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Abstract. In this paper we consider a Pascal-like triangle as result of
the expansion of a binomial in terms of the generators e1, e2 of the non-
commutative Clifford algebra C`0,2 over R. The study of various patterns
in such structure and the discussion of its properties are carried out.
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1 Introduction

Over the years several authors have constructed arithmetic triangles by choosing
as their elements numbers which satisfy a recurrence relation of the form

Ek,s = A(k, s)Ek−1,s +B(k, s)Ek−1,s−1, (1)

with appropriate coefficients A(k, s) andB(k, s) and initial conditions. The trian-
gle corresponding to the choice A(k, s) = B(k, s) = 1, with the initial conditions

Ek,0 = 1, k = 0, 1, . . . E0,s = 0, s = 1, 2, . . . (2)

reduces to the well known Pascal triangle whereas the initial conditions E1,0 = 1,
E1,1 = 2 and Ek,s = 0, for s < 0 or s > k leads to Lucas triangle. The Stirling
triangle of the second kind corresponds to a choice of A(k, s) = s and B(k, s) = 1
with the initial values (2). The book [2] contains several results and detailed
references concerning generalized Pascal triangles and other arithmetic triangles.

In this work we consider the arithmetic triangle obtained by choosing the
generators of the non-commutative Clifford Algebra C`0,2 as the coefficients in (1)
together with the initial values (2). We study various patterns in its structure and
discuss its main properties. They reveal, in a very particular form, similarities
with the classic properties of the Pascal triangle with real entries and at the
same time illustrate the consequences of the non-commutativity.
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Ciência e Tecnologia”), within projects UIDB/00013/2020, UIDP/00013/2020, and
UIDB/04106/2020.
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2 A Pascal-like Triangle

Let {e1, e2, · · · , en} be an orthonormal base of the Euclidean vector space Rn
with a product according to the multiplication rules

ekel + elek = −2δkl, k, l = 1, · · · , n, (3)

where δkl is the Kronecker symbol. This non-commutative product generates the
2n-dimensional Clifford algebra C`0,n over R.

The vector space Rn+1 is embedded in C`0,n by the identification of the
element (x0, x1, · · · , xn) in Rn+1 with the element

x = x0 + x1e1 + · · ·+ xnen (4)

in An := spanR{1, e1, . . . , en} ⊂ C`0,n; such an element x ∈ An is usually called
paravector. For a paravector x of the form (4) we define

- scalar part resp. vector part of x:

Sc(x) = x0 and Vec(x) = e1x1 + · · ·+ enxn;

if Sc(x) = 0, then x is called a pure paravector;

- conjugate of x:
x̄ = x0 − x1e1 − · · · − xnen;

- norm of x:

|x| = (xx̄)
1
2 =

√
x20 + x21 + · · ·+ x2n.

Usually {e1, e2, · · · , en} are called the imaginary units or generators of the
Clifford algebra C`0,n. Obviously, we can identify the case n = 1 with the complex
algebra C by choosing i := e1. The quaternion algebra H can be obtained through
the identification i := e1, j := e2 and k := e1e2. We refer the readers to the books
[3,10] for details on Clifford algebras.

In this paper we consider the arithmetical triangle obtained by choosing as
its elements the numbers which satisfy the recurrence relation

Ek,s = e1Ek−1,s + e2Ek−1,s−1 (5)

with the initial conditions

Ek,0 = ek1 , k = 0, 1, . . . E0,s = 0, s = 1, 2, . . . (6)

The problem (5)-(6) is equivalent to the problem (1)-(2) for the choice of the
generators of the Clifford algebra C`0,2 as the coefficients A(k, s) and B(k, s).

The various elements Ek,s, (0 ≤ s ≤ k), defined by (5)-(6) can be arranged
in the form of a triangular array as in the case of Pascal triangle. In Fig. 1 we
present the first rows of such triangle and highlight the relationships of a given
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Fig. 1. First rows of the hypercomplex Pascal triangle Ek,s

entry with its neighbors. It is also visible that the values of the rows change over
alternately between real numbers and paravectors in A2.

Observe that considering the norm of each element of the triangle of Fig. 1,
i.e. considering elements of the form

Ẽk,s = |Ek,s|,

we end up with the so-called Pauli Pascal triangle [11], a triangular array made
of three copies of the Pascal triangle (see Fig. 2). It is easy to see that the entries
of one of the triangles are the non-zero elements of the even rows (in green) and
the other two are obtained by considering alternating elements (blue/red) of the
odd rows.

Reading the entries of the triangle by rows, we obtain the sequence

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 3, 0, 3, 0, 1, 1, 1, 3, 3, 3, 3, 1, 1 . . .

listed in The On-Line Encyclopedia of Integer Sequences [14] (A051159).
For the above reasons the triangle corresponding to (5)-(6) will be called

henceforward quaternionic Pascal triangle or Pascal triangle with quaternion
entries. Along the next section we will present several other arguments support-
ing such designations.

Before we proceed we need to introduce some other tools from the Clifford
algebra C`0,2, namely the embedding of the non-commutative product into an
n-nary symmetric product (see [12]) defined as

a1 × a2 × · · · × an =
1

n!

∑
π(s1,...,sn)

as1as2 · · · asn , (7)

where the sum runs over all permutations of all (s1, . . . , sn). If the factor aj
occurs µj-times in (7), we briefly write a1

µ1×a2µ2×· · ·×anµn and set parentheses
if the powers are understood in the ordinary way.

http://oeis.org/A051159
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Fig. 2. Three Pascal triangles

For example,

e1 × e2 = 1
2 (e1e2 + e2e1) = 0

while

e21 × e2 = e1 × e1 × e2 = 1
3! (2e

2
1e2 + 2e1e2e1 + 2e2e

2
1) = − 1

3e2

and

(e1)2 × e2 = −e2.

The symmetric product along with the established convention permit to deal
with a polynomial formula exactly in the same way as in the case of two com-
mutative variables. More precisely, the following relation holds (see [12,13])

(v1 + v2)k =

k∑
m=0

(
k
m

)
vk−m1 × vm2 . (8)

3 Properties of the Quaternionic Pascal Triangle

It is well known that the entries of the Pascal triangle are the coefficients in the
expansion of (x+y)n, while the Lucas triangle is generated by the coefficients in
the expansion of (x+y)n−1(x+2y) [7] and the Pauli Pascal triangle is generated
by the coefficients in expansion of (x+ y)n where x and y anticommute [11].

We prove now that the entries of the quaternionic Pascal triangle are also
the coefficients in the expansion of a particular binomial.
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Theorem 1. The entries Ek,s of the quaternionic Pascal triangle are the coef-
ficients in the expansion of (e1 + te2)n, t ∈ R, i.e.

Ek,s =
(
k
s

)
ek−s1 × es2.

Proof. The use of (8) leads to

(e1 + te2)k =

k∑
s=0

(
k
s

)
ek−s1 × es2ts.

Denote by αk,s the coefficients of ts in the right-hand side of last expression, i.e.

αk,s :=
(
k
s

)
ek−s1 × es2.

Observe that the coefficients αk,s clearly satisfy the initial conditions (6). We
are going to prove that they also satisfy the recurrence relation (5), concluding
in this way that they are equal to Ek,s. To prove the additive property (5) we
recall the following recursive formula (see e.g. [12]):

vµ1

1 × v
µ2

2 =
1

µ1 + µ2
[µ1v1(v1

µ1−1 × v2µ2) + µ2v2(v1
µ1 × v2µ2−1)],

which for v1 = e1, v2 = e2, µ1 = k − s, µ2 = s allows to write

αk,s =
(
k
s

)[
k−s
k e1(e1

k−s−1 × e2s) + s
ke2(e1

k−s × e2s−1)
]

= e1
(
k−1
s

)
e1
k−s−1 × e2s + e2

(
k−1
s−1
)
e1
k−s × e2s−1

= e1αk−1,s + e2αk−1,s−1

and the proof is completed. ut

Theorem 2. The entries Ek,s of the quaternionic Pascal triangle can be written
explicitly as

Ek,s = (−1)b
k
2 c
(
bk2 c
b s2c

)
(εkεs + εk+1εse1 + εk+1εs+1e2), (9)

where εj = 0, for odd j and εj = 1, for even j.

Proof. The result follows by induction on k together with the recursive definition
of Ek,s. ut

A similar result was proved in [4] by using the T. Abadie’s formula for the
derivative of a composed function. In its present form, (9) can be used to easily
identify several properties of the quaternionic Pascal triangle. The first properties
can be considered as hypercomplex analogues of well-known properties of the
classical Pascal triangle.



6 M.I. Falcão, H.R. Malonek

Property 1 (Row sum).

k∑
s=0

Ek,s =

(−2)
k
2 , if k is even

(−2)
k−1
2 (e1 + e2), if k is odd

Proof. If k = 2m, m ∈ N, then (9) together with the well known property∑k
s=0

(
k
s

)
= 2k give

2m∑
s=0

E2m,s =

2m∑
s=0

(−1)m
(
m

b s2c

)
εs = (−1)m

m∑
s=0

(
m

s

)
= (−1)m2m.

On the other hand, for odd values of k, we get

2m+1∑
s=0

E2m+1,s =

m∑
s=0

(−1)m
(
m

b s2c

)
(ε2se1 + ε2s+2e2) = (−1)m(e1 + e2)

m∑
s=0

(
m

s

)
and the result is proved. ut

Property 2 (Row “alternating” sum).

k∑
s=0

(−1)b
s
2 cEk,s = 0, k ≥ 2.

Proof. The property follows at once by combining result (9) with the property∑k
s=0(−1)s

(
k
s

)
= 0, k ≥ 1.

ut

Property 3 (Central coefficients).

E2k,k =

{(
k
k
2

)
, if k is even

0, if k is odd

Proof. The proof is immediate. ut

Property 4 (Row sum squares).

k∑
s=0

E2k,s =

{
E2k,k, if k is even

−2E2k−2,k−1, if k is odd

Proof. From (3) and (9) we obtain

E2k,s =

(
bk2 c
b s2c

)2

(ε2kε
2
s − ε2k+1ε

2
s − ε2k+1ε

2
s+1),
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or equivalently

E2k,s =



(
m

b s2c

)2

ε2s, if k = 2m

−
(
m

b s2c

)2

(ε2s + ε2s+1), if k = 2m+ 1

(10)

Therefore

k∑
s=0

E2k,s =



m∑
s=0

(
m

s

)2

, if k = 2m

−2

m∑
s=0

(
m

s

)2

, if k = 2m+ 1

The results follows now from the well known fact that the sum of the squares
of each element in the row k of the Pascal triangle equals the central binomial
coefficient

(
2k
k

)
. ut

Table 1 summarizes the properties here deduced, which, as already pointed
out, reveal great similarities with some of the most well known properties of
the Pascal triangle with real entries (see e.g. [2,9]). We now present properties
intrinsic to the quaternionic nature of the structure.

Property 5. Ek,s = 0 if and only if k is even and s is odd.

Proof. From (9) we know that Ek,s = 0 iff
εkεs = 0

εk+1εs = 0

εk+1εs+1 = 0

⇔


k odd or s odd

k even or s odd

k even or s even

and the result follows. ut

Property 6.
k∑
s=0

(
k

s

)−1
E2k,s =

(
k

bk2 c

)−1
(−2)k.

Proof. If k = 2m, m ∈ N, then from (10) we obtain

k∑
s=0

(
k

s

)−1
E2k,s =

m∑
s=0

(
2m

2s

)−1(
m

s

)2

.

Using the identity (cf. [8, Identity (6.11)])

m∑
s=0

(
m
s

)2(
2m
2s

) =
4m(
2m
m

) , (11)



8 M.I. Falcão, H.R. Malonek

Table 1. Parallels between Pascal triangle with real and quaternionic entries

Properties Pascal triangle Quaternion triangle

coefficients Ck,s Ek,s

recurrence

relation

Ck,s = Ck−1,s + Ck−1,s−1

Ck,0 = Ck,k = 1

Ek,s = e1Ek−1,s + e2Ek−1,s−1

E0,0 = 1, Ek,0 = ek1 , Ek,k = ek2

explicit

expression
Ck,s =

(
k

s

)
=

k!

s!(k − s)!
Ek,s =



(−1)
k
2

(
k
2
s
2

)
, k even, s even

(−1)
k−1
2

(
k−1
2
s
2

)
e1, k odd, s even

(−1)
k−1
2

(
k−1
2

s−1
2

)
e2, k odd, s odd

0, otherwise

sum of values

k∑
s=0

Ck,s = 2k
k∑

s=0

Ek,s =


(−2)

k
2 , k even

(−2)
k−1
2 (e1 + e2), k odd

alternating

sum

k∑
s=0

(−1)sCk,s = 0, k ≥ 1
k∑

s=0

(−1)b
s
2
cEk,s = 0, k ≥ 2

central

coefficient
C2k,k E2k,k =

Ck, k2 , k even

0, k odd

sum of

square values

k∑
s=0

C2k,s = C2k,k
k∑

s=0

E2k,s =

E2k,k, k even

−2E2k−2,k−1, k odd
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the results follows.

Consider now the case where k = 2m+ 1. Then

k∑
s=0

(
k

s

)−1
E2k,s =

2m+1∑
s=0

(
2m+ 1

2s

)−1(
m

b s2c

)2

(−ε2s − ε2s+1)

= −
m∑
s=0

(
m

s

)2
((

2m+ 1

2s

)−1
+

(
2m+ 1

2s+ 1

)−1)
.

From the relation(
2m+ 1

2s

)−1
+

(
2m+ 1

2s+ 1

)−1
=

2m+ 2

2m+ 1

(
2m

2s

)−1
and using again (11) it follows that

k∑
s=0

(
k

s

)−1
E2k,s = −2m+ 2

2m+ 1

4m(
2m
m

) =
m+ 1

2m+ 1

(−2)2m+1(
2m
m

) .

and the result is proved, since 2m+1
m+1

(
2m
m

)
=
(
2m+1
m

)
. ut

It is worth to point out that Property 6 hides a sequence of real numbers
which combines apparently unrelated subjects in real, complex and hypercom-
plex analysis [1,5,15,16].

Such sequence was mentioned for the first time in hypercomplex context in
[6] and was introduced in the form

ck :=
[ k∑
s=0

(−1)k
(
k

s

)(
ek−s1 × es2

)2 ]−1
, k = 0, 1, . . . . (12)

Using Theorem 1 and Property 6, the explicit expression of ck can be written
as

ck = (−1)k
[ k∑
s=0

ε2k,s
(
k
s

)−1]−1
=

1

2k

(
k

bk2 c

)
(13)

The first terms of the sequence (ck)k are

1,
1

2
,

1

2
,

3

8
,

3

8
,

5

16
,

5

16
,

35

128
,

35

128
,

63

256
,

63

256
,

231

1024
,

231

1024
,

429

2048
,

429

2048
,

6435

32768
. . .

4 Generalizations

The Pascal triangle obtained in last section by the use of the generators of the
Clifford algebra C`0,2 can be extended to a n regular polytope structure by
considering the generators e1, e2, . . . , en of the 2n−dimensional Clifford algebra
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C`0,n over R, obtaining in this way a generalization of the Pascal n-simplex. In
such case we can construct an hypercomplex Pascal n-simplex by choosing as its
elements Ek,s1,...,sn−1 , the numbers which satisfy the recurrence relation

Ek,s1,...,sn−1
= e1Ek−1,s1,...,sn−1

+ e2Ek−1,s1−1,...,sn−1
+ · · ·+ enEk−1,s1−1,...,sn−1−1

with initial conditions E0,0,...,0 = 1 and Es0,s1,...,sn−1
= 0, for si > si−1 or si < 0.

Details on this hypercomplex n-simplex will appear in a forthcoming paper.
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Österr. Akad. Wiss 167, 125–135 (1958)


	A Pascal-like Triangle with Quaternionic Entries
	Introduction
	A Pascal-like Triangle
	Properties of the Quaternionic Pascal Triangle
	Generalizations


