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ABSTRACT

The pollution caused by oil and its toxic derivatives presents a considerable risk

to the public health and the environment. This work is devoted to the study of

the influence of TiO2 nanoparticles immobilized on three types of textiles

materials (Cotton, Entretela, and Polylactic Acid–PLA) coated with reduced

graphene oxide (RGO) to be used for degradation of crude petroleum under

simulated solar irradiation. The morphological studies of the functionalized

textiles substrates were performed by using Scanning Electron Microscopy and

Energy Dispersive X-ray Spectroscopy, which indicated an excellent dispersion

and adhesion of nanoparticles of about 60% (atomic %Ti) on the textile fibers

covered with RGO after washing. Ultraviolet–visible Diffuse Reflectance spectra

suggest a reduction in the band gap energy of TiO2 up to 2.86 eV due to the

presence of RGO. The functionalized textiles presented at least 60% of photo-

catalytic efficiency measured by Rhodamine B degradation, decreasing less than

12% after the rigorous washing. The excitation/emission Synchronous Fluo-

rescence Spectroscopy and Fourier-transform Infrared spectroscopies demon-

strated a great potential for photocatalytic degradation of the functionalized

textiles substrates as the appearance of the hydroxyl, carboxyl, and the C-O

bands confirm the photoinduced oxidation of the organic compounds implying

with high prospects in petroleum and wastewater treatment areas. Moreover,

this environmentally friendly, sustainable, and inclusive research work can be
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included in clean technologies, contributing to the novel socio-economic model

recognized as ‘‘Green Recovery’’.

GRAPHICAL ABSTRACT

Introduction

Nowadays, it is estimated 1.8 large oil spills per year

([ 1000 tons), so that of all the sources that cause

water pollution, those related to the oil industry are

one of the most problematic [1, 2]. Accidental spills

during exploration, refining, transportation, and

storage of oil and its derivatives cause very negative

economic impacts on a wide range of services and

natural resources such as soils, oceans, surface, and

groundwater resources [3, 4]. Among all the organic

and inorganic pollutants present in the oil and its

derivatives, polycyclic aromatic hydrocarbons

(PAHs), which present two or more condensed aro-

matic rings, have been highlighted. These com-

pounds are hydrophobic, recalcitrant, and mutagenic

and carcinogenic, causing a significant negative

impact on the environment. In this way, the PAHs

appear as a threat to human health and all ecosys-

tems [5–7].

Given the many occurrences of environmental

pollution caused by the massive use of oil and its
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derivatives, it is necessary to implement actions

intended to the study and the developing of new

techniques and materials to mitigate the damage

caused to the environment. As King et al. [8] pre-

sented, some technologies have been employed to

remove or degrade the oil and its various con-

stituents. Among the most promising clean tech-

nologies, the advanced oxidation processes (AOPs)

have been widely tested on a laboratory scale and

pointed as an interesting method to purify the oilfield

producer water [9]. The AOPs appear as a very effi-

cient method for degrading the recalcitrant pollutant

and inexpensive to implement solutions. The great

advantage of AOPs, particularly the heterogeneous

photocatalysis combining a source of ultraviolet (UV)

and/or visible light and a semiconductor material,

comes from the fact that it consists of a destructive

treatment [10–12]. The organic pollutants suffer not

only phase change, such as in adsorption and filtra-

tion processes, but they are degraded through a

sequence of chemical reactions where the final

products can be environmentally innocuous species

such as CO2, H2O, and inorganic ions [5, 13–15].

Actually, the use of semiconductor materials

reduces the costs of heterogeneous photocatalysis

and enables the mineralization of various organic

compounds without any additive [14]. Several semi-

conductors have been used in photocatalytic degra-

dation of environmental contaminants, including

titanium dioxide (TiO2), zinc oxide (ZnO), tungsten

oxide (WO3), tin oxide (SnO2), zirconium oxide

(ZrO2), cadmium sulfide (CdS), and others

[14, 16–23]. Among many semiconductors, TiO2 has

attracted much attention by different research groups

[24–28] because it is inexpensive and chemically

stable [29, 30]. However, despite the advantages, TiO2

presents some limitations, such as a wide band gap

energy, low surface area, and rapid recombination of

electron/hole pairs (e–/h?) [31], which implies a low

photocatalytic efficiency [32].

On the other hand, the significant increase in the

TiO2 photoactivity has been obtained mainly by

(i) doping process [33, 34], (ii) supporting [19, 35],

and (iii) coupling with other semiconductors [32, 36]

or noble metals [37–39]. Particularly, TiO2 combined

with carbon-based materials are promising for

wastewater treatment [40]. In this sense, the addition

of graphene oxide (GO) or even reduced graphene

oxide (RGO) enables the extension of the absorption

range of TiO2 to the visible region of the

electromagnetic spectrum and also decrease the

recombination process of photogenerated charge

carriers [26, 28, 41]. Studies developed by Mahmood

et al. [42] showed that the photoexcited electrons

from the valence band (VB) to the conduction band

(CB) of TiO2 find an intermediate energy level due to

the work function of graphene and gets trapped,

causing an effective charge separation. This level

between the VB and the CB introduced by graphene

also reduces the band gap of TiO2 [42]. TiO2-RGO

composites have been essentially utilized to investi-

gate the photodegradation of dyes [43–45], gases [46],

among others [47].

The use of semiconductors at the nanoscale domain

appears as a strategy to promote improvements in

photocatalytic properties. However, scenarios in

which the release of nanoparticles to the environment

may occur should be avoided because, in this way,

they can represent sources of further problems for the

surrounding ecosystems and human health. Thus, it

becomes crucial to immobilize the photocatalysts on

supports to avoid/minimize their subsequent release.

One immobilization carrier that has been widely used

refers to the textiles substrates [48, 49], which are

highly cost-effective due to their huge flexibility and

low density. Several scientific works have been

reported in the literature on the TiO2 and RGO sys-

tem over textile substrates for biomedical [50–52] and

photocatalytic applications [53, 54].

Here, we studied the photocatalytic performance of

three different types of textiles materials functional-

ized with RGO and TiO2-RGO systems to degrade

crude petroleum under solar irradiation. To the best

of our acknowledgment, this is the first study related

to the use of textile materials functionalized with

RGO covered with TiO2 nanoparticles for petroleum

degradation, thus having great application perspec-

tives in the field of materials science.

Materials and methods

All chemicals used were of analytical grade. TiO2

nanoparticles (Aeroxide TiO2 P25) were purchased

from Quimidroga (Spain), Rhodamine B and acetic

acid was acquired from Sigma-Aldrich (Portugal),

graphene oxide (GO) powders were purchased from

Nanoinnova Technologies S.L. (Spain), and sodium

dithionite (Na2S2O4) was acquired from Merck.

GALP Portugal kindly provided the petroleum. The
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wetting solution Diadavin ANE (nonionic) was

obtained from the ADI Group. Cotton, Entretela, and

Polylactic Acid (PLA) are characteristic and specific

terms used in the field of the textile industry, and

their meanings can be accessed in a textile glossary

[55]. The main objective to functionalize these textile

substrates is related to their lightweight, flexibility

and easy-to-fitting (facilitating their transportation

and application to oil-polluted areas such as soils and

oceans), low-cost and scalable production (great

availability to include them in the market when

functionalized). Also, PLA is a biodegradable poly-

mer derived from renewable sources, for example,

corn. Since their composition, morphology, and

structure are different, in this study, we intended to

analyze the best-functionalized textile that will pro-

vide the best degradation performance and also dis-

persion and adhesion of nanoparticles.

Before carrying out the functionalization process,

the fabrics (5 cm � 5 cm) were washed with 1.0 g L-1

nonionic detergent solution at 70 �C for 1 h. They

were rinsed with an abundant amount of distilled

water to remove any impurities. After dried at room

temperature, the functionalization of the textiles

substrates was carried out according to our previous

studies [53]. Initially, a suspension prepared with 1 g

of GO and 1 L distilled water was homogenized by

sonication during 1 h; posteriorly, the textiles sub-

strates were inserted in this GO suspension for fur-

ther 1 h. After drying under ambient conditions, the

textiles substrates were placed in a solution contain-

ing the reducing agent (3.5 g of Na2S2O4 dissolved in

500 mL of distilled water) at 90 �C for 30 min. Sam-

ples with different number of RGO coatings (1–3)

were obtained repeating the procedure mentioned

above. RGO samples were immersed in a solution

prepared 4 g of TiO2 nanoparticles and 1 L of dis-

tilled water for a period of 1 min. The pH of the TiO2

aqueous solution was adjust at 2.5 using acetic acid.

The cotton substrates were then pressed twice under

2 bar pressure with horizontal rollers (9.0 rpm).

Samples with different number of TiO2 coatings (1–2)

were obtained repeating the procedure mentioned

above. Finally, the prepared substrates were dried in

an oven at 100 �C for 10 min. The assigned name to

the samples after functionalization was structured as

follows: n1TiO2-n2RGO-X, where n1 (equal to 1 or 2),

n2 (equal to 1, 2 or 3), and X refer to the number of

coatings of TiO2, the number of coatings of RGO and

the type of functionalized textile (C = Cotton, E =

Entretela, and P = PLA), respectively. For example,

the sample designated ‘‘3TiO2-2RGO-C’’ indicates to a

functionalized cotton textile with the deposition of

two coatings of RGO and after three coatings of TiO2

nanoparticles.

This study is mainly focused on applying the TiO2-

RGO system onto different fabrics for photodegra-

dation of petroleum under similar sunlight irradia-

tion. For this purpose, X-ray powder diffraction

(XRD) and Fourier-transform infrared spectroscopy

(FTIR) were performed to reveal the crystalline phase

composition of TiO2 nanoparticles and the reduction

process of the GO. The morphology of the samples

was assessed by using a FEG/SEM microscope with

an acceleration voltage of 5 kV. The chemical ele-

ments identification was obtained by Energy-disper-

sive X-ray spectroscopy (EDX) by using the EDAX–

Pegasus X4M (EDX/EBSD) analysis system. The EDX

measurements were performed in the range of

0–10 kV. Concerning the Ultraviolet–visible (UV–Vis)

spectroscopy, we used a SHIMADZU UV-2501

Spectrophotometer equipped with an integrating

sphere and analyzed the band gap energy by the

Kubelka–Munk model and Tauc plot.

An aqueous solution of Rhodamine B (Rh-B) dye

circulating in a homemade photoreactor was used to

test the degree of immobilization for the TiO2-RGO

system on textiles materials. In a typical experiment,

the dye solution (5.0 ppm) was maintained under

magnetic stirring during the whole test time. It was

forced to circulate continuously in the reactor by the

action of a peristaltic pump at a constant rate, thus

allowing a uniform distribution of Rh-B solution over

the entire substrate. The light irradiation was artifi-

cially provided by a 300 W OSRAM lamp simulating

solar radiation, which is commonly used in literature

for different purposes [56–60] including for photo-

catalysis [61–66], and its light spectrum can be found

in [56]. More details of this procedure and images of

the photoreactor can be found in previous works

[53, 67]. The decrease in Rh-B concentration was

monitored by UV–visible spectrophotometry over

intervals of 0, 40, 80, 120, and 180 min. In these time

intervals, aliquots of the dye solution (3 mL) were

taken and analyzed by using the SHIMADZU UV-

2501 PC UV–Vis Spectrophotometer in a range of

wavelengths from 300 to 700 nm. The photodegra-

dation tests for each functionalized substrate were

performed before and after five washes to evaluate

the immobilization degree of the TiO2-RGO system
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on the textiles substrates. This process induces severe

conditions since the washing procedure was per-

formed at a temperature of 60 �C using a distilled

water and nonionic detergent solution, according to

ISO 106-C06: 2010. Each wash lasted 20 min, and

between washes, the washing solution was renewed.

After performing this procedure, the textiles sub-

strates were again subjected to the Rh-B pho-

todegradation process.

The photodegradation of crude oil was carried out

using a wooden box equipped with a lamp (300 W)

fixed at its top, which simulated the solar spectrum.

Inside this wooden box, petri dishes containing

30 mL of petroleum were distributed in a circle

whose center was placed immediately below the

lamp. The textile substrate (already functionalized)

was placed in each of these petri dishes. Afterward,

the samples were irradiated for 40 h. During this

period, aliquots from the petri dishes were tested

after 10, 20, and 40 h for later analysis by Syn-

chronous Fluorescence Spectroscopy (SFS) using a

spectrofluorimeter (SPEX 1934D Phosphorimeter)

equipped with a Xenon lamp and a Rhodamine

marker.

Unlike usual luminescence spectroscopy, where

the emission wavelength kemð Þ is fixed and the exci-

tation wavelength kexcð Þ is scanned (i.e., a fluores-

cence excitation spectrum) or the excitation

wavelength kexcð Þ is fixed, and the emission wave-

length kemð Þ is scanned to get a plot of intensity vs.

emission wavelength (i.e., a fluorescence emission

spectrum), SFS comprises both the excitation and

emission monochromator being scanned simultane-

ously, keeping a constant wavelength difference, Dk.
In this work, the spectra were recorded in the range

from 300 to 750 nm, with a constant wavelength

difference, Dk ¼ 20nm. The wavelength difference is

represented as Dk ¼ kem � kexc. Fourier Transformed

Infrared (Nicolet–Avatar 360) and UV–vis analysis

was also performed.

Results and discussions

X-ray diffraction (XRD)

The XRD pattern of TiO2 powder nanoparticles is

shown in Fig. 1. The anatase crystalline phase is

confirmed by the diffraction peaks (101), (004), and

(200) while the rutile crystalline phase was identified

by the diffraction peaks (110), (111), and (002). The

percentage of anatase and rutile phases can be cal-

culated from the TiO2 powder X-ray diffractogram

using Eq. 1 [24].

XA ¼ 1

1þ 1:26 IR
IA

� �h i ; ð1Þ

Here XA is the mass fraction of anatase, IR is the peak

intensity (110) of the rutile, and IA is the peak inten-

sity (101) of the anatase phase. The amount of ana-

tase, calculated according with Eq. 1, was about

82.4%, indicating that the TiO2 nanoparticles are

predominantly composed of the anatase crystalline

phase.

Figure 1 X-ray diffraction spectrum of TiO2 nanoparticles.

Figure 2 X-ray diffraction pattern obtained for powders RGO

and GO.
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On the other hand, the diffractogram presented in

Fig. 2 identifies the characteristic peak of GO (002) at

2h = 11.52� and another one at 2h = 42.12�, which is

associated the carbon hexagonal structure. Analyzing

the diffractogram related to the reduced graphene

oxide, it is clear to observe that the characteristic peak

of the GO at 2h = 11.52� disappeared, and a new peak

is found at the angular position of 2h = 25.36�. The
disappearance of the peak at 2h = 11.52� and the

appearance of the peak at 2h = 25.36� (referring to the

plane (002)), suggest that the GO was reduced to

RGO. Regarding the lower intensity peaks found in

the RGO diffractogram, they probably result from

compounds that can be formed during the GO

reduction process.

Band gap energy by diffuse reflectance
spectra

The UV–vis diffuse reflectance (R) of the functional-

ized textiles were recorded as a function of the inci-

dent photon wavelength (k), and the data were

utilized to estimate the band gap energy (Eg) of the

TiO2 nanoparticles. For this goal, the procedure

widely employed consists of using the Kubelka–

Munk model and the Tauc plot, which is explained in

detail in [68]. Briefly, in the strong absorption edge

region, the Kubelka–Munk function, F Rð Þ, defined by

Eq. 2, can be considered proportional to the absorp-

tion coefficient (a) of material, that is, F Rð Þ / a. The
Kubelka–Munk function can be expressed by the

following equation:

F Rð Þ ¼ 1� Rð Þ2

2R
ð2Þ

Here R is the reflectance of the material, and its

absorption coefficient að Þ is related to the incident

photon energy E ¼ 1239:7=kð Þ by the equation

a Eð Þ ¼ B
E� Eg

� �n
E

ð3Þ

In Eq. 3, B is an independent parameter of photon

energy (E), and the value of the exponent n depends

on the electronic transition type involving the valence

and conduction bands of the semiconductor material

[69]. Therefore, the Eg values can be obtained by

extrapolating to the energy axis a linear fit to a plot of

F Rð Þ � Eð Þ1=n versus E (Tauc plot). Figure 3 shows a

typical diffuse reflectance spectra (inset) and the

corresponding Tauc plot.

Table 1 presents the Eg values assuming an indirect

transition-type for TiO2 nanoparticles. In the present

work, the obtained results revealed that for the

samples previously functionalized with RGO coat-

ings, the application of one or two coatings of TiO2 do

not significantly change the value of Eg. However, in

general, there was a decrease in the Eg values with

the increase in the number of RGO coatings for the

synthesized hybrids on the textiles, in agreement

with the literature reports [47, 53, 70]. The obtained

lowest values of Eg were 3.02, 2.83, and 2.94 eV for (1

or 2) TiO2-3RGO hybrids over Cotton, Entretela, and

PLA, respectively.

Figure 3 Tauc’s plot for Entretela functionalized at different

treatments; the inset is the corresponding UV–vis diffuse

reflectance spectra.

Table 1 Indirect band gap values (in eV) for TiO2 nanoparticles

deposited onto different textiles substrates previously coated with

reduced graphene oxide

Treatment Eg eVð Þ

Cotton Entretela PLA

(1 or 2)TiO2-1RGO 3.14 3.07 3.03

(1 or 2)TiO2-2RGO 3.13 2.92 2.94

(1 or 2)TiO2-3RGO 3.02 2.83 2.94
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Morphological and elemental composition
analysis by SEM and EDX

Figure 4 shows the SEM micrographs of pristine

cotton and cotton coated with 1RGO and 2TiO2-

1RGO, before and after being submitted to the

washing process. In the first line of Fig. 4, it is pos-

sible to observe some details related with the mor-

phological characteristics of the cotton fibers at

magnification of 5000 9 and 25,000 9 . The second

Figure 4 SEM images of

pristine cotton and cotton

coated with 1RGO, 2TiO2-

1RGO before and after

washing (AW) at a

magnification of 5,000 9 (first

column) and

25,000 9 (second column).
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line of Fig. 4 includes two SEM images showing a

region of the cotton fibres where they appear to be

covered by a stack of RGO sheets. As shown in Fig. 4,

the TiO2 nanoparticles are densely distributed on the

RGO coatings before (third line) and after (fourth

line) a rigorous washing process, suggesting a good

adhesion between these materials.

EDX analysis allowed us to detect the presence of

C, O, and Ti chemical elements, in which a typical

result is shown in Fig. 5. Thus, carbon and oxygen

mainly derive from the fabrics, although RGO also

contributes. The major peak due to Ti is located at

4.52 eV, and it is attributed to the Ka transition, but

another peak exists at 4.95 eV (Kb transition). Fur-

thermore, from the EDX spectra, it is also possible to

observe that after the washing process there was a

decrease in Ti peaks, therefore indicating the loss of

semiconductor nanoparticles on the sample surface.

On the other hand, the increase of C and O peaks

may be related to the detergent used in the washing

process or to the Rh-B molecules, which cannot be

entirely removed from the fibers’ textiles after the

washing step.

Photocatalytic efficiency by Rh-B
degradation

The utilization of the photocatalytic tests using an

aqueous dye solution is justified due to the short run

time and the possibility of obtaining a low cost clean

surface after washing the textiles. The absorbance

spectra of the Rh-B dye solution are related with the

variation (over time) of its concentration, C. At low

concentrations and for a specific instant of time, t the

absorbance intensity of the Rh-B dye solution, At is

related to its solution’s concentration via the Beer-

Lambert law, that is, At ¼ elCt, where e is the molar

extinction coefficient, l is the light path length, and Ct

is the dye’s solution concentration at a particular

instant of time (light on). Therefore, by monitoring

(over time) the intensity variation of the maximum

absorption peak (around 564 nm) of the Rh-B dye

solution, the Rh-B photodegradation efficiency, g can

be calculated according to the following equation

[24]:

g %ð Þ ¼ 1� At=A0ð Þ � 100; ð4Þ

where A0 is the maximum absorption peak at the

initial time.

The absorbance of the Rh-B solution treated with

the different functionalized samples was carried out

in order to confirm the adhesion of the TiO2-RGO

system onto textiles substrates. Figure 6 shows the

photocatalytic efficiency, g %ð Þ curves before and after

the washing process of some test samples. It can be

observed that after the fabric washing process, pho-

tocatalytic efficiency presented lower values; this

behavior is probably due to the washing process,

which is to a quite aggressive action. Once five

washes were performed at a temperature of 60 �C,
this process promoted the partial removal of TiO2

nanoparticles, according to the results shown in the

EDX spectroscopy. However, it is important to notice

that the photocatalytic efficiency decreased less than

12% after the rigorous washing, indicating a good

immobilization of the semiconductor nanoparticles

on the textile substrates, as suggested by SEM

micrographs.

By using the absorbance data of the produced

samples (before and after the washing process), it is

possible to determine the apparent reaction rate

constant, k, for the Rh-B dye. The k values were cal-

culated according to the Langmuir–Hinshelwood

(LH) model, which is explained in detail in [71].

Figure 7 shows the obtained results from the kinetic

study of TiO2 nanoparticles, immobilized on three

different textile substrates comprising one or two

RGO coatings. The different values for the apparent

reaction rate constant, k, which indicates the reaction

velocity, are presented in Table 2. These values were
Figure 5 EDX spectra and C, O, and Ti distribution map

elements for the 2TiO2-1RGO-C sample before washing (BW)

and after washing (AW) process.
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calculated by the angular coefficient (or slope) from

the linear fitting of ln Ct

Co
versus time.

From the slopes of the obtained Hinshelwood plots

and the summarized Table 2, the best k-values were

achieved for the samples 2TiO2-2RGO (BW)

[0.00653–0.00690 min-1]. After washing (AW), some

particles are removed and, consequently, there is a

decrease in the photocatalytic efficiency and k-value.

Moreover, after washing, the sample comprising two

RGO coatings (2TiO2-2RGO) presents the best results

when compared to the sample with a single RGO

coating (2TiO2-1RGO), excluding the cotton textile

material. It is also observed that the Entretela sub-

strate presented the highest k-values, regardless of

treatment and (before and after) the washing condi-

tion, except for the sample 2TiO2-1RGO (AW), which

had the second highest k-value.

Photodegradation of petroleum over time
by synchronous fluorescence spectroscopy

Before starting the photocatalytic tests, the oil

absorbance measurements were performed in order

to evaluate the light source’s influence. For this pur-

pose, the oil was exposed to light irradiation for 40 h,

and its UV–vis absorbance spectrum was compared

to the spectrum of the non-irradiated sample, as

shown in Fig. 8.

As can be observed, or both conditions (before and

after irradiation), the shape of the absorption curve

remains relatively unchanged, and the fraction of

absorbed light for wavelengths above 300 nm

increases slightly after exposure to light for 40 h.

Therefore, based on these results, in the following

discussion it will be considered that the irradiation

process has a negligible influence on the molecular

structure of the petroleum constituents. In terms of

composition, petroleum is a complex material, as it

contains aliphatic, aromatic, and macromolecular

(also dense) components such as asphaltenes. From

Fig. 8, it is also possible to observe two bands at 310

and 330 nm, which can be designed to a p ! p�

electronic transitions in conjugated aromatic struc-

tures [72]. The exponential decay profile is due to the

intense light scattering in wavelength less than

400 nm caused by asphaltene macromolecules pre-

sent in the sample [73]. In addition, a possible

explanation for the slight increase in the fraction of

light absorbed after 40 h of irradiation involves a

process of evaporation of the compounds with lower

boiling points. In this context, the loss of the lighter

aliphatic compounds (which do not absorb in the

analyzed spectral range) and monoaromatic

Figure 6 Photocatalytic

efficiencies for Rh-B

degradation before and after

washing (AW) of

functionalized textiles.

Experimental conditions:

35 �C, [Rh-B]initial = 5.0 ppm,

Vsolution = 400 mL, and

pHinitial = 5.9.
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compounds with lower boiling point (which absorb

with less intensity) increases the concentration of

chemical components with absorption above 300 nm.

Synchronous fluorescence spectroscopy of excita-

tion/emission was used to study the photodegrada-

tion of petroleum over time. Figure 9 exhibits the

fluorescence spectra of photodegraded oil as a func-

tion of the irradiation time in the presence of func-

tionalized textile substrates when compared to

spectrum by oil without irradiation (continuum

lines). In general, there is a decrease in the fluores-

cence intensity (non-linearly across the spectrum),

denoting that some components are very reactive and

preferably destroyed [4].

Determining the relative intensity of oil fluores-

cence allows the study of the contribution of PAHs

and polar phases over time; for this, the ratio between

the fluorescence intensities at 550 nm and 350 nm

(relative intensity = I550/I350), respectively, is taken.

The observed results for the oil degradation kinetics

at wavelengths of 350 nm and 550 nm are presented

in Fig. 10, whose lines represent B-spline functions

that were adjusted by the OriginPro software used in

this research work.

Figure 7 Typical Hinshelwood plots obtained from the results of photocatalytic efficiencies for Rh-B degradation, before and after

washing of the functionalized textiles.

Table 2 Reaction rate k-

values (min-1) calculated from

the slopes of the fitting lines

for the three types of textiles

materials (Cotton, Entretela,

and PLA)

Textile 2TiO2-1RGO (AW) 2TiO2-1RGO (BW) 2TiO2-2RGO (AW) 2TiO2-2RGO (BW)

Cotton 0.00523 0.00525 0.00511 0.00663

Entretela 0.00505 0.00609 0.00569 0.00690

PLA 0.00489 0.00545 0.00565 0.00653
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The selection of these wavelengths results from the

possible degradation of certain species such as PAHs

or fluorescent derivatives and polar phases. PAHs or

fluorescent derivatives emit in a range of wave-

lengths from 350 to 400 nm, and the polar phases

emit at approximately 550 nm [74]. Thus, it appears

that, over time, there is a decrease in the contribution

of the oil’s polar compounds. As they are often oxy-

gen, nitrogen, and sulphur, containing derivatives

more susceptible to undergo photoinduced molecular

degradation, it is also possible to observe that the

photodegradation kinetic is more significant for

samples functionalized with the TiO2-RGO system.

Fourier-transform infrared spectroscopy
(FTIR)

After the oil photodegradation promoted by the

action of functionalized textile substrates, a FTIR

spectrum was obtained for the samples irradiated

overtime. Figure 11 shows the FTIR spectra of non-

treated petroleum (a) and (b) treated-petroleum with

different textile substrates coated with 1TiO2-1RGO

after 40 h of light irradiation.

Analysis of the FTIR spectra suggests that the

functional groups C = O and –OH represent phenols,

carboxylic acids similar compounds arising from

photodegradation promoted by functionalized textile

substrates. The broadband appearing in the range of

3600–3200 cm-1 can be attributed to the stretching

vibration of hydroxyl groups, m(OH), related to car-

boxylic acids and phenol derivatives [75]. In Fig. 11a

and b, the bands found at 2931 cm-1 and 2869 cm-1

are related to the stretching modes of m(C–H) of –CH2

and –CH3 groups, respectively, denoting the

Figure 8 Fraction of light absorbed versus wavelength (nm). The

continuum line represents the spectrum by oil without irradiation

and the dashed line after 40 h of similar sunlight irradiation. The

oil samples were diluted in dichloromethane in a ratio of 1:1000

(v/v) (petroleum: dichloromethane).

Figure 9 Comparison of

synchronous fluorescence

spectra of photodegraded oil in

the presence of functionalized

textile substrates and crude oil

(1:750 v/v, petroleum/

dichloromethane).
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presence of aliphatic hydrocarbon moieties in both

non-treated and thread samples. The sharp band at

1720 cm-1 results from the stretching vibration of the

carboxyl groups m(C = O) of carboxylic acids. The

appearance of the carboxyl band and the hydroxyl

and C-O bands confirm the photoinduced oxidation

of the molecules present in the petroleum samples.

The bands at the 1600–1450 cm-1 region can be

related to the ring stretching vibration for polyaro-

matic constituents. The bands at 1250–950 cm-1 are

related to the C–H in-plane and out-of-plane defor-

mation modes in highly substituted aromatic rings.

Figure 10 Relative intensity

of synchronous fluorescence

spectra of oil-treated and non-

treated at 350 and 550 nm.

1:750 v/v, petroleum/

dichloromethane.

Figure 11 FTIR spectra,

a petroleum without any

treatment and b treated-

petroleum (1:750 v/v,

petroleum/dichloromethane)

with functionalized textile

substrates with 1TiO2-1RGO

after 40 h of irradiation in

which the solid, dash, and dot

lines refer to the Cotton,

Entretela, and PLA textile

substrates, respectively.
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The band at 1250 cm-1 is characteristic of the C–O

stretching mode of phenols and carboxylic acids. The

simplest explanation for the increase in this absorp-

tion intensity involves the formation of C–O bonds

due to photochemical oxidation [4].

The functional groups present in the oil samples

can also be studied by calculating the functional

index of groups identified in the FTIR spectra. This

calculation is performed by taking the ratio of the

band area of interest and the total area of the spec-

trum [55]. In this way, the content of certain func-

tional groups (related to the functional index) of

untreated oil samples and oil samples subjected to

photodegradation tests in the presence of function-

alized textile substrates was determined as shown in

Fig. 12.

As can be observed in Fig. 12, for all samples

exposed to light, the formation of OH bonds occurs

over the irradiation time. The 1TiO2-1RGO-E sample

promotes the most significant variation on the for-

mation of this group after 40 h of photodegradation,

which may indicate an increase in the formation of

polar groups (related to petroleum degradation). On

the other hand, when compared to untreated petro-

leum, one can observe a significant reduction in the

contribution of CH2 groups, which is related to the

breaking of bonds involving this functional group.

For cotton and PLA textile substrates, there is a slight

increase in the index values, from 10 to 40 h of irra-

diation, while for the Entretela substrate the index

values decrease after completing the treatment. This

evidences that the functionalized Entretela substrate

was more efficient in the process of breaking CH2

bonds. The same behavior is observed for the bonds

of CH3 groups.

Conclusions

This research work intended to study the perfor-

mance of three textile substrates (Cotton, Entretela,

and PLA) functionalized with the TiO2-RGO com-

posite material, regarding their ability to promote the

photocatalytic degradation of crude petroleum under

simulated sunlight irradiation. Based on the results, it

can be concluded that:

• One or two coatings of TiO2 semiconductor

material do not significantly change the Eg, but

there was a decrease in this parameter with the

increase of RGO coatings. The obtained lowest

value for Eg was 2.86 eV for (1 or 2) TiO2-3RGO

hybrids over PLA;

• SEM micrographs showed the formation of homo-

geneous coatings on the fabrics and the presence

Figure 12 Calculated group

functional indexes of OH,

CH2, and CH3 for the

untreated petroleum samples

and petroleum samples in the

presence of textiles coated

with 1TiO2-1RGO after 10 and

40 h of irradiation.
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of particles even after the rigorous washing

process;

• Good adhesion of TiO2 on RGO was confirmed by

EDX and photocatalytic degradation of Rh-B

before and after the rigorous washing process.

The functionalized textiles presented high photo-

catalytic efficiency, decreasing less than 12% after

the rigorous washing, and showing excellent

dispersion and adhesion of nanoparticles around

60% (atomic % Ti) after washing.

• The results of the UV–Vis diffuse reflectance

spectra showed that as TiO2 was associated with

RGO, the absorbance in the visible region of the

electromagnetic spectrum increased, which may

suggest a greater photocatalytic activity. This fact

was confirmed by the decrease in the intensity of

fluorescence synchronous spectra of crude

petroleum;

• From the analysis of the FTIR spectra, it was

noticed that there is the formation of OH bonds

over time from exposure to light, which may

indicate the increased formation of polar groups

(petroleum degradation).

• In order to promote the photodegradation of

crude petroleum, the most suitable functionalized

textile substrate was Entretela. This textile sub-

strate presented the best results for indirect band

gap values, Langmuir–Hinshelwood k-values, and

FTIR. Besides, it is biodegradable, increasing the

sustainable features of the final product.

This innovative research work demonstrates that

the functionalized textiles substrates have a great

potential for photocatalytic degradation of organic

compounds, which promises applications in areas

such as petroleum and wastewater treatment. Thus,

this environmentally friendly, sustainable, and

inclusive material can contribute to the transition to

the novel socio-economic model recognized as

‘‘Green Recovery’’ since these functionalized textiles

can be related to the field of clean technologies.

Acknowledgements

This work was supported by the Portuguese Foun-

dation for Science and Technology (FCT) in the

framework of the Strategic Funding UID/FIS/04650/

2019 and the project PTDC/FIS-MAC/6606/2020.

Also, the third author would like to acknowledge the

FCT for the Ph.D. scholarship (SFRH/BD/137421/

2018). Moreover, the authors would like to

acknowledge Sociedade Nacional de Combustı́veis

de Angola (Sonangol), which partially provided the

crude oil samples.

References

[1] D Kukkar A Rani V Kumar 2020 Recent advances in carbon

nanotube sponge–based sorption technologies for mitigation

of marine oil spills J Colloid Interf Sci 570 411 422 https://d

oi.org/10.1016/j.jcis.2020.03.006

[2] D Wang W Guo S Kong T Xu 2020 Estimating offshore

exposure to oil spill impacts based on a statistical forecast

model Mar Pollut Bull 156 111213 https://doi.org/10.1016/j.

marpolbul.2020.111213

[3] ERL Tiburtius P Peralta-Zamora ES Leal 2004 Contam-
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