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The aim of this workwas to evaluate the influence of glycerol and corn oil on physicochemical properties of
polysaccharide-based films. The polysaccharides used were galactomannan from Gleditsia triacanthos and
chitosan. Fourier-transform infrared spectroscopy, differential scanning calorimetry and thermogravi-
metric analysis were performed, togetherwith determinations of moisture content, solubility, water vapor
permeability andmechanical properties. Structureeproperties relationshipswere established, relating the
two polysaccharides’ structures with the way they interact with water, other film’s constituents (glycerol
and oil) and the resulting properties. The presence of glycerol and corn oil originated a more hydrophilic
structure and a decreased affinity of the film matrix to water, respectively, in both polysaccharides.
However, the two polysaccharides presented different behaviors in terms of glass transition temperature,
water vapor permeability and elongation-at-break that have been related with the particularities of their
structure: while for the galactomannan the specific sorption sites for water are the OeH groups, for chi-
tosan those are OeH and/or NH2 groups.

The present work provides insight regarding the physicochemical properties of polysaccharide-based
films and established relationships with polymers’ structure, showing that the two polysaccharides
studied here have adequate properties to be used as packaging materials for specific food applications.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In the most recent years, industries have been joining efforts to
reduce the amount of synthetic materials used. Therefore research
on new materials from renewable resources to be used in textile,
pharmaceutical, biomedical, cosmetics and food industries has
progressed in order to decrease the problem of plastic waste
disposal due to lack of biodegradability (Prashanth & Tharanathan,
2007; Siracusa, Rocculi, Romani, & Rosa, 2008). In this context
edible films based on polysaccharides and/or proteins appear as
potential substitutes of synthetic packaging, thus playing a decisive
role in the improvement of the shelf-life of food through controlling
gas transfer and being carriers of functional compounds (Srinivasa,
Ramesh, & Tharanathan, 2007).

Polysaccharides are natural polymers composed of mono-
saccharide residues that are connected by O-glycosidic linkages
and, depending on their source, they can be neutral, positively or
negatively charged. They either act as energy reserve in plants and
animals, or have structural roles in plant cell walls or in the tough
x: þ351 253 604 429.
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outer skeleton of insects and other animals (Nelson & Cox, 2000).
The great diversity of structural features of polysaccharides have
origin fromdifferences in themonosaccharide composition, linkage
types and patterns, chain shapes, and degree of polymerization,
influencing their physicochemical properties.

Galactomannans are present in the endosperm of numerous
plants, and they have several functions, e.g. as a reserve of carbo-
hydrates. Galactomannans are polysaccharides built up of a b-
(1e4)-D-mannan backbone with single D-galactose branches linked
a-(1e6) (Kök, Hill, & Mitchell, 1999). Galactomannans can often be
used in different forms for human consumption. Featuring different
physicochemical properties, galactomannans are a versatile mate-
rial used for many applications: they are excellent stiffeners and
stabilizers of emulsions, and the absence of toxicity allows their use
in the textile, pharmaceutical, biomedical, cosmetics and food
industries (Srivastava & Kapoor, 2005). Gleditsia triacanthos belongs
to the family Leguminosae and grows in America, Middle Europe
and Mediterranean area (Üner & Altınkurt, 2004). Seeds of
G. triacanthos were used as source of the galactomannan used as
raw material for edible films production.

Chitosan is a natural polymer derived by deacetylation of chitin,
the second most abundant biopolymer in nature after cellulose
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(Shahidi, Arachchi, & Jeon, 1999). When compared with other
polysaccharides, chitosan has several important advantages such as
biocompatibility, biodegradability and no toxicity; several studies
indicated chitosan as bacteriostatic and fungistatic (Yi et al., 2005).
The polycationic properties of chitosan provide the possibility of
film formation by the breakage of polymer segments and subse-
quent reforming of the polymer chain into a film matrix or gel; this
can be achieved through the evaporation of the solvent thus
creating hydrophilic and hydrogen bonding and/or electrolytic and
ionic crosslinking.

Natural biopolymers present several advantages over
synthetic polymers but their application is limited by their high
affinity to water, leading to textural transformations that have
a strong impact on their mechanical, transport and solubility
properties. In a previous publication the development of edi-
ble films based in chitosan and galactomannan was discussed
(Cerqueira, Lima, et al., 2009), however no relationship was
established between their structure and their properties. To our
knowledge no work has been published comparing the physico-
chemical properties of these two polysaccharides and very few
publications do it for other polysaccharides. Further, the under-
standing of their structureeproperties relationship in order to
predict and control their function is one of the major flaws in this
area, especially when mixtures with other substances are
considered (which is often the case). In fact, the incorporation of
other compounds, such as plasticizers and lipids, is common in
order to improve mechanical and transport properties of edible
films (Bergo & Sobral, 2007), but research focused on e.g. poly-
saccharides’ interaction with other film components is needed in
order to understand the influence of such components in films’
properties.

Plasticizers are commonly used to facilitate processing and/or
to increase films flexibility. Water, oligosaccharides, polyols, and
lipids are different types of plasticizers widely used in
hydrocolloid-based films (Suyatma, Tighzert, Copinet, & Coma,
2005). Their combination could give rise to synergistic effects
between components improving the properties of edible films.
The lubrication theory postulates that plasticizers, by inter-
spersing themselves, act as internal lubricants by reducing fric-
tional forces between polymer chains. The gel theory postulates
that the rigidity of the polymer network comes from its three-
dimensional structure, and plasticizers take effect by breaking
polymerepolymer interactions (e.g., hydrogen bonds and van der
Waals or ionic forces). The free volume theory states plasticization
as a way to increase free volume (Santosa & Padua, 1999; Suyatma
et al., 2005). Glycerol is a major by-product of biodiesel production
which has significantly increased, thus creating a significant
surplus and is often regarded as a waste stream with an associated
cost (Fountoulakis & Manios, 2009; Gu & Jérôme, 2010). The use of
glycerol as plasticizer in these films can be a way to help solving
the existing surplus of this co-product from biodiesel production.
Lipids, due their hydrophobic behavior, are added to poly-
saccharide films aiming at decreasing their hydrophilicity, conse-
quently decreasing their water affinity (Vargas, Albors, Chiralt, &
González-Martínez, 2009). From all the commercial oils, corn oil
has shown to be one of the most effective, in comparison with
others, in decreasing the water vapor permeability of poly-
saccharide and protein films (Ekthamasut & Akesowan, 2001;
Tanaka, Ishizaki, Suzuki, & Takai, 2001).

The aim of this studywas to evaluate the influence of glycerol and
corn oil presence in the properties of the films. This was achieved by
relating the information gathered from Fourier-transform infrared
spectroscopy, thermal analyses (DSC and TGA), solubility measure-
ments, moisture content determinations, water vapor permeability
measurements and mechanical tests.
2. Materials and methods

2.1. Films preparation

Chitosan film-forming solutions were prepared dissolving chi-
tosan (deacetylation degree of 90% approximately, Aqua Premier
Co., Thailand) (1.5%w/v) in a lactic acid (1.0% v/v) solution (Merck,
Germany) with agitation using a magnetic stirrer (at 200 rpm)
overnight at room temperature (20 �C); Tween 80 (0.2%) (Acros
Organics, Belgium) was also added as surfactant. Galactomannan
film-forming solutions were prepared by dissolving G. triacanthos
galactomannan (obtained as described in Cerqueira, Pinheiro, et al.
(2009)) (1.5%w/v) in distilled water, followed by the same condi-
tions as for chitosan. Glycerol (87%, Panreac, Spain) was added at
three different concentrations (0.5, 1.25 and 2.0%w/v). Corn oil
(Sovena, Portugal) was added at three different concentrations
(0.25, 0.5 and 0.75%w/v) under agitation during 20 min at 60 �C, to
films with constant concentrations of 1.5% of polysaccharide and
0.5% of glycerol. To produce the films, a constant amount (13 mL) of
film-forming solution was cast onto a 5.7 cm diameter Petri plate.
The films were dried in an oven at 35 �C during 16 h. Films were
maintained at 23 �C and 54% RH at least 24 h before performing the
tests (these conditions were obtained in a desiccator through
a saturated salt solution of Mg(NO3)2).

2.2. Moisture content

To determine the moisture content of films about 50 mg of film
were dried at 105 �C during 24 h (until the equilibriumweight was
attained). The weight loss of the sample was determined, from
which the moisture content was calculated using the following
equation:

Moisture content ¼
�
Mi �Mf

�

Mi
� 100 (1)

where Mi and Mf are the masses of initial and dried samples,
respectively.

2.3. Fourier-transform infrared (FTIR) spectroscopy

The IR spectra of the films were determined using an infrared
spectrometer (FTIR) (PerkineElmer 16 PC spectrometer, Boston,
USA), in Attenuated Total Reflectance mode (ATR) between 400 and
4000 cm�1, using 16 scans at a resolution of 4 cm�1. Before film
analysis, an open bean background spectrum of clean crystal was
recorded. Data analysis of each film was performed with Peak Fit
4.12 (SYSTAT Software Inc., Richmond, CA, USA) program. Spectra of
films have been deconvoluted with the second derivative method
with a smoothing filter set at 15%.

2.4. Differential scanning calorimetry (DSC) and thermogravimetric
analysis (TGA)

Differential scanning calorimetry (DSC) measurements were
performed with a Shimadzu DSC-50 (Shimadzu Corporation, Kyoto,
Japan) calibrated with Indium as standard. Ca. 10 mg of the sample
was placed in aluminum DSC pans (Al crimp Pan C.201-52943). The
measurements were performed between �100 and 250 �C at
a heating rate of 10 �Cmin�1 under a nitrogen atmosphere. In a first
heating scan the enthalpy of melting (DHm) and the melting peak
(Tm)weredetermined; a secondheating allowed themeasurementof
glass transition temperature (Tg). Thermogravimetric analysis (TGA)
was completed with a Shimadzu TGA-50 (Shimadzu Corporation,
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Kyoto, Japan). Sampleswere placed in the balance system and heated
from20 �C to 580 �C at a heating rate of 10 �Cmin�1 under a nitrogen
atmosphere.

2.5. Water solubility

The films’ solubility in water was determined according to the
method reported by Cuq, Gontard, Cuq, and Guilber (1996). Solu-
bility is defined as the content of dry matter solubilized after 24 h
immersion in water. The initial dry matter content of each filmwas
determined by drying to constant weight in an oven at 105 �C. Disks
of film (2 cm diameter) were cut, weighed (Mi), and immersed in
50 mL of water. After 24 h of immersion at 20 �C with agitation
(60 rpm), the pieces of film were taken out and dried to constant
weight (Mf) in an oven at 105 �C, to determine the weight of dry
matter that was not solubilized in water. The solubility of the films
was then determined as follows:

Water solubility ¼
�
Mi �Mf

�

Mi
� 100 (2)

where Mi is the initial mass and Mf is the final mass of the sample.

2.6. Film thickness

The film thickness was measured with a digital micrometer (No.
293-561, Mitutoyo, Japan). Five thickness measurements were taken
on each testing sample in different points and the mean values were
used to calculate permeability and mechanical properties.

2.7. Water vapor permeability (WVP) measurement

The measurement of water vapor permeability (WVP) was
performed gravimetrically based on ASTM E96-92 method
(Guillard, Broyart, Bonazzi, Guilbert, & Gontard, 2003; McHugh,
Avena-Bustillos, & Krochta, 1993). The film was sealed on the top
of a permeation cell containing distilled water (100% RH; 2337 Pa
vapor pressure at 20 �C), placed in a desiccator at 20 �C and 0% RH
(0 Pa water vapor pressure) containing silica. The cells were
weighted at 2 h intervals during 10 h. Steady-state and uniform
water pressure conditions were assumed by keeping the air
circulation constant outside the test cell by using a miniature fan
inside the desiccator (Guillard et al., 2003). The slope of weight loss
versus time was obtained by linear regression. The measured
(WVP) of the films was determined as follows:

WVP ¼ WVTR$L
DP

(3)
Fig. 1. FTIR spectra of chitosan films for increas
where WVTR is the measured water vapor transmission rate
through a film, L is the mean film thickness (m), and DP is the
partial water vapor pressure difference (Pa) across the two sides of
the film. Three replicates were obtained for each film.

2.8. Tensile strength (TS) and elongation-at-break (EB)

TS and EB were measured with an Instron Universal Testing
Machine (Model 4500, Instron Corporation) following the guide-
lines of ASTM Standard Method D 882-91 (ASTM-D-882-91, 1991).
The initial grip separation was set at 30 mm and the crosshead
speed was set at 5 mmmin�1. TS was expressed in Pa and calcu-
lated by dividing the maximum load (N) by the initial cross-
sectional area (m2) of the specimen. EB was calculated as the
ratio of the final length at the point of sample rupture to the initial
length of a specimen (30 mm) and expressed as a percentage.
According to the ASTM standard, film strips with a length of 45 mm
and awidth of 20 mmwere used. TS and EB tests were replicated at
least three times for each type of film.

2.9. Statistical analyses

Statistical analyses were performed using Analysis of Variance
(ANOVA) and linear regression analysis. The Tukey test (a¼ 0.05)
was used to determine any significance of differences between
specific means (SigmaStat, trial version, 2003, USA).

3. Results and discussion

3.1. Fourier-transform infrared (FTIR) spectroscopy

The effect of glycerol and oil in chitosan and galactomannan
films was initially evaluated by FTIR analyses. Fig. 1a shows the FTIR
spectra of the chitosan (CH) films containing 0, 0.5, 1.25 and 2.0% of
glycerol (Gly). The broad band ranging between 3500 and
3100 cm�1 is attributed to OeH stretching vibration that overlaps
the NeH stretching vibration in the same region. The broad band
between 2800 and 3000 cm�1 is attributed to CeH stretching
vibration. The peak at 1574 cm�1 was due to the NeH beading
(amide II); and the peak at 1733 cm�1 suggests the presence of
a carbonyl group (C]O) in the film matrix (Xu, Kim, Hanna, & Nag,
2005; Ziani, Oses, Coma, & Maté, 2008). When compounds are
mixed, physical bonds and chemical interactions are reflected by
changes in characteristic spectra peaks. By deconvolution of the
area band between 800 and 1200 cm�1 of FTIR spectra seven bands
appear. Peak positions and areas of bands between 800 and
1200 cm�1 for chitosan films with increasing glycerol concentra-
tions after the application of deconvolution are presented in Table 1
ing glycerol (a) and oil (b) concentrations.
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of the Supplementary data. Glycerol incorporation leads to a shift of
the peak 942.9 cm�1, presented in chitosan films without glycerol,
to peakþ bands of 929.2, 923.1 and 920.5 cm�1 for chitosan films
with 0.5, 1.25 and 2.0% of glycerol, respectively. This shift can be
related with the symmetric stretching vibrations of the alcoxyl
group (CeOeC), resulting of the glycerol presence (Jamróz et al.,
2007). Also the shift of the peak 999.9 cm�1, of the chitosan films
without glycerol, to 994.1, 991.2 and 990.2 cm�1 for chitosan films
with 0.5, 1.25 and 2.0% of glycerol, respectively, can be related with
the asymmetric stretching vibrations of the alcoxyl group (CeOeC)
(Jamróz et al., 2007). Moreover, the broad band that corresponds to
the OeH stretching vibration (3500e3100 cm�1) was more intense
for higher glycerol concentrations. Table 2 of the Supplementary
data shows the peaksþ areas of bands after the application of
deconvolution of the FTIR spectra to the area band between 2500
and 3500 cm�1 for chitosan films with increasing glycerol
concentrations. The increase of glycerol concentrations leads to
a higher number of bands after the deconvolution of the spectra.
For chitosan films with 2.0% of glycerol the deconvolution origins
two more peaks when compared with the other chitosan films;
furthermore the area of the bands between 3500 and 3100 cm�1

increased with the increasing of glycerol concentrations, confirm-
ing the higher intensity of OeH bonds. Also evident is the decrease
of the area of the bands close to those at ca. 2720 cm�1 and ca.
2900 cm�1 that correspond to the CeH stretching vibration. The
increase of glycerol concentration leads to higher numbers of OeH
bonds and consequently higher band areas, also resulting in the
decrease of the areas that correspond to the CeH bonds (Table 2 of
the Supplementary data).

Fig. 1b shows FTIR spectra of chitosan films for increasing oil
concentrations. FTIR spectra of chitosan films with oil also show
a high and more intense number of peaks in the frequency range
between 2800 and 3100 cm�1. By the deconvolution of FTIR band
ranging between 2500 and 3500 cm�1 a different number of peaks
appear for chitosan films without and with oil. These results are
presented in Table 3 in the Supplementary data, where two new
peaks appear when oil is added to chitosan films. Themost relevant
peak, ca. 2925 cm�1, can be related with the symmetric and
asymmetric stretching vibration of the aliphatic group (CH2)
(Vlachos et al., 2006), with a more intense area (27%) for chitosan
films with 0.75% of oil. Table 4 in the Supplementary data presents
the results for the deconvolution of the FTIR area band ranging
between 1600 and 1800 cm�1; it shows that the oil incorporation
leads to the presence of a new band at ca. 1740 cm�1, that is only
observed for chitosan films when oil is added. Table 4 in the
Supplementary data also shows an increase of the area from 30.2
to 31.0 and 40.9% for 0.25, 0.5 and 075% of oil, for the band ca.
Fig. 2. FTIR spectra of the galactomannan (GT) films for in
1740 cm�1. This peak corresponds to the C]O stretching vibration,
that can be explained by the presence of the carbonyl radical in the
ester functional group of the triglycerides, associated with the
presence of corn oil, at 1746 cm�1 (Vlachos et al., 2006).

Fig. 2a and b shows FTIR spectra of galactomannan films for
increasing glycerol and oil concentrations, respectively. The broad
band ranging between 3500 and 3100 cm�1 is attributed to OeH
stretching vibration formedby thehydroxyl group of galactomannan
andwater and thebroadband around2800e3000 cm�1 is attributed
to CeHstretching vibration (Yuen, Choi, Phillips, &Ma, 2009). Table 5
in the Supplementary data shows the peakþ areas of bands between
2500 and 3500 cm�1 for galactomannan films with increasing
glycerol concentrations, after the deconvolution of FTIR spectra. The
increasing glycerol concentration increases the FTIR spectra area
corresponding to the region of the OeH stretching vibration
(3500e3100 cm�1), decreasing the number of bands/peaks from
eight to four. This phenomenon is related with the hydrophilic
behavior of glycerol and due to the hydrogen bonds formed by the
hydroxyl groups of both galactomannan and glycerol structures. The
presence of glycerol also leads to changes in the band region ranging
between 800 and 1200 cm�1, which is giving information about the
alcoholic (CeO) stretchingbands and the asymmetric and symmetric
(CeOeC) stretching vibrations bands (Jamróz et al., 2007). Table 6 in
the Supplementary data shows the peaksþ areas of bands between
800 and1200 cm�1 for galactomannanfilmswith increasingglycerol
concentrations, after the application of deconvolution process. The
band with the peak at 1078.7 cm�1 shifts to 1083.2, 1094.8 and
1089.2 cm�1 for chitosan filmswith glycerol, that can result from the
stretching vibration of CeO in CeOeH bonds. The broad band at
1017.2 cm�1 that corresponds to the stretching vibration of CeO in
CeOeC bonds appears in all galactomannan film samples, however
presenting a shift to 1022.8, 1034.7 and 1030.5 cm�1 for gal-
actomannan films with 0.5, 1.25 and 2.0% of glycerol, respectively.
Moreover, the broad band at ca. 920 cm�1 that also corresponds to
the stretching vibration of CeO in CeOeC bond, only appears in the
films containing glycerol, confirming the more intense CeO
stretching vibration in these films’ structure (Jamróz et al., 2007;
Pelissari, Grossmann, Yamashita, & Pineda, 2009).

Also changes in the frequency range between 2800 and
3500 cm�1 are observed when oil is added to galactomannan films.
Table 7 in Supplementary data shows the shift of the band at
2905.5 cm�1 to a peakþ band of ca. 2850 cm�1 when oil is added.
Also a new peakþ band at ca. 2925 cm�1 appears in the FTIR
spectra of galactomannan films with oil. These two peaksþ bands
are related with symmetric and asymmetric stretching vibration of
the aliphatic CeH group (CH2) (Vlachos et al., 2006). By other side,
the broad band ranged between 3500 and 3100 cm�1, associated to
creasing glycerol (Gly) (a) and oil (b) concentrations.
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the OeH stretching vibration, shows a lower intensity that can be
associated with hydroxyl bonds of the films that decrease when oil
is added to the film (Yuen et al., 2009), leading to a more hydro-
phobic matrix. Also in the area band between 1600 and 1800 cm�1

changes were observed in the FTIR spectra for galactomannan films
with increasing oil concentrations. By the application of deconvo-
lution to this area band six peaks appear, decreasing for five peaks
for a concentration of 0.75% of oil (Table 8 in the Supplementary
data). With the increasing of oil concentration it is evident the
increase of the area of the peakþ band around 1744 cm�1, associ-
ated with the carbonyl radical in the ester functional group of
triglycerides (Vlachos et al., 2006).

3.2. Moisture content and thermal analyses

The determination of moisture content gives information on the
amount of water present in the films, while the differential scan-
ning calorimetry (DSC) analyses were used to measure the glass
transition temperature (Tg), the enthalpy of melting (DHm) and the
peak melting temperature (Tm) of the films. Tg is a parameter
associated with the system mobility, and is defined as a physical
change from the glassy to the rubbery state in amorphousmaterials
promoted by heat (Roos & Karel, 1991), while DHm and Tm can be
associated with the crystallinity of the films samples.

Fig. 3a and b shows the variations of the moisture content in
chitosan films for increasing concentrations of glycerol and oil,
respectively. The presence of water in chitosan films is highly
dependent on glycerol concentration. Glycerol, due to its hydro-
philic nature, retains water in the film matrix. Higher concentra-
tions of plasticizer favor the adsorption of water molecules, which
is mainly attributed to the predisposition of plasticizers to form
hydrogen bonds (OeH), confirmed by FTIR spectra analyses. On the
other hand, it is observed that moisture content decreases for films
with oil (Fig. 3b) when compared with films without oil. However,
the values do not present a statistically significant difference
(p> 0.05) between chitosan films with different oil concentrations.

Fig. 4a and b shows the variations of the moisture content in
galactomannan films for increasing concentrations of glycerol and
oil, respectively, and presents a similar behavior to chitosan films.
Water is not only associated with the galactomannan film’s struc-
ture, but also with the glycerol hydrophilic nature that retains
water in thematrix. Furthermore, a decrease in the water content is
observed for galactomannan films with oil, (Fig. 4b), in agreement
with FTIR spectra analyses.

Fig. 3a shows Tg values for chitosan films with different glycerol
concentrations. Glycerol, due its plasticizing effect, decreases glass
transition temperatures of polysaccharide films, which is in
agreement with the free volume theory of plasticization. The
increase of glycerol concentration leads to an increase of the free
Fig. 3. Glass transition temperature (Tg) (d) and moisture content (- - -) of chitosan film
superscripts are significantly different (p< 0.05).
volume and mobility of molecules, changing the physical structure
of the chitosan film, which is in agreement with the decrease of the
Tg values. Moreover, Tg values are inversely associated with the
moisture content of chitosan films; in fact, also water acts as
a plasticizer increasing the molecular mobility (lower Tg values) of
the chitosan films. Glycerol changes the polymer network creating
mobile regions with greater interchain distances, promoting water
clustering (Diab, Biliaderis, Gerasopoulos, & Sfakiotakis, 2001;
Olivas & Barbosa-Cánovas, 2008), thus increasing the moisture
content in the films. The thermograms present a great decrease of
Tg values for glycerol concentrations of 2.0%, that can be explained
by the value reported for the Tg of glycerol (�75 �C) (Mathew &
Dufresne, 2002). Tg values obtained here are in agreement with
those reported in other works (Dong, Ruan,Wang, Zhao, & Bi, 2004;
Suyatma et al., 2005). Oil incorporation in chitosan films decreases
the mobility of the chitosan matrix, as confirmed by the increase
(p< 0.05) of Tg values (Fig. 3b). However, the increase of oil
concentrations does not lead to statistically significant differences
(p> 0.05) between Tg values. This behavior is in agreement with the
moisture content of the films containing oil, that also does not
present a statistically significant difference (p> 0.05) for different
oil concentrations.

Fig. 4a shows Tg of galactomannan films for different glycerol
concentrations. Results show that the presence of glycerol
decreases (p< 0.05) the values of Tg. Higher glycerol concentrations
lead to the increase of the free volume of the polymer matrix and
consequently to the increase of the mobility of molecules, thus
changing the physical structure of the film and decreasing Tg
(Roos & Karel, 1991). Moreover, Tg values are inversely associated
with the water content of the galactomannan films; also, water
itself acts as a plasticizer increasing the molecular mobility (lower
Tg values) in the galactomannan films. The presence of glycerol
contributes to the establishment of more hydrogen bonds in the
film matrix, as confirmed by FTIR analyses. The Tg values obtained
for galactomannan films are in agreement with reported results for
galactomannan films from other sources (Mikkonen et al., 2007).
Oil incorporation decreases the mobility of the galactomannan
matrix (increase of Tg values) that can be related with the oil
structure (e.g. aliphatic CeH group and carbonyl radical in the ester
functional group) and also with the decrease of the moisture
content of films (Fig. 4b).

Fig. 5a and b shows the changes of DHm and Tm of chitosan and
galactomannan films, respectively, with the increase of glycerol
concentration. For chitosan films the increase of glycerol concen-
tration leads to an increase of DHm, and to a decrease of Tm values.
The higher values of DHm are possibly explained by the increase of
the crystallinity of chitosan films (Sperling, 2006). When glycerol
concentration increases, a greater polymer mobility (lower Tg
values) is obtained that favors the formation of crystalline domains
s for increasing glycerol (a) and oil (b) concentrations. aed;AeDMeans with different



Fig. 4. Glass transition temperature (Tg) (d) and moisture content (- - -) of galactomannan films for increasing glycerol (a) and oil (b) concentrations. aed;AeDMeans with different
superscripts are significantly different (p< 0.05).
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(Fabra, Talens, & Chiralt, 2010; Mathew & Dufresne, 2002). Also the
increase of the moisture content in the film matrix when more
hydrogen bonds are available can influence the intensification of
films’ crystallinity (Chen, Liu, Chen, Chen, & Chang, 2008). The
presence of oil does not provoke statistically significantly differ-
ences (p> 0.05) on the values of DHm and Tm for chitosan films
(results not shown).

The melting peak was not observed for galactomannan films
without glycerol and for films with oil concentrations above 0.5%.
The thermograms (results not shown) had a flat shape indicating an
amorphous structure of these films (Mathew & Dufresne, 2002;
Yakimets et al., 2007). Fig. 5b shows that the increase of glycerol
concentration leads to higher values of DHm, that can be explained
by the formation of crystalline domains, favored by the increase of
the polymer mobility (lower Tg values) how was already explained
elsewhere (Fabra et al., 2010; Mathew & Dufresne, 2002; Sperling,
2006). Also, the increase of the moisture content in the film
matrix when more hydrogen bonds are available can influence the
crystallinity of the films (Chen et al., 2008). Tm values were not
statistical significance influenced (p> 0.05) by the increase of
glycerol concentration.

Thermogravimetric analysis determine the changes in weight of
the films samples with the increase of the temperature. Tables 9 and
10 in the Supplementary data show the peak values of thermal
events and the correspondingweight loss for each event, for chitosan
and galactomannan films, respectively. Thermal analysis shows that
chitosan films began the dehydration process at 60 �C (results not
shown), being stable below that temperature. They present at least
three thermal events, however for samples with oil a fourth event
was observed. Peak 1 is related with the evaporation process,
a characteristic phenomenon of a polysaccharide with a hydrophilic
Fig. 5. Melting temperature peak (Tm) (d) and enthalpy of melting (DHm) (- - -) of chitosan
with different superscripts are significantly different (p< 0.05).
nature. The differences inweight loss due to the presence of glycerol
(peak 2) are also very marked, where an increase of the weight loss
for higher glycerol concentrations is observed, related with the loss
of chemisorbed water through hydrogen bonds and the elimination
reaction of NH3 (Quijada-Garrido, Iglesias-González, Mazón-
Arechederra, & Barrales-Rienda, 2007). Peak 3 (around 290 �C) is
related with the dehydration, depolymerization and pyrolytic
decomposition of the polysaccharide backbone (Zohuriaan &
Shokrolahi, 2004). In films containing oil, where the plasticizer
content is constant, the weight loss at peak 2 (related with the
presence of glycerol) does not present statistically significant
differences when the oil concentration was increased; however,
there is an increase in the size of the peak associated with oil
decomposition (peak4), relatedwith thearomatic structurespresent
in corn oil with decomposition temperatures above 380 �C (Pelissari
et al., 2009).

Thermal analyses show that galactomannan films without
glycerol are stable up to 40 �C, and when glycerol is added this
stability increases up to 59 �C (results not shown). Galactomannan
films show at least three thermal events, the first being attributed
to water evaporation, the second (around 200 �C) attributed to the
presence of glycerol, and the third related to polysaccharide
decomposition (Zohuriaan & Shokrolahi, 2004). As for chitosan
films, for samples containing oil a fourth event was observed
related with the aromatic structures present in corn oil with
decomposition temperatures above 380 �C (Pelissari et al., 2009).
Peak events show that the increase of glycerol concentration leads
to a more significant weight loss associated with two thermal
events: water evaporation (peak 1), and chemisorbed water
through the hydrogen bonds favored by the presence of glycerol
(peak 2) (Quijada-Garrido et al., 2007). In films containing oil
(a) and galactomannan (b) films for increasing glycerol concentrations. aed;AeCMeans
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a weight loss associated with oil decomposition is observed
(peak 4); this loss was more substantial for samples with higher
corn oil concentration.

3.3. Water solubility

The water solubility of edible films indicates their water resis-
tance when applied, e.g., on water-rich foods such as peeled fruits.
It is also related to the biodegradability of films when used as
packaging materials (Gnanasambadam, Hettiarachchy, & Coleman,
1997). Table 1 shows that water solubility of chitosan films
increases for higher glycerol concentrations (p< 0.05). This is
related with the hydrophilic behavior of glycerol and with the
increase of OeH bonds on chitosan films matrix with the increase
of glycerol concentration, that are more available to interact with
the water molecules, in agreement with FITR spectra analyses,
values of moisture content and thermal events detected during
TGA. On the other hand, the presence of oil and the increase of its
concentration lead to a statistically significant decrease (p< 0.05)
of the solubility. The decrease of the number of OeH bonds, the
appearance of aliphatic groups in the film when oil is added (as
shown by FTIR results), and the corresponding increase of the
hydrophobic portion of the film originated a less soluble material
(Morillon, Debeaufort, Blond, Martine, & Voilley, 2002).

Table 2 shows the solubility values of galactomannan films and
indicates that both glycerol and oil influence their water solubility.
The presence of oil and the increase of glycerol concentration show
different effects. The increase of glycerol concentration leads to an
increase (p< 0.05) of the solubility, motivated by the correspond-
ing increase of the hydrophilicity of the film matrix. FTIR analyses
showed an increase of OeH bonds number with the increase of
glycerol content; this means that glycerol fostered the interaction
of the filmmatrix with water. Also the highermobility of thematrix
(lower Tg) has a great influence in these results: in a system with
improved mobility, water molecules enter more easily in the film
matrix which results in an increase of its solubility.

Oil addition (from 0 to 0.25%) does not cause a statistically
significant difference (p> 0.05) in water solubility values. However,
for oil concentrations of 0.75% a significant decrease of the solubility
(p< 0.05) occurs. As explained before, for chitosan films, the
hydrophobic character of oil changes the film structure leading to
a less soluble film (i.e. decreases the number of OeH bonds and the
presence of an aliphatic groups). The results obtained are in agree-
ment with the solubility values for other polysaccharide-based films
(Casariego et al., 2009; Mehyar & Han, 2004; Piermaria, Pinotti,
Garcia, & Abraham, 2009).

3.4. Water vapor permeability (WVP)

Water vapor permeability is the most extensively studied
property of edible films. Table 1 shows that oil and glycerol have
Table 1
Values of water solubility, water vapor permeability (WVP), tensile strength (TS) and elon
oil concentrations.

Films Solubility (%) WV
(gm

1.5% GTe0.0% Gly 42.25� 0.33a 5.
1.5% GTe0.5% Gly 51.86� 0.16b 8.
1.5% GTe1.25% Gly 63.77� 0.77c 10.
1.5% GTe2.0% Gly 69.94� 0.72d 11.
1.5% GTe0.5% Glye0.25% oil 48.98� 1.07e 8.
1.5% GTe0.5% Glye0.5% oil 45.20� 0.95f 7.
1.5% GTe0.5% Glye0.75% oil 42.25� 0.10a 6.

Values reported are the means� standard deviations. aefDifferent letters in the same co
a distinct influence in WVP of chitosan films; while theWVP values
increase for increasing glycerol concentrations, the presence of oil
leads to a decrease of WVP. These results are in agreement with
other works where the increase of plasticizer concentration has
increased the values of WVP (Caner, Vergano, & Wiles, 1998; Ziani
et al., 2008). As already explained above, the increase of glycerol
concentration leads to higher moisture contents of chitosan films.
The plasticizer action increases the free volume and chain move-
ments (lower Tg), reducing the rigidity and increasing themolecular
mobility of films, thus allowing a higher water vapor diffusion
through their structure.

The presence of oil changes the properties of the films,
decreasing the affinity for water. The decrease of theWVP values in
chitosan films with the addition of oil can be explained by the
diminution of the hydrophilic portion of the film (Hernandez-
Munõz, López-Rubio, Del-Valle, Almenar, & Gavara, 2004), that
reduces its affinity for water molecules and consequently decreases
WVP (Table 1). As already stated, higher glycerol concentrations
lead to an increase of the moisture content in films, while for
different oil concentrations the moisture content values do not
present statistically significant differences (p> 0.05). So, if in the
case of films without oil the glycerol effect was emphasized by the
water influence (increase ofmoisture content), forfilmswith oil this
does not happen. The range of values obtained is in agreement with
other reported works (Casariego et al., 2009; Wong, Gastineau,
Gregorski, Tillin, & Pavlath, 1992).

Galactomannan films present a similar behavior to chitosan
films; however when 0.5% of glycerol is added to the gal-
actomannan film no statistically significant difference (p> 0.05) of
WVP values is observed (Table 2). The presence of the plasticizer
decreases the occurrence of cracks and pores, improving the
dispersion and flexibility of the film and thus decreasing gas
permeability (Garcia, Martino, & Zaritzky, 2000). Moreover, when
glycerol concentration increases from 0.5% to 1.25% and then to
2.0% the WVP values increase significantly. Glycerol and its plasti-
cizing effect increase the molecular mobility and decrease the
rigidity of polysaccharide chains. In this case, the higher concen-
trations of plasticizer favor molecular mobility (decreasing Tg
values) and the adsorption of water molecules, increasing WVP
values (Diab et al., 2001). As observed for chitosan films, also for
galactomannan films the increase of oil concentration leads to
lower WVP values, however these differences are statistically
significant (p< 0.05) only for oil concentrations higher than 0.25%
(Table 2). The hydrophobic character of the oil blended with gal-
actomannan polysaccharide changes the film properties decreasing
their WVP.

3.5. Tensile strength (TS) and elongation-at-break (EB)

Tensile strength is the ability of a material to resist under tensile
stress until it breaks and is one of the most important and widely
gation-at-break (EB) for chitosan (CH) films with variation of glycerol (Gly) and corn

P� 10�11

�1 s�1 Pa�1)
TS (MPa) EB (%)

07� 0.23a 21.45� 2.82a 16.18� 3.53a

61� 0.38b 7.72� 0.75b 71.75� 4.27b

16� 0.18c 3.64� 0.63c 86.18� 4.88c

40� 0.45d 1.17� 0.06c 99.52� 2.84d

28� 0.33b 3.66� 0.66c 65.08� 2.72e

78� 0.11b 3.05� 0.15c 63.01� 3.34ef

68� 0.31e 3.00� 0.17c 56.01� 5.77f

lumn indicate a statistically significant difference (p< 0.05).



Table 2
Values of water solubility, water vapor permeability (WVP), tensile strength (TS) and elongation-at-break (EB) for galactomannan (GT) films with variation of glycerol (Gly)
and corn oil concentrations.

Films Solubility (%) WVP� 1011

(gm�1 s�1 Pa�1)
TS (MPa) EB (%)

1.5% GTe0.0% Gly 22.00� 0.70a 8.38� 0.57a 18.55� 4.43a 3.77� 0.09a

1.5% GTe0.5% Gly 44.35� 0.47bef 7.87� 0.13ac 13.25� 0.74ac 11.94� 0.47b

1.5% GTe1.25% Gly 56.41� 1.17c 12.32� 0.17b 2.58� 0.30b 34.22� 1.10c

1.5% GTe2.0% Gly 65.43� 1.53d 13.33� 0.44b 1.70� 0.06b 38.72� 3.78c

1.5% GTe0.5% Glye0.25% oil 48.39� 3.87e 7.80� 0.34cd 11.95� 1.79cd 14.35� 1.18b

1.5% GTe0.5% Glye0.5% oil 41.84� 1.12f 7.14� 0.35de 8.34� 1.05d 17.17� 1.37d

1.5% GTe0.5% Glye0.75% oil 34.11� 2.84g 6.60� 0.26e 3.38� 0.39e 21.27� 4.40d

Values reported are the means� standard deviations. aeeDifferent letters in the same column indicate a statistically significant difference (p< 0.05).
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measured properties of materials used in structural applications.
Elongation-at-break of a material is the percentage increase in
length that occurs before it breaks under tension (Sperling, 2006).

The increase of plasticizer concentration exerts a great influence
over TS values, and leads to a decrease of approximately 64% when
0.5% of glycerol was added to chitosan films (Table 1). For the same
amount of added glycerol, EB values were 4.4-fold those of chitosan
films without glycerol. Furthermore, when glycerol concentration
increased from 0.5% to 2.0%, this behavior was more evident with
a decrease of TS values of approximately 85% and an increase of EB
values of 39%. Plasticizers interfere with chitosan chains: they
decrease intermolecular forces, soften the rigidity of the film’s
structure and increase polymer mobility (in agreement with the Tg
values observed), thus decreasing TS and increasing EB. The pres-
ence of glycerol leads to a ductile and flexible material. Further-
more, also the water content of the films when glycerol is added
affects TS and EB, and accentuates the effect of the glycerol content
(Ziani et al., 2008). These results are in agreement with those
reported in the literature that show a decrease of TS values and an
increase of EB values with the presence and increasing concentra-
tions of plasticizer (Caner et al., 1998; Ziani et al., 2008).

Results in Table 1 show that the presence of oil influences both
TS and EB values. Oil incorporation leads to a decrease of TS and EB
values when compared with films without oil. Increasing oil
concentrations from 0.5 to 0.75% did not have statistically signifi-
cant influence (p> 0.05) on TS and EB values for chitosan films,
suggesting that the chitosan matrix is not able to incorporate oil
concentrations above 0.5%. The oil presence leads to a less rigid film
structure, being the structural discontinuities provoked by the oil
incorporation possibly responsible for the decrease of their flexi-
bility and their resistance to fracture (Sánchez-González, Vargas,
González-Martínez, Chiralt, & Cháfer, 2009).

Results in Table 2 show how glycerol concentrations affect TS
values of galactomannan films. Galactomannan films without glyc-
erol present a typical behavior of anunplasticizedfilm:high values of
TS and a great variability due to their non-homogeneous structure. It
is important to note that galactomannan films without glycerol at
room temperature are in the glasserubber transition zone (Fig. 4a),
which fromamolecular point of view involvesmolecularmotion and
the beginning of reptation, leading to a non-uniform structure
(Roos & Karel, 1991; Sperling, 2006). The increase of glycerol
concentration (from 0.5% to 2.0%) had a statistically significant
influence (p< 0.05) on the values of TS and EB. This increase lead to
TS values 87% lower and values of EB 3.2-fold higher than those
found in films without glycerol. As previously mentioned, plasti-
cizers interfere with galactomannan chains where, by decreasing
intermolecular forces, they reduce the rigidity of the film structure
and increase the polymermobility; this facilitates film elongation, in
accordance with the Tg values obtained in the present work.

Table 2 shows that the presence of oil influences both TS and EB
values for the galactomannan films. The oil incorporation leads to
a decrease of TS and an increase of EB values when compared with
the film without oil. This decrease only presents statistical signifi-
cance (p< 0.05) for oil concentrations above 0.25%. The results
seem to indicate that oil acts as a plasticizer leading to a less rigid
film structure, increasing its flexibility and decreasing its resistance
to fracture. In the present work, the highest values of TS were
obtained for the formulation containing 1.5% of galactomannan
(18.6 MPa); and the highest value of EB was obtained for the film
formulation containing 1.5% of galactomannan and 2.0% of glycerol
(38.7%). These results are in agreement with other reported results
for galactomannan films (Martins, Cerqueira, Souza, Avides, &
Vicente, 2010; Mikkonen et al., 2007).

3.6. Comparison between structureeproperties relationships
of chitosan and galactomannan films

The study of the physicochemical properties of polysaccharide
films shows how the presence of glycerol and/or corn oil can influ-
ence their structural reorganization. Water adsorption on the films’
matrix for different glycerol and corn oil concentrations varies for
both chitosan and galactomannan films, as shown by FTIR spectra,
moisture content and thermal analyses results. Themajordifferences
between the used polysaccharides, from a structural point of view,
lay in the substitution of the OeH group by an NeH function in the
case of chitosan. This means that glycerol and oil will influence the
structure of thefilms in a differentway.While for the galactomannan
the specific sorption sites for water are the OeH groups, for chitosan
those are OeH and/or NH2 groups (Despond, Espuche, Cartier, &
Domard, 2005), thus changing their capacity to interact with water.

Chitosan and galactomannan films present a similar behavior
when glycerol is added to the film. Glycerol leads to an increase of
the moisture content; however, the obtained values for chitosan
films are higher and statistically different (p< 0.05) from the values
for galactomannan films. For films without glycerol moisture
content values are 15.5 and 13.5% for chitosan and galactomannan,
respectively; however, when glycerol is added to the film-forming
solutions, the resulting chitosan films present a moisture content at
least 12% higher than galactomannan films. This behavior can be
explained by the presence of Tween 80 in all chitosan films. Tween
80 presents a hydrophilicelipophilic balance (HLB) of 15 that
indicates that the surfactant is readily soluble in water (Carneiro-
da-Cunha et al., 2009), increasing the ability of the chitosan
matrix to adsorbwater molecules. Thewater sorption occurs in two
main steps: the water sorption on polymer sites and the water
clustering surrounding the firstly sorbed water molecules (Fringant
et al., 1996). The plasticizing effect of glycerol leads to a film matrix
with more mobile regions with larger interchain distances, thus
allowing the sorption of more water molecules to polysaccharide
sites. Besides, glycerol’s structure creates more hydroxyl bonds that
promote the sorption of water molecules to the film.

Both polysaccharides are strongly water content dependent,
however they present different behaviors when their thermal,
transport and mechanical properties are compared. The major
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differences are observed in the glass transition temperature (Tg),
water vapor permeability (WVP) and elongation-at-break (EB)
values. Tg values for the both polysaccharides films show the well-
known plasticizing effect of glycerol, which results in a decrease
of Tg. However, they are in different states at room temperature.
While chitosan films are in the glassy state, with Tg values higher
than 20 �C (with exception of chitosan films containing 2.0% of
glycerol), galactomannan films are in the rubbery state (with
exception of galactomannan films without glycerol, that present
a brittle behavior). Galactomannan films without glycerol, at room
temperature, are in the glasserubber transition zone leading to
a non-uniform structure (Roos & Karel, 1991) meaning that glycerol
is necessary for a correct processing of these films. TS values of
galactomannan films without glycerol show an unplasticized film
behavior with a great variability due to their non-homogeneous
structure. However, for films containing glycerol (0.5%) it is
observed that TS values for galactomannan films are higher than
those obtained for chitosan films. This behavior can be justified by
the linear and neutral nature of the polymer chains of the gal-
actomannan films, which can associate more easily through inter-
molecular hydrogen bonding (Nieto, 2009). Chitosan films present
higher values for EB than galactomannan films, being this difference
more evident for higher glycerol concentrations. The chitosan
structure ismoreflexible due to the presence of NeHbonds and this
may be the reason for the observed behavior. Also, when oil is added
chitosan and galactomannan films present distinct behaviors for EB
values.While for chitosan the presence of oil leads to lower values of
EB, for galactomannan films this presence increases the EB values.
This behavior is possibly relatedwith the emulsifying capacity of the
chitosan film-forming solutions, which is higher than that of gal-
actomannan film-forming solutions; when the films are cast, oil
increases the structural discontinuities, decreasing film flexibility.

4. Conclusion

The presence of glycerol and corn oil leads to changes in the
polysaccharide films structure, with the formation of new and/or
the increase of the number of existing bonds in the films’ structure.
These bonds influence the water affinity of the films, and conse-
quently change their properties. It has been indirectly shown how
the structure of the films is influenced by the presence of plasticizer
and/or oil through measurement of thermal properties (DSC and
TGA) and chemical structure (FTIR), and such influence has been
confirmed by the results for transport and mechanical properties,
solubility and opacity. Moreover, chitosan and galactomannan films
evaluated in this work provide water vapor permeability and
elongation-at-break values in the range of e.g. cellophane films;
they also show in some cases tensile strength values close to those
reported for high-density polyethylene and low-density poly-
ethylene (Han & Gennadios, 2005), thus positioning them as
possible alternatives to those synthetic materials.
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