
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Tiago João Fernandes Baptista

Fast Scan, an improved approach using
machine learning for vulnerability identification

March 2022

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Tiago João Fernandes Baptista

Fast Scan, an improved approach using
machine learning for vulnerability identification

Master dissertation
Integrated Master Degree in Informatics Engineering

Dissertation supervised by
Professor Pedro Rangel Henriques
Nuno Oliveira

March 2022

i

AUTHOR COPYRIGHTS AND TERMS OF USAGE BY THIRD PARTIES

This is an academic work which can be utilized by third parties given that the rules and
good practices internationally accepted, regarding author copyrights and related copyrights.

Therefore, the present work can be utilized according to the terms provided in the license
bellow.

If the user needs permission to use the work in conditions not foreseen by the licensing
indicated, the user should contact the author, through the RepositóriUM of University of
Minho.

License provided to the users of this work

Attribution-NonCommercial
CC BY-NC
https://creativecommons.org/licenses/by-nc/4.0/

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

Tiago Baptista

A C K N O W L E D G M E N T S

In the course of my academic journey many people helped and took a big role in the path
that lead me to this final destination, to all of them I express my gratitude.

First of all, I would like to express my acknowledgments to two special people who were
important to me throughout this final journey in my final academic year.

To Dr. Pedro Manuel Rangel Santos Henriques for all the availability, enthusiasm and
motivation since the day I first approached him. Also for his great vision over each subject
that improved each stage of the Master Thesis.

To Nuno Oliveira for all the availability, guidance and close technical supervision of the
entire process throughout the year. Also for the opening from his side and Checkmarx to
allow access to datasets that were of the uttermost importance to the Master Thesis.

To Geoatributo and specially Dr. Ricardo Almendra which was supportive and flexible in
my work schedule, only this way was possible to balance my academic and professional life.

To Regina Sousa for all the love, support and specially her capability to be patience and
always be able to improve my mood even in the not so good moments and incentive to never
give up on my objectives.

To all my friends, the ones that shared this academic journey with me and also the others,
for the support and helping me to disconnect.

Finally, I would like to leave a special thanks to my parents for the love and allowing me
to start this journey in the first place, for supporting me even throughout the moments when
my academic journey seemed unlikely to reach a safe destination and also pushed me to
improve.

iii

A B S T R A C T

This document presents a Master Thesis in the Integrated Master’s in Informatics Engi-
neering focused on the automatic identification of vulnerabilities, that was accomplished at
Universidade do Minho in Braga, Portugal.

This thesis work aims at developing a machine learning based tool for automatic iden-
tification of vulnerabilities on programs (source, high level code), that uses an abstract
syntax11tree representation. It is based on FastScan, using code2seq approach. Fastscan
is a recently developed system aimed capable of detecting vulnerabilities in source code
using machine learning techniques. Nevertheless, FastScan is not able of identifying the
vulnerability type. In the presented work the main goal is to go further and develop a
method to identify specific types of vulnerabilities. As will be shown, the goal will be
achieved by changing the method of receiving and processing in a different way the input
data and developing an architecture that brings together multiple models to predict different
specific vulnerabilities. The best f1 metric obtained is 93% resulting in a precision of 90% and
accuracy of 85%, according to the performed tests and regarding a trained model to predict
vulnerabilities of the injection type. These results were obtained with the contribution given
by the optimization of the model’s hyperparameters and also the use of the Search Cluster
from University of Minho that greatly diminished the necessary time to perform training
and testing. It is important to refer that overfitting was detected in the late stages of the tests,
so this results do not represent the true value in real context. Also an interface is presented,
it allows to better interact with the models and analyse the scan results.

Keywords: vulnerability, attention models, static analysis, security

iv

R E S U M O

Este documento apresenta uma dissertação do Mestrado Integrado em Engenharia Infor-
mática, que tem como foco a automação da deteção de vulnerabilidades e foi concluída na
Universidade do Minho em Braga, Portugal.

O trabalho apresentado nesta tese pretende desenvolver uma ferramenta que utiliza
machine learning e que seja capaz de identificar vulnerabilidades em código. Utilizando para
isso a representação do mesmo numa abstract syntax tree. Tem como base FastScan que utiliza
a abordagem do code2seq. Fastscan é um projeto recentemente desenvolvido que é capaz de
detetar vulnerabilidades em código utilizando técnicas de machine learning, sendo que tem
algumas lacunas como o facto de não ser capaz de identificar vulnerabilidades específicas.
No trabalho apresentado o objetivo é ir mais além e desenvolver um método capaz de
identificar qual o tipo específico de vulnerabilidade presente. Como será apresentado ao
longo do documento, este objetivo será alcançado pela alteração do método de receção e
processamento dos dados recebidos, assim como o desenvolvimento de uma arquitetura
que junte os vários modelos de maneira a cooperarem e a ferramenta ser capaz de detetar
e prever a presença de vulnerabilidades específicas. A melhor métrica de f1 obtida foi de
93%, com precisão de 90% e accuracy de 85%, de acordo com os testes efetuados sobre
um modelo treinado para prever a presença de vulnerabilidades do tipo de injection. Os
resultados foram obtidos devido à otimização dos hiper-parâmetros dos modelos e o cluster
Search da Universidade do Minho diminuiu consideravelmente o tempo necessário para
efetuar o traino e testes dos modelos. É importante referir que foi detetado overfitting na
fase final do desenvolvimento deste trabalho, sendo que os resultados apresentados não
representam o valor real dos modelos em contexto real. Para além disso é apresentada uma
interface que permite interagir e analisar os resultados de um scan feito pelos modelos.

Palavras-Chave: vulnerabilidade, modelos de atenção, análise estática, segurança

v

C O N T E N T S

1 introduction 1

1.1 Contextualization and Motivation 1

1.2 Objectives 2

1.3 Research Hypothesis 3

1.4 Research Methodologies 3

1.4.1 Methodology Approach 3

1.5 Frameworks, languages and libraries 4

1.6 Document Structure 5

2 background 7

2.1 Machine Learning and vulnerability identification 7

2.2 FastScan and code2seq 8

2.3 Machine learning performance metrics 9

3 state of the art 11

3.1 Vulnerabilities 11

3.1.1 Injection 13

3.1.2 Broken Authentication 13

3.1.3 Cross-Site Scripting (XSS) 15

3.2 Vulnerabilities identification 16

3.2.1 Static analysis for security testing 16

3.2.2 Dynamic analysis for security testing 17

3.2.3 Interactive analysis for security testing 18

3.3 FastScan 19

3.4 Other approaches 23

4 proposed approach 24

4.1 System Architecture 24

5 development 27

5.1 Datasets 27

5.2 Hardware and technical details 28

5.3 First Phase 29

5.3.1 Data filtering 29

5.3.2 Preprocessing 29

5.3.3 Hyperparameter optimization 30

5.3.4 Training 31

vi

contents vii

5.4 Second Phase 32

6 results 34

6.1 First Phase 34

6.2 Second Phase 37

6.3 Webgoat Test 39

7 user interface 41

7.1 Architecture 41

7.1.1 Back-end 41

7.1.2 Front-end 43

7.1.3 Installation and general overview 45

7.2 Functionalities 46

7.2.1 Load and upload JAVA project files 47

7.2.2 Scan results 49

8 conclusion 51

8.1 Discussion 51

8.2 Possible Applications 52

8.3 Future Work 53

a representing code using vectors 58

L I S T O F F I G U R E S

Figure 1 Schema about code2seq. 9

Figure 2 Schema explaining injection. 13

Figure 3 Schema explaining broken authentication. 14

Figure 4 Schema explaining code2vec approach. 20

Figure 5 Schema explaining code2seq approach. 22

Figure 6 Schema explaining the first phase. 25

Figure 7 Schema explaining the second phase. 26

Figure 8 CPU details. 28

Figure 9 Memory details. 28

Figure 10 Schema explaining second phase. 33

Figure 11 Injection model evaluation. 35

Figure 12 XSS model evaluation. 37

Figure 13 Home page design. 43

Figure 14 Preprocessing consult design. 43

Figure 15 Results list design. 44

Figure 16 Code result visualization design. 44

Figure 17 Schema explaining the interface web application. 46

Figure 18 Final Interface homepage. 47

Figure 19 Final Interface load project. 48

Figure 20 Final Interface scanning project. 48

Figure 21 Final Interface results table . 49

Figure 22 Final Interface code view. 50

viii

A C R O N Y M S

A

AI Artificial Intelligence.

API Application Programming Interface.

AST Abstract Syntax Tree.

D

DAST Dynamic Application Security Testing.

DL Deep Learning.

DOM Document Object Model.

DSR Design science research.

H

HTTP Hypertext Transfer Protocol.

I

IAST Interactive Application Security Testing.

IDE Integrated Development Environment.

IS Information Systems.

J

JSON JavaScript Object Notation.

L

LDAP Lightweight Directory Access Protocol.

M

ML Machine Learning.

ix

Acronyms x

R

RNN Recurrent Neural Network.

S

SAST Static Application Security Testing.

SDLC Software Development Life Cycle.

SQL Structured Query Language.

SVM Suport Vector Machine.

U

UI User Interface.

X

XML Extensible Markup Language.

XSS Cross-Site Scripting.

XXE XML External Entities.

1

I N T R O D U C T I O N

This first chapter introduces the project, along with the motivations, objectives, methodology,
research hypothesis and document structure. It is relevant to refer that this Master’s Thesis
was only possible due to the collaboration with the company Checkmarx, the supervisors
and specially Samuel Ferreira a collaborator at Checkmarx 1.

1.1 contextualization and motivation

Nowadays, information systems are a part of almost every aspect in life and furthermore,
almost every company is dependent on the liability, safety and security of a software piece.
So it is essential to have the capability to identify and correct pieces of code that contain
known vulnerabilities in order to, at least, prevent the software from being compromised.

Cybernetic attacks are a constant and present a real threat to companies and people
in general, since nowadays almost every device is used has an Internet connection. As a
consequence, it is exposed to external threats that try to exploit vulnerabilities.

A vulnerability is a flaw or weakness in a system design or implementation (the way the
algorithms are coded in the chosen programming languages) that could be exploited to
violate the system security policy (Shirey, 2007b). There are many type of vulnerabilities
and many approaches to try to detect such flaws and perform security tests. All the known
approaches present pros and cons but none of them stands as a perfect solution. Static
analysis is one of the approaches and it can be defined as the analysis of a software without
its execution.Static Application Security Testing (SAST) is an application security testing
methodology that allows detecting vulnerabilities at the early stages of software development.
It is implemented by many companies, such as Checkmarx. These methodologies have
many strengths such as the ability to find vulnerabilities without the need to compile or run
code, offering support for different programming languages and being able to easily identify
common vulnerabilities and errors like Structured Query Language (SQL) injections and
buffer overflows. Despite this, there are still problems with the referred approach, mainly

1 https://www.checkmarx.com

1

1.2. Objectives 2

in the production of a great number of false positives, in the lack of identification of the
vulnerability type and even performance issues.

There are many tools that implement the concept of static analysis and try to apply
it to vulnerabilities detection. Some tools rely on only lexical analysis like FlawFinder2

(Mahmood and Mahmoud, 2018) but have the tendency to output many false positives
because they don’t take into account the code’s semantic (Chess and McGraw, 2004). Other
tools like CxSAST from Checkmarx overcome this lack by using the AST of the program
being evaluated. In this context, another challenge is to create and apply the same tool
across different languages, one that can clearly identify vulnerabilities with high accuracy
and have good performance with big inputs.

To overcome the flaws identified in the SAST approach, decreasing the number of false
positives and the processing time, a new approach came to the researchers mind: to integrate
machine learning techniques.

The idea can be realized by altering and tuning open source projects,namely code2vec
and code2seq in order to try to identify accurately and especially more efficiently than other
tools like CxSAST (Ferreira, 2019). code2vec main idea is to represent a code snippet as a
single fixed-length code vector, in order to predict semantic properties of the snippet (Alon
et al., 2019) on the other hand code2seq represents a code snippet as a set of compositional
paths and uses attention to select the relevant paths while decoding (Alon et al., 2018). The
resultant approach named FastScan was not one hundred percent successful but opened the
path to further investigation.

It is clear that a good analysis tool can help spot and eradicate vulnerabilities, furthermore,
it is becoming a part of the development process. But, there is still room for improvement
and all the research work done in this area can be of uttermost relevance for the industry.

1.2 objectives

With all of the previous in consideration the main objectives expected from the presented
Master’s thesis are the following :

• To tune and improve the FastScan approach:

– Find the best hyper parameters for each case study;

– Use these hyper parameters to improve evaluation metrics for the models (preci-
sion, recall and f1);

• The development of a specific model for each type of vulnerability (mainly injection
and also Cross-Site Scripting (XSS)), that is capable of identifying if a code snippet has
a vulnerability or not (Boolean model) of a given type;

2 https://dwheeler.com/flawfinder/

1.3. Research Hypothesis 3

• The design of a proper architecture to develop a general model capable of identifying
the occurrence of vulnerabilities and their type, given a code snippet;

Since it has different objectives and it is an evolution of FastScan, from now on, when
referring the Master’s Thesis work, it will be called new FastScan.

1.3 research hypothesis

With this work, it is intended to prove that it is possible to detect and identify vulnerabilities
in source code of different languages, using machine learning techniques. It is an intention
to demonstrate the high accuracy and performance when compared to more traditional
SAST tools.

1.4 research methodologies

A research project needs an idea in order to start, this idea will be on the base for the formu-
lation of the research question and will determine the choice of the research methodology
(Burns and Groove, 2014).

A good literature search and review are important tasks in the process of research and
can be decisive in the accomplishment of the research hypothesis and in the quality and
usefulness of the final research result (Peters et al., 2012). It is obvious that if an author is
not updated in all the breakthroughs in the researched area, it’s work could be redundant or
even fall short when compared to other approaches.

In the area of Information Systems (IS) the Design science research (DSR) is considered to
be a good approach. DSR is a rigorous cyclical process methodology in scientific research
normally applied to engineering and associated with the development of solutions regarding
information technologies.(Hevner, 2007)

1.4.1 Methodology Approach

To accomplish this Master Thesis objectives, it is used this iterative methodology based on
literature revision, solution proposal,implementation and testing.

To carry out this approach, the working plan is composed of the following six steps that
follow DSR phases (Peffers et al., 2007) :

• Identify the problem and the motivation to solve it:

– Bibliographic study to deeply understand the state of the art in the areas of static
analysis, current available SAST tools and vulnerabilities identification process;

1.5. Frameworks, languages and libraries 4

– Bibliographic study to understand AI and ML concepts, namely how they are
applied in the study area.

• Define objectives for the solution, referred previously.

• Design and Development :

– Investigation and development of the boolean models capable to identify specific
vulnerabilities;

– Investigation and development of the generic model, capable of identifying if
there is a vulnerability and its type.

• Demonstration :

– Use the boolean models capable to identify specific vulnerabilities in a test dataset;

– Use the generic model in a test dataset;

• Evaluation :

– Results assessment and discussion in order to draw considerations and conclu-
sions about the approach performance and usability in real cases;

• Communication ;

The Master Thesis report was written in parallel with all the steps described previously,
since it started from the first step and it is improved with the iterations over the phases.

1.5 frameworks , languages and libraries

In order to achieve the proposed objective different technologies were used, namely :

• Python : It is a programming language on which there can be applied different
programming paradigms like object oriented, functional or even scripting. In this
case it was used the object oriented approach using classes and other features. It
was chosen because the base project for the developed work - code2seq uses it and
it has much support and libraries to work with ML. More specifically, it was used in
the models development and also to achieve the objective of optimize the training
hyperparameters.

• Tensorflow : It is an open source framework for ML. It is used to train and improve
models as well as verify predictions. "TensorFlow is an open source library for
numerical computation and large-scale machine learning" 3. It was used with python
in the model train and test.

3 https://www.infoworld.com/article/3278008/what-is-tensorflow-the-machine-learning-library-
explained.html

1.6. Document Structure 5

• Wandb : It is a python library, used to monitor, compare, optimize and visualize ML
experiments. It can be integrated with many frameworks including tensorflow which
was a great feature in the development of this Master’s thesis. This library was of great
importance in the optimization of the models hyperparameters for each dataset and
also to visualize performance and time metrics from the experiments 4.

• Java : It is a object-oriented programming language that allows programs to run in
any Java virtual machine regardless of the machine where it is running. It was used
because the FastScan preprocessing was written in Java and there was the need to make
modifications.

• Django : It is a python web framework that allows to develop full stack projects. It was
chosen as the backend tool in order to more easily integrate the rest of the project that
was mainly written in python and also because it is reliable, fast and scalable.

• ReactJS : It is a JavaScript framework designed to build web user interfaces. It was
chosen because of previous knowledge and experience using it and also because it is
widely use, proven and has good performance;

• code2seq: As previously mentioned, it was base for the machine learning component
of the project.

1.6 document structure

Chapter 1 is intended to present a brief description of the following chapters, in order to let
the reader have some knowledge of the motivation behind the thesis and also it’s objectives.

Chapter 2 presents important concepts and general information essential for a better
understanding of the followings.

Chapter 3 starts with a detailed explanation of the context on the study area and also
there is a section dedicated to related work, an important step to decide which direction the
proposed work should go, by understanding the already existing approaches, techniques
and results.

Chapter 4, focuses on explaining the defined strategy, used technologies and system
architecture to prove the thesis hypothesis.

Chapter 5 details all the details about the used datasets, technical details as well as
specifies how the proposed approach presented previously in Chapter 4 was accomplished.

Chapter 6 presents the results obtained namely details about the models performance.
Chapter 7 presents the architecture and details on the interface that allows to input data

to the New FastScan.

4 https://wandb.ai/site

1.6. Document Structure 6

Chapter 8 presents the conclusions, reflections and future work of the Master Thesis.

2

B A C K G R O U N D

This chapter covers some main concepts that are needed in order to better understand and
follow the next chapters.

2.1 machine learning and vulnerability identification

In this section it is presented the role of Machine learning in modern software security and
more specifically in vulnerability identification.

Alan Turing question of "Can machines think?" in 1950 (Turing, 2009) set the path to the
development and research in the AI field and in the attempt to respond the questions of
what really defines a machine and the process of thinking. Having this in account, Artificial
Intelligence (AI) can be defined as the science and engineering of making intelligent machines
(McCarthy, 1998). But the definition of an intelligent machine is one of great debate, because
of the underlying concept of a thinking machine and what really defines it. Instead of a
conceptual definition we can refer to the way that AI is used, since it is a more relevant
concept for this Master Thesis. AI is used as programs that are able to autonomously achieve
and fulfill certain goals that would normally require human intelligence to perform.

Since this concept is so broad and it is used to group such diverse areas, it is necessary to
acknowledge that there are many branches or subjects within this concept of AI, namely the
machine learning area.

Machine Learning (ML) techniques attempt to build programs that improve autonomously
through experience (Jordan and Mitchell, 2015). ML works by training, through multiple
iterations, a system. The process basically consists in showing examples of a desired input
and the expected output, instead of programming the desired responses for all possible
inputs.

In a ML problem the objective is to improve the correct prediction rate, this can be achieved
throw training experience. For example, learning to detect vulnerabilities in code, the task
is to label methods as vulnerable or not vulnerable (a Boolean assignment). In order to
improve the correct prediction it is important to give correctly labeled input and also non
labeled input in order to diversify the training phase. So machine learning is still dependant

7

2.2. FastScan and code2seq 8

on human intervention because it requires the input of previously labeled datasets in order
to train a model.

Artificial intelligence and more specifically machine learning and deep learning systems
are being used to automate many different tasks and in different areas, with success.
For example in image recognition, disease behaviour prediction, traffic prediction, virtual
assistant, among others.

The area of software security is not an exception, as referred on the previous sections,
current vulnerability identification tools and in general, all security tools have flaws and
many rely on a great amount of manpower and are very time-consuming. In order to try to
tackle such limitations and with the rise of many machine learning applications, there were
many investigation focused on applying such techniques in the software security area Chan
and Lippmann (2006).

2.2 fastscan and code2seq

code2seq creates a representation of source code using Abstract Syntax Tree (AST) and then
uses it to infer properties.

An AST represents a source code snippet in a given language and grammar. The leaves of
the tree are called terminals and the non-leafs are called non-terminals. It represents all the
variables declarations, operator, conditions and assignments. In order to represent code in
this structures it is necessary to create sequences of terminal and non terminal nodes and
consider all possible paths between nodes.

This representation has some significant advantages over the use of tokens, namely when
comparing two methods that have the same functionality but different implementations.
Having the AST enables a better comparison since both functions paths will be similar as
represented, in Figure 1 , functions will have different token representations but similar path
representation only differing in the Block statement.

2.3. Machine learning performance metrics 9

Figure 1: Schema about code2seq.

In a simplified overview code2seq uses encoder-decoder architecture that reads the AST
paths instead of the tokens. In the encoding end, there is the creation of vectors for each path
using a bi-directional LSTM and the extraction of tokens, where the AST terminal nodes are
transformed into tokens and this tokens are split into subtokens (for example, an ArrayList
is transformed into the tokens Array and List). In the end a decoder uses attention models
to select relevant paths.

2.3 machine learning performance metrics

In the following section it is presented the notions of accuracy, precision, recall and f1. These
concepts are fundamental to understand some decisions and directions presented in the
fallowing chapters, namely regarding hyperparameter optimization.

The metrics are :

• Accuracy is the most known performance measure and it is the result of a ratio between
correctly predicted observation to the total observations. But it can be misleading if
there are not the same number of false positives and false negatives, so it is important
to explore other metrics;

• Precision refers to the ratio between correctly predicted positive observations and the
total predicted positive observations. This metric answers the question of from the
methods labeled as having a vulnerability, how much of them actually had one? A
high precision means a low occurrence of false positives;

2.3. Machine learning performance metrics 10

• Recall is often called sensitivity, it answers the question of, from the methods that
really had a vulnerability how many of them were labeled?;

• The f1 metric is the weighted average between precision and recall, this is the most
balanced meausure of all the presented since takes false positives and false negatives
into account. This metric is useful when there is uneven distribution in the dataset, in
the case, where there is not the a close number between vulnerable and not vulnerable
entries.

3

S TAT E O F T H E A RT

In this chapter, it will be presented the contextualization and state of the art.
The main spark that ignited the work in this thesis, and the work from specialists around

the world, is software vulnerability. It is necessary to understand the concept of vulnerability
and other main concepts related to them in order to understand all the methodologies
presented next.

3.1 vulnerabilities

A vulnerability is as a flaw or weakness in a system design, implementation, or operation
and management that could be exploited to violate the system’s security policy (Shirey,
2007a). These flaws might be system design, development, or operation errors and it’s
exploit can lead to harmful outcomes. This perspective of harm or loss of information is
normally called risk. Nowadays, these concepts have become common in any software
development process because with the presence of electronic devices running software in
almost every area of our society, there is the need to eliminate, or at least minimize, the
occurrence of situations that can risk the security of data or operations.

There are different types and classifications of vulnerabilities, provided by different
contributors. They expose discovered vulnerabilities, exploits, and solutions in online
databases 1. Even though there are many sources and knowledge about vulnerabilities,
exploits still occur.

OWASP 2 foundation, that works towards a more secure software development process,
has a list of the top tens security risks on software applications. Since one of the objectives
of this master thesis work is to correctly identify types of vulnerabilities using machine
learning models, first it is necessary to know them and understand how they use security
breaches to harm systems. The top 10 stands as follows, according to owasp top 10, 2017 :

1. Injection : occurs when malicious data is sent via a query, the attacker makes the
interpreter execute an unintended action;

1 https://cve.mitre.org/
2 https://owasp.org/www-project-top-ten/

11

3.1. Vulnerabilities 12

2. Broken Authentication : occurs when there is poor management of the authentication
process. This leads to the attacker be able to access the system with privileges that
should not have;

3. Sensitive Data Exposure : occurs when there is exposure of sensitive data, for example,
credit card information, that can lead to bank fraud;

4. XML External Entities (XXE) : occurs in applications that accept XML format to
transmit data. The problem arises from the possibility to add parameters in the XML,
that can have commands, like for example retrieve a certain password file;

5. Broken Access Control : occurs when there are flaws on the systems user permissions
that allow an attacker to access a certain resource that was on a different access level
than his;

6. Security Misconfiguration : occurs when there are errors on configurations such as
HTTP headers;

7. Cross-Site Scripting (XSS) : occurs when an application allows an attacker to inject
and execute scripts on the client side;

8. Insecure Deserialization : occurs when an attacker inserts non-validated input into
an application and is able to execute malicious code. This atack is often an entry point
to other attacks such as injections ;

9. Using Components with Known Vulnerabilities : this occurs when an application
uses components with known vulnerabilities such as libraries or Application Program-
ming Interface (API) ;

10. Insufficient Logging & Monitoring : occurs when there are low monitoring and
procedures to allow to identify the presence of an attacker in the application.

Since this top ten is intended to identify the most serious security risks on web applica-
tions, and it is important to know them in-depth in order to know how to identify them,
manually or automatically (on the presented work automatically), and even more realise
what consequences can they bring to the system. To accomplish that, it is presented a more
in-depth overview - Injection, Broken Authentication and Cross-Site Scripting (XSS). Also, as
from September of 2021 a new top ten was in peer review 3 and reveals a new organization
with the fall of Injection into the third place and also XSS was merged into injection. Also
new vulnerabilities appear as a proof that security related tools must always be on a constant
improve because new vulnerabilities and attacks are constantly being developed.

3 https://github.com/OWASP/Top10/

3.1. Vulnerabilities 13

3.1.1 Injection

Starting with injection, an injection attack refers to an attack where untrusted data is supplied
as input to a program. This input is then processed and changes the application’s expected
behaviour. Normally, this vulnerability is related to insufficient user input validation. Since
this is a well known and one of the oldest exploits, that has some automatic tools in order to
exploit without having much knowledge, makes this one of the most common and dangerous
vulnerability. There are many types of injections, namely Code injection, Email Header
Injection, Host Header Injection, Lightweight Directory Access Protocol (LDAP) injection, SQL
injection among others.

Next is shown an example for SQL injection, where an attacker sends 'OR 1=1-- instead
of a valid id, as shown in Figure 2. Without an input validation, this query will return all
data contained in the table in this case the table accounts.

Figure 2: Schema explaining injection.

3.1.2 Broken Authentication

Broken Authentication attack refers to an attack that overrides authentications methods that
are used by an application.

This vulnerability has a high risk of exploitability because it is fairly easy to create an
attack vector due to the many repositories with password combinations and penetration
tools such as Burp Suit4 even provided in some Linux distributions, namely Kali Linux5.
Since authentication is a part of almost every application there is a possibility that a
flaw in the system programming and design can occur and lead to a successful attack
by half of an attacker using manual, automated scan or a penetrating tool as referred
previously. Furthermore, this type of vulnerability can have a huge impact on the system,
since it is only necessary to break the authentication system for one specific user (such
as a root or administrator user). Once an attacker has access to this user, all the other
security mechanisms become useless because they can be bypassed by a successful broken

4 https://tools.kali.org/web-applications/burpsuite
5 https://www.kali.org/

3.1. Vulnerabilities 14

authentication exploit. There are many techniques that can be used to perform such attacks,
namely :

• Credentials stuffing : refers to an attack where a brute force method is used based
on a list of common passwords. Then via try error method, an attacker, attempts to
successfully login in a account ;

• Unhashed Passwords : refers to an attack where there are passwords being sent via
a network in plain text. Then an attacker can scan a network and extract passwords
from the intercepted requests ;

• Misconfigured Session Timeouts : refers to an attack where cookies or other session
storage are mishandled. Then an attacker can use, for example, a cookie, execute some
brute force process and get access to the system.

Next is presented a more in-depth example of Unhashed Passwords exploit. An attacker
(located on the same network than the victim) scans the network using a tool such as
wireshark, finding a vulnerable request using clear text submission of passwords - like seen in
Figure 3. He then uses the username and password to impersonate someone else and access
the system without having the privileges to do so. In order to prevent this vulnerability, the
system must not use clear text password, passwords should be sent hashed, but it could
not be enough since there are reports of phishing sites intercepting passwords before the
hashing process, but in this case, the protection must be done by the user by validating if
they are in fact using the original application/page and not a forged one (Ross et al., 2005).

Figure 3: Schema explaining broken authentication.

This vulnerability can be mitigated by the use of two-factor authentication, weak password
checkers, monitoring failed logins (in order to prevent brute force attacks), among others.

3.1. Vulnerabilities 15

3.1.3 Cross-Site Scripting (XSS)

XSS is a type of attack against web applications, it occurs by injecting code into the output
of an application that is then sent to a client/user. Normally is used to get access to sensitive
data by an attacker (Vogt et al., 2007). The attacker usually injects a malicious script into a
trusted website to access user data, take control of the browser and even take control of the
application.

There are different types of XSS, namely :

• Reflected XSS attack : Reflected XSS attacks are the simplest XSS attacks, in these, the
atacker passes a malicious script using a query, normally located within a link/url. This
link is sent to users through spam emails, social media, sms and other comunication
means. This attacks can be prevented in the client side.

• Persistent XSS attack : Also called stored XSS attacks, in this an attacker has to
identify a vulnerability in the application that allows to inject a script, for example a
input text box with no validation. This script is normally sent in a way that allows the
attacker to store it in some persistent way, namely in a database. This attacks can be
prevented in the client side but mainly there must be protection in the back-end.

• DOM-based XSS attack : the Document Object Model (DOM) definition is the data
representation of the objects that comprise the structure and content of a document
on the web6. In DOM-based XSS attacks data is written into the DOM. Attackers use
this method to add a malicious script to a webpage. This attack is not possible to be
prevented in the back-end because it only takes place in the client side.

Next it is presented a more detailed view over a persistent XSS attack 7. Imagine there is
an input text box with no validation in a web application blog where a user can make a post.
An attacker create a post with the following content:

<script>

window.location='http://atacker_domain.pt/?cookie='+document.cookie

</script>

The back-end receives this information that was supposed to be a post and then stores it
persistently in its database. Now, when another user opens this post, the script will run in
its browser, sending the current blog cookie in a post request to a domain controlled by the
attacker. Now the attacker will have the user cookie information, this allows the attacker to
impersonate a certain user and have access to information that is normally protected.

Web applications can be targeted with XSS attack regardless of the technology/language
used to build their back-end. In this Master Thesis the analysis is done only over Java code.

6 https://developer.mozilla.org/en-US/docs/Web/API/DocumentObjectModel/Introduction
7 https://www.stackhawk.com/blog/what-is-cross-site-scripting-xss/

3.2. Vulnerabilities identification 16

3.2 vulnerabilities identification

In many of these affected software development projects, there is no application of formal
and systematic methods to execute source code auditing and testing. Auditing can be
defined as the process of analyzing application code (in source or binary form) to uncover
vulnerabilities that attackers might exploit (Dowd et al., 2006). This process is important
because allows scanning the source code covering all the paths that normal testing might
not cover in order to try to detect possible vulnerabilities.

Having in mind the big issue in software development presented before - vulnerabilities
and how to detect them, there are many solutions that try to mitigate it.

Starting with the concept of defensive programming, that refers to the practice of coding
having in mind possible security problems that can occur (Chess and West, 2007). This is
clearly a good practice but one that does not solve the vulnerability related problems. Even
good and experienced programmers cannot know how to prevent all the exploits created for
certain API, library or other. Also, languages by construction were not built thinking on the
way an attacker would take advantage of certain nuances. Taking as an example, the buffer
overflow exploits, one the most common problem reported in vulnerabilities databases. This
can occur due to mishandling of inputs but in its core is allowed by the construction of the
language. Has it is easily confirmed by C or C++ that do not provide any built-in protection
against accessing or overwriting data in memory (Cowan et al., 1998).

Since good intentions and practices are not enough to solve this problem, there was the
need to apply and develop other more robust techniques that will be briefly presented next.

3.2.1 Static analysis for security testing

Static analysis methods are a resource for identifying logical, safety and also security
vulnerabilities in software systems. They are normally automatic analysis tools and intend
to avoid manual code inspections in order to save time and avoid the investment of resources
in manual tasks that could be fruitless (Pistoia et al., 2007).

The first static analysis tools were difficult to use and limited in the accuracy and depen-
dant of the used language. Currently, these tools evolved and are able to discover complex
bugs/errors and can parse almost every coding language. Even more, these tools have
integrated complex techniques such as code metrics, path analysis, semantic analysis, type
checking, between others. Semantic analysis (that is an important topic in this thesis), allows
the discovery of the basic structure and relation of the functions within the application
(Lopes et al., 2009). This context information can be very important to understand and
identify errors/bugs/vulnerabilities within code that require the knowledge of certain code
paths. This helps to predict the behaviour of the program.

3.2. Vulnerabilities identification 17

There are many tools in the market that provide Static Application Security Testing (SAST),
one in special the CxSAST developed by Checkmarx. The purpose of this tool is to detect
vulnerabilities in source code, and it follows a specifically created pipeline (Ferreira, 2019).
This tool does not need to build or compile a software project’s source code and it builds a
logical representation of the code’s elements and flows. Then this representation is used to
execute queries for known security vulnerabilities for each programming language 8.

There are clear advantages in using these tools, namely :

• To reduce the development costs by finding issues sooner in the development cycle;

• To discover code level problems;

• To keep code complexity low;

• To detect problems that manual verification can not, for example, buffer overflows.

But there are some evident problems such as they struggle to identify functional problems.
Even though static analysis tools do not identify all the code problems they allow testers to
worry about the functional problems having the guarantee that the dynamic tools verify the
rest.

3.2.2 Dynamic analysis for security testing

In order to find vulnerabilities, testing seems to be the easiest path to follow, and that is
what DAST , that stands for Dynamic Application Security Testing, is based on. In DAST, a
program is executed in real-time in order to test and evaluate it.

There are many tools in the market, for example, IBM Security AppScan Standard 9 that
scans applications, identifies vulnerabilities, and generates reports with fix recommendations.
So, their main objective is to find errors and vulnerabilities by repeatedly run applications
so that all the program scenarios are covered.

In DAST the tested software is seen as a black box, and the tools or person performing
the tests only interact with the application or software as users that have no knowledge of
it’s internal operations.

There are some advantages associated with dynamic analysis tools namely:

• To identify run-time vulnerabilities;

• To fix false positives given by SAST;

• To verify results from SAST;

8 https://checkmarx.atlassian.net/wiki/spaces/KC/pages/59211846/CxSAST+Overview
9 https://www.ibm.com/developerworks/library/se-scan/index.html

3.2. Vulnerabilities identification 18

• Low false positives;

• The ease to reproduce and consequently detect the program path that is causing a
vulnerability.

There are some identified disadvantages, such as the high consumption of time, because it
is required the execution of a big quantity of tests in order to cover different scenarios and
the possible inefficacy because testing might not cover all the possible cases of the software
execution. Then there is the increase in production costs because the high demand for testing
requires more man power to deal with it. And finally, these factors culminate in the increase
of the software’s final cost.

Regardless of these considerations, the success of this approach relies on a good choice
of what to measure and what type of tests to run (Ernst, 2003). This approach mitigates
security problems and it may be enough for some software pieces but this analysis may fail
to cover all the program paths because it relies on the given inputs and scenarios that the
tool/person feeds to the program or software.

3.2.3 Interactive analysis for security testing

Contrarily to DAST that looks at software pieces from the outside as a black box, IAST which
stands for Interactive Application Security Testing aims to find vulnerabilities by analysing
software from within such as SAST. But contrarily to SAST that works without running the
software and similarly to DAST, IAST executes the analysis with the software running.

IAST uses different instruments to monitor a running application in order to gather
information about the internal processes. These tools try to mitigate SAST’s and DAST’s
limitations, namely, identify the specific place where a bug/vulnerability is located and
lower the costs by integrating the monitoring at the beginning of the development pipeline
and not only when the software development is terminated. By running from the software’s
inside has leverage over DAST and allows testers to define what paths or functionalities to
cover, this can lead to misshandled bugs/vulnerabilities but if well thought can lead to gains
in time and work efficiency contrarily to SAST that has full coverage over the software.

There are some tools in the market such as Contrast Community Edition (CE) 10, that have
some identified advantages 11 such as :

• Low false positives : these tools can provide detailed information (code line location
or function’s names) that help testers to confirm the results;

• Instant Feedback : since the tool is scanning while the application is running, allows
testers to have instant access to the results of the tests;

10 https://www.contrastsecurity.com/contrast-community-edition
11 https://resources.whitesourcesoftware.com/blog-whitesource/iast-interactive-application-security-testing

3.3. FastScan 19

• Highly Scalable: easy deployment and the use and implementation is independent of
the project’s size;

• Moves the testing process to the beginning of Software Development Life Cycle
(SDLC): problems get caught earlier in the development which leads to fewer costs
and the guarantee of correctness in the entire software.

3.3 fastscan

FastScan lays down the foundation of this thesis. As referred in Chapter 1, code2seq and
code2vec were used as the base for the work.With this in mind, there were three different
approaches.

It will be mentioned one (code2vec approach) and there will be more focus on the other two
approaches because they were considered by the author as the ones with more contributing
and potential for future work - the code vectors for clustering and classifiers and code2seq
embedding. All the approaches were compared using three projects SecuritySheperd
12,WAVSEP 13 and WebGoat 14.

Starting with code2vec embedding, the main objective was to train a model capable to predict
if a method is vulnerable or not. There were made some modifications in code2vec to make a
custom labeling, the results were neither accurate nor promising (Ferreira, 2019).

In the second approach, there was a need to modify the default output of the code vectors
from code2vec. By default, it outputs the method name and it’s a vector but this is not enough
for the proposed solution because in the original solution there was no problem in having
different vectors for the same method name, but for the case study it is important to know
specifically to which method the vector belongs in order to correctly identify where the
vulnerability is located. So the author added a unique identifier, as well as a second output
file with other important metadata information - method’s filename, start line position in
the file, start column position in the file, end line and end column in the file.

So the next phase is the parser, it analyses the files generated by code2vec and XML
vulnerability report. In this process there are some important operations:

• Get information about vulnerabilities for each method: ID, name, vector, file name,
and line-span ;

• Get CxSAST XML report information : Name, query path, severity and path nodes ;

• Merge of both information, leading to a data structure that for each method has the
associated vulnerabilities ;

12 https://github.com/OWASP/SecurityShepherd
13 https://github.com/sectooladdict/wavsep
14 https://github.com/WebGoat/WebGoat

3.3. FastScan 20

All these operations culminate on the information being stored in a data structure and
written into a file that was used for experimentation. The previously explained steps are
simplified and represented in Figure 4.

Figure 4: Schema explaining code2vec approach.

Regarding experimentation, there were two approaches. The first was to use code vectors
to create clusters, there were two different types of clustering used, the hierarchical clustering
and K-Means clustering. This approach failed with the author concluding that the goal of
achieving a clear distinction between vulnerable and safe clusters is far from feasible. The
second was using machine learning classifiers. The input was the produced file of Figure 4,

3.3. FastScan 21

it was applied data balancing (for more details consult 4.3.3 from (Ferreira, 2019)) and then
60% of the methods were used in the training phase and 40% for accuracy testing. Then
there were produced twelve models, using twelve different classification algorithms. Next
are highlighted the ones the author classified has appropriated and that performed well :

• Gaussian Process: better accuracy for every dataset but resource-consuming and high
test time ;

• Neural Net : High accuracy and low test time ;

The conclusion was that the Gaussian Process algorithm would be the best fit for use cases
where the accuracy is absolutely crucial, but performance-wise, Neural Net would be the
best choice. Both these approaches had low accuracy rates, sitting at only 70 %.

Ferreira (2019)’s third and final attempt was code2seq embedding. This approach con-
sisted of altering code2seq instead of code2vec in order to train a model capable of predicting
if a method is vulnerable or not.

Within this approach, there were two different paths, one using CxSAST preprocessed
projects and another using the original projects.

In both cases (preprocessed and original projects) the modified code2seq preprocessor
has the vulnerability information and also it’s filename and line and column location and
outputs text files. Then these files go through a data balancing process (for more details
consult 4.3.3 from (Ferreira, 2019)) and are then used by code2seq to train and test different
models. The previously explained steps are simplified and represented in Figure 5.

3.3. FastScan 22

Figure 5: Schema explaining code2seq approach.

The process with the best results was the one using the original projects and not the
preprocessed output by CxSAST. Using the input and sink nodes as the method for classifi-
cation, the approach using code2seq (approach 3) had better accuracy results than the other
approaches and even better than CxSAST.

3.4. Other approaches 23

3.4 other approaches

There are many different machine learning techniques applied to vulnerability detection.
In Hovsepyan et al. 2012, each "word" in the source code is seen as a feature using the

bag-of-words technique to extract features and train an SVM model.
In Mou et al. 2014, the potential of deep learning was explored for program analysis by

encoding the nodes of the abstract syntax tree representations of source code and training a
tree-based convolutional neural network (CNN) for classification problems (Tanwar et al.,
2020).

In (Li et al., 2018), there was created the concept of code gadget - a number of (not
necessarily consecutive) lines of code that are semantically related to each other. It used
code gadgets to represent programs and then transform then into vectors. The performed
work was successful and more accurate when compared to other tools and even found 4

vulnerabilities in 3 software products that were not public but in fact, we’re patched in more
recent version.

In the work done in Briem et al. (2019), they have considered code embeddings which
represents the semantic structure of a code block alone for bug prediction. They use code
embeddings obtained by code2vec as a base to run a binary classification for off-by-one
errors using data created by mutation of comparator operators.

In (Coimbra et al., 2021), code2vec model was trained to identify methods as vulnerable or
not vulnerable with good accuracy and it was proven that the approach had potential and
could be a path for a vulnerability detection tool.

All these approaches have points in common namely the code representation of code
using vectors, the use of code2vec and the promising results. All of this information was
taken into consideration when thinking about the approach in Chapter 4.

4

P R O P O S E D A P P R O A C H

In this chapter, it is presented the system architecture and high-level representations, which
constitute the approach to reach the objectives in Chapter 1.

4.1 system architecture

In order to fulfil the objectives proposed in Chapter 1, it will be necessary to develop two
different solutions.

To accomplish the development of a specific model for each type of vulnerability, that is
capable to identify if code snippet has a vulnerability or not (Boolean model), it is proposed
to follow the architecture and flow presented in Figure 6. This approach is a refinement of
Ferreira’s work with code2seq.

It is essential to use CxSAST in order to obtain the input for the preprocessing - since
it converts several languages into a generic internal representation, allowing to create a
language independent tool (as long as there is a preprocessing tool that transforms the code
into the AST representation). Since the focus is on creating a model capable of identifying
certain vulnerabilities then it is necessary to filter CxSAST output in order to correctly
train the model. Then use code2seq normal pipeline in order to obtain a model able to
identify a specific vulnerability. The goal is to have at least a model for each of owasp top 2

vulnerabilities - Injection and XSS.

24

4.1. System Architecture 25

Figure 6: Schema explaining the first phase.

Having completed the first phase, it is necessary to develop a general model capable
of identifying if there are vulnerabilities and it’s type, given a code snippet. In order to
complete this objective it is proposed to follow the architecture and flow presented in Figure
7. It is proposed to use the previously trained models and combine them. This combination

4.1. System Architecture 26

might be done using ensemble technique or only by running code2seq testing phase in
parallel.

Figure 7: Schema explaining the second phase.

The developed pipeline will be deployed in University of Minho’s cluster1. This clus-
ter presented in Chapter 5 provides powerful hardware resources which maximize the
development, test and consequently the results.

1 http://www4.di.uminho.pt/search/pt/equipamento.htm

5

D E V E L O P M E N T

FastScan, described in Section 3.3, had promising results and showed the potential on using
machine learning for detecting vulnerabilities in source code having as a base the open
source project code2seq. Nevertheless, it left open for investigation some issues, namely the
ones that are a part of this thesis objectives, namely to tune code2seq parameters and to
develop a way to identify specific types of vulnerabilities in source code.

This chapter will describe the different phases that were explored during this Master
Thesis work. The first section will describe the datasets used in the different phases, the
hardware and technical details on which the experiments were made and the following
sections will detail the work done in each phase. Explaining the steps in each one, the
challenges, experiments and the obtained results for further analysis in the next chapter.

5.1 datasets

During the development of this project, two datasets were used, they are composed by the
aggregation of different projects and were grouped this way because of the time it were
received in the development.

The first dataset, dt01 is composed of 43 different projects. It contains the original source
code of these projects and the CxSAST XML report for each. All results in the report are true
positives, validated by humans. In total there are 2444 different entries with vulnerabilities
in all the CxSAST files. An entry, is considered the attack vector for a specific vulnerability,
each entry is a set of nodes with functions that are contained within a vulnerability. This
dataset was used in the training of the injection model with a total 418703 functions.

The second dataset dt02, is composed of 36 different projects. There is the original source
code and for each project there is an json file provided by Checkmarx and it is the output of
their static analysis tool CxSAST. Also, such as dt01, in dt02 all the results are true positives,
validated by humans. In total there are 3436 different entries with vulnerabilities of the type
XSS in all the dt02.

27

5.2. Hardware and technical details 28

5.2 hardware and technical details

In the previous work by (Ferreira, 2019), the low computational power was identified has
a major barrier and setback to the development. It became clear that the use of a regular
personal computer was not enough to achieve the desired results in the experiments of this
Master Thesis.

This barrier was overcame with the use of the University of Minho cluster 1. More
specifically using a node with the following specifications:

• CPU as seen in Figure 8:

– Intel® Xeon® Processor E5-2695 v2 ; 2

– twelve cores ;

– twenty four threads.

• RAM : 64 GB as seen in Figure 9 ;

• GPU : Two NVIDIA® TESLA® K20M . 3

Figure 8: CPU details.

Figure 9: Memory details.

There were problems installing all the needed dependencies to run new FastScan natively,
because of the security constraints in the cluster system. Namely, there were no root
permissions, so the installation of dependencies such as JAVA, python and it’s libraries were
a great technical obstacle. To overcome this, it was used docker. Docker presented a good

1 http://search6.di.uminho.pt
2 https://ark.intel.com/content/www/us/en/ark/products/75281/intel-xeon-processor-e5-2695-v2-30m-

cache-2-40-ghz.html
3 https://www.techpowerup.com/gpu-specs/tesla-k20m.c2029

5.3. First Phase 29

solution because it is consistent and makes all this installation process easy by using a base
image with JAVA and adding all the dependencies needed without further concerns.

It is important to notice that this solution was followed after the confirmation that there
was no significant overhead or performance loss introduced by the use of docker and that it
was a better solution than a virtual machine (Felter et al., 2015).

5.3 first phase

In this section is explained the first phase referred previously in Chapter 4. This phase works
dt01 out to output a trained model for a specific and predetermined vulnerability .

5.3.1 Data filtering

The objective of new Fastscan’s first phase is to create a model capable of detecting a specific
vulnerability, therefore it is required to filter the original dataset input data by vulnerability
type. So that it is possible to train a model to predict only a specific type of vulnerability.

Before knowing how it was achieved, it is important to understand the two different
components from the dataset:

• Source code files: These are the original files from several different projects;

• Result files: These are the files generated by the CxSAST from Checkmarx, in XML or
JSON format. There is one file for each scanned project, on which are registered the
vulnerabilities detected by the tool.

This filtering process was developed using python and aims to filter the XML or JSON files
of each project, to keep only the ones referring to the vulnerability for which it is desired
to train a model. It was developed a python program that is able to read and parse the
CxSAST result files and filter the vulnerabilities entries by the vulnerability name. It is not a
literal search, one can send arguments to the program with the range of words/strings to be
searched in the vulnerability name field of the vulnerabilities entries. In the end, the output
is a set of files only with the entries for a specific vulnerability and ready to be ingested in
the next step, the preprocessing.

5.3.2 Preprocessing

This step was not changed from the FastScan, but it is different from the original code2seq.
The preprocessing (which is performed on the train and test data) returns a file with the
dataset labeled and the AST that represents the input dataset. The source code files and

5.3. First Phase 30

XML files are parsed , in the preprocessing, which is built in Java. There is the creation of
the AST from the input of the source code files and this was not modified from the original
code2seq. But there is another step required to obtain the label for each method, the parsing
of the XML or JSON files.

It is also performed the parsing from the XML or JSON file. In this step it is relevant
to refer that the vulnerabilities metadata registered in the file is stored. This metadata is
constituted by the name of the vulnerability, the start and end line and column in the file
and also the filename and path within the project.

In the parsing stage of the source code used to train and test the models, each method
in the source code files is analysed and transformed into its AST representation, then it is
verified if the method is marked as vulnerable in the XML or JSON files, depending of the
dataset.

This is achieved by comparing the file name and path within the project with the informa-
tion that is stored in the result of the XML/JSON. Then it is registered the presence or not of
vulnerabilities, with a boolean.

This combination of the parsing of the XML/JSON (with the CxSAST report) and the
original source code leads to the output of the preprocessing, that is constituted by a text file
that has a line for each method, on which the first element is the label (boolean) indicating
the presence of vulnerabilities followed by the AST paths.

On the original code2seq preprocessing, in the output file the first entry was the function’s
name - the first entry is the label that will be used in the training phase. But New Fastscan
preprocessing was modified in order to make the first entry of each line a boolean that
indicates the presence or not of a vulnerability in the method. This change was enough to
modify the prediction of the model obtained in the next training phase, since the training is
now gonna be done with the boolean has the prediction label instead of the previous string
that was the method name.

5.3.3 Hyperparameter optimization

This step was important to tackle a problem detected in FastScan, without the optimization
of the hyperparameters the final model performance might not be the best possible Ferreira
(2019).

As explained previously in Section 2.3, there are different metrics and f1 was presented as
the best metric to take into account for this work.

In order to obtain the best f1 metric, it was used wandb4 - It is a python library, used to
monitor, compare, optimize and visualize machine learning experiments. It can be integrated
with many frameworks including tensorflow (the python library used in the training) and it

4 https://wandb.ai/site

5.3. First Phase 31

was of great importance in the development of this work. It implements different search
methods in order to obtain the best parameters to increase a specific evaluation metric. This
library allowed to solve the hyperparameter tuning which is a very complicated problem
that normally requires experience in the field and complicated algorithms Snoek et al. (2012).

This library allowed the optimization of the models hyperparameters for a specific dataset
by using sweeps that allow to find a set of hyperparameters with optimal performance and
apply different methods to do so, such as grid, random and Bayesian 5. It also allows to
visualize performance and time metrics from the experiments, that can be consulted in
section 6.1.

The chosen method was the Bayesian method because it guaranteed the best possible
combination without compromising time and performance. There were other methods such
as random search where the parameters are being chosen randomly from a specific range -
this method could be even faster but it would not guarantee the best hyperparameters since
it does not cover all the combinations and it does not have a method to improve its results.
Other method could be the grid search, in this method all the possible hyperparameter
combinations are tested, in this case it would be of great time and processing cost given the
number of hyperparameters.

The library applies the Bayesian method by building a probabilistic model that maps the
value of each hyperparameters with the values to optimize - that could be accuracy, f1 and
precision. Each hyperparameter value used in the algorithm iteration and the obtained
results are taken into account into the next iterations. This way the search for the best
hyperparameters is faster because it is being guided by the previous experiences.

5.3.4 Training

This step refers to the effective training and production of the models. It is important to get
to know more about the models architecture, why it was used originally in code2seq and the
advantages over other approaches.

First, a simple Recurrent Neural Network (RNN) cell is not enough to process sequential
data (as is the data input as a AST), so when dealing with data represented in sequences it
is necessary to connect multiple cells in sequence allowing each cell to send its output to the
next, so each cell as in account the previous states.

Furthermore, the model follows the encoder-decoder architecture, on the encoding phase
the model takes the input AST and transforms it in a compact representation of each AST
path. Then the decoder receives the compact representation and generates the output, in
the NewFastScan case a boolean (codes2seq case was a sequence). With the detail, that are
used attention mechanism. Namely, for each step in the decoding phase the previous results

5 https://docs.wandb.ai/guides/sweeps

5.4. Second Phase 32

from other cells are taken into consideration, more specifically the context vector (calculated
by joining the hidden state (which encodes not a prediction but some information about
the sequence that can help in the prediction) and the output of the previous cells) and the
decoding state.

This architecture was used because it is proven to perform when dealing with the input of
large sequences, also to model long-range dependencies (as it may be the case of vulnerabili-
ties that start and end in different function) and also because of the recommendation and
results obtained in FastScan (Ferreira, 2019).

The main disadvantages might be the excess of complexity of the cells, the training
requires high resources and data size and the prone to occur overfiting and the difficulty to
solve such problem even using dropout algorithms.

All of the previous was not developed or changed, it is presented because it was studied
to give context and allow a better understanding of the project. In practise, the training is
performed the same way has in the original code2seq, relying on the developed approach
that uses tensorflow in order to perform all the process.

5.4 second phase

This section describes the developed work regarding the second phase approach proposed
previously in section 4. After having two different models trained using the previously
described approach for the first phase, the second phase was started.

The architecture from the proposed approach in section 4 was refined since the presented
before was only a conceptual idea that needed more work and detail.

Firstly, there was the creation of a python controller that is responsible for receiving the
project files transform them into the AST representation through preprocessing. Then launch
the parallel scans for each of the previously trained model using the methods described in
Section 6.

Then the prediction output was changed in order to not only output the presence of a
certain type of vulnerability but also the function name, filename and file location (begin
and end line). This was possible due to changes in the preprocessing, more than simply
outputting the AST representation, the preprocessing also outputs meta information about
each function that was transformed. This metadata is consulted and merged into the final
predictions, allowing the New Fastscan to output a more complete and useful output.

This changes were important because many projects have functions with the same name,
this way, after the scan one can precisely identify where vulnerabilities occur. The conceptual
final schema is represented in Figure 10.

5.4. Second Phase 33

Figure 10: Schema explaining second phase.

6

R E S U LT S

6.1 first phase

In this section will be presented the obtained results. The presented results were obtained
using different datasets and the training was performed to target different types of vulnera-
bilities.

Injection results

For this experiment was used dt01 because it had more entries for the injection type and
was the first dataset available to work on. Only the unknown part of the dataset was used
in order to effectively test the models, the division was by number of projects, 75% for
training (33 projects) and the rest for validation and testing (10 projects). First, in the data
filtering step it was applied the filter of injection, in order to filter the results for this specific
vulnerability so that it is possible to train the model only to identify injection vulnerabilities.
Then, the preprocessing was applied to the source code and the filtered XML file obtaining
the preprocessed input to train and test the final model.

The next phase was the hyperparameter optimization. Firstly it was attempted to run the
script to obtain the best parameters that maximize precision. After analysing the results in
table 1 it was observed that it was possible to obtain a really high precision but at the cost of
very low recall.

A model with high precision but low recall returns a low count of results, but most of the
predicted labels are correct when compared to the training labels, on the other hand a model
with high recall but low precision returns a high count of results, but most of the predicted
labels are incorrect when compared to the training labels. After this consideration it was
clear that a vulnerability prediction system must have a balance between both because it is
important to correctly identify a vulnerability but it is also important not to overlook one.
This balance can be obtained by using the f1 metric, f1 is a weighted mean of the precision
and recall and being so if in the optimization is focused in optimize the f1 value then it is
guaranteed the balance it is searched between precision and recall as seen in equation 1 .

34

6.1. First Phase 35

f 1 = 2 ∗ precision ∗ recall/precision + recall (1)

After this, the model was trained using the best hyperparameters, as seen in Table 1.

Table 1: Best Hyperparameter for dt01
BATCH_SIZE BEAM_WIDTH BIRNN CSV_BUFFER_SIZE
127 0 true 104857600

DATA_NUM_CONTEXTS DECODER_SIZE EMBEDDINGS_DROPOUT_KEEP_PROB EMBEDDINGS_SIZE
0 302 0.4162172547338106 193

MAX_CONTEXTS MAX_NAME_PARTS MAX_PATH_LENGTH MAX_TARGET_PARTS
234 8 10 6

NUM_DECODER_LAYERS NUM_EPOCHS PATIENCE RANDOM_CONTEXTS
1 3000 4 true
READER_NUM_PARALLEL_BATCHES RELEASE RNN_DROPOUT_KEEP_PROB RNN_SIZE
1 false 0.7488847205115016 256

SAVE_EVERY_EPOCHS SHUFFLE_BUFFER_SIZE SUBTOKENS_VOCAB_MAX_SIZE TEST_BATCH_SIZE
1 10000 151701 256

TARGET_VOCAB_MAX_SIZE
27000

The final model for injection using the dt01 dataset had 85% of accuracy, 90% of precision,
97% of recall leading to an f1 of 93% and it was achieved in the first epoch as seen in figure
11, after this the model training leads to the increase of precision but with the lowering of
recall values and therefore a lower f1 value.

Figure 11: Injection model evaluation.

6.1. First Phase 36

Regarding dt01 and this model trained for injection, it took 38 minutes to transform the
datasets functions into their AST representation and 20 minutes to obtain the trained model
as seen in Table 2.

dt01

Number of functions 418703

Preprocessing time (min) ∼38

Training time (min) ∼20

Vulnerability type Injection

Table 2: dt01 details.

XSS results

For the training of the model to predict XSS vulnerabilities was used the dt02 because it had
more entries for this type of vulnerability. Sames as in dt01 only the unknown part of the
dataset was used and the division was by number of projects, 75% for training (27 projects)
and the rest for validation and testing (9 projects).

The followed process was similar to the described previously for injection. First in the data
filtering step, it was applied the filter of XSS, in order to filter the results for this specific
vulnerability so that it is possible to train the model only to identify XSS vulnerabilities.

Since the results provided by the CxSAST were in JSON format instead of XML, the
preprocessing had to be modified to accept the new format. This was achieved by creating a
new parser for the JSON in order to retrieve the desired information. Then the preprocessing
was applied to the the source code and the filtered JSON file obtaining the preprocessed
input to train and test the final model.

After this, the same process as described previously was done using wandb and the
baeysian optimization in order to obtain the best hyperparameters, that are described in
Table 3.

Table 3: Best Hyperparameter for dt02
BATCH_SIZE BEAM_WIDTH BIRNN CSV_BUFFER_SIZE
101 0 TRUE 104857600

DATA_NUM_CONTEXTS DECODER_SIZE EMBEDDINGS_DROPOUT_KEEP_PROB EMBEDDINGS_SIZE
0 334 0.7169372952597639 127

MAX_CONTEXTS MAX_NAME_PARTS MAX_PATH_LENGTH MAX_TARGET_PARTS
113 9 11 6

NUM_DECODER_LAYERS NUM_EPOCHS PATIENCE RANDOM_CONTEXTS
1 3000 4 true
READER_NUM_PARALLEL_BATCHES RELEASE RNN_DROPOUT_KEEP_PROB RNN_SIZE
1 false 0.43619669604507155 256

SAVE_EVERY_EPOCHS SHUFFLE_BUFFER_SIZE SUBTOKENS_VOCAB_MAX_SIZE TEST_BATCH_SIZE
1 10000 231267 256

TARGET_VOCAB_MAX_SIZE
27000

6.2. Second Phase 37

Then taking the best hyperparameters obtained by using the University of Minho Search
cluster running successive attempts using the wandb bayesian implementation, the training
was performed obtaining the following results performed in the dataset that contained 48303

functions. The results are presented in Figure 12, and the best score was obtained in the
ninth epoch with 93% of f1.

Figure 12: XSS model evaluation.

Regarding dt02 and this model trained for XSS, it took twelve minutes to transform the
datasets functions into their AST representation and ten minutes to obtain the trained model
as seen in Table 4.

dt02

Number of functions 48303

Preprocessing time (min) ∼12

Training time (min) ∼10

Vulnerability type XSS

Table 4: dt02 details.

6.2 second phase

In the second phase there were made some tests both in the Injection and XSS models using
previously unknown datasets for the models.

6.2. Second Phase 38

To conduct the tests, the input project files are given to the python controller which then
preprocesses them and launches each model obtaining at the end a file with the results.

As dataset were used small examples with known vulnerabilities, provided by Checkmarx.
During these tests appeared the suspicion that the models were not performed as observed
in training, because the models were not able to detect the vulnerabilities or would rarely
detect them.

So, these tests allowed to confirm that the developed architecture explained in Chapter 6.2
was indeed working but also to detect a problem/anomaly in the models.

In order to confirm or dismiss this suspicious, it was clear the need for a deeper, more
precise testing . Namely, one that would allow to measure the results with the same measures
as in the training phase.

To do so it was used the opensource project Lucee4
1 and the CxSAST scan results that on

determined version from 26204 functions had 6 injection vulnerabilities. This project was
scanned by the injection model and detected three out of six vulnerabilities but had a really
high rate of false positives as seen in Table 5.

This test was performed to evaluate the model’s behaviour in a project with low vulner-
ability count. Given that, a low vulnerability count project requires a model with good
performance to correctly predict the presence of vulnerabilities.

Lucee4 project
Number of functions 26204

Number of injection vulnerable methods 6

True positives 3

False Positives 1326

True Negatives 24872

False Negatives 3

Table 5: Lucee4 project details.

As seen in Table 5, these were the obtained results. Taking these results and applying the
previously referred metrics (accuracy, precision, f1 and recall) it was obtained :

• Accuracy = (TP + TN) / (TP + TN + FP + FN) = (24872 + 3)/26204 ∼ 0,949

• Recall = (TP) / (TP + FN) = (3)/6 = 0,5

• Precision = (TP) / (TP + FP) = (3)/6+1326 ∼ 0

• F1 = = 2TP / (2TP + FP + FN) = 6/6+1326 ∼ 0

These metrics show that the model is much better in the training and testing set than
in an external validation dataset, this means that the model might memorized training

1 https://github.com/lucee/Lucee4

6.3. Webgoat Test 39

examples and adapted in order to respond effectively to the training data. This leads to a
great performance over the training data and a poor response when facing new data, the
model is not capable of generalize to the unseen example and so fails to make accurate
predictions. This behaviour of fitting the training data too well is known as over-fitting,
basically the neural network during the training period does not improve its ability to make
a prediction anymore, instead it learns some random pattern contained in the set of training
patterns allowing it to have a good performance within the training data (Jabbar and Khan,
2015).

In order to prevent and solve this behaviour there are some solutions, namely :

• More data : With millions of training examples, it is very unlikely that a model over-
fits. It would have to memorize too many training examples and also it will not see the
same example many times because there are many more than previously. This could
be a viable solution since it is recognized that the amount of data might not be enough
for the proposed task of predicting vulnerabilities;

• Early stopping : Stopping the training earlier could be a solution, but it is a difficult
one to do, since it is not easy to decide when is the right time to stop the training
only by observation of the learning curve. It could be a solution since the training
was super optimized for the dataset by the hyperparameter phase and also it was not
stopped, it only stopped after 5 epochs of not achieving any improvements;

• Smaller model : A smaller model with a less complex architecture and less layers
can lead to a model that will not be as prone to memorize examples. It is a more
complicated solution, since the model’s architecture is based on code2seq Long Short-
Term Memory. And to drop and develop a new architecture would be almost discard
all of of the presented and developed work.

6.3 webgoat test

In this section is presented the test performed in order to confirm if it was possible to get
valid results from both XSS and Injection vulnerabilities. For that it was used the wegoat
project dataset2 since it has multiple examples of both vulnerabilities.

Firstly the CxSAST was used to obtain the results in order to make a comparison with the
results obtained by the models, such results were not human validated.

Then the Webgoat project was inputed into the NewFastScan, that runned the pipeline, first
preprocessing the inputed java code and then passing it into the Injection and XSS models
to obtain their previsions.

2 https://github.com/WebGoat/WebGoat

6.3. Webgoat Test 40

NewFastScan marked 150 vulnerabilities and CxSAST found 70. NewFastScan marked more
methods as vulnerable, so a more in depth analysis was performed to evaluate and compare
the results between both engines.

Taking CxSAST results has the metric there were 130 false positives and 20 true positives
(summary can be found in Table 6). All of the results were checked by using python scripts
to compare both results file in order to confirm that the 20 true positives were in fact present
on both result files. Then the code of all the false negatives was manually checked to
verify if there was any entry that could be a vulnerability that CxSAST did not marked and
NewFastScan did.

It was concluded that there was only one result that was consensual to be marked as a
true positive from the 130, and it was of the type XSS. This was the only result found by
NewFastScan that was not in the CxSAST results that was considered vulnerable.

WebGoat project True Positives False Positives
CxSAST 70 -
NewFastScan 20 130

Table 6: Webgoat results summary

This test was of the uttermost importance because it proved the initial concept that this
approach could allow to identify different vulnerabilities in a single project and also showed
that with an improved model there might be the identification of vulnerabilities missed by a
SAST tool.

7

U S E R I N T E R FA C E

This chapter intends to present the developed user interface and the approach the reasons,
objectives and architecture behind it. Also it is intended to demonstrate the functionality
and design.

The User Interface (UI) was developed with the main goal to create a way to visualize the
results of scanning a project. It was intended to create a workflow that allowed users to
upload JAVA project files and obtain and inspect the positive results.

7.1 architecture

The UI was built using a monolithic architecture since it was intended to be a proof of concept
(Gos and Zabierowski, 2020). This architecture was chosen to focus on the functionalities
rather than on scalability and high performance. Mainly it was intended to show the
potentialities - the creation of a powerful tool based on the trained models as for example a
web application or a open API that could be used by other services/clients. Also to allow a
better analysis of the model’s results, better than the manual analysis from a file containing
predictions (which was the output of the second phase referred in section 6.2).

The chosen technology for the back-end development was django, it was chosen because it
was considered the best fit regarding this case because all of the previous work was done in
python, so using a python framework made sense since it allowed to better integrate all of
the previous work namely regarding the preprocessing and also the predictions.

The chosen technology for the front-end was reactJS because it is a well proven, with much
support and with good performance tool. Also because of the previous knowledge and
experience in academic and professional level, which was a big factor since it allowed a
faster development.

7.1.1 Back-end

Regarding the back-end there were two main tasks :

41

7.1. Architecture 42

• To develop the API using django, that allows a client to send JAVA project files and get
as response the results for each function in the project ;

• To adapt and integrate the prediction and preprocessing scripts developed in the
second phase (Section 6.2) with the developed API.

Referring to the prediction script the task consisted in adapting it from the previous
developed simple python script that received arguments from the terminal to a class that had
a main method and constructor in order to be imported and declared in the API.

The following routes developed in the API were :

• /results/files/:projectName : this route receives post request with a body field named
project which must contain the project files. This field must exist and contain a zip
file in order to be a valid request. Once a valid request is received the API calls the
preprocessing and then feeds the models by launching a thread for each model to
make the predictions for each function (as explained in Section 6.2). Also there is the
parameter projectName which is meant to indicate the project name the user wants to
give to the uploaded files, this name is not used for storage purpose because of safety
and to prevent duplicate locations. Before a scan is started it is created a directory
(randomly generated) on which all of the information regarding an uploaded project
is stored - preprocessing result and scan results, both in files. Next it is presented a
sample result output, in order to show the structure of the JSON response :

1 [

2 {

3 "function_name": "on_update",

4 "filename": "/api/project_files/01fe8784-0b73-4746-9e30-3330603c8756/servlet/Lucee

5 Servlet.java",

6 "begin_line": "37",

7 "end_line": "44",

8 "type": "Injection",

9 "prediction": "true"

10 }

11]

• /results/code/ : this route receives a post request with a body field named path, this
variable must contain the relative path to a specific file. This route is important so that
it is possible for the front-end to show where a vulnerability occurs in the source code.
This route returns the content of the file that was sent in the body field.

7.1. Architecture 43

7.1.2 Front-end

Regarding the front-end there were the following tasks :

• To create a design for the interface, this task resulted in the development of the
following mockups :

Figure 13: Home page design.

Figure 14: Preprocessing consult design.

7.1. Architecture 44

Figure 15: Results list design.

Figure 16: Code result visualization design.

7.1. Architecture 45

The mockups were made in order to make the development process faster and consis-
tent with the initial concept and idea. It was made a draft for the home page where
it was idealized to be possible to load a project as seen in Figure 13. Then a page
to visualize and download the preprocessing result (which was considered an over
achievement and it was removed in the development phase, because most users will
not be interested in such information) as seen in Figure 14. Followed by a page to
visualize all the scanned functions from the project (Figure 15), its results and a way to
visualize them inside the application (Figure 16).

This development was achieved by using figma 1, wich is a platform that allows web
and mobile design and prototyping of applications.

• To transform the mockups into the interface in the reactJS. It was chosen the react
hooks approach instead of the more classical components. Mainly because it is the
most recent paradigm in reactJS that enable a functional programming approach that
makes code easier to understand, test and because of previous experiences. In order
to simplify the creation of the visual elements it was used the library material-ui 2,
only applying different styling and minor modifications to apply the design from the
mockups.

7.1.3 Installation and general overview

So that the application can be installed in a testing machine it is necessary to take into
account the need for a web server, nginx is a good option since it is simple and efficient
provider.

Also it is necessary to build the reactJS project (tranform the JSX code and assets into a
static page using the automatic process built into reactJS) and to install and configure uWSGI
with nginx in order to serve the API that was built in django.

Taking the previously explained into account it is possible to get a better perception and
visualise the complete stack in Figure 17. Also it is possible to understand where each
technology is located, their main task and also the data flow between them.

1 https://www.figma.com/
2 https://material-ui.com/pt/

7.2. Functionalities 46

Figure 17: Schema explaining the interface web application.

7.2 functionalities

In this section it will be presented the developed functionalities and the final visual result
in order to prove that the mockups were indeed useful and took a key part in the fast and
accomplished development.

The functionalities developed in this prototype interface were :

• To load and upload JAVA project files in zip format ;

• To consult the positive scan results for XSS and injection.

• To view the vulnerability code location in the files.

7.2. Functionalities 47

7.2.1 Load and upload JAVA project files

In the home page it is possible to introduce the desired name for the project, then to load
the project files in zip format as seen in Figure 18. At this stage the "Analysis" and "Back"
buttons are locked.

Figure 18: Final Interface homepage.

Once the project name and files are uploaded then the "Analysis" button is unlocked as
seen in Figure 19.

7.2. Functionalities 48

Figure 19: Final Interface load project.

Then it is possible to click "Analysis", when clicking this button the request is sent to the
Back-end and the user must await until the scan is completed as seen in Figure 22.

Figure 20: Final Interface scanning project.

7.2. Functionalities 49

7.2.2 Scan results

After following the steps presented in Section 7.2.1, it is possible to view the results in two
ways. First in table (depicted in Figure 21) where it is possible to filter and order by all the
fields, which are the function name, function location in the project files, the begin, end line
and also the model’s prediction.

Figure 21: Final Interface results table .

For each entry of the table it is possible to preview the file where the entry is located, with
the highlight of the begin and end line as seen in Figure 22.

7.2. Functionalities 50

Figure 22: Final Interface code view.

8

C O N C L U S I O N

This chapter is intended to close the master thesis, summarising the document, outcomes
reached and a reflection over them.

The first chapter contains the motivation, objectives, research methodology and presents
the document organization of the master thesis.

The second chapter contains some key background concepts that must be presented in
order to follow the presented work.

The third chapter is a literature review on vulnerability detection. The outcomes of the
reported stage provided the foundations for the proposed approach.

The fourth chapter presents and discusses the working proposal with a general system
architecture presentation which was made on the early stages of the master thesis.

The fifth chapter explains the development and includes the presentation of the dataset
used for training as well as describes the hardware details and stages of the different phases.

The sixth chapter analyzes the results of each phase and also the general test of both
models.

The seventh chapter present in depth the work performed in the interface. Finally the
eighth chapter presents the different use cases for the developed work as well as conclusions
and future work.

8.1 discussion

Taking into account the results from the first phase, it becomes clear that the hyperparameter
optimization has improved the results in the increase the precision and the other metrics.
Also the train only for a specific vulnerability might as well have an influence since the train
for a more strict purpose is more effective, namely in this case. While Fastscan attempts to
predict the presence of many types of vulnerabilities, new Fastscan aims at creating models
to predict a single type of vulnerability, gathering the parts into a global analyzer in a final
system.

51

8.2. Possible Applications 52

Furthermore it was confirmed that when code2seq models are trained to classify methods
as vulnerable or not vulnerable, the Bidirectional Long Short-Term Memory (BiLSTM) neural
networks (that is the technology behind code2seq project), can perform the task of detecting
vulnerabilities in source code with good accuracy and performance.

Even with the use of powerful hardware is still a slow process to train, optimize the
hyperparameter for the data and add new models to the NewFastScan. Also the lack of data
for training might be a drawback. The same is applied to the prediction, on which the time
performance is directly related to hardware computational power.

Regarding the second phase, the cross testing lead to the detection of overffiting mainly
caused by the low volume of data. This is a hard problem to solve, since it is not easy to
get a great volume of validated and relevant vulnerabilities entries but a solution will be
explored in the next section.

Also, it is important to highlight the effort that was done in the adaptation and installation
of algorithms and programs to run the system in parallel platform offered by the SEARCH
cluster available in the Informatic Department of University of Minho to be possible to train,
tune and test the models in acceptable time.

The original hypothesis to develop a specific model for each type of vulnerability and
then join them into a system that allows to scan a project for these different vulnerabilities
was achieved as explained in Section 6.2,.

The test performed in section 6.3 was an important step to prove that the concept initially
presented, of being able to use this system to detect different vulnerabilities in a single
project, is possible and was achieved even though the results accuracy still must be improved
in order to make NewFastScan a viable alternative.

This thesis main contributions are the changes performed in the preprocessing and
prevision stages, XSS and injection models as well as the architecture, developed in the
second phase, that allows to use them together. Also the interface and the back-end that,
relies on the work performed in the second phase, and allows a better interaction and
result visualization of the models prediction. Also a paper was published with some of the
intermediate results and conclusions from the presented Master Thesis (Baptista et al., 2021).

8.2 possible applications

In this section are approached the different applications envisioned for the developed work.
Some of these applications for the New FastScan might be :

• A stand-alone application : After improving the proposed architecture in Chapter 7

in order to allow a better response in terms of volume and response time. It would
be possible to make available a platform were users could scan and inspect their code
in order to detect the presence of vulnerabilities of a certain type. This could be very

8.3. Future Work 53

helpful when used by companies which do not usually use scanning tools or even as
a first scan before applying a specific analysis tool or technique, in this way certain
vulnerabilities might be detected and eliminated earlier;

• Reduce the SAST input : To integrate it in the earliest stage of a SAST pipeline. This
would allow it to act as a filter, specially in large projects, turning millions of lines of
code in less, only sending the positive results for further confirmation and analysis
by the SAST. This would result in an improved performance of the SAST, since the
smaller the input the faster it obtains the results.Applying this model as a scanner that
verifies projects before it goes through a SAST, other tool or manual verification could
represent a great improve in terms of spent time, processing and manual work since it
could eliminate the projects without vulnerabilities from further scanning. Comparing
to the traditional tools this approach requires less results verification and promises
better accuracy;

• Confirm the results from an analysis technique: After an analysis is done, it could
be usefull to run the same project in another scanning tool in order to confirm or
even detect new vulnerabilities. So, the idea of integrating this tool with others in
such way that there is the possibility to scan a project only looking for some specific
functions or code portions. This would be something of great interest since it would
be a "lightweight" step because the scan would be only done in a small set of code
portions wich in normal cases would not be such a lengthy scan as scanning the entire
project files ;

• A plugin : There are many different platforms were this could be implemented namely
in github 1 or in a Integrated Development Environment (IDE). The idea would be to
reuse and improve the developed API and create services as plugins that automatically
scan the code in this platforms and alert the users for the possibility of the presence
of vulnerabilities in their code. This could have a great impact since user would not
have to upload their code to any tool and wait for results, it could be useful to act as a
prevention by developers.

8.3 future work

During the duration of research and development of this Master Thesis other interesting
ideas came up, that were not explored due to the context and the available time. Still it is
important to refer and leave them registered for potential further investigation. Next, it
presented some of those ideas and proposals :

1 https://github.com/

8.3. Future Work 54

• To train more models in order to predict different vulnerabilities and then integrate
them into NewFastScan ;

• To extend compatibility to other languages. For that it is necessary to retrain the
models with examples from such languages and also create a preprocessing for such
languages ;

• To improve the interface architecture in order to make the application usable in real
scenarios, more efficient and secure ;

• To solve the overffiting detected on the late stages of development. For that different
techniques might be applied such as early stopping, regularization or even change
the model’s architecture (this one might not be the best approach since the code2seq
type model is proven to have good performance in this kind of prediction). Also more
external data could help to solve the problem, for instance using different datasets 2;

• To create a mechanism, using the interface, where a user can review the predictions
made by the model and then learn from those feedbacks in order to improve its
predictions. This could also be used in order to correct the previously referred
overffiting ;

• To evaluate the possible gains of using balanced datasets, since it is still a matter of
debate when it comes to training models for vulnerability identification;

• To investigate if there is the possibility to reduce the computational cost with the mix
of traditional and machine learning techniques.

2 https://tqrg.github.io/secbench/

B I B L I O G R A P H Y

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from
structured representations of code. arXiv preprint arXiv:1808.01400, 2018.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning distributed
representations of code. Proceedings of the ACM on Programming Languages, 3(POPL):
1–29, 2019.

Tiago Baptista, Nuno Oliveira, and Pedro Rangel Henriques. Using Machine Learning for
Vulnerability Detection and Classification. In Ricardo Queirós, Mário Pinto, Alberto
Simões, Filipe Portela, and Maria João Pereira, editors, 10th Symposium on Languages,
Applications and Technologies (SLATE 2021), volume 94 of Open Access Series in Informatics
(OASIcs), pages 14:1–14:14, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. ISBN 978-3-95977-202-0. doi: 10.4230/OASIcs.SLATE.2021.14.
URL https://drops.dagstuhl.de/opus/volltexte/2021/14431.

Jón Arnar Briem, Jordi Smit, Hendrig Sellik, and Pavel Rapoport. Using distributed repre-
sentation of code for bug detection. arXiv preprint arXiv:1911.12863, 2019.

E Burns and W Groove. Research method. Ergonomics, 32(3):237–248, 2014.

Philip K Chan and Richard P Lippmann. Machine learning for computer security. Journal of
Machine Learning Research, 7(Dec):2669–2672, 2006.

Brian Chess and Gary McGraw. Static analysis for security. IEEE security & privacy, 2(6):
76–79, 2004.

Brian Chess and Jacob West. Secure programming with static analysis. Pearson Education, 2007.

Kenneth Ward Church. Word2vec. Natural Language Engineering, 23(1):155–162, 2017.

David Coimbra, Sofia Reis, Rui Abreu, Corina Păsăreanu, and Hakan Erdogmus. On using
distributed representations of source code for the detection of c security vulnerabilities.
arXiv preprint arXiv:2106.01367, 2021.

Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beattie, Aaron
Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks. In USENIX security symposium,
volume 98, pages 63–78. San Antonio, TX, 1998.

55

https://drops.dagstuhl.de/opus/volltexte/2021/14431

BIBLIOGRAPHY 56

Mark Dowd, John McDonald, and Justin Schuh. The art of software security assessment:
Identifying and preventing software vulnerabilities. Pearson Education, 2006.

Michael D Ernst. Static and dynamic analysis: Synergy and duality. In WODA 2003: ICSE
Workshop on Dynamic Analysis, pages 24–27, 2003.

Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated performance
comparison of virtual machines and linux containers. In 2015 IEEE international sym-
posium on performance analysis of systems and software (ISPASS), pages 171–172. IEEE,
2015.

Samuel Gonçalves Ferreira. Vulnerabilities fast scan - tackling sast performance issues with
machine learning. Master’s thesis, University of Minho, 2019.

Konrad Gos and Wojciech Zabierowski. The comparison of microservice and monolithic
architecture. In 2020 IEEE XVIth International Conference on the Perspective Technologies
and Methods in MEMS Design (MEMSTECH), pages 150–153. IEEE, 2020.

Alan R Hevner. A three cycle view of design science research. Scandinavian journal of
information systems, 19(2):4, 2007.

Aram Hovsepyan, Riccardo Scandariato, Wouter Joosen, and James Walden. Software vul-
nerability prediction using text analysis techniques. In Proceedings of the 4th international
workshop on Security measurements and metrics, pages 7–10, 2012.

H Jabbar and Rafiqul Zaman Khan. Methods to avoid over-fitting and under-fitting in
supervised machine learning (comparative study). Computer Science, Communication and
Instrumentation Devices, pages 163–172, 2015.

Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives, and prospects.
Science, 349(6245):255–260, 2015.

Jey Han Lau and Timothy Baldwin. An empirical evaluation of doc2vec with practical
insights into document embedding generation. arXiv preprint arXiv:1607.05368, 2016.

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and
Yuyi Zhong. Vuldeepecker: A deep learning-based system for vulnerability detection.
arXiv preprint arXiv:1801.01681, 2018.

Rui Lopes, Diogo Vicente, and Nuno Silva. Static analysis tools, a practical approach for
safety-critical software verification. ESA Special Publication, 669, 2009.

Rahma Mahmood and Qusay H Mahmoud. Evaluation of static analysis tools for finding
vulnerabilities in java and c/c++ source code. arXiv preprint arXiv:1805.09040, 2018.

BIBLIOGRAPHY 57

John McCarthy. What is artificial intelligence? 1998.

Lili Mou, Ge Li, Zhi Jin, Lu Zhang, and Tao Wang. Tbcnn: A tree-based convolutional neural
network for programming language processing. arXiv preprint arXiv:1409.5718, 2014.

Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee. A design
science research methodology for information systems research. Journal of management
information systems, 24(3):45–77, 2007.

Mr John Peters, Keith Howard, and Mr John A Sharp. The management of a student research
project. Gower Publishing, Ltd., 2012.

Marco Pistoia, Satish Chandra, Stephen J Fink, and Eran Yahav. A survey of static analysis
methods for identifying security vulnerabilities in software systems. IBM Systems Journal,
46(2):265–288, 2007.

Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and John C Mitchell. Stronger password
authentication using browser extensions. In USENIX Security Symposium, pages 17–32.
Baltimore, MD, USA, 2005.

R. W. Shirey. Internet security glossary, version 2. RFC, 4949:1–365, 2007a.

Robert W. Shirey. Internet security glossary, version 2. RFC, 4949:1–365, 2007b. doi:
10.17487/RFC4949. URL https://doi.org/10.17487/RFC4949.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of
machine learning algorithms. arXiv preprint arXiv:1206.2944, 2012.

Anshul Tanwar, Krishna Sundaresan, Parmesh Ashwath, Prasanna Ganesan, Sathish Kumar
Chandrasekaran, and Sriram Ravi. Predicting vulnerability in large codebases with
deep code representation. arXiv preprint arXiv:2004.12783, 2020.

Alan M Turing. Computing machinery and intelligence. In Parsing the turing test, pages
23–65. Springer, 2009.

Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher Kruegel, and
Giovanni Vigna. Cross site scripting prevention with dynamic data tainting and static
analysis. In NDSS, volume 2007, page 12, 2007.

https://doi.org/10.17487/RFC4949

A
R E P R E S E N T I N G C O D E U S I N G V E C T O R S

This section aims to present a general view over Alon et al. (2019) approach on representing
code as single fixed-length code vector. This representation is created in order to predict
semantic properties of a code snippet.

There were other approaches that were groundbreaking in the area of neural networks
for natural language processing and were also the base for code2vec and code2vec, namely
word2vec and doc2vec (Church, 2017) (Lau and Baldwin, 2016).

code2vec is an attempt to create a representation of source code, using . The main goal was
to represents the set of paths over the program and then uses this paths to produce each
output token.

It is presented an overview over code2vec process to transform a code snippet into a vector.
First, for each method it is constructed an AST. Then the paths from the Abstract Syntax Tree
(AST) are extracted, having the sequence of nodes, the direction of their links in order to
keep the path context. Finally each path and leaf extracted previously is transformed into a
vector representation and then it is all concatenated into a single vector called path context
as shown below.

get|network|topology|not|null,Nm0

|MarkerExpr|Mth|Cls1,string

not|null,Nm0|MarkerExpr|Mth|Nm2,METHOD_NAME

string,Cls1|Mth|Nm2,METHOD_NAME

string,Cls1|Mth|Bk|Ret|Nm0,network|topology

METHOD_NAME,Nm2|Mth|Bk|Ret|Nm0,network|topology

58

	1 Introduction
	1.1 Contextualization and Motivation
	1.2 Objectives
	1.3 Research Hypothesis
	1.4 Research Methodologies
	1.4.1 Methodology Approach

	1.5 Frameworks, languages and libraries
	1.6 Document Structure

	2 Background
	2.1 Machine Learning and vulnerability identification
	2.2 FastScan and code2seq
	2.3 Machine learning performance metrics

	3 State of the Art
	3.1 Vulnerabilities
	3.1.1 Injection
	3.1.2 Broken Authentication
	3.1.3 xss

	3.2 Vulnerabilities identification
	3.2.1 Static analysis for security testing
	3.2.2 Dynamic analysis for security testing
	3.2.3 Interactive analysis for security testing

	3.3 FastScan
	3.4 Other approaches

	4 Proposed Approach
	4.1 System Architecture

	5 Development
	5.1 Datasets
	5.2 Hardware and technical details
	5.3 First Phase
	5.3.1 Data filtering
	5.3.2 Preprocessing
	5.3.3 Hyperparameter optimization
	5.3.4 Training

	5.4 Second Phase

	6 Results
	6.1 First Phase
	6.2 Second Phase
	6.3 Webgoat Test

	7 User interface
	7.1 Architecture
	7.1.1 Back-end
	7.1.2 Front-end
	7.1.3 Installation and general overview

	7.2 Functionalities
	7.2.1 Load and upload JAVA project files
	7.2.2 Scan results

	8 Conclusion
	8.1 Discussion
	8.2 Possible Applications
	8.3 Future Work

	A Representing code using vectors

