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Systems biology provides new approaches for metabolic engineering through the development of

models and methods for simulation and optimization of microbial metabolism. Here we explore the

relationship between two modeling frameworks in common use namely, dynamic models with kinetic

rate laws and constraint-based flux models. We compare and analyze dynamic and constraint-based

formulations of the same model of the central carbon metabolism of Escherichia coli. Our results show

that, if unconstrained, the space of steady states described by both formulations is the same. However,

the imposition of parameter-range constraints can be mapped into kinetically feasible regions of the

solution space for the dynamic formulation that is not readily transferable to the constraint-based

formulation. Therefore, with partial kinetic parameter knowledge, dynamic models can be used to

generate constraints that reduce the solution space below that identified by constraint-based models,

eliminating infeasible solutions and increasing the accuracy of simulation and optimization methods.

& 2012 Elsevier Inc. All rights reserved.
1. Introduction

The prevalence of systems approaches to biological problems
has renewed interest in mathematical models as fundamental
research tools for performing in silico experiments of biological
systems (Kitano, 2002). In the context of metabolic engineering,
models of metabolism play an important role in the simulation of
cellular behavior under different genetic and environmental
conditions (Stephanopoulos, 1998). Typical experiments include
knockout simulations to study how metabolic flux distributions
readjust throughout a given network. With the selection of an
optimal set of knockouts or changes in enzyme expression levels,
it is desirable to optimize the production of compounds of
industrial interest (Burgard et al., 2003; Patil et al., 2005).

Systems of ordinary differential equations (ODEs) have been
applied in different areas to model dynamical systems. In the
context of metabolic networks, they describe the rate of change of
metabolite concentrations. These dynamic models contain rate
law equations for the reactions as well as their kinetic parameters
and initial metabolite concentrations. Building this type of model
requires insight into enzyme mechanism to select appropriate
rate laws, as well as experimental data for parameter estimation.
ll rights reserved.
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Therefore, their application has been more limited, but areas of
application include central metabolic pathways of well-studied
organisms such as Escherichia coli (Chassagnole et al., 2002) and
Saccharomyces cerevisiae (Rizzi et al., 1997). There are, however,
some recent efforts to overcome these limitations in the recon-
struction of large-scale dynamic models, such as through the
hybrid dynamic/static approach (Yugi et al., 2005), the ensemble
modeling approach (Tran et al., 2008), and the application of
approximate kinetic formats using stoichiometric models as a
scaffold (Smallbone et al., 2010; Jamshidi and Palsson, 2010).
Nevertheless, these techniques have so far been applied to very
few organisms.

On the other hand, advances in genome sequencing have
facilitated the reconstruction of genome-scale metabolic networks
for several organisms, with over 50 reconstructions available to
date (Oberhardt et al., 2011). Due to the lack of kinetic data at the
genome scale, this type of model only accounts for reaction
stoichiometry and reversibility. Analysis is performed under the
assumption of steady state using a constraint-based formulation
that is underdetermined, resulting in a continuous space of
solutions for the reaction flux distributions. This uncertainty of
the flux distributions requires additional conditions to determine
unique solutions and predictions. Often this takes the form of an
optimization based on a particular assumption, such as optimal
biomass growth for wild-type (Edwards and Palsson, 2000) and
minimization of cellular adjustments for knock-out strains (Segr�e
et al., 2002; Shlomi et al., 2005). The inclusion of regulatory
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constraints, introduced by Covert and Palsson (2003), is a current
approach to reduce the size of the solution space and eliminate
infeasible solutions. One limitation of the constraint-based
approach is the inability to express transient behavior. In order
to simulate fermentation profiles, a few methods have been
developed to integrate the variation of external concentrations
while assuming an internal pseudo-steady state (Oddone et al.,
2009; Leighty and Antoniewicz, 2011).

The two most common model types in use, therefore, represent
two extremes. The dynamic ODE formulation contains detailed
mechanistic information that gives solutions of the transient
dynamic approach to equilibrium from any given set of initial
conditions (generally concentrations of enzymes and metabolites),
as well as the steady state specified by metabolite concentrations
that depend on total enzyme concentrations (for the usual case
where they are treated as fixed) but often do not depend on the
initial metabolite concentrations. Steady-state fluxes are readily
computed from the steady-state concentrations and the rate laws.
The constraint-based formulation seems minimalist by compar-
ison: it has no mechanistic knowledge of any of the chemical
reactions beyond their stoichiometry, its solutions have fluxes at
steady state but no information regarding concentrations or
dynamics, and rather than giving a unique solution, it produces a
high-dimensional continuum of steady-state solutions (referred to
as a flux cone). The dynamic formulation needs significant infor-
mation (parameters in term of rate constants and total enzyme
concentrations, as well as reaction mechanisms to give rate laws),
but generally rewards that effort with unique and detailed solu-
tions. The constraint-based formulation requires less (no para-
meters except maximum fluxes) but delivers less.

Because of these significant differences between dynamic and
constraint-based formulations, they treat the effects of network
perturbations, which might be undertaken as part of a metabolic
engineering study, very differently. A dynamic formulation will
make very specific predictions about the response to a gene
knockout, for example, but generally such models lack informa-
tion about gene regulatory changes that accompany metabolic
changes, and so without foreknowledge to adjust relative enzyme
concentrations, such predictions can be significantly in error.
Constraint-based formulations can access all possible steady-state
solutions but can only rely on relatively simple heuristics to select
among them, and are uncertain how to include specific informa-
tion on gene regulatory changes.

Here we explore further the relationship between these for-
mulations by essentially considering the continuous ensemble of
dynamic formulations obtained by varying parameters (principally
rate constants and enzyme concentrations) and compare the
steady-state solutions to those from the corresponding con-
straint-based formulation. We find an equivalence between the
sets of steady states when only maximum flux constraints are
present, but that more specific constraints and enzyme concentra-
tions can be directly incorporated to define a reduced dynamic
ensemble that is significantly more informative regarding possible
steady-state solutions than the constraint-based formulation.
Fig. 1. Overview of the methods applied in this work to the constraint-based and

the dynamic model. The solution space of the constraint-based model has been

sampled by (a) random sampling using a hit-and-run algorithm and (b) geometric

sampling using the corners of the flux cone as starting points. The solution space

of the dynamic model has been sampled by (c) varying the initial metabolite

concentrations and (d) the kinetic parameters. (e) By constraining the kinetic

parameters of the dynamic model we can delimit kinetically feasible flux regions

and transfer them to the constraint-based model.
2. Methods

2.1. Models

We have used a dynamic model of the central carbon meta-
bolism of E. coli (Chassagnole et al., 2002) available at the
Biomodels database (Le Novere et al., 2006). The model was
converted from its original SBML format into a MATLAB (The
Mathworks; Natick, MA, USA) file that was used for all computa-
tions in this work. The model consists of a total of 18 metabolites
and 31 reactions, including several enzymatic reactions, one
exchange reaction, and a few lumped versions of biosynthetic
pathways. Several types of rate laws are used, including constant-
rate, mass-action, Hill cooperativity, allosteric regulation, and
Michaelis–Menten with its variants for reversibility and inhibi-
tion, with a total of 125 parameters. We have not considered
metabolite dilution or algebraic rules for co-metabolite variation,
as they cannot be represented in the constraint-based model.
Also, we changed the rate law of MurSynth from constant rate to
Michaelis–Menten, as it leads to inconsistencies when its sub-
strate (f6p) depletes. The model maintained its original steady
state despite these changes.

A constraint-based version of the model was built by accounting
only for the stoichiometry and reversibility constraints. The glucose
uptake rate was allowed to vary between 0 and the maximum value
in the dynamic model. The dynamic model also contains two other
inputs (TrpSynth, MethSynth), with a constant rate, that were
treated in the constraint-based version with constant fluxes.
2.2. Hit-and-run sampler

As a means of mapping out the feasible steady-state flux space
for the constraint-based model, we implemented an algorithm for
random sampling (Fig. 1a) adapted to this problem following the
concept of hit-and-run methods (Smith, 1984). The solution space
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of the constraint-based model is contained within the null space
of the stoichiometric matrix. Starting with a point inside this
coordinate space, the sampler started generating new points by
iterative steps in one direction. Each point was then projected
into the flux space and tested by checking the flux boundary
constraints. Each time the test failed, meaning that it crossed the
boundary of the flux cone, the point was discarded and a new
direction was randomly chosen. Otherwise, the point’s projection
in the flux space was stored. To facilitate uniform sampling of the
whole space, the sampler only stored one point every 1000
iterations. Also, in order to adapt to cones of different sizes, it
used a variable step size that increased (decreased) in case of
successful (failed) iterations, which quickly converged to an
average size.

2.3. Geometric sampler

To provide improved mapping of the steady-state flux solution
space for the constraint-based model, given the poor results
obtained by the hit-and-run method at the edges of the flux cone,
we designed and implemented a geometric sampler (Fig. 1b) that
started by searching the corners of the flux cone. It found the
corners by solving linear programming problems within the
model with randomized objective functions using the GLPK
library (Makhorin, 2006). After finding the corners, it sampled
along all possible edges between the corners, which defined the
boundary of the cone. Then, it iteratively sampled from all edges
in the direction of the center of the cone, defined as the mean of
all corners. This method facilitated the visualization of the flux
cone. However, in this case, the probability distribution of the
points did not have any statistical meaning.

2.4. Parameter sampler

We developed a sampler to sample from the parameter space
(concentrations and kinetic parameters) of the dynamic model to
map out its allowed steady states. Metabolite concentrations and
kinetic parameters are theoretically defined in an infinite semi-
positive space. Therefore, in order to sample this type of space
without constraints, we scaled each element individually (con-
centration or parameter) by a random factor with log-normal
distribution ðlog10ðXÞ �N ð0;1ÞÞ. This distribution is defined over
Rþ , with nearly all values (99.73%) within three orders of
magnitude above or below unity. This resulted in variation of
the original values by several orders of magnitude. In order to
perform constrained parameter variation within well-defined
ranges, specified in terms of orders of magnitude (m), we scaled
each parameter by a factor with uniform distribution in logarith-
mic scale ðlog10ðXÞ � Uð�m=2,m=2ÞÞ. All kinetic parameters asso-
ciated with binding and rate constants were varied, while other
parameters such as Hill coefficients, co-metabolite levels, and
dilution rate, were kept fixed.

2.5. Calculating steady states

For each simulation of the dynamic model, the steady state
was calculated by numerically integrating the differential equa-
tions from time zero toward infinity with a stop condition when
the steady state was reached. To avoid non-halting computations
when the system diverged or was oscillatory, a second stop
condition, based on a computational time limit, was also added.

2.6. Relative volume estimation

In order to estimate the volume of the cone after imposition of
the kinetic parameter constraints, we started by sampling the
dynamic model under those constraints. In this way the kinetic
parameter ranges could be mapped to flux ranges (Fig. 1e). Then,
we used a random sample of the constraint-based model
(obtained with the hit-and-run sampler) and calculated the
fraction of points of that sample that were contained within the
generated flux ranges. This fraction determined the relative
volume of the subspace compared to the original space (Wiback
et al., 2004).

2.7. Mapping steady-state fluxes to parameter space

In order to find the parameters that match any given steady-
state flux distribution (v) we solved the system of non-linear
equations v¼ rðx,pÞ, where rðx,pÞ is a vector function that repre-
sents the reaction rate laws as a function of the metabolite
concentrations (x) and the kinetic parameters (p). Given a vector
of arbitrary steady-state concentrations the system can be solved
for the kinetic parameters only. Furthermore, because each indivi-
dual rate law has its own parameters, we can define a partition of
the set of parameters ðP¼

Sn
i ¼ 1 SiÞ, that effectively decouples the

system of equations into n independent equations of the form
vi ¼ riðx,siÞ, siASi. These equations are underdetermined because
there are usually several parameters per equation (with an average
of 4). Therefore, each equation has multiple solutions. In order to
obtain a single solution, the strategy implemented in this work
consisted of mapping the variables into logarithmic space (which
enforces positively defined solutions) and minimizing the length of
the solution vector. Additional constraints could be placed on the
parameters at this stage.
3. Results

In order to explore the gap between both types of formula-
tions, we analyzed and compared the dynamic and constraint-
based formulations of the same model of the central carbon
metabolism of E. coli (Chassagnole et al., 2002) (see Methods for
model formulation).

Our goal is to compare the steady states achievable by the two
model types. Intuitively the dynamic formulation has more
constraints than the constraint-based one because the later only
enforces the steady-state condition and maximum flux con-
straints. Therefore, any set of steady-state fluxes achieved by
the dynamic formulation that do not violate the maximum flux
constraints will automatically be a solution of the constraint-
based formulation. Thus, here we focus on mapping solutions in
the opposite direction: Is every solution of the constraint-based
formulation also a steady-state solution of the dynamic one? Or,
instead, does the extra information in the dynamic formulation
effectively reduce the steady-state solution space so that it is a
proper subset of the constraint-based formulation.

3.1. Solution space of the constraint-based model

We implemented a Monte-Carlo based random sampler, which
is a variation of the hit-and-run method (Smith, 1984) (see
Methods) and applied it to the constraint-based model. The
sampling distribution for each reaction (Fig. 2, diagonal) forms
skewed gaussian shaped curves, very similar to the results
obtained by Wiback et al. (2004) for the human red blood cell
model. However, more insight into the shape of the solution space
can be revealed by plotting the sample two-dimensionally for
every pair of reactions (Fig. 2). We observe that, due to the
random nature of this method, the edges of the flux cone are not
sharply defined due to the low probability of samples in the tails
of the distributions. To obtain a clearer delineation of the borders



Fig. 2. Pairwise projection of the sampling of the constraint-based solution space using the hit-and-run sampler (blue) and the geometric sampler (gray). The diagonal

shows the probability distribution for each reaction relative to the hit-and-run sampling. Only the first six reactions are shown. The complete data are in Supplementary

material. Note that the gray points are plotted underneath the blue ones, and that the geometric sampler delineates all of the space covered by the hit-and-run sampler,

plus the additional spaces seen here. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of the space, we implemented a geometric sampling approach
that systematically identified first the vertices of the flux cone
through solution of linear programs, then the edges through
vertex connection, and finally explored the interior of the flux
cone (see Methods). The full solution space of the constraint-
based model became clear (Fig. 2), and it could be compared to
that from the dynamic model.
3.2. Solution space of the dynamic model

Whereas the constraint-based model has no adjustable para-
meters (beyond maximum flux values not implemented here), the
dynamic model has a large number of parameters that describe
the specific chemistry being modeled, consisting of the rate laws,
kinetic parameters (in which we include a fixed total concentra-
tion for each protein), and initial metabolite concentrations. This
results in a single deterministic steady-state solution. To examine
how this solution is influenced by the extra information, we
varied the initial conditions and kinetic parameters, again by
random sampling (see Methods).

If the system has a unique steady state, then simulations will
converge to the same steady state, independent of the initial
concentrations. This network exhibits multistability; two distinct
steady states were identified when the initial concentrations of
metabolites were varied (Fig. 3). This bi-stability is caused by a
positive feedback loop that is formed when phosphoenolpyruvate
(PEP), a product of glycolysis, is used as an energy source to
import external glucose through the phosphotransferase system
(PTS). During the transient phase of the system, the concentration
of PEP may reach a critical level, whereby it becomes depleted
before re-entering PTS. If this happens the cell is unable to
capture its external substrate, and all internal metabolites even-
tually deplete as well, leading to a network with residual activity.
This steady state (referred to here as secondary) occurs much less
frequently than the steady state obtained with the original
conditions (Fig. 3, diagonal).

A random procedure was used to vary the kinetic model
parameters, including binding and rate constants (because all
enzyme concentrations are included in Vmax, which was varied,
effectively enzyme concentrations were varied as well), but not
Hill coefficients, co-metabolite concentrations, or the dilution rate
(see Methods). A single set of initial concentrations was used (that
for which the unperturbed model goes to the higher probability
steady state). A projection of the resulting steady-state concen-
trations shows that the dynamic model, through parameter
variation, appears to be able to produce the same steady states
as the constraint-based model, but no additional steady states.
This situation is tempered by two issues: (i) there are areas of
light coverage in Fig. 4 that one presumes are truly occupied and
(ii) even if the two-dimensional projection overlaps, this does not
confirm that the full-dimensional flux cones for the two models
overlap. To more stringently test the notion that the polytopes are
identical, we generated a procedure to optimize parameters for
the dynamic model to reproduce any desired steady-state solu-
tion (see Methods). We applied this to 10,000 randomly selected
solutions from the constraint-based model and the resulting
parameters recovered the desired steady state when run in the
dynamic model every time. Thus, operationally the steady-state
flux cones for ODE and constraint-based models are the same.

3.3. Kinetically feasible solution space

An ODE kinetic model of central carbon metabolism has exactly
the same set of possible steady-state solutions as the correspond-
ing flux balance model, as demonstrated in the previous section.
The ODE model maps out the solution space through systematic
variation of model parameters (binding constants, rate constants,
and enzyme concentrations) with no constraints beyond non-
negativity. Knowledge of actual parameter values or ranges, from



Fig. 3. Pairwise projection of the sampling of the solution space obtained for the dynamic model by sampling the initial metabolite concentrations, overlapping the

complete solution space (gray) for better visualization. The blue dot shows the location of the original steady state. The red dot shows the location of the secondary steady

state. Only the first six reactions are shown. The complete data are in Supplementary material. The diagonal gives the relative probabilities of the steady-state flux

distribution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Pairwise projection of the sampling of the steady-state solution space for the dynamic model obtained by sampling the kinetic parameters (blue). The

corresponding space overlaps the solution space given by the stoichiometric model (gray). The diagonal shows the probability distribution for each reaction. Only the first

six reactions are shown. The complete data are in Supplementary material. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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experimental measurement or physical constraints, would lead to
further constraints on the feasible parameter space. To explore
how constraints on the feasible parameter space affect the range
of steady-state solutions achievable in the ODE kinetic model, we
sampled parameter combinations from constrained spaces and
computed the steady states of the resulting models. The fluxes in
those steady states are plotted in Fig. 5 for parameter ranges from
100 up to 104-fold around the base parameter values. The results



Fig. 5. Pairwise projection, in heat-map form, of the solution space reachable by the dynamic model as a function of the variation, in terms of orders of magnitude, of the

kinetic parameter space. The diagonal shows the variation for each flux independently. Only the first six reactions are shown. The complete data are in Supplementary

material.

Fig. 6. Relative volume of the kinetically feasible solution space, compared to the

original space, as a function of the parameter variation, in terms of orders of

magnitude. The volume was calculated for the original glucose uptake rate in the

model and also for the maximum uptake rate.
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show that parameter variation of 100-fold or greater appears to
produce the full set of steady-state flux solutions observed from
the unconstrained non-negative parameters in the ODE model,
which corresponds to the flux-balance steady states. Parameter
constraints leading to less than 100-fold variation produced
significant restriction of the steady-state fluxes.

The solution-space volume reduction due to parameter con-
straints is plotted quantitatively in Fig. 6. The ratio of the solution
flux cone with constrained and unconstrained parameters is
shown as a function of the constrained parameter ranges. The
results (labeled ‘‘normal uptake’’) show that reduction of para-
meter uncertainty to a 10-fold range leads to a reduction in the
solution flux space to 10% of its unconstrained volume. Moreover,
because the size of the original space depends on a control
variable of the system, namely the glucose uptake rate, we
increased glucose uptake from 1.28 mmol gDW�1 h�1, the value
in the original model, to 10.50 mmol gDW�1 h�1, the maximum
value for E. coli under aerobic conditions (Varma and Palsson,
1994). The results, shown in Fig. 6 as ‘‘maximum uptake’’, show a
similar sigmoid shape but shifted toward greater parameter
variation. Under these conditions the flux cone of solutions is
reduced to 10% of its unconstrained volume with 300-fold para-
meter variation.
4. Discussion

We have analyzed and compared dynamic and constraint-
based formulations of the same model for the central carbon
metabolism of E. coli (Chassagnole et al., 2002). The constraint-
based version does not account for metabolite concentrations,
and it does not express transient behavior. Therefore, the for-
mulations can only be compared in their common domain, which
is the steady-state flux distribution.

The constraint-based model defines a solution space for the
steady-state flux distribution (called the flux cone). This space is
difficult to visualize due to its high dimensionality. We addressed
this problem by developing sampling and projection approaches
that facilitate the visualization of the shape of the solution space.

The steady state of the dynamic model contains the same
constraints as the constraint-based model (stoichiometry, ther-
modynamic reversibility, and maximum uptake rates) and also
any additional constraints imposed by the kinetic rate laws,
kinetic parameters, and initial metabolite concentrations. There-
fore, its solution space is a subset of the constraint-based
solution space.

For a predefined set of initial conditions and parameter values,
the dynamic model usually determines one steady-state solution.
In fact, the initial metabolite concentrations of dynamic models
determine their transient behavior, but, for the steady-state flux
determination, they serve only to determine which steady state is
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chosen in the case of multistability. In this case, sampling the
metabolite concentration space revealed a second steady-state
characterized by a flux distribution with lower values of the
fluxes and an accumulation of external glucose.

Instead, we also verified, as expected, that the location of the
steady-state solution(s) inside the solution space is determined by
the kinetic parameters, because by varying the kinetic parameters,
the solution moves inside the solution space. The sampling of the
kinetic parameter space revealed that, with unconstrained para-
meter values, the solutions of the dynamic model cover the whole
steady-state solution space identified by the constraint-based
model. This overlapping may seem unintuitive, as one would
expect the rate laws to impose one additional layer of constraint
into the steady-state solution space. However, besides having
observed this with our sampling approaches, we also observe
that, given any valid steady-state flux distribution, one can find
kinetic parameter values that make the rate laws produce those
steady-state flux values by solving each equation separately. This
separation is only possible because the parameters are specific for
each rate law, which defines a partition over the parameter set.
The running example contains an average of four parameters per
rate law, yielding many degrees of freedom for each equation.
Thus, it is not surprising that, generally, parameter values can be
found that satisfy the equations.

Interestingly, we found that by varying only one class of rate
constants ðVmax ¼ kcat½E�0Þ, the dynamical model formulation was
able to achieve all of the same steady states as the constraint-
based model (data not shown). This is an important observation,
because it suggests that by changing only the expression levels of
proteins (½E�0’s), which can be achieved through regulation, a cell
can adapt to reach essentially any possible steady state, without
the need to introduce mutations that change rate constants. This
observation reflects the adaptability of cell under different con-
ditions and is in agreement with observations that microorgan-
isms can undergo adaptive evolution to attain their optimal
theoretical yields when placed under conditions where they
originally performed sub-optimally (Ibarra et al., 2002).

The observations stated above show that, in theory, a dynamic
model can be fitted to any steady-state flux distribution inside the
constraint-based solution space. However, there are physical
limitations to the values of the kinetic parameters. Also, by
querying parameter databases such as BRENDA (Schomburg
et al., 2002) and SABIO-RK (Rojas et al., 2007), it is possible to
observe that for each kinetic parameter there is a range of
possible values determined by experimental conditions (such as
temperature and pH) in which the cells are able to grow. There-
fore, we evaluated how the imposition of parameter ranges map
into flux ranges within the steady-state solution space. Although
the rate laws do not constrain the solution space by themselves,
they influence the probability distribution of the steady-state
solutions. This is evidenced by the imposition of the kinetic
parameter constraints. As the constraints become tighter, the
solutions of lower probability disappear and the reachable solu-
tion space becomes smaller. Our results show that the impact of
these constraints depends on the size of the solution space of the
genome-scale model, which is mainly determined by the uptake
rate of the limiting substrates, and on the allowable ranges of the
kinetic parameters in the dynamic model.

The subset of the solution spaced obtained by constrained
variation of kinetic parameters reveals that it is possible to map
parameter ranges into flux ranges. This can be performed by
sampling the parameter space and determining the respective
steady-states. The generated flux ranges can be directly added
into the FBA formulation as flux bounds. A similar sampling
procedure, although with a different goal, is performed in the
ensemble modeling approach (Tan et al., 2010).
5. Conclusions

In this work we have explored the solution spaces of both
dynamic and constraint-based models in order to bring together
top-down and bottom-up approaches, and we have proposed
methods of treating each as well as their interrelation.

Dynamic model reconstruction is a bottom-up approach for
iteratively building large-scale metabolic pathways with kinetic
detail. Due to a lack of experimental data, differences in experi-
mental conditions, and measurement uncertainty, the kinetic
parameters are often unavailable or defined within certain ranges.

On the other hand, genome-scale reconstruction is a top-down
approach that takes advantage of available high-throughput data to
build models of metabolic networks that account for stoichiometry
and thermodynamic constraints. These models are analyzed under a
steady-state assumption through the constraint-based approach.
Reducing the solution space of constraint-based models so as to
eliminate infeasible solutions is an important topic. Several
approaches are in use, including the imposition of regulatory con-
straints (Covert and Palsson, 2003), the experimental determination
of some fluxes (Wiechert, 2001), and the imposition of thermody-
namic reversibility constraints (Beard et al., 2002; Hoppe et al., 2007).
The results obtained in this work are complementary to those efforts
and can be used in combination with any of them. For the case of
thermodynamic constraints, their application can be two fold. When
applied to the dynamic model, the estimation of the Gibbs free energy
can be used to determine the value of the equilibrium constant,
which further constrains the kinetic parameters. When applied to the
constraint-based model, it can be used to constrain the direction of
reversible reactions and, consequently, the solution space.

Taking advantage of the information available in dynamic models
of central pathways can increase the accuracy of genome-scale
constraint-based models by imposition of kinetic feasibility con-
straints, even if the dynamic model is not fully determined. Further-
more, sampling the solution space of the dynamic model can be used
as an experimental design tool to determine which kinetic para-
meters have greater influence in defining the volume of the solution
space.

Increasing the accuracy of constraint-based models can influ-
ence simulation methods such as metabolic flux analysis (MFA)
(Wiechert, 2001), flux balance analysis (FBA) (Edwards and
Palsson, 2000), minimization of metabolic adjustment (MOMA)
(Segr�e et al., 2002) and regulatory on/off minimization (ROOM)
(Shlomi et al., 2005). Tools that implement these methods (Rocha
et al., 2010) can be extended to include kinetic constraints.

The constraint-based approach has been recently applied to
other kinds of biological networks, namely gene regulatory and
signaling networks (Gianchandani et al., 2006; Lee et al., 2008).
The availability of models for all kinds of networks will facilitate
the creation of integrated cellular models that account for all types
of intracellular phenomena under the same mathematical frame-
work. Because those models can be either constraint-based or
dynamic, understanding relationships between the two as dis-
cussed in this paper will have an even greater impact. In fact,
although the use of common frameworks (either constraint-based
or dynamic) for representing different kinds of biological phenom-
ena is a step towards the use of integrated models, the develop-
ment of tools that promote the integration of the two most
important representation frameworks is also necessary for true
integration. The current contribution is a step in that direction.
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