unknowns, doubling the number of solved at a time.

In the first step of the algorithm, it reduces the number of active equations. Because of this the
stride (the size between each element) is multiplied by 2, and delta (the number of active equations) is
divided by 2, performing the following operations:

bi = bi − ci−δ∗ai
bi−δ

− ai+δ∗ci
bi+δ

zi = zi − zi−δ∗ai
bi−δ

− zi+δ∗ci
bi+δ

ai = − ai−δ∗ai
bi−δ

ci =
−ci+δ∗ci

bi+δ

These operations only happen to active equations. These active equations are deactivated by the
algorithm by selecting the odd active equations every iteration, halving the number of active equations.
An example is shown in Figure 4
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Figure 4: How 1st step of Cyclic Reduction works: white cells are active, grey cells are inactive.

After these reductions, the algorithm solves a couple of equations, the only active ones. After having
the solution to these equations, the algorithm solves the other equations. Since the active equations
are doubled every iteration, the stride is halved and the delta is doubled, shown in the Figure 5.

Figure 5: Example on how the 2nd step of CR works: green cells are known, grey cells are unknown.

To solve the remaining unknowns the algorithm performs the following to every active equations:{
xi =

zi−ci∗x1+δ
bi

i = δ− 1
xi =

zi∗xi−δ−ci∗xi+δ
bi

i 6= δ− 1

By studying this algorithm, it is possible to check how many operations and iterations need to
happen. This data was gathered and stored in table 2.

#Operations/Iteration #Iteration Total Operations

Per Step
FS 12 N

2#it log2( N
2 ) 12 N

2#it log2( N
2 )

BS 4 ∗ 2#it log2( N
2 ) 4 ∗ 2#itlog2( N

2 )
Whole Algorithm 8N 2log2( N

2 ) 16N ∗ log2( N
2 )

Table 2: Number of operations needed with Cyclic Reduction

As noticeable in table 2, the complexity of the algorithm is O(N) = N ∗ log2(N) but is highly
parallel. On a parallel environment with N threads, each thread has a complexity of O(N) = log2(N).

2.3.3 Parallel Cyclic Reduction

Parallel Cyclic Reduction is a variant of CR algorithm [Hwu (2011)]. This algorithm uses most of
the equations from CR’s first phase, but its workload does not get reduced every iteration. On the
other hand, PCR does not have a second phase, only making use of a simple equation to solve all the
unknowns at the same time.

This algorithm reduces the number of dependable unknowns by creating more systems of equations,
all independent as shown in Figure 6. The first step performs the reduction of unknowns in each system



2.3. Efficiently Solving Tridiagonal Matrices 14

of equations by dividing the existing systems by 2, doubling the number of systems of equations but
halving the number of unknowns per system. The second step simply solves every unknown in a
single iteration. This happens because every 2 equations are bound to the same system of equations,
and so these 2 are solved simultaneously [Wei et al. (2013)].

Figure 6: How Parallel Cyclic Reduction works: each cell is colour coded to the independent sys-
tem it belongs.

After reducing the N sized system into N
2 systems the algorithm uses the following equation for

both equations on each system, solving all of the initial unknowns in a single step:

xi =
bi+δ∗zi−ci∗zi+δ

bi+δ∗bi−ci∗ai+δ

xi+δ =
zi+δ∗bi−zi∗ai+δ

bi+δ∗bi−ci∗ai+δ

Observing the executed operations and iterations on this algorithm, that information was recorded
in table 3.

#Operations/Iteration #Iteration Total Operations

Per Step
FS 12N log2( N

2 ) 12N ∗ log2( N
2 )

BS 12 1 12
Whole Algorithm 12(N + 1) log2( N

2 )+1 12N ∗ log2( N
2 )+12

Table 3: Number of operations needed with Cyclic Reduction

The complexity of PCR according to the table 3 is O(N) = N ∗ log2(N) and is highly parallel. In a
parallel environment with N threads, each thread has a complexity of O(N) = log2(N)

2.3.4 SPIKE Algorithm

SPIKE algorithm is a tridiagonal solver with high scalability but a considerable overhead. This
algorithm is a highly parallel algorithm to solve diagonal dominant matrices [Kjelgaard Mikkelsen
and Manguoglu (2008)].

This algorithm splits the tridiagonal matrix into smaller partitions. These partitions can then be
solved independently (using Shared memory in 1 GPU or distributed memory with various GPU).
This algorithm can be defined in various ways [Polizzi and Sameh (2007)], since the main focus of this
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algorithm is splitting the tridiagonal matrix into smaller ones, then using backward substitution to
solve these smaller ones.

SPIKE’s partitioning is different when working on different platforms. While working on GPU it
uses data marshalling to rearrange the data into smaller partitions, while working on a distributed
memory scheme it partitions the memory to all different machines. For each partition, a smaller
matrix is created with the first and last elements of each partition. This algorithm focuses mostly on
distributed memory, but it has some variations using shared memory [Chang et al. (2012)].

After partitioning, SPIKE uses a pivoted method to solve the new smaller matrices. Then the SPIKE
algorithm uses other auxiliary methods to solve all the remaining unknowns. After solving all the
unknowns, the results are gathered into a single solution, merging all the partitions into one.

Figure 7: How SPIKE algorithm works: each cell is colour coded to the independent system it
belongs; darker cells are solved.

This algorithm does not have a countable operation, since they directly depend on the number of
partitions. But it is important to note that partitioning the matrix requires more memory allocation,
leading to a larger overhead, which makes the algorithm perform significantly worse for smaller
matrices when compared to other algorithms with less overhead.

Some studies were done to reduce the overhead and increase the scalability of this algorithm
[Spring et al. (2018)]. This study aimed to better manage the load balance between threads, and also
studies how the transpose could potentially reduce the computations needed for this algorithm. Just
transposing the mid matrices of this problem had granted it with a speedup of over 1.1 over the non
transposed one.

While using heterogeneous computing, some studies were made to use CPU, GPU and Field
Programmable Gate Array devices [Macintosh (2019)], which proved to be more efficiently than using
homogeneous GPU.

2.3.5 Recursive Doubling

The Recursive Doubling (RD) is a tridiagonal solver algorithm to solve non-dominant diagonal matrices
[Stone (1973)]. This algorithm is more efficient when using a higher number of processors than the
number of equations to be solved [Ömer EGECIOGLU et al. (1990)].

This algorithm works with some of the LU Decomposition equations, changing them to fit a parallel

environment. To initialize, some assumptions are made to easily deduce some of the equations:

a0 = cn−1 = 1 and x−1 = xn = 0

Assuming these, a formula can be deduced from the main tridiagonal equation Ax = z
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aixi−1 + bixi + cixi+1 = zi, 0 6 i 6 n− 1

After these deductions it is possible to simplify some of the equations to create new matrices for the
algorithm like the following:

αi = − bi
ci

βi = − ai
ci

γi =
zi
ci

Bi =

∣∣∣∣∣∣∣
αi βi γi

1 0 0
0 0 1

∣∣∣∣∣∣∣
After creating the new matrices it is possible to simplify the equations using the following formulas:{

Ci = Bi i = 0
Ci = BiCi−1 1 6 i 6 n− 1

For Cn−1 (last one) it is possible to use the following form:

Cn−1 =

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12

0 0 1

∣∣∣∣∣∣∣
Each gij variable is computed using the equations above, for every matrix Cn only the third line is

static (having the values [0,0,1]). Then it is possible to solve for x using the following equations, these
being independent of each other.

Xi =

∣∣∣∣∣∣∣
xi

xi−1

1

∣∣∣∣∣∣∣ = Ci−1X0

It is also possible to precompute C0 and gij by using the following equations:

X0 =

∣∣∣∣∣∣∣
x0

x−1

1

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
x0

0
1

∣∣∣∣∣∣∣
x0 = − g02

g00

This algorithm has more steps than the other algorithms, the total number of operations and
iterations was gathered and shown in table 4.

#Operations/Iteration #Iteration Total Operations
Creating B 3 N 3N
Creating C 10 N-1 10N-10
Solving x0 1 1 1
Solving for x 2 N-1 2N-2
Total Algorithm 5+1 3N-2+1 15N-11

Table 4: Total number of operations and iterations using the recursive doubling algorithm

The bottleneck of this algorithm is computing the second step [Ömer EGECIOGLU et al. (1990)].
This step can be parallelised using a thread to compute more than one element. This divides the
problem into various chunks, one for each thread. For a parallel algorithm, a few extra operations
must be performed. Each thread must first compute its coefficient to then treat a chunk of the overall
problem. The overall complexity of each thread becomes n

p+log(p) , where p is the number of processors.
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2.3.6 Hybrid Algorithms

While most tridiagonal algorithms are composed of various steps, these algorithms have pros and
cons. Using hybrid algorithms can use their pros to nullify the cons of others. Therefore, to better
accommodate these algorithms to various sizes, some algorithms can be merged to create improved
versions.

CR-PCR

While CR is very scalable and efficient for large matrices, PCR is more efficient for smaller matrices. It
is possible to merge these two algorithms to create a more efficient way to solve the tridiagonal matrix
[Hwu (2011)].

The CR-PCR method uses the first step of CR algorithm to reduce the number of equations to a
more manageable size. This will help with the usage of the PCR since it has more operations to do per
iteration. The CR-PCR can solve the missing equations of CR by using a strided PCR.

After solving using PCR, the algorithm resumes the CR algorithm, solving the remaining unknowns.
The number of operations for this algorithm was stored in table 5. In this table, the variable SS is the
size of the PCR system and LS is solved using M = SS + LS.

Figure 8: How CR-PCR works: the CR reduces the number of active unknowns, then the remaining
are solved using PCR followed by CR; green cells are solved.

#Operations/Iterations Iteration Total Operations

Per Step

CR FS 12 N
2#it log2(

LS
2 ) 12 N

2#it log2(
LS
2 )

PCR FS 12SS log2(
SS
2 ) 12SS ∗ log2(

SS
2 )

PCR BS 12 1 12
CR BS 4 ∗ 2#it+log2(

SS
2 ) log2(

LS
2 ) 4 ∗ 2#it+log2(

SS
2 )log2(

SS
2 )

Whole Algorithm — — 10N(2log2(
LS
2 ) + log2(

SS
2 ))

Table 5: Total number of operations and iterations using CR-PCR algorithm.

PCR-Thomas

While PCR is considered an efficient method to solve smaller matrices, this method does not have
good scalability like CR. However, its second step is solved in a single iteration being computationally
heavy. Due to this, the algorithm changed and instead of it solving the matrix, the Thomas algorithm
is used instead since the smaller systems are independent.
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The Thomas algorithm is strictly sequential, but since it has to solve various systems of equations
that are independent it is possible to execute various algorithms in parallel [Hwu (2011)].

The use of various Thomas algorithms inside each GPU block can also help hide the memory latency
of the algorithm by having more than 1 warp (a group of threads, having more than one lets the
device still do calculations while waiting for data) working at a time. This will be explored further
on Chapter 3 and results shown in Chapter 5. The number of operations and iterations were stored
in table 6, where the variable SS is the size of the Thomas algorithm systems and LS is solved using
M = SS + LS.

Figure 9: How PCR-Thomas works: the PCR reduces the number of dependant unknowns by cre-
ating independent systems, where each is solved with Thomas algorithm; each indepen-
dent system is colour coded and green cells are solved.

#Operations/Iterations Iteration Total Operations

Per Step
PCR FS 12N log2(

LS
2 ) 12N ∗ log2(

LS
2 )

Thomas
algorithm

4 2SS-2 8SS-8

Whole Algorithm — — 12N ∗ log2(
LS
2 ) + 8SS− 8

Table 6: Total number of operations and iterations using PCR-Thomas algorithm.

CR-RD

While CR is very scalable when compared to other algorithms, having sleeping threads amidst the
steps makes so that the algorithm can become less efficient in the last iterations. This algorithm also
reduces the number of equations active at a time.

As mentioned before, the RD is very efficient when the ratio between the number of processors and
the number of equations is the highest, and with the reduction of the equations to be solved by the CR,
the algorithm can achieve better performance.

The use of RD with conjunction with CR can help mitigate the disadvantages of both algorithms,
namely by reducing the number of inactive threads of CR with the introduction of RD. The RD can
then use all threads with a lower number of equations, increasing the ratio between them [Zhang et al.
(2010)]. The number of operations and iterations were stored in table 7, where the variable SS is the
size of RD algorithm systems and LS is solved using M = SS + LS.
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Figure 10: How CR-RD works: the CR reduces the number of active unknowns, then the remaining
are solved using RD followed by CR; green cells are solved.

#Operations/Iterations Iteration Total Operations

Per Step
CR FS 12 N

2#it log2(
LS
2 ) 12 N

2#it log2(
LS
2 )

Thomas
algorithm

5+1 3SS-2+1 15SS-11

CR BS 4 ∗ 2#it+log2(
SS
2 ) log2(

LS
2 ) 4 ∗ 2#it+log2(

SS
2 )log2(

SS
2 )

Whole Algorithm — — 4 ∗ 2#it+log2(
SS
2 )log2(

SS
2 )

+12 N
2#it log2(

LS
2 ) + 15SS− 11

Table 7: Total number of operations and iterations using the CR-RD algorithm.

2.3.7 Comparative Evaluation

Even though most tridiagonal solvers are used to solve the same problem, they often perform very
different operations and occur on different contexts. It is important to understand these contexts to
fully comprehend what are the best suited algorithms for the studied problem.

Total Operations
Works on Diagonal
Dominant Matrices

Can be
Parallelised

Thomas Algorithm 8N − 8 X X
Cyclic Reduction 16N ∗ log2( N

2 ) X X
Parallel Cyclic Reduction 12N ∗ log2(

N
2 ) + 12 X X

SPIKE Algorithm Varies from partition size X X
Recursive Doubling 15N-11 X X

Table 8: Comparison between tridiagonal solvers

Looking at the table 8, it is possible to notice that the Thomas algorithm may not be the best suited
for a parallel environment when used alone. However, when used with the ADI method, it is possible
to have various Thomas algorithms performing at the same time.

When working in a multicore environment where the number of threads is below the number
of systems to perform, having the number of systems equal to the size of the domain, the Thomas
algorithm may be the best choice to have, since it has the lowest number of operations and in
conjunction with ADI it can perform as a basic parallel algorithm.

While studying the other algorithms and their potential to explore parallelism, it may be possible to
study improved ways to use threads to compute a single line/column. These threads could also be
used to accelerate the computation of various lines, computing fewer lines at a time, but in less time.
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The RD needs the upper and lower diagonal to not have zeroes due to the equations used. The
ADI method creates these tridiagonal matrices based on a grid, and when the grid has outside cells,
the values for the lower and upper diagonal are set as zero. Hence RD can not work on most of the
matrices created by ADI.

It is also good to point out that the SPIKE algorithm is mostly used in distributed memory schemes,
and even being possible to use in shared memory, this algorithm has a large overhead but scales very
well, so being used in parallel for various tridiagonal matrices, this algorithm would benefit using
only a single and larger tridiagonal matrix.

The use of hybrid algorithms will also be studied. The use of PCR in conjunction with the CR can
help mitigate the problem of sleeping threads slowing down the code, while CR helps to reduce the
total number of operations that need to be executed with the PCR. Thomas algorithm can also be used
in conjunction with PCR. This algorithm can not be parallelised by itself, but the large tridiagonal
matrix can be divided into smaller independent tridiagonal matrices by PCR. The use of Thomas
algorithm also reduces the number of total operations of the PCR, by reducing the total workload of
the algorithm.

The use of these hybrid tridiagonal solvers have the potential to be very efficient, since the advan-
tages of each algorithm can, sometimes, nullify most of the disadvantages of others.



3

C O M P U T A T I O N A L E F F I C I E N C Y

In this chapter, a study about the GPU will be made, namely how the vector processing works on CPU
and how differently it works on GPU. How manycore systems can achieve better performance is also
studied, and how to grade scalable algorithms.

Various approaches for the ADI method will also be shown and the advantages and disadvantages
of each approach.

The GPU architecture as well as the main differences between OpenCL and CUDA are analysed. A
study of these API allows creating a comparable code which is essential to a fair evaluation of their
overall performance.

3.1 S C A L A B I L I T Y I N M A N Y C O R E C O M P U T I N G

Most modern CPU are designed and built with more than one physical core [Hennessy and Patterson
(2011)]. These can work simultaneously on one or more algorithms so that they can achieve better
performance; an example of a parallel algorithm is merge-sort, with a divide and conquer methodology
1.

To test the scalability of an algorithm it is possible to use Amdahl’s Law [Amdahl (1967)], which
describes the maximum theoretical possible speedup in an algorithm containing a part of sequential
code. It can be described as following, where ρ is the percentage of parallel code and s is the number
of threads working:

1
1−ρ+

ρ
s
⇒ lims→∞

1
1−ρ

This law divides the code into two parts, a strictly sequential part and a possible parallel part. Since
the sequential part can never be parallelised, this algorithm can be simplified to show the best speedup
possible by removing the therm s

ρ , leaving the best possible speedup as:

1
1−ρ

To fully achieve the best performance possible while using various physical cores on a single
algorithm, the program needs to be able to perform more than one instruction simultaneously. So

1 A reference paper from the School of Computer Science of Carnegie Mellon University:
https://www.cs.cmu.edu/ guyb/papers/BM04.pdf

21
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ideally the number of dependencies in the code should be nonexistent between different threads.
Therefore, a code with a lot of data dependencies can not achieve a major performance speedup when
using various threads, since some of the threads will be locked, waiting for others to finish their work
[Tithi et al. (2013)]. An example of this can be seen in Figure 11, where the code takes double the time
to solve a problem because of data dependencies between threads.

Figure 11: Example on how having data dependencies between threads can slow down the code.
Every colour means a dependency, orange cell #2 can not start until the end of orange
cell #1.

While having more physical cores working on a problem can lead to better performance, it is
essential to make sure that every core does the most work it can. For that to happen, they should be
working simultaneously and do the same amount of work, so the work should be divided as evenly as
possible. This leads to work scheduling which, API such as OpenMP can do in different ways2:

• Static scheduling - Divides the problem into equal chunks, one for each thread. There is no extra
overhead using this schedule type;

• Dynamic scheduling - Divides the problem into small chunks and assigns a single chunk for
each thread, when a thread finishes the chunk assigned to it, the scheduler handles it another
chunk. This scheduling type has an extra overhead when compared to static scheduling;

• Guided scheduling - Similar to Dynamic, but the chunk size varies, starting with larger chunks
and reducing the size. This reduces the extra overhead from the dynamic scheduler.

An example is shown in Figure 12, each cell takes a unit of time, and because of bad balancing, it is
possible to notice how the code takes almost double the execution time because of thread number 2,
while the third thread only does little work.

For an algorithm to be scalable, it needs to be compute-bound. This is because having more threads
can have an impact on the performance since the operations are ready to be executed but have no
empty cores to execute them. This makes the memory layout to be of extra importance, since if the
remaining operations are waiting for the data, having more threads only generates extra overhead,
harming the performance [Hennessy and Patterson (2011)].

2 Information from Intel in https://software.intel.com/content/www/us/en/develop/articles/openmp-loop-
scheduling.html
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Figure 12: Example on how having unbalanced work loads between threads can slow down the
code. Colour coded to each assigned thread.

3.2 D ATA L AY O U T F O R E F F I C I E N T C O M P U T I N G

Over the years the processing power of computers have grown exponentially, while the memory
bandwidth grows steadily [Carvalho (2002)]. To have the best possible performance, the data usage
should be planned beforehand. To obtain the best performance out of the code, a few points are
studied in the context of the problem: memory bandwidth, memory latency and cache.

Whenever the program needs to retrieve data from memory, it suffers from latency for every transfer
that needs to do. This is called memory latency, and this degrades the performance drastically. One of
the ways to reduce the degradation caused by this latency is for the memory to retrieve more data
than what is needed (usually the memory transfers 64 bytes of memory at a time) and to fill a line of
cache. This line can then be used for subsequent operations without the need to go to the memory
(hiding the memory performance degradation). This makes the code that uses data locality have less
degradation due to lowering the total number of transfers.

The size of the memory bandwidth is the amount of data that can be transferred from the global
memory to the Processing Unit (PU). This size is theoretical, and as seen before, it has a few limitations
(like the memory latency). The memory bandwidth is the amount of data to be transferred for every
PU. Therefore, on parallel programs, it is of high importance to utilise this bandwidth as best as
possible. Because of this, the usage of data locality and cache are of high importance, since the cache
reduces the number of transfers that needs to happen (by storing the values and using them instead of
always using the global memory) [Hennessy and Patterson (2011)].

To use the cache more efficiently the used data should be layed out depending on how the language
stores the information (the C/C++ language stores the information of multi dimensional arrays in
rows, so all the data should be layed out in rows). The cache itself can have more than one level, these
levels are located on different parts of the processor. The lower levels of cache are smaller but have a
lower penalty when accessed.

Accessing the registers (the smaller but faster memory of the hardware) has a smaller penalty when
compared to other memory levels [Carvalho (2002)]. So when a program uses a variable more than
once, the program stores it on hardware registers, which are scarce, but the few ones available are fast
and have no penalty on their access. The smaller levels of cache can sometimes be inside CPU chips,
making their size limited by the hardware itself, and are costlier to produce.
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The memory can not be explicitly forced to be stored in the cache, so the programmer can use data
locality to make the hardware store the data in the cache and use a low number of variables and use
them the best way possible to store them all in the hardware registers.

In NUMA environments, the memory also needs to be stored in the right memory banks. If the
memory is stored in a bank that is not directly connected to the working cores, the memory latency is
even more severe, since the data needs to be passed from the various nodes until it reaches the correct
core [Majo and Gross (2013)].

GPU ue a different memory scheme than it’s CPU counterpart. This memory layout will be explored
in the GPU section.

Having data locality in mind and studying how the ADI works, transposing the data is an option
that may be explored. The C language has no matrix data type, so C programmers usually specify
matrices as arrays of rows, as opposed to the way Fortran defines a matrix data type: as an array of
columns. In typical C code, elements of a row are in consecutive memory locations, while elements
of the same column are apart by the size of a row. Therefore, to guarantee that consecutive elements
of a column are stored in consecutive locations (stride of 1), a transpose can be used when making
operations column-wise.

Using both main matrix and transposed matrix the memory can be contiguously loaded and scatter
stored, or contiguous stored and gather loaded. Since the store can happen while the CPU executes
other operations, the chosen scheme is a contiguous load and scatter store.

For the other cell data (like the position, code, etc), the data structures need to be studied for memory
efficiency. Since there are various cell data to be stored, it is possible to store them on either Structures
of Arrays (SoA) or Arrays of Structures (AoS) 3. While using AoS, each cell data is stored in a single
structure, where a single array has all the pointers for every structure. Using SoA, each cell data is
stored on various arrays, all stored on a single structure. For better use of memory locality, it is optimal
to use SoA, making each data item contiguously located, with a better cache use4.

3.3 V E C T O R C O M P U T I N G

Vector processing is the ability to use 1 instruction on various amounts of data (also known as Single
Instruction Multiple Data (SIMD)) [Flynn (1972)].

Vector processing is possible when an operation is replicated to a vector of data, using the same
instruction on a whole vector instead of 1 element at a time like scalar processors. Vector processing is
used on generic PU that do not have native vector capabilities, by using vector extensions.

Using SIMD has some advantages when comparing it to regular scalar operations. One of the
advantages is how the vector processing hides memory latency by using deeply pipelined loads and
stores, having the latency happen only once per vector, instead of once per element [Hennessy and
Patterson (2011)]. This made sure that the PU would not wait because of the memory latency, but
mostly because of the limited bandwidth.

SIMD also reduces the number of operations that need to be read and, in some cases, potential
loops from happening. Using the example in [Hennessy and Patterson (2011)], when computing the

3 https://software.intel.com/content/www/us/en/develop/articles/memory-layout-transformations.html
4 https://software.intel.com/content/www/us/en/develop/articles/how-to-manipulate-data-structure-to-

optimize-memory-use-on-32-bit-intel-architecture.html
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Linpack benchmark’s DAXPY ( Double-Precision a times X plus Y), using a vector instruction set (for
example Intel’s Advanced Vector Extensions (AVX)) it is possible to use a smaller number of instructions
needed to compute this problem. This is possible because while using regular instruction, the program
needs to process 2 loads, 1 store and 5 operations (not counting the jump if it is needed), the vector
operations needed are only 2 loads, 1 store and 2 operations for the entirety of the vector (if the vector
size is the same size as the capacity of the vector operation).

Using SIMD in some algorithms may be more difficult than others since the size of the data might
be larger than the capacity of the vector operation. To treat all the data it is possible to use a technique
called strip-mining [Weiss (1991)]. In strip-mining the program treats blocks of memory at a time
(usually this block would be the size of the capacity of the vector operation), and then uses the last
bits of data (that may not be enough to fill a vector) independently, not using SIMD on those. This
approach can reduce the number of vector operations.

SIMD can also use chaining, which makes the vector processor use the vectors data almost instantly
on the following operations, making sure that the vector is not stored and loaded into memory if the
vector is used more than once at a time, only saving/loading into the vector registers [Hennessy and
Patterson (2011)].

SIMD strives to use a single instruction in a whole vector of data, but when conditional appears
some compilers have trouble dealing with them since in some pieces of data some code may happen
and in others it does not. To hide divergence in code, the user can apply masks to it, making sure that
a conditional instruction is masked as a regular instruction.

While using conditionals is very inefficient when it comes to SIMD and masks make the code easily
vectorizable, using masks in regular scalar code is inefficient since it makes all operations happen in
the whole data, instead of only happening in some bits of it [Hennessy and Patterson (2011)].

3.3.1 Vector Extensions on Scalar Processors

Vector extensions have been researched and developed for generic PU. Intel has started developing
vector extensions since the 1990s, starting with MMX and Streaming SIMD Extensions (SSE), in late
2000s, early 2010s developed AVX, with AVX2 and AVX-512 coming after. Advanced Micro Devices
(AMD) also has its type of vector extension, known as 3DNow!.

Vector extensions have different instruction sets, which use the vectorial processors of the PU and
these are called Vectorial Processing Unit (VPU). These include vector registers, registers that can be
filled with multiple data, instead of the single data that fills the regular registers and also have vector
functional units. These units are pipelined and use the data in vectorial registers to use instructions on
multiple data. Using SIMD on vector extensions is not the same as using it on vector machines.

Vector extensions on PU do not work well using data that are not contiguous in the memory. With
the use of scatter-gather, vector machines can hide the memory latency pretty well when compared
to vector extensions used in scalar PU. Gather-scatter was added to AVX512, but it is still heavily
penalised when comparing to using contiguous memory. Using conditionals also causes performance
degradation. Sometimes it can even disable the use of SIMD in these sets of data. Instead of using
conditionals, when possible, the programmer could use masks, hiding possible divergences in the
vectorized code.
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Having data dependency between the data in the same vector also disables the use of SIMD. Because
of this, when using operations with data dependencies, they should be studied to check if there is a
way to avoid these.

3.4 W O R K I N G W I T H G P U S

For a program to work with the GPU it has to be written in a specific API, like CUDA5 or OpenCL 6, or
using specific libraries, like PyCUDA for python. CUDA is only used with Nvidia’s Proprietary GPU
while OpenCL can be used on all GPUs. These 2 API have some specific concepts and keywords that,
even being the same, are named differently. Figure 13 and Figure 14 shows some concepts/keywords
named differently on these 2 APIs. It is important to notice that sometimes the same name can lead to
a different concept on the 2 APIs7.

Figure 13: CUDA and OpenCL memory designations.

Memory hierarchy in GPU is similar to the one in convenctional CPU, but with a few relevant
differences: (i) each SIMD PU (a Streaming Multiprocessor (SM), as labelled by NVidia) has a very large
number of 32-bit registers (thousands); (ii) a physical memory on-chip can be configured as a local
memory of SM at the same level as cache L1; (iii) cache L2 on-chip in a GPU is shared among all SM;
and (iv) GPU have no cache L38.

5 CUDA Zone - https://developer.nvidia.com/cuda-zone
6 OpenCL Home Page - https://www.khronos.org/opencl/
7 Extra information can be found here:

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-
Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://on-demand.gputechconf.com/gtc/2012/presentations/S0642-GTC2012-Inside-Kepler.pdf

8 This memory hierarchy is based on the GPUs studied in this dissertation, other memory hierarchy can be found
on other manufacturers, but those will not be studied.
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Figure 14: CUDA and OpenCL different terminology.

3.4.1 Generic Computing on GPUs

GPU is a specific type of a manycore architecture with vector capabilities and, as the name implies, were
firstly designed to process graphics [Tomov (2016)]. GPU have high parallel processing capabilities
with good power efficiency, therefore being widely used in High Performance Computing (HPC).

GPU have a different architecture when compared to CPU. The GPU architecture is composed of
kernel grids. These grids communicate with each other only using the main memory, not being able to
synchronise in any other way. Therefore are almost independent of each other. In each grid, there are
blocks of threads, where each block is organised by threads. Each thread can communicate with each
other using shared memory, a memory type that is smaller, but also faster, that is shared between a
block of threads. In every thread, there is also a private memory only accessible by it. In every block,
it is also possible to synchronise using functions provided by the API developers.

In HPC, the key features of the GPU devices are used to perform vector computing operations,
rather than generating graphic scenes on a monitor [Gadhikar and Rao (2018)]. This is known as
General-Purpose Computing in Graphics Processing Units (GPGPU). GPU were designed to have enormous
computational power, allow high parallelism and very high bandwidth and low latency. Some of the
memory bottlenecks are masked on GPU computing because of the higher memory bandwidth that
they have when compared to CPU.
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GPU can be used to compute matrix operations efficiently like matrix multiplication [Fatahalian
et al. (2004)] using BLAS [Andrzej Chrzeszczyk (2017)] or parallel algorithms. This is due to their
architecture, since the threads are automatically organised by groups, it is possible to use simpler
instructions and think in sequential code that each thread will process concurrently.

Unlike CPU, the GPU architecture was built to work with its own type of SIMD, also known as
Single Instruction Multiple Threads (SIMT). This kind of vector computing uses more than one core
grouped by warps (in CUDA or Wavefront in OpenCL). These warps are groups of threads, each
running in its core, that all use the same set of instructions on their data (instead of 1 core using 1
instruction on vector-like vector extensions on CPU). There can be more than one warp assigned per
SM, this is beneficial because while some of the warps are waiting for the memory to be gathered from
the main memory, the cores are working on warps that already have the data ready to be used.

Vector computing in GPU can be more efficient when compared to CPU since GPU have hundreds
to thousands of cores, when compared to the lower number of cores on CPU, having a higher number
of operations performed per second, even with a lower clock rate and less synchronicity.

Exploring these vector capabilities can be really helpful performance-wise since it is noticeable that,
outside of data transfers from and to the device, it is possible to get more performance when using the
parallel and vector capabilities on GPU. The GPU can also benefit from SIMD and instruction-level
parallelism by having its own set of intrinsic functions [Hennessy and Patterson (2011)].

Since GPU work in warps, it is better when all the threads that are working simultaneously have no
divergence between each other, since only 1 instruction can happen at a time.

Some other important remarks about performance in GPU computing are how changing some
values on the code to match the GPU specifications can improve the algorithm perform-wise. For
example, it is best to use a number of threads that is a multiple of the warp number [Sethia et al.
(2015)]. Warps issue the instructions to the threads in groups, so having no divergence (by masking
these conditionals for example) in warps can make the code substantially more efficient, and threads
being in a multiple number of the warp size means all threads will be working all the time, instead of
some threads waiting for others to finish.

When working with CUDA, the instruction set architecture used is called Parallel Thread Execution
(PTX)9. This Instruction Set Architecture (ISA) describes the operations to happen in a single CUDA
thread. Using PTX is easier for the programmers since it hides the GPU hardware instructions, uses
virtual registers that are distributed by the compiler itself, and can help to speed up some of the code
by using the best instructions, chosen again by the compiler [Hennessy and Patterson (2011)].

PTX also hides conditional use of masks. These masks are used to eliminate possible divergence
in code, making sure that every thread can perform a single instruction instead of having different
instructions, making the code have a better performance overall. If the code has divergent conditional
branching, the PTX predicts the best instruction flow by using a branch graph to perform the optimal
instruction sequence.

Despite a lot of similarities between a vector computer and a GPU, there are some key differences
between both. One of the main differences is how a vector computer gathers all the vector info in a
vector register and performs the instructions on that block of data. A GPU would distribute all the data
between various SIMD lanes. Besides the use of SIMD, the GPU can also benefit from multi-threading.

9 NVidia’s Application guide to Parallel Thread Execution ISA: https://docs.nvidia.com/cuda/pdf/ptx_isa_7.1.pdf
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Another difference between both is how each architecture tries to hide memory latency. While
vector computers hide memory latency by getting all the elements of a vector at once (and only paying
the latency once per load), GPU use multi-threading to hide it, using a thread scheduler, making
sure that while some threads are waiting for the memory, other threads are active, making sure that
the GPU is as active as possible [Hennessy and Patterson (2011)] [Cook (2013)]. There are also no
scalar processing on GPU, making the scalar and sequential bits of the code inefficient on GPU while
comparing them to vector machines.

3.4.2 ADI on GPUs

Since ADI is embarrassingly parallel, a GPU could be a very good option to implement a very efficient
solution. Some previous work to port the ADI method to the GPU was already done [Wei et al. (2013)].

The ADI method itself only creates the vectors for the tridiagonal solvers to use for finding the
solution. Since these vectors should fit on the GPU caches for better performance overall, some tweaks
might need to be done. Another possibility is solving a limited number of rows/columns at a time. To
achieve better performance some important remarks to remember are:

• Remembering how conditionals impact the performance of the code, and how the GPU get extra
penalisation on branch divergences.

• The number of threads to utilise on each tridiagonal solver (or both if a hybrid solver is chosen),
to make sure that the best performance is reached.

• Utilising the full vector and parallel capabilities of the GPU, using the available resources to
maximise the performance.

When using ADI on GPU it is possible to diverge from the CPU using a different thread organisation.
In the CPU code, for every thread, a single line/column is assigned at a time. This is used in CPU
since the number of threads is very limited. It is possible to do this on the GPU, but since the number
of threads is very superior when compared to CPU it is not good performance-wise, as the capacity
of the GPU will be lower than 100%. Because of this, it is possible to assign a line/column to a block
of threads. Using this thread scheme it is possible to use multi-threading inside each line/column,
broadening the solvers to be able to be used. An example of the different schemes is showed in Figure
15.
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Figure 15: Different thread Schemes for a grid for different devices

Usually the main focus while studying the ADI method is the tridiagonal solver used since that
algorithm is one of the main components of the ADI.

3.4.3 Tridiagonal Solvers on GPUs

Implemented ADI methods in GPU can use different tridiagonal solvers. This difference in tridiagonal
solvers used is based on multi-threading in each line/column. Since the performance of the ADI is
mostly based on the tridiagonal solver used, the ADI on itself only builds the tridiagonal solvers used.

The main focus on porting this algorithm to the GPU should be carefully planning all the resources.
Reducing the number of operations that need to be performed sequentially by testing different
algorithms can also be done. Divisions are computationally heavy when compared to other operations,
so reducing the number of them, for example, by computing the inverses. These possibilities should
be tested when using ADI since it helps to hide the sequential bits of the tridiagonal solvers used.

With the use of GPU, it is possible to use these architectures advantages like the higher bandwidth
and the use of shared memory and multi-threading and SIMT to have better performance on these
algorithms.

3.4.4 Max Reduce Approach

Since the GPU has a high number of threads available and has no scalar capabilities, the GPU can use
a different algorithm for the maximum error search, i.e. a modified sum reduction10.

This reduction was modified to, with a mask, chose which element has a higher error (instead of
simply adding them). This new algorithm has a complexity of O(N) = log2(N).

Since the modulo function is computationally heavy and this implementation uses non-contiguous
cells, the algorithm will be changed slightly to choose the first cells (reducing the number of operations
to do due to every thread being assigned to cell threadNum ∗ 2 and threadNum ∗ 2 + 1).

10 Based on nVidia Optimising Parallel Reduction in CUDA on
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
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Algorithm 1 Max Reduce based on Sum Reduce

1: function MAX REDUCE

2: element = threadId
3: nextElement = threadId+blockSize
4: loop elementsMissing > 1
5: if Not Sleeping then
6: if Array[element] < Array[nextElement] then
7: Array[element] = Array[nextElement]
8: elementsMissing = elementsMissing/2

3.5 H E T E R O G E N E O U S C O M P U T I N G

With the high parallelism in the ADI method, it may be possible to use the CPU as another device,
instead of a simple host [Mittal and Vetter (2015)]. Using heterogeneous computing could potentially
increase the performance of parallel algorithms due to having more raw processing power and the
sheer number of PU.

CPU and GPU have different architectures and different capabilities. When using heterogeneous
computing the division of the workload can make the best usage of each architecture, looking at the
article [Mittal and Vetter (2015)] it is possible to make better use of the high-throughput GPU can offer
and use the CPU for latency-critical zones of the programs.

The GPU also has problems dealing with divergence in code, so in areas of a program with a
lot of divergences and not masked conditionals it is better to use the CPU. Another reason to use
heterogeneous environments is the better management of power since the CPU stays idle waiting for
the kernels to finish their assigned workload, some power is wasted in this wait. Therefore, using CPU
for other work makes the program more power-efficient.

While working in OpenCL some studies [Grewe and O’Boyle (2011)] show that using CPU and
GPU on different algorithms gives various speedups depending on the partition of the work for each
device, hence the division of the work must be studied and tested when working with heterogeneous
computing.

A problem that can be tailored to take advantage of heterogeneous computing is the SPIKE algorithm
(studied on Section 2.3.4). This algorithm has the advantage of splitting the problem into sub-problems,
and each sub-problem is solved independently. Each of these problems could be solved on various
CPU, GPU and a combination of both, taking the best advantage of heterogeneous computing.

3.6 T E N S O R C O M P U T I N G

Vector computing allows the hardware to compute entire vectors at a time, allowing some programs
to have speedups in terms of computational power (by computing more values at a time) but also in
memory-bound programs (by hiding some of the memory latency). Tensor computing on the other
hand allows the hardware to compute entire matrices (2D vectors) at a time, having a higher speedup
on specific problems.

Tensor computing has been studied and some manufactures have started working on Tensor cores.
These tensor processors are mostly used to work with Machine Learning, Intel is currently working
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on Advanced Matrix Extensions (AMX), a new instruction set to work with tensor processing, this
instruction set is scheduled to release with Saphire Falls in 2021, this instruction set uses tiles instead
of vectors.

Intel has some experience already with tensor processing for neural networks in 2017 using Intel
Neural Net Processors by acquiring Nervana Engine. Now Intel works with Habana, with a chip
for training neural networks (using Gaudi chip) and an inference chip (using Goya chip). Habana
Gaudi and Goya devices have tensor processing cores in their constitution, enabling them to use tensor
processing. Nvidia has already added tensor core units to their hardware. In the Turing architecture,
these tensor cores can have a throughput of at least 8 times larger 11. Some vendors prefer to use
System on Chip (SoC) devices with embedded applications that can use tensor computing, such as
Google with Google Cloud TPU and Tesla with Tesla Full Self Drive.

When working with the ADI problem, it may be possible to use tensor computing to speed up the
tridiagonal matrices creation, since most of the matrices are used by multiplying the state of the cell (if
it is a boundary, inner or outside the cell, since they are coded with numbers) by the matrix values,
hence using a custom matrix-multiplication.

While working with tridiagonal solvers it may also be possible to work with tensor computing,
since the matrices are sparse, it may be possible to divide the usable part of the matrices in chunks and
use a tensor computing unit per chunk.

11 Data from Nvidia: https://www.nvidia.com/en-us/data-center/tensor-cores/
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I M P L E M E N T A T I O N O F T H E A L G O R I T H M S

ADI is a highly parallel algorithm since it splits the problem into many smaller and independent
subproblems. In this chapter different implementations were studied and implemented, varying from
different devices and APIs to different tridiagonal solvers.

All generated call-graphs for this work use a visibility threshold to have better readability: all
functions that take less than 1 % of the overall execution time are not shown.

4.1 TA R G E T I N G C P U D E V I C E S

For the CPU code, a simple implementation was created and fine-tuned for the architecture used.
After getting an efficient sequential code, a parallel code was developed and implemented to run

on three different device architectures. Using NUMA dual sockets and exploring the vector capacities
of these architectures could potentially lead to an improved version of the code performance.

4.1.1 Native Code

The first implementation of the ADI method was straightforward and worked very precisely; however,
it was slow since it was not built aiming performance.

For the initial tests, the sequential Thomas algorithm was chosen as the tridiagonal solver due to its
simplicity and efficiency (as seen in Table 8 of Section 2.3.7).

The following algorithm shows a simple implementation of the ADI method using the Thomas
algorithm as the auxiliary tridiagonal solver1, followed by an image that shows a call-graph view of
this version using a 1% threshold to remove those functions with a very small impact on the overall
performance.

1 ∗ Based on the equations shown in Section 2.2.1

34
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Algorithm 2 ADI method with Thomas algorithm

1: function ADI METHOD

2: First Step:
3: loop for each row
4: ak = ck = ComputeAC(k)∗

5: bk = ComputeB(k)∗

6: zk = ComputeZ(k)∗

7: Thomas_Algorithm(a, b, c, z, sol)
8: Second Step:
9: loop for each column

10: ak = ck = ComputeAC(k)∗

11: bk = ComputeB(k)∗

12: zk = ComputeZ(k)∗

13: Thomas_Algorithm(a, b, c, z, sol)

Figure 16: A call-graph view of the ADI code with Thomas algorithm: calcSol are ADI functions
with two steps, one for columns and another for rows; fonte is an auxiliary function.

As Figure 16 shows, the Thomas algorithm is currently the slowest step of the algorithm (taking a
total of around 55% of the overall execution time). It is also possible to notice how the ADI method is
3.5 times slower when comparing the columns to the rows, so studying a method to better use the
memory layout is important. The fonte function and exp can also be moved to outside the loops, since
they are static for each cell, computing it once per cell, instead of once per cell per iteration.

4.1.2 Efficient Sequential Solutions

After studying the problem and profiling the code, it was possible to notice how the column-wise
functions take almost twice longer than the row-wise functions. One way to overcome this drawback
is to store the result of the first step (the row-wise) in a transposed matrix such that the second step
(column-wise) would access contiguous memory positions.

To test the memory layout and the performance memory-wise the size of the grid should be larger
than all the combined caches. Since the data types used are doubles, every value has a size of 8 bytes.
The grid is a square, so the following equation was used to reach a decision:
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GridSize�
√

CacheL3
ValueSize ∗

√
CacheL3

ValueSize ≈
√

32∗106

8 ∗
√

32∗106

8 = 2000 ∗ 2000
SelectedGridSize = 2560 ∗ 2560

Every row with this size (2560 doubles, or 20480 bytes) is aligned with the cache line size (64
bytes) since its value is a multiple of it. The execution time and various cache information will be
recorded to show how some methods will be studied and if they have an improvement in the execution
time. A new implementation was created where a transpose of the grid is also stored, since reading
in contiguous blocks and writing into the memory in non-contiguous blocks is more efficient and
cache-friendly.

Figure 17: The output of the row-wise step is transposed to run the column-wise step in row mode

After changing the memory scheme a change to the exponential call frequency was also made to
call it once per cell instead of one time per cell every iteration. In theory this workaround will decrease
the time spent on computations, but will increase the memory usage, so cache misses might increase
even if the execution time decreases.

Figure 18: Call-graph of the cache friendly implementation with a 1% threshold

This new implementation has low usage of auxiliary functions (like exp and fonte) as they do not
appear now in the call-graph. The total difference between rows and columns is also lower, especially
in the Thomas algorithm, since the difference is minimal between the 2 steps.

After optimising the program to use a better memory scheme, additional optimisations were made
concerning memory accesses and reducing the overall usage of variables. The new operations to be
made were recorded in Table 9.
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Operations Done:
Once/Outer Loop/Inner Loop

Cache-Friendly
Implementation

Loop
Optimisation

Add/Sub 0 / 0 / 16 1 / 0 / 11
Mult 1 / 1 / 9 3 / 1 / 4
Div 4 / 0 / 0 4 / 0 / 0

Table 9: Almost half of the operations done inside the functions calcSol_rows/cols were now done
outside the loop, decreasing the time spent inside the loop

After these changes, the code should theoretically perform the loops without accessing the memory
as much (since fewer operations were used and some array locations were stored on variables, being
possible to store them on registers). Due to this reduction of the overall number of operations, the
program performance improved.

Some modifications were also made on the Thomas algorithm. The first change relates to the
division on the first step. After removing the division in the first step, a batch of 4 elements are solved
at a time, removing the data dependencies between different batches. After this, the division is made
for each cell. Making the division (the heaviest operation done in this loop) on another vectorizable
loop, so these could be made in batches using the AVX present on this machine. The following code
describes these changes:

Algorithm 3 Thomas Algorithm without data dependencies between divisions

1: function THOMAS ALGORITHM

2: First Step:
3: loop for each line
4: Linek = Linek−1 ∗ Ak − LineK ∗ Bk−1
5: Second Step:
6: loop for batch of 4 lines
7: Pk = Bk
8: Pk−1 = Pk ∗ Bk−1
9: // Do for the other two lines ...

10: Qk = Zk − Ck ∗ Soliteration−1
k

11: Qk−1 = Pk−1 ∗ Zk−1 − Ck ∗Qk
12: // Do for the other two lines ...
13: loop for each line
14: Soliteration

k = Qk/Pk

Using this implementation for the Thomas algorithm, a new call-graph was created and the results
were the following:

This implementation has less time spent on the ADI method in itself because of the introduction of
the optimisations that made the number of operations lower.

After the optimisations some small rearranges to the code were made. The arrays are forced to be
aligned and anti-aliasing is forbidden. With these changes it was possible to use vectorization with
better performance.

With these new changes to the code, some of the operations that were repeatedly performed inside
the loops were now being done only once, therefore reducing the overall amount of operations to do.
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Figure 19: Call-graph of the loop optimisations implementation with a 1% threshold

The use of vectorisation on the ADI and Thomas algorithm (mostly vectorising the divisions) made
the code perform better, even with the disadvantages of the usage of the AVX (like the slower clock
frequency for the whole program).

4.1.3 Parallel approach

Multicore Approach

One important aspect is to study the number of threads to run with the program and to start testing a
parallel approach for GPU computing.

The first approach for a parallel algorithm was using the ADI way of splitting the problem into
sub-problems and having each thread solve each sub-problem at a time since they are independent of
each other. This approach also solves the tridiagonal matrices after computing the line.

Figure 20: Thread scheme for a CPU device. Each line is colour coded by what thread will solve it.
This scheme only accounts for one step, as the column wise step work division is similar.

This implementation used the OpenMP API to make use of the shared memory paradigm. Using
this API also allows the use of various scheduling schemes (explained on Section 3.1). The results of
each scheduling type with various thread numbers will be showcased in Chapter 5.

This approach does not have a parallel error calculation, therefore a new method was used to
calculate the error in parallel. This parallel error calculator divides the grid into N sized chunks, where
N = GridSize/#Threads. After dividing the grid, each thread will look for the highest error in each
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chunk. After getting all the highest errors in each chunk in parallel, the master thread sequentially
gets the highest error in the selected errors.

Algorithm 4 Parallel Error Checker

1: function PARALLEL ERROR CHECKER

2: First Step:
3: max = 0
4: loop for each element assigned to this thread
5: i f solk > max : max = solk
6: maxvaluesthread = max
7: Second Step (only for master thread):
8: max = 0
9: loop for each thread

10: i f maxvaluesselectedthread > max : max = maxvaluesselectedthread

Figure 21: Call-graph of the latest implementation with a 1% threshold

After implementing and tuning the code using best practices, it is possible to see how the difference
between both steps of the ADI method (columns vs. rows) is minimal (less than 3%). The function that
takes the most time is now Thomas algorithm (almost 60% of the whole program). The new function to
calculate the error is also slower when comparing to their sequential version (observing only relative
time between sequential and parallel) since a piece of the algorithm, even with vectorization, is still
strictly sequential.

4.2 TA R G E T I N G G P U D E V I C E S

With an efficient implementation of the ADI using Thomas algorithm as the auxiliary method for
the CPU device, the code for the GPU was developed. This code was based on the efficient methods
used for the CPU, but the different tridiagonal solvers used could give the algorithm some extra
performance. Using a parallel reduction for the error checker could also be an improvement.

4.2.1 Tailoring ADI

The ADI method has various steps, and the way device and host should communicate is a relevant
factor to obtain the best performance with this algorithm. The device can use synchronisation only



4.2. Targeting GPU Devices 40

inside an SM and without extra recurrent locks. It is not possible to synchronise the whole device.
Therefore, the synchronisation is done with the host. Figure 22 shows a possible scheme between
these.

While having the host synchronising the device, the error is computed in the device and memory
transfers from device to host are not cheap performance-wise. Besides this, it is possible to make
memory transfers asynchronous. To make them asynchronous, instead of computing the error at the
end of the iteration and transfer it to the host, it is possible to compute the error between both ADI
steps and transfer the error value while the device solves the last step. This hides the latency of the
host-device transfers.

The ADI algorithm for the GPU device was tailored so every thread was solving a single line/column
at a time. With the use of the GPU high number of threads (having thousands available), the thread
schemes will be different. Instead of assigning a single thread per line, a full SM was used.

By dividing the lines into each SM it is also possible to improve the use of shared memory (a faster
memory than the global memory, which is private to each SM) and the GPU capacity since the number
of threads deployed at a time can be far greater than the number of lines/columns to be processed.

Since the number of elements in a line/column in the ADI method might not be the same as the
number of threads in a SM, more than 1 element is scheduled for each thread.

The ADI is computationally lighter when compared to the tridiagonal solvers to be used. So while
the other tridiagonal solvers are computationally heavy when compared to the Thomas algorithm,
they can be parallelised and end up performing better than the sequential one. It is also possible to
create and store the data that fits into the shared memory, reducing the number of total accesses to the
global memory from the start.

4.2.2 Tridiagonal Solvers

With the sheer number of threads to be used in a GPU, a different approach will be tested using parallel
tridiagonal solvers instead of the sequential Thomas algorithm.

These tridiagonal solvers will be implemented using CUDA and OpenCL.

CUDA Implementation

While the tridiagonal solver used as an auxiliary to the ADI method in the CPU was the Thomas
algorithm due to it being the least computational intensive, working with GPU it is possible to use
multi-threading inside each line more effectively. Therefore the parallel tridiagonal solvers were tested.

For this analysis, the base algorithms were studied and tested, namely, the CR, the PCR and the
SPIKE algorithm. The RD algorithm, as seen before, can not be used in the ADI context due to its
limitations (will not solve diagonal dominant tridiagonal matrices [Ömer EGECIOGLU et al. (1990)]).

The base implementations of CR and PCR were based on the book [Hwu (2011)], the following code
describes these algorithms:

This algorithm also takes some consideration about bit manipulation, since the variable stride and
activeThread are always a power of 2, it is possible to shift the bit to the right to divide by 2 and shift
the bit to the left to multiply by 2. It also reduces the number of divisions by storing the inverse of the
division (tmp1 and tmp2) and multiplying the values by it instead of dividing.
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Algorithm 5 CR Algorithm

1: function CR ALGORITHM

2: First Step:
3: activeThreads = N/2
4: stride = 1
5: loop iterations<numberOfSteps
6: stride = stride*2
7: delta = stride / 2
8: i = stride * element + stride - 1
9: iLeft = i - delta

10: iRight = i + delta
11: tmp1 = a[i] / b[iLeft]
12: tmp2 = c[i] / b[iRight]
13: b[i] = b[i] - c[iLeft] * tmp1 - a[iRight] * tmp2
14: z[i] = z[i] - z[iLeft] * tmp1 - z[iRight] * tmp2
15: a[i] = -a[iLeft] * tmp1
16: c[i] = -c[iRight] * tmp2
17: activeThreads = activeThreads/2
18: Second Step:
19: loop iterations<numberOfSteps
20: delta = stride / 2;
21: i = stride * idx + stride / 2 - 1
22: if (i == delta - 1) x[i] = (z[i] - c[i] * x[i + delta]) / b[i]
23: else x[i] = (z[i] - a[i] * x[i - delta] - c[i] * x[i + delta]) / b[i]
24: stride = stride/2
25: activeThreads = activeThreads*2
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Figure 22: Workload distribution between the host and the GPU.

The PCR algorithm performs mostly the same calculations as CR. The major difference is that PCR
does not disable threads and only does a set of computations in the second step, instead of having a
loop.
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Algorithm 6 PCR Algorithm

1: function PCR ALGORITHM

2: First Step:
3: delta = 1
4: i = element
5: loop iterations<numberOfSteps
6: iLeft = i - delta
7: iRight = i + delta
8: tmp1 = a[i] / b[iLeft]
9: tmp2 = c[i] / b[iRight]

10: //Only update the values at the end of iteration
11: b[i] = b[i] - c[iLeft] * tmp1 - a[iRight] * tmp2
12: z[i] = z[i] - z[iLeft] * tmp1 - z[iRight] * tmp2
13: a[i] = -a[iLeft] * tmp1
14: c[i] = -c[iRight] * tmp2
15: delta = delta * 2
16: Second Step:
17: addr1 = element;
18: addr2 = element + delta;
19: tmp3 = 1/(b[addr2] * b[addr1] - c[addr1] * a[addr2])
20: x[addr1] = (b[addr2] * z[addr1] - c[addr1] * z[addr2]) * tmp3
21: x[addr2] = (z[addr2] * b[addr1] - z[addr1] * a[addr2]) * tmp3

The PCR needs to assign a thread to each line of the tridiagonal solver, therefore the vanilla algorithm
can not work on the 2048x2048 tridiagonal matrix (since there are only 1024 threads per SM). For
testing purposes, the algorithm will be expanded to a hardcoded version with 2 lines per thread. For
larger matrices, the CR and PCR implementations require additional tweaking from the originals. For
the CR, stridden lines will be assigned per each thread. For the PCR, a temporary array will be created
to store all the temporary variables during run time, which will have a great performance penalty,
making it not viable for using it with grid sizes larger than 2048x2048.

The SPIKE algorithm is tailored for a parallel distributed memory scheme, but it has a larger
overhead compared to other algorithms: it first partitions the problem (needs extra memory allocations
and extra computations) and then merges them at the end. The algorithm is described below.

With the usage of CR, PCR and the Thomas algorithm it is possible to test the two new hybrid
algorithms, these being the CR-PCR and the PCR-Thomas. The CR algorithm strives to reduce the
number of active equations, and PCR strives to reduce the number of steps. With the conjunction of
these two, it is possible to first reduce the number of equations, and then use PCR to solve these more
efficiently. It is also possible to use Thomas algorithm with PCR since the PCR reduces the number of
equations on a system by creating more independent systems. Then it is possible to use more than one
Thomas algorithm at a time, one for each system.

With the introduction of the CR-PCR and the PCR-Thomas algorithm, a new implementation was
made. This implementation reduces the tridiagonal matrix into a smaller matrix with the CR by
reducing the number of elements to test, then the algorithm PCR-Thomas will solve this matrix.
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Algorithm 7 SPIKE Algorithm

1: function SPIKE ALGORITHM

2: First Step:
3: loop for each needed partition
4: newPartition = new Array
5: copyValues(initialArray,newPartition)
6: Second Step:
7: loop for each partition
8: Solve outer Elements of partition
9: Third Step:

10: loop for each element of partition
11: Solve element using backward substitution with solved elements
12: Fourth Step:
13: loop for each partition
14: copyValues(newPartition,initialArray)

Finally, the remaining elements are solved with the second step of the CR. An example with a system
of 16 linear equations is shown in Figure 23. This algorithm will be called CR-PCR-Thomas.

Figure 23: Example of how CR-PCR-Thomas algorithm solves a system of 16 linear equations.

OpenCL Implementation

While CUDA only works with GPU from NVidia, the OpenCL is more open to the number of devices
it can work on [Fang et al. (2011)]. Therefore, for more widespread availability and testing purposes, a
version of the code was ported for OpenCL. This new version is a direct translation from the CUDA
code. The initial work on this version were the tridiagonal solvers.

The translation from CUDA to OpenCL was translating most of the kernels from the CUDA code to
OpenCL. With the usage of C++ on both API, the sequential code on the CPU device was not changed,
only changing how the setup was done.

When using OpenCL the compilation of the kernels was done at the startup of the program,
providing an extra overhead to this algorithm version. The OpenCL also need to set up an environment
and load the specific platform variables, so that setup was also done beforehand.
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4.2.3 Error Checking

In the CPU implementation of the ADI algorithm, to look for the largest difference between expected
results and computed results (error checking), the grid is divided into chunks and every available
thread will get the maximum element in each chunk. In the end, a single thread will get the maximum
between all maximums. While this works on a CPU with a low number of threads and vectorizing this
search using their vector extensions, the different number of threads available in a GPU architecture
leads to a different algorithm. Therefore, the GPU used a modified sum reduction2.

This reduction was modified to, with a mask, chose which element has a higher error (instead
of simply adding them). This new algorithm has a complexity of O(N) = log2(N). A modification
to the tridiagonal solver was also made. Instead of computing the error in the error checker, it is
computed while the solver computes the value of the cell. With this difference, the error checker can
be performed more than once without voiding the previous results.

This algorithm loads the cells assigned to the SM to the shared memory before starting. After
loading the elements, the threads assigned halve the number of errors to search for every iteration.
Each thread checks if it is sleeping, and if not, chooses the element to work with using a modulo
operation.

Since the modulo operation is computational heavy, threads will store the elements into the current
thread number. This makes the memory contiguous, and the thread does not need to compute the
value to look for. This reduces the number of operations per iteration and the thread only need to
check if it is active or not.

To reduce the number of kernel launches, instead of storing a single element per thread, the thread
can check 2 elements when loading the values to the shared memory and only store the larger error.
This modification halves the number of kernel launches since each SM will process twice the number
of threads available instead of only the number of threads.

The following code describes the latest version of the algorithm, using shared memory, loading the
largest element of 2, masking the conditional and not using the modulo operator:

Algorithm 8 Max reduction algorithm

1: function MAXREDUCTION ALGORITHM

2: Allocate and Load memory:
3: SHARED sdata
4: i = threadNumber
5: i1 = elementToAnalyse
6: i2 = otherElementToAnalyse
7: sdata[i] = i1<i2?i2:i1 //Masked conditional to max
8: loop sqrt(number of elements)
9: sdata[i] = sdata[i]<sdata[next]?sdata[next]:sdata[i]

10: if masterThread
11: return sdata[0]

2 Based on nVidia’s Optimizing Parallel Reduction in CUDA on http://developer.download.nvidia.com/compute/cuda/1.1-
Beta/x86_website/projects/reduction/doc/reduction.pdf
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This version of the code has more operations overall since some cells are checked more than once
(every iteration). But this code is parallel from beginning to end.



5

E X P E R I M E N T A L VA L I D A T I O N A N D E VA L U A T I O N

In this chapter, results were recorded. Some of the ways to improve its performance are noted for the
final GPU implementation. This algorithm was also ported to CUDA and OpenCL code to be tested
on GPU with different micro-architectures from NVidia.

All the tests and results were gathered using compilers and programs that are listed on a tooling
appendix of this dissertation.

5.1 T E S T B E D

To test the sequential code a testing environment was selected. The system that was chosen is a
compute node in the SeARCH cluster of Universidade do Minho (UM). The nodes in this cluster have a
mix of different multicore and manycore devices, with or without computing accelerators.

For the sequential runs, the SeARCH-662 node was selected: it has a dual multicore Intel Xeon
device and a NVidia GPU accelerator device. This node’s specifications are in Table 10.

Three systems were selected to test the parallel code: the SeARCH-662 node (to compare with the
sequential code), the SeARCH-881 node (based on more updated multicore Xeon devices with better
vector capabilities, namely AVX-512) and a node with the Intel KNL device (a manycore CPU device).
The specifications of these nodes are in Table 10.

To test the algorithms for the GPU, other hardware was also utilised, namely, two different GPU
cards from NVidia, with two different microarchitectures: 1 with a Kepler microarchitecture and the
other with a Pascal microarchitecture.

The results gathered in this dissertation used the K-Best algorithm to determine the time, K-Best
specifications used was from 10 runs and the 3 best times had to have a difference of less than 5% to
be usable. Then the average of those 3 values was stored.

5.2 E X P E R I M E N TA L O U T C O M E S O N C P U D E V I C E S

Once the CPU ADI method was implemented and validated on homogeneous nodes with Intel-based
devices. The ADI method used Thomas algorithm as its tridiagonal solver in the CPU devices as
explained in Chapter 4 execution times were measured, starting with the Ivy Bridge CPU devices. The
measured execution times are in Table 12.

Checking the table above it is possible to see how every new implementation performed better than
the previous ones, comparing the first version and the single exp one, there was a speedup of around
1.7 but the cache accesses and misses did not decrease as much since the exp function stopped being

47
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SeARCH Node SeARCH-662 SeARCH KNL SeARCH-881
Architecture Ivy Bridge Knights Landing Skylake
CPU Chip Xeon Processor E5-2695v2 Xeon Phi Processor 7210 Xeon Gold 6130
# Sockets 2 1 2
#Cores/Device 12 64 16
SMT/HT Yes Yes Yes
#Threads/Device 24 256 32
Clock Frequency 2.4 GHz 1.3 GHz 2.1 GHz
Turbo Frequency 3.2 GHz 1.5 GHz 3.7 GHz
L1I Cache Size 12 x 32 KiB 64 x 16 KiB 16 x 32 KiB
L1D Cache Size 12 x 32 KiB 64 x 16 KiB 16 x 32 KiB
L2 Cache Size 12 x 256 KiB 38 x 1 MiB 16 x 1 MiB
L3 Cache Size (Shared) 12 x 2.5 MiB — 16 x 1.375 MiB
Vector Extensions AVX AVX512 AVX512
Memory Channels 4 6 6
RAM Clock Rate 1600 MHz 2400 MHz 2666 MHz
Memory Bandwidth 50 GB/s 115 GB/s 128 GB/s
OS CentOS 6.3 CentOS 6.3 CentOS 7.5

Others —
MCDRAM (400 GB/s)
Cluster Mode: Quadrant
Memory: Flat Mode

—

Table 10: Specifications of the cluster CPU nodes

Microarchitecture
Kepler
(K20m)

Pascal
(GeForce GTX 1070)

CUDA Cores 2496 1920
Streaming Multiprocessors 13 15
Threads per SM 1024 1024
Clock Frequency 705 MHz 1746 MHz
Single to Double Precision Rate 1/3 1/32
Memory Bandwidth 208 GB/s 256 GB/s
Shared L2 Cache 1280 KiB 2048 KiB
Local Memory per SM 48 KiB 48 KiB

Table 11: Specifications of the GPU devices

Implementation Time(s) Cache L3 Accesses Cache L3 Misses Cache L3 Miss Rate
Regular 2618 102 299 285 882 32 592 111 835 31.86%
Cache-Friendly 1909 96 716 170 945 21 108 224 257 21.83%
Single Exp 1856 96 718 215 186 21 236 405 821 21.96%
Loop Optimisations 1542 37 764 164 967 9 192 664 442 24.34%
Vectorised Code 1336.0 45 847 516 068 8 878 739 151 19.37%

Table 12: Comparison of all CPU sequential code using doubles and the Ivy Bridge CPU device
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called as much but each cell had its value stored on the memory, forcing more values to be loaded
from the main memory.

Comparing that version to the vectorised one it is possible to notice another speedup of 1.4 and the
number of loads reduced drastically, this was because some values were not being accessed so much
because of the reduced number of operations inside the loops. The speedup of the vectorised code
was not a big improvement as could be expected, but it is important to remark the usage of only the
base AVX and the usage of doubles, which reduces the vectorisation performance.

5.2.1 Multicore CPU Devices

The validation and evaluation of the parallel implementation were performed with a various number
of threads, from 2 to 48 threads. This was doable due to having 2 sockets with 1 CPU device on each
and each having 12 physical cores and using 2 threads per core with Simultaneous MultiThreading
(SMT). The execution times were placed in Table 13.

Number of Threads 1 2 4 6 12 24 48
Time (s) 1336.0 737.1 505.6 343.2 252.9 242.0 355.2

Table 13: All tested number of threads using Ivy Bridge CPU

As Table 13 shows, it is possible to see that the best execution time is achieved when using 1 thread
per core and both sockets are used. When using SMT the measured times got worse, due to the larger
overhead of the SMT usage.

This latest version of the code has access to SIMD with AVX but does not benefit from the best
available version of the AVX. The Skylake CPU used had access to a newer version of AVX, the
AVX-512. To test the Skylake, a few changes to the executable were made, namely, change the compiler
flags to use AVX-512 instead of AVX.

To test the scalability of the code using the Skylake, different scheduling options were used and
these were recorded in Table 14 and a call-graph was created (Figure 24).

Number of Threads 2 4 8 16 32 64
Static (s) 525 332.5 179.3 94 59.8 63.4
Dynamic (s) 588.5 309 178.9 96.8 58.6 65.2
Guided (s) 570.5 295 171.3 89.5 57.5 70.2

Table 14: Times measured using Skylake with three different scheduling types

With the Table 14 it is easily seen that the best performance is achieved using the guided schedule,
showing as the better scheduler between the threads among the others. This scheduling type has a
larger overhead than static but scales better with the increasing number of threads since the work is
better balanced into chunks. The best number of threads is when using both sockets and every physical
core is busy with a single thread. When using SMT it is possible to notice a decline in performance,
due to the overhead in having more threads without the speedup they could provide.

As expected, the functions of the code that took most advantage of the vectorization (calcError) had
performance gains, while the parts that did not use vectorization (especially the Thomas algorithm
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Figure 24: Call-graph using 32 threads and guided scheduling in Skylake with a 1% threshold

inner calculations) had some performance loss due to the slower clock frequency, making the difference
in times more noticeable.

5.2.2 Manycore CPU Devices

The Intel KNL device was used to evaluate the ADI scalability in manycore architectures, namely with
reduced cache features (the KNL chip has no L3 cache), using the Skylake code to test this chip. Once
again, different thread scheduling was tested (some with at least 12 threads) and these new times are
in Table 15.

Number of Threads 2 4 6 8 12 16 24 32 48 64
Static Time (s) 2023 1257 954 768 603 588 530 552 515 540
Dynamic Time (s) — — — — 630 568 518 542 508 566
Guided Time (s) — — — — 587 535 490 537 494 582

Table 15: Times measured using KNL with three different scheduling types

Looking at the table it is possible to notice that after a certain threshold the ADI stops scaling,
even with different scheduling types. When using KNL there is a new type of memory available,
a High Bandwidth Memory (HBM) called MCDRAM. This RAM is only available in KNL and the
bandwidth is almost 4 times larger when compared to the regular RAM (information in Table 10).
Due to the machine memory being in flat mode no changes to the code should be necessary, but two
other approaches were tested: one forcing the memory to allocate in the MCDRAM, and another that
allocates the memory in the MCDRAM and then aligns it. The results can be seen in Table 16. All
measured times were performed with at least twelve threads, due to the time plateauing around these
number of threads.

Number of Threads 12 16 24 32 48 64
Regular Time (s) 586.7 535.3 490.3 537.3 493.9 581.8
Forced Alloc Time (s) 599.3 552.75 509.6 506.4 505.9 558.0
Alloc & Align Time (s) 742.9 663.9 574.4 569.8 501.4 537.8

Table 16: Times measured while allocating with different allocation methods.
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As expected, since the memory mode was set to flat, the memory was already aligned and set in
the MCDRAM, while forcing has an overhead, so using them is unnecessary and makes the code less
performant. A call-graph was made for the best performance on the KNL (Figure 25).

Figure 25: Call-graph using the best KNL algorithm with a 1% threshold

This call graph shows that the KNL has a serious slowdown on the Thomas algorithm (from taking
almost 60% of the relative time to more than 80%). This function uses a lot of memory since it will read
from different arrays simultaneously, change these values and use them later on, making the memory
latency more noticeable.

5.2.3 CPU Results Discussion

The multicore implementation of the ADI code is scalable on the architectures studied. When using a
dual-socket the implementation treats the memory allocation on the thread level instead of a single
memory allocation. This makes the use of a dual-socket more efficient than the use of a single socket,
even when hiding the latency of the NUMA architectures by using the local RAM for each thread
more precisely than a simple memory allocation. When using SMT on these architectures there is a
penalty, most likely due to the physical cores being already busy when using a single thread per core
and the overhead of the extra threads makes it not worthwhile.

When using the manycore implementation the algorithm performs differently than expected. The
ideal number of threads was 24 threads, which is only using a thread per 3 physical cores, and when
using 48 threads, which is using 2 threads per 3 physical cores. This implementation does not scale
above that number of threads. Looking at the call-graph for this implementation (Figure 25) it is
possible to notice how the Thomas algorithm takes over 80% of the time of the whole algorithm.

One of the reasons for the slowdown of the code can be explained by the lower clock frequency of
the KNL. The KNL clock frequencies were recorded in Table 17, when using different threads and
different instruction sets (like AVX or SSE4.2). These clock frequencies were recorded using the perf
tool while running the DGEMM algorithm1.

While studying the possible slowdowns on the scalability for the KNL, the memory bandwidth
needed for full usage of the available cores was calculated. Using the clock frequency of Table 17, the
clock frequency used will be 500 MHz. Using the formula #Threads ∗ #VPUPerThread ∗VectorSize ∗
Clock_Frequency the theoretical memory bandwidth for continuous data processing is around 4000

1 Test DGEMM program from https://github.com/jdmccalpin/simple-MKL-DGEMM-test
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Clock Frequency SSE4.2 AVX AVX2 AVX512
1 Thread 1440 MHz 1450 MHz 1440 MHz 1410 MHz
24 Threads 998 MHz 980 MHz 580 MHz 580 MHz
48 Threads 912 MHz 880 MHz 518 MHz 507 MHz
64 Threads 1020 MHz 910 MHz 497 MHz 490 MHz

Table 17: Clock frequencies recorded using perf while running a DGEMM algorithm

GB/s. This is 10x larger than the theoretical peak bandwidth of the MCDRAM2. Looking at Table 15 it
is possible to notice how the algorithm stops scaling as well around the 8 to twelve threads mark. This
is indeed the same number of threads that when using the formula above should stop having enough
bandwidth to supply all the data needed, increasing the time spent waiting for data.

When analysing the multicore architectures, it is possible to see that the ADI scales well using
more threads until they start using SMT. This happens because of the usage of good NUMA practices,
letting each thread store the data in the RAM available in each socket. The performance gain from the
Ivy Bridge to the Skylake CPU is also possible with the upgraded clock frequency (the best skylake
time has a speedup of 2 when compared to the best Ivy bridge time). This happens because it has a
higher core number (running half extra threads at a time) and an upgraded version of AVX (even with
a clock frequency penalty, the bandwidth is larger (almost 3 times larger), which makes the skylake
have fewer data penalties. The cache information was recorded and stored in Table 18.

Cache Accesses Cache Misses Current Miss Rate Total Miss Rate
Cache L1 1 497 170M 230 170M 15.4% 15.4%
Cache L2 230 170M 24 616M 10.7% 1.6%
Cache L3 24 616M 8 350M 33.9% 0.6%

Table 18: Number of cache accesses and cache misses on the dual Skylake server.

As seen in Table 18, the better use of the cache makes the algorithm keep most of the needed data
on-chip (almost 99% of the requested data is stored on the first two cache levels). With the high
memory usage of the ADI and the whole problem does not fit in the L3 cache, one third of all L3
accesses miss the cache. This problem can not be avoided since each iteration needs to process all the
data while using a smaller problem (that fits itself on the L3 cache) could reduce most of the memory
accesses to the L3 cache (besides the first iteration).

5.3 G P U R E S U LT S

5.3.1 CUDA Implementations

After implementing all code for GPU devices, the tridiagonal solvers times were recorded. The first
results gathered were to discover the best point to size to switch between algorithms in the hybrid
algorithms. To do this a test was run for all the sizes (this information is stored in Appendix A) and
the best switching size was stored in Table 19.

2 Peak bandwidth calculated by Intel in https://software.intel.com/content/www/us/en/develop/articles/multi-
channel-dram-mcdram-and-high-bandwidth-memory-hbm.html
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Matrix Size 32x32 64x64 128x128 256x256 512x512 1024x1024 2048x2048
Break point
in CR-PCR

16 32 64 128 256 512 1024

Break point
in PCR-Thomas

2 2 2 4 4 4 8

Table 19: Best point to switch from the first algorithm to the other using CUDA in the Kepler GPU.

With the best switching sizes known, the times were gathered and stored for different sizes (from
32x32 up to 2048x2048) and tridiagonal solvers (CR, PCR and hybrids) in Table 20.

Size 32x32 64x64 128x128 256x256 512x512 1024x1024 2048x2048
CR (ms) 0.79 0.99 1.11 1.34 1.67 2.00 2.53
PCR (ms) 0.65 0.72 0.80 0.84 0.97 1.42 2.48
CR-PCR (ms) 0.93 1.00 1.18 1.22 1.36 1.74 2.83
PCR-Thomas (ms) 0.60 0.72 0.77 0.84 0.91 1.31 2.10

Table 20: Execution times for CR, PCR and Thomas algorithms, including hybrids for GPU, using
doubles and CUDA on the Kepler GPU.

In the algorithm CR-PCR, 2 cells were assigned to each thread, and while working on the PCR some
of the threads simply become inactive. Because of this, the PCR is less performant the fewer threads
are used in this algorithm. Therefore the higher use of the PCR makes the work more balanced, having
a better performance overall. In the algorithm PCR-Thomas the usage of Thomas makes the algorithm
more sequential, but unlike CR-PCR, the threads finish their assigned work, so they do not become
inactive. While having a smaller Thomas algorithm size makes the algorithm more parallel, the usage
of a larger size on the Thomas algorithm makes the total operations to perform lower, so encountering
a middle size (using the Thomas algorithm size as 8) is beneficial for the algorithm. The number of
threads working on the Thomas algorithm using the size as 8 is 256 threads, that is 8 groups of warps.
Using more than 1 warp at a time also has benefits, since some threads will be sleeping while waiting
for their data, other groups of threads can work, keeping the SM busy.

Analysing the Table 20 it is possible to notice how the best algorithm for this configuration is the
PCR-Thomas. This algorithm has less inactive time (by keeping the number of active threads high) and
reduces the total number of operations enough to make it worth using more than the other methods.

Studying the difference between the algorithms CR and PCR-Thomas, it is possible to notice
the switching size at matrix sizes of 512 (up to this point, the CR scaled worse, after this point,
the CR-Thomas scales worse). Because of that, the change from the CR algorithm will reduce the
2048x2048 system into a 512x512 system. After this change, the switching size between PCR and
Thomas algorithm needs to be studied. Table 21 shows how the algorithm performs with different
configurations.

It is possible to see that the best performance is recorded when the Thomas size is 8. With this
configuration, the CPU uses 64 threads (there are 64 systems of 8 elements each) to solve the Thomas
algorithms. This leaves 2 working warps on the GPU, while one is performing operations, the other
can be waiting for data to be retrieved, hiding the memory latency and reducing the number of
operations to be performed.
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Thomas Algorithm Size 2 4 8 16 32 64 128 256
Time (ms) 2.28 2.27 2.25 2.27 2.70 3.12 3.50 6.23

Table 21: Execution times of the CR-PCR-Thomas algorithm, on a 2048x2048 system, with 2 CR
steps, reducing the total size to 512x512, and using doubles and CUDA on the Kepler
GPU.

Next, a scalability test was made for the SPIKE algorithm. This algorithm should have high
scalability but a large overhead [Kjelgaard Mikkelsen and Manguoglu (2008)]. The algorithm will be
compared to the CR algorithm since as Table 23 shows when comparing to other algorithms it has
better scalability. The times were recorded on Table 22.

Grid Size 32 x 32 2Ki x 2Ki 32Ki x 32Ki 4Me x 4Me
CR (ms) 0.79 2.53 51.76 6896.60
SPIKE (ms) 4.43 5.12 11.40 418.62

Table 22: Execution times for the CR and the SPIKE algorithms, using doubles and CUDA on the
Kepler GPU

As noticed in Table 22 the SPIKE algorithm scales well for very large matrices (32Kix32Ki) when
compared to CR. However, the larger overhead hinders its performance for matrix sizes up to 2Ki,
which are usually the size of matrices used to solve problems with convection-diffusion equations
(like heat-transfer in 2D environmnets). This tridiagonal solver had the potential to solve systems of
high dimensions, including 3D versions of the environment. Therefore the SPIKE algorithm will be
discarded for following tests as it does remain competitive for the size chosen as it is too small to cover
the overhead.

The execution times of all algorithms were measured on the Kepler GPU and also on the Pascal
GPU. The times were recorded on Table 23.

Size 32x32 64x64 128x128 256x256 512x512 1024x1024 2048x2048
CR (ms) 0.31 0.37 0.43 0.50 0.57 0.67 0.80
PCR (ms) 0.19 0.26 0.26 0.32 0.48 0.80 1.49
CR-PCR (ms) 0.31 0.36 0.39 0.43 0.52 0.72 0.90
PCR-Thomas (ms) 0.20 0.23 0.26 0.31 0.43 0.67 1.10

Table 23: Execution times for the CR, PCR and Thomas algorithms, including hybrids with GPU,
using doubles and CUDA on the Pascal GPU.

Differently from the Kepler GPU, the Pascal GPU CR algorithm scales better than all others. It has a
slower start (on par with CR-PCR), but as the size grows, the CR time grows slower than all the others.
This is achieved by the scalability achieved using the CR. The usage of the PCR can achieve better
performance for smaller matrices because of the reduction of work in the second step, only having
an equation for each cell, instead of a loop to solve every cell. The Thomas algorithm also helps to
achieve better scalability with the PCR, as it reduces the number of total iterations and reduces the
number of operations, having a downside of using fewer threads at a time.
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The custom algorithm CR-PCR-Thomas implementation was also tested on the Pascal. Just as
before, the switching size between CR and the PCR-Thomas is the size 512x512. Table 24 shows the
performance of the algorithm using different Thomas algorithm sizes.

Thomas algorithm size 2 4 8 16 32 64 128
CR-PCR-Thomas (ms) 0.796 0.751 0.747 1.079 1.081 1.68 2.879

Table 24: Execution times for the CR-PCR-Thomas algorithm, on a 2048x2048 system, with 2 steps
of CR, reducing the total size to 512x512, using doubles with CUDA on a Pascal GPU

As expected, the algorithm shows a performance likely to the PCR-Thomas, having the best
performance on Thomas size set to 8. This is possible because of the number of threads to work at
a time (64 threads at a time), this means that 2 warps work at a time, reducing the number of total
operations (by having less PCR steps) but having enough steps to have more than 1 warp working at a
time (to hide some of the memory latency).

When comparing the best CR-PCR-Thomas algorithm to the others, it is possible to notice how it
performs better than all the other algorithms, this implementation takes all the advantages of all the
others. First, it reduces the number of equations, reducing the whole size of the problem considerably,
then the PCR divides the system of equations into various independent systems to be solved by the
Thomas algorithm, using various warps to reduce the memory latency.

5.3.2 OpenCL Implementations

After recording the performance on all GPU devices of the CUDA code, the same was done to the
OpenCL port (excluding the SPIKE algorithm).

When testing the OpenCL port of the tridiagonal solvers on the GPU, a few changes were made,
and due to some differences in both API configurations, the tests using the OpenCL only performed
the tridiagonal solver on 1 system at a time. Therefore the direct comparison of both implementations
is misleading, but the scalability between both is not since the datatypes and matrix sizes are the same.

The following table shows the tridiagonal solvers performance using the Kepler GPU:

Size 32x32 64x64 128x128 256x256 512x512 1024x1024 2048x2048
CR ( µs) 134.5 137.7 152.0 164.3 180.8 204.3 243.5
PCR (µs) 100.2 117.7 123.0 126.1 124.1 151.0 235.0
CR-PCR (µs) 126.5 132.4 131.0 133.6 143.2 157.0 211.4
PCR-Thomas (µs) 120.6 118.3 122.1 129.2 135.8 158.0 215.8

Table 25: Execution times for the CR, PCR and Thomas algorithm, using doubles with OpenCL on
a Kepler GPU

As the CUDA implementation, the PCR and PCR-Thomas have a slightly better performance than
the CR, with PCR-Thomas having the better overall results. Despite these similarities, in this version
of the code, the best algorithm is now CR-PCR. This algorithm scales better than the others, starting as
having the second worst performance, to having the best performance overall. This is most likely due
to the different compilers and how inactive threads impact performance on both API since the inactive
threads do not impact the performance as much as the CUDA counterpart.
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With the code implemented, tests on the Pascal GPU were performed to check the scalability and
how each algorithm performed. Table 26 has all the data recorded using a single system and the
datatype used are doubles.

Size 32x32 64x64 128x128 256x256 512x512 1024x1024 2048x2048
CR 64.5 67.5 70.6 77.1 82.5 90.5 104.5
PCR 43.9 45.1 46.7 49.3 55.6 69.9 127.8
CR-PCR 55.9 56.3 56.9 59.8 67.0 76.0 83.4
PCR-Thomas 54.0 45.4 50.8 52.4 60.9 76.7 114.7

Table 26: Execution times for the CR, PCR and Thomas algorithm, using doubles with OpenCL on
a Pascal GPU

As the CUDA code, the CR performs better than PCR and PCR-Thomas, but the CR-PCR algorithm
perform better with this configuration. On this configuration, the PCR performs better than the CR
for smaller matrices, but stills end up scaling worse and for the size of 2048x2048: it shows the worst
performance.

5.3.3 GPU Results Discussion

After implementing and testing the necessary functions for the ADI method (tridiagonal solvers and
the error calculation) the next step is testing everything together.

Since both GPU have a shared memory of 48 KiB, the algorithm will take advantage of it by having
some of the arrays generated from the ADI be stored directly on it, removing the need to use the global
memory as much as possible. To choose the arrays to store in the shared memory, all the accesses will
be counted, and the arrays more used will be used. These computations are in Table 27.

Tridiagonal Solver Used A B C Z
CR 4 5 5 4
PCR 2 2 2 3
Thomas 1 3 2 3

Table 27: Ratio between memory accesses per algorithm

Studying the Table 27 and knowing that each array has 2048 elements (and these elements are
doubles) each array has a size of 16 KiB. Therefore, each SM has a shared memory capable of storing 3
arrays. Since in every algorithm the array A is the less used the other 3 will be the ones chosen to be
stored in it.

Since the ADI is an iterative method and the number of iterations may change, the times recorded
will be the average per iteration, the domain to be used is a circle described in a grid and the tridiagonal
solvers used will be variable for testing purpose. These times are recorded in Table 28.

When comparing the results of Table 28 with to the times of the algorithms on previous tables,
the ADI using the tridiagonal solvers with the best performance show better performance overall.
The disparity between times is higher this time around, mostly because of the sheer number of
tridiagonal solvers used simultaneously (each step has 2048 systems running at a time). Nonetheless,
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Tridiagonal
solver used

CR PCR CR-PCR PCR-Thomas CR-PCR-Thomas

Kepler (ms) 38.4 27.6 65.9 26.6 31.3
Pascal (ms) 12.1 33.2 37.7 26.5 14.8

Table 28: Execution times for various tridiagonal solvers, on a 2048x2048 grid, using doubles and
CUDA. Execution time is the average per iteration.

the introduction of the shared memory reduces drastically the number of memory accesses that need
to happen, therefore, reducing the total time needed for each tridiagonal solver drastically.

The introduction of shared memory on the CUDA implementation happened flawlessly. With
the OpenCL implementation there was an error using the entirety of the 48 KiB of local memory
(shared memory in OpenCL nomenclature). The OpenCL implementation caused an overflow on local
memory usage. This indicates that OpenCL can not provide the whole local memory to the program,
which may indicate there are some internal OpenCL variables being stored in it. Because of this, only
two of the tridiagonal solvers’ arrays can be stored on the local memory. Looking back at Table 27, the
chosen memory arrays to be stored in the local memory are B and Z.

The times recorded were also recorded as average time per iteration and stored on Table 29 using
the doubles datatype and only 2 arrays stored in shared memory.

Tridiagonal
solver used

CR PCR CR-PCR PCR-Thomas

Kepler (ms) 45.4 37.5 48.7 40.8
Pascal (ms) 13.45 41.2 13.4 29.1

Table 29: Execution times for various tridiagonal solvers, on a 2048x2048 grid, using doubles and
OpenCL. Execution time is the average per iteration.

While working with the kepler GPU, it is possible to notice how on the CUDA implementation
(Table 28) performs better than using OpenCL on most algorithms but the CR-PCR. Using the Pascal
GPU it is possible to notice that the algorithm that shows better performance is the CR-PCR (having
CR perform almost the same).

5.4 R E S U LT S D I S C U S S I O N

With all the implementations done, a comparison between the results was made using the defined size
of 2560x2560 using doubles. Starting, all the execution times and memory information on sequential
version on CPU devices was gathered into one table (Table 30) shown below.

Looking at Table 30 it is possible to notice an overall speedup of 2, a large decrease in total memory
accesses (almost 27%). This was possible with the usage of the transpose, reduction of the functions
used mid algorithm, the usage of operations fewer times than needed and the use of AVX.

A parallel code was implemented using 3 different CPU with different architectures, this time using
the grid size of 2048x2048 to compare with the GPU. The best times of each architecture were gathered
and each implementation-specific information into Table 31.
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Implementation Time(s) Cache L3 Accesses Cache L3 Misses Cache L3 Miss Rate
Regular 2618.0 102 299 285 882 32 592 111 835 31.86%
Cache-Friendly 1909.6 96 716 170 945 21 108 224 257 21.83%
Single Exp 1856.7 96 718 215 186 21 236 405 821 21.96%
Loop Optimisations 1542.2 37 764 164 967 9 192 664 442 24.34%
Vectorized Code 1336.0 45 847 516 068 8 878 739 151 19.37%

Table 30: Comparison among all sequential implementations

Architecture Ivy Bridge Skylake KNL
Average time
per iteration (ms)

9.76 5.33 12.35

Number of Threads 2x12 2x16 24
Scheduling Static Guided Guided
Socket Information Dual Socket Dual Socket Single Socket
SIMD AVX AVX-512 dual AVX-512
Other Information — — Automatic MCDRAM allocation

Table 31: All best ececution times using the three CPU with additional information about each
implementation.

Studying the Table 31 it is possible to notice how the best performance is from the Skylake CPU
using 32 threads (assigning 1 thread per physical core) and the guided scheduling (good work balance
but does not have as much overhead as dynamic). The usage of KNL was not as good as expected,
showing the worst performance of all tested CPU (even with the usage of a HBM).

To check the ADI potential efficiency on GPU, new versions were implemented, using the CUDA and
OpenCL APIs. These implementations studied new tridiagonal solvers since the first implementation
(simulating the CPU ADI directly) was very inefficient. These new tridiagonal solvers were studied
and their times were recorded in Tables 20, 23, 25 and 26. While using these tridiagonal solvers on
the ADI method, there might be a few differences in performance, since the ADI implementation
introduced the shared memory and the most used arrays used it exclusively. The best algorithms for
each implementation were stored on Table 32.

GPU Architecture
Kepler Pascal
CUDA OpenCL CUDA OpenCL

Time per iteration (ms) 26.6 37.5 12.1 13.4
Algorithm used PCR-Thomas PCR CR CR-PCR
Size of secondary matrix 8 — — 32

Table 32: Best average time per iteration between all GPU code. Using a grid size of 2048x2048
doubles.

Checking Table 32 it is possible to notice that the best performance is recorded using CR algorithm
on the Pascal GPU with CUDA. These times are also possible because of the change of the error checker.
The new version makes good use of the shared memory and uses a high number of threads (against
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the simpler version with some scalar operations of the CPU). The time spent on memory transfers
from the host-device also got reduced with the use of asynchronous copy.

When comparing these times between the CPU (Table 31) and the GPU (Table 32) it is possible to
notice how the best performance on CPU is almost 3 times faster than the best performance on GPU
considering a grid with a size of 2048x2048. The usage of SIMD on the CPU can be compared to the
usage of SIMT on the GPU. While the AVX512 can spread an operation for up to 8 doubles at a time,
the usage of warps in GPU can lead to the spread of an operation for up to 32 doubles (4 times more
operations), and can these warps can hide memory latency with other warps on stand-by, reducing
the total stall time due to the memory. The Skylake can have up to 32 threads (without using SMT),
each processing 8 elements with a maximum clock frequency of 1900 MHz, while the Pascal GPU can
only have fifteen SM processing 32 elements at a time with a clock frequency of 1746 MHz. In theory,
more elements are processed at a time in the Skylake CPU, but since only the division of the Thomas
algorithm is vectorised, all the remaining operations in this algorithm are done without the usage of
SIMD, resulting in fewer operations happening in simultaneous.

Due to the parallel nature of ADI, it was expected, that versions of this algorithm on GPU would
perform better than any version on CPU. That was not the case when comparing the results gathered
in this dissertation, especially for grid sizes up to 2048x2048. So additional tests were made to evaluate
if this would happen for larger grid sizes, or if that was a common feature of this method. ADI was
tested for multiple sizes using CR algorithm in CUDA using the Pascal architecture (since it had the
best time from all GPU times) and using the Skylake with the Thomas algorithm. These times were
recorded using the average time per iteration and stored on Table 33.

Size 512*512 1024*1024 2048*2048 4096*4096 8192*8192
Skylake (ms) 0.66 1.67 4.97 74.33 900.1
Pascal (ms) 0.95 4.3 12.1 127.8 677.2

Table 33: Execution times recorded for various grid sizes using the same initial grid

As seen in Table 33, the larger grids can get more performance from the GPU algorithms as these
algorithms show better performance. The algorithm used, CR, reduces each matrix to half every
iteration, so the exponential growth of the grid lead to linear growth of iterations to execute while
using Thomas algorithm by itself also increases the number of iterations exponentially. This leads
to different performances with different sizes, as the CPU algorithms have less overhead, the GPU
algorithms scale better.

Comparing now the SPIKE’s algorithm to CR (data in Table 22), is possible to notice how using the
SPIKE algorithm tends to be more efficient for grid sizes larger than 32Kix32Ki, in this case, when
studies for larger matrices are performed, SPIKE algorithm may be one of the algorithms to be tested
and tuned to that problem.

The GPU ADI also has a disadvantage on their memory usage on Pascal, with the limited shared
memory, there is not enough data to use it on even 1 array in the larger size. Only able to use 1 array
on the size 4096*4096.

Using different tridiagonal solvers can also lead to disadvantages using GPU. While the Thomas
algorithm can not be used in parallel by itself, the usage of the ADI method to create independent
systems, it becomes possible to use more than 1 Thomas algorithm at a time. The usage of the other
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methods is heavily penalised with the increase of total operations needed per iteration, increasing the
total workload of the algorithm.

With these findings, it is possible to confirm, that for these implementations, the implementation
best suited for sizes smaller than 4Kix4Ki is the CPU implementation using the Skylake CPU, for
sizes between 4Kix4Ki and 32Kix32Ki the implementation best suited is the GPU implementation
using the CR algorithm in the Pascal GPU, and, in theory, for sizes larger than 32Kix32Ki the best
implementation could be using SPIKE algorithm if it proves to be as scalable as the earlier tests show.



6
C O N C L U S I O N

The ADI method is an algorithm to solve the convection-diffusion equations iteratively. This method
splits the main problem into smaller independent sub-problems. These smaller sub-problems are
independent, so they can be solved in parallel.

A first implementation was done for the CPU. This implementation was then explored and made
more efficient with the usage of better memory layout, reduction of the total operations to perform
and the use of SIMD.

Using parallelism with shared memory on a CPU added some significant performance speedups,
reducing the execution times to less than a fifth of the time on the Ivy Bridge CPU. The scheduling
types were then tested using the Skylake CPU, showing an improvement while using the guided
schedule type when compared to the static scheduling used before.

Using the GPU and the many parallel tridiagonal solvers showed that each API and GPU architecture
can have different outputs for the tridiagonal solvers used. The best results were using the Pascal
GPU (these were better than the Kepler GPU in all times recorded) with CUDA and CR. The usage
of OpenCL when comparing to CUDA makes most of the tridiagonal solvers perform with less
performance (excluding CR-PCR using the Pascal GPU.

The usage of a regular grid size of 2048x2048 (which are usually the sizes used for this convection-
diffusion problem) leads to a better performance using the CPU. Due to this, the better use for these
smaller grids is the CPU implementation.

While the basic grid can be more efficiently solved using the studied CPU, when the grid size
goes up the problem stops being as efficient on the CPU as the GPU implementation. This happens
because the GPU use various parallel algorithms, that have better scalability than the regular Thomas
algorithm, with larger matrices the GPU performs better, even with the disadvantage of not being
able to use their shared memory on the studied GPU. These times become more efficient on grid sizes
larger than 8192x8192 for the Pascal GPU using CUDA, when compared to a multicore CPU.

Testing the problem with the SPIKE algorithm can be beneficial if a new strategy for distributed
memory is created, using more GPU and CPU. If more shared memory is available, it can also be
possible to switch the memory allocation to the shared memory, reducing some of the overhead caused
by this. While these would need different configurations, with the tests done, the SPIKE algorithm
started being more efficient for grid sizes larger than 32Ki x 32Ki.

Using OpenCL showed some problems using the local memory when comparing it to CUDA, since
some of it is already used by the language itself. Due to this, the arrays allocated in this faster memory
is not as used on OpenCL and it is used in CUDA, leading to more waits on the memory.

61
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While working with the KNL did not prove to be efficient with the ADI implemented, it is possible
to notice how it stops speeding up after reaching the threshold of the memory bandwidth. The KNL
does not have an L3 cache, so it ends up having to use the global memory often. This paired with the
its lower clock frequency (around 4 times slower than the Skylake clock frequency) makes the code
run with lower performance than when using a multicore CPU.

With the current usage of the Pascal GPU, it is not possible to test tensor computing. This could
theoretically speed up the creation of the tridiagonal matrices by creating chunks of matrices at a time.
The usage of tensor computing could also be used instead of vector computing for tridiagonal solvers.

It is also possible to use heterogeneous computing to speed up the current GPU implementation,
this could increase the number of simultaneous lines/columns being processed due the higher number
of processors and more computation power. This implementation would need more transfers from
each device. Therefore, it could be inefficient, depending on the implementation, so it must be studied
carefully.
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Part III

A P P E N D I C E S



A
E X E C U T I O N T I M E S

In this chapter, all the tridiagonal solvers execution times will be shown. Both GPU implementations
will be shown and for every implementation, both GPU times will be shown. For every GPU, a table
for each tested matrix size will be also shown. The Smaller Sizes in the tables are the size of the
secondary algorithm (PCR in CR-PCR and Thomas in PCR-Thomas) unless specified otherwise.

A.1 C U D A E X E C U T I O N T I M E S

A.1.1 Kepler GPU

Smaller Sizes 2 4 8 16
CR 0.31
PCR 0.19
CRPCR 0.50 0.45 0.40 0.31
PCRThomas 0.20 0.20 0.23 0.32

Table 34: Times (in ms) for 16 systems using various tridiagonal solvers for matrices with size of
32x32

Smaller Sizes 2 4 8 16 32
CR 0.37
PCR 0.26
CRPCR 0.61 0.55 0.49 0.42 0.36
PCRThomas 0.23 0.23 0.26 0.35 0.57

Table 35: Times (in ms) for 16 systems using various tridiagonal solvers for matrices with size of
64x64
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Smaller Sizes 2 4 8 16 32 64
CR 0.43
PCR 0.32
CRPCR 0.85 0.79 0.72 0.59 0.51 0.43
PCRThomas 0.32 0.31 0.34 0.43 1.36 2.17

Table 36: Times (in ms) for 16 systems using various tridiagonal solvers for matrices with size of
128x128

Smaller Sizes 2 4 8 16 32 64 128
CR 1.34
PCR 0.84
CRPCR 2.11 2.05 2.00 1.98 1.84 1.44 1.08
PCRThomas 0.84 0.88 0.95 1.01 1.40 2.2 3.88

Table 37: Times (in ms) for 16 systems using various tridiagonal solvers for matrices with size of
256x256

Smaller Sizes 2 4 8 16 32 64 128 256
CR 1.67
PCR 0.97
CRPCR 2.73 2.60 2.53 2.58 2.79 2.17 1.53 1.19
PCRThomas 0.91 0.91 0.98 1.20 1.48 2.29 3.96 7.44

Table 38: Times (in ms) for 16 systems using various tridiagonal solvers for matrices with size of
512x512

Smaller Sizes 2 4 8 16 32 64 128 256 512
CR 2.00
PCR 1.42
CRPCR 3.31 3.23 3.20 3.39 3.17 3.19 2.36 1.92 1.67
PCRThomas 1.33 1.31 1.34 1.45 1.90 2.50 4.19 7.55 14.50

Table 39: Times (in ms) for 16 systems using various tridiagonal solvers for matrices with size of
1024x1024
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Smaller Sizes 2 4 8 16 32 64 128 256 512 1024
CR 2.53
PCR 2.48
CRPCR 4.32 4.20 4.10 4.12 4.25 4.08 3.70 2.92 3.00 2.83
PCRThomas 2.26 2.16 2.10 2.17 2.53 3.50 4.60 8.00 14.92 29.30
CRPCRThomas* 2.28 2.27 2.25 2.27 2.70 3.12 3.50 6.23 —

Table 40: Times (in ms) for 16 systems using various tridiagonal solvers for matrices with size of
2048x2048
* The CRPCRThomas algorithm was coded in a way that the CR always had 2 steps and
the PCRThomas steps were changeable. In this case, the Smaller Size is the size of the
Thomas algorithm.

A.1.2 Pascal GPU

Smaller Sizes 2 4 8 16
CR 0.31
PCR 0.19
CRPCR 0.50 0.45 0.40 0.31
PCRThomas 0.20 0.20 0.23 0.32

Table 41: Times (in ms) for 16 systems using various tridiagonal solvers for matrices with size of
32x32

Smaller Sizes 2 4 8 16 32
CR 0.37
PCR 0.26
CRPCR 0.61 0.55 0.49 0.42 0.36
PCRThomas 0.23 0.23 0.26 0.35 0.57

Table 42: Times (in ms) for 16 systems using various tridiagonal solvers for matrices with size of
64x64

Smaller Sizes 2 4 8 16 32 64
CR 0.43
PCR 0.27
CRPCR 0.73 0.66 0.60 0.53 0.47 0.39
PCRThomas 0.26 0.26 0.28 0.38 0.60 1.06

Table 43: Times (in ms) for 16 systems using various tridiagonal solvers for matrices with size of
128x128
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Smaller Sizes 2 4 8 16 32 64 128
CR 0.49
PCR 0.32
CRPCR 0.85 0.78 0.71 0.65 0.59 0.51 0.43
PCRThomas 0.32 0.31 0.34 0.42 0.64 1.10 2.07

Table 44: Times (in ms) for 16 systems using various tridiagonal solvers for matrices with size of
256x256

Smaller Sizes 2 4 8 16 32 64 128 256
CR 0.57
PCR 0.48
CRPCR 0.97 0.90 0.84 0.77 0.71 0.64 0.58 0.52
PCRThomas 0.45 0.43 0.44 0.53 0.72 1.17 2.12 4.06

Table 45: Times (in ms) for 16 systems using various tridiagonal solvers for matrices with size of
512x512

Smaller Sizes 2 4 8 16 32 64 128 256 512
CR 0.67
PCR 0.80
CRPCR 1.09 1.04 0.97 0.89 0.83 0.77 0.72 0.72 0.74
PCRThomas 0.74 0.69 0.67 0.72 0.90 1.32 2.24 4.16 8.07

Table 46: Times (in ms) for 16 systems using various tridiagonal solvers for matrices with size of
1024x1024

Smaller Sizes 2 4 8 16 32 64 128 256 512 1024
CR 0.80
PCR 1.49
CRPCR 4.28 1.21 1.14 1.07 1.01 0.94 0.90 0.90 1.01 1.17
PCRThomas 1.33 1.19 1.10 1.10 1.24 1.62 2.47 4.30 8.19 16.03
CRPCRThomas* 0.80 0.75 0.75 1.08 1.08 1.68 2.88 5.27 —

Table 47: Times (in ms) for 16 systems using various tridiagonal solvers for matrices with size of
2048x2048
The CRPCRThomas algorithm was coded in a way that the CR always had 2 steps and
the PCRThomas steps were changeable. In this case, the Smaller Size is the size of the
Thomas algorithm.

A.2 O P E N C L E X E C U T I O N T I M E S

A.2.1 Kepler GPU
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Smaller Sizes 2 4 8 16
CR 135
PCR 100
CRPCR 132 137 128 127
PCRThomas 122 121 132 134

Table 48: Times (in us) for 1 system using various tridiagonal solvers for matrices with size of 32x32

Smaller Sizes 2 4 8 16 32
CR 138
PCR 118
CRPCR 137 137 133 132 144
PCRThomas 121 118 125 134 158

Table 49: Times (in us) for 1 system using various tridiagonal solvers for matrices with size of 64x64

Smaller Sizes 2 4 8 16 32 64
CR 152
PCR 123
CRPCR 152 148 144 143 139 131
PCRThomas 122 123 127 103 167 178

Table 50: Times (in us) for 1 system using various tridiagonal solvers for matrices with size of
128x128

Smaller Sizes 2 4 8 16 32 64 128
CR 164
PCR 126
CRPCR 162 172 159 167 159 146 134
PCRThomas 129 134 135 145 168 219 325

Table 51: Times (in us) for 1 system using various tridiagonal solvers for matrices with size of
256x256

Smaller Sizes 2 4 8 16 32 64 128 256
CR 181
PCR 124
CRPCR 181 180 177 149 199 171 153 143
PCRThomas 138 136 141 172 173 222 331 544

Table 52: Times (in us) for 1 system using various tridiagonal solvers for matrices with size of
512x512



A.2. OpenCL Execution Times 73

Smaller Sizes 2 4 8 16 32 64 128 256 512
CR 204
PCR 151
CRPCR 202 202 157 205 223 218 180 189 168
PCRThomas 161 158 163 176 203 241 34 561 997

Table 53: Times (in us) for 1 system using various tridiagonal solvers for matrices with size of
1024x1024

Smaller Sizes 2 4 8 16 32 64 128 256 512 1024
CR 244
PCR 235
CRPCR 233 251 262 245 265 257 242 211 240 233
PCRThomas 226 219 216 230 249 327 372 588 1025 1908

Table 54: Times (in us) for 1 system using various tridiagonal solvers for matrices with size of
2048x2048

A.2.2 Pascal GPU

Smaller Sizes 2 4 8 16
CR 65
PCR 44
CRPCR 61 61 58 49
PCRThomas 54 54 57 56

Table 55: Times (in us) for 1 system using various tridiagonal solvers for matrices with size of 32x32

Smaller Sizes 2 4 8 16 32
CR 68
PCR 45
CRPCR 55 70 52 58 50
PCRThomas 45 47 49 55 70

Table 56: Times (in us) for 1 system using various tridiagonal solvers for matrices with size of 64x64
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Smaller Sizes 2 4 8 16 32 64
CR 71
PCR 47
CRPCR 65 60 60 54 60 54
PCRThomas 57 57 51 57 70 99

Table 57: Times (in us) for 1 system using various tridiagonal solvers for matrices with size of
128x128

Smaller Sizes 2 4 8 16 32 64 128
CR 77
PCR 49
CRPCR 64 61 65 59 56 56 53
PCRThomas 54 52 55 60 72 101 162

Table 58: Times (in us) for 1 system using various tridiagonal solvers for matrices with size of
256x256

Smaller Sizes 2 4 8 16 32 64 128 256
CR 83
PCR 57
CRPCR 68 67 72 67 65 68 67 67
PCRThomas 70 70 61 67 78 107 167 287

Table 59: Times (in us) for 1 system using various tridiagonal solvers for matrices with size of
512x512

Smaller Sizes 2 4 8 16 32 64 128 256 512
CR 91
PCR 70
CRPCR 80 80 77 77 73 74 69 71 71
PCRThomas 77 78 101 93 116 160 246 423 772

Table 60: Times (in us) for 1 system using various tridiagonal solvers for matrices with size of
1024x1024

Smaller Sizes 2 4 8 16 32 64 128 256 512 1024
CR 105
PCR 128
CRPCR 82 82 80 82 81 85 93 82 91 106
PCRThomas 123 123 116 116 115 142 193 310 553 1045

Table 61: Times (in us) for 1 system using various tridiagonal solvers for matrices with size of
2048x2048.



B
T O O L I N G

Used In Tool Version Switches Other Information

CPU
Implementation

ICC 19.0.5.281

-O3
-std=c++11
-fno-inline
-qopenmp
-no-multibyte-chars
-xHost

Used with Intel
Libraries

CUDA
Implementation

GCC 4.9.0 — Used with CUDA

nvcc 10.1.105
-Xptxas
-O3
-ccbin=gcc

—

OpenCL
Implementation

g++ 7.5.0 -O3
Used with
OpenCL Library

Other Tools
gprof

2.27-41.
base.el7_7.1

—
Used to profile the
CPU implementation

gprof2dot 2019.11.30 — —

nvprof 10.1.105 —
Used to profile the
GPU implementation
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