
Aberystwyth University

Atomic force microscopy-based indentation of cells
Argatov, Ivan; Jin, Xiaoqing; Mishuris, Gennady

Published in:
Interface

DOI:
10.1098/rsif.2022.0857
10.6084/m9.figshare.22067091
Publication date:
2023

Citation for published version (APA):
Argatov, I., Jin, X., & Mishuris, G. (2023). Atomic force microscopy-based indentation of cells: Modelling the
effect of a pericellular coat. Interface, 20(199), [20220857]. https://doi.org/10.1098/rsif.2022.0857,
https://doi.org/10.6084/m9.figshare.22067091

Document License
CC BY

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Mar. 2023

https://doi.org/10.1098/rsif.2022.0857
https://doi.org/10.6084/m9.figshare.22067091
https://pure.aber.ac.uk/portal/en/persons/gennady-mishuris(06aa6945-4ad6-4653-ab4a-c43874c9fc95).html
https://pure.aber.ac.uk/portal/en/publications/atomic-force-microscopybased-indentation-of-cells(fcc04d73-3f11-4068-a79f-d32e7e5430f1).html
https://pure.aber.ac.uk/portal/en/publications/atomic-force-microscopybased-indentation-of-cells(fcc04d73-3f11-4068-a79f-d32e7e5430f1).html
https://doi.org/10.1098/rsif.2022.0857
https://doi.org/10.6084/m9.figshare.22067091


 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 F

eb
ru

ar
y 

20
23

 

royalsocietypublishing.org/journal/rsif
Research
Cite this article: Argatov I, Jin X, Mishuris G.
2023 Atomic force microscopy-based

indentation of cells: modelling the effect of a

pericellular coat. J. R. Soc. Interface 20:
20220857.

https://doi.org/10.1098/rsif.2022.0857
Received: 28 November 2022

Accepted: 30 January 2023
Subject Category:
Life Sciences–Mathematics interface

Subject Areas:
biomechanics, biomathematics, biophysics

Keywords:
atomic force microscopy indentation,

living cell, pericellular brush, mathematical

modelling
Author for correspondence:
Gennady Mishuris

e-mail: ggm@aber.ac.uk
© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.6423876.
Atomic force microscopy-based
indentation of cells: modelling
the effect of a pericellular coat

Ivan Argatov1,2, Xiaoqing Jin1 and Gennady Mishuris3

1College of Aerospace Engineering, Chongqing University, Chongqing, 400030, People’s Republic of China
2Institut für Mechanik, Technische Universität Berlin, 10623 Berlin, Germany
3Department of Mathematics, Aberystwyth University, Ceredigion SY23 3BZ, Wales, UK

IA, 0000-0003-4054-3854; GM, 0000-0003-2565-1961

A simple analytical model is built up to account for the interface deformation
effect in a spherical atomic force microscopy (AFM)-based quasi-static
indentation of a living cell covered with a pericellular brush. The compression
behaviour of the pericellular coat is described using the Alexander–de Gennes
model that allows for nonlinear deformation. An approximate second-order
relation between contact force and indenter displacement is obtained in
implicit form, using the Hertzian solution as a first-order approximation.
A method of fitting the indentation brush/cell model to experimental data
is suggested based on the non-dimensionalized version of the displacement–
force relation in the parametric form and illustrated with a specific example
of AFM raw data taken from the literature.

1. Introduction
It is well known that qualitative and quantitative changes of mechanobiological
markers, such as extracellular matrix stiffness [1], cell adhesion [2] and cell
Young’s modulus [3] are closely related to the physiological state of cells and
can be associated with diverse pathologies [4,5].

Atomic force microscopy (AFM) [6] represents a convenient tool for mech-
anical testing at the single-cell level [7,8]. To increase its sensitivity in detection
of a pericellular coat on eukaryotic cells, it was suggested to use a spherical
probe instead of typical sharp pyramidal indenters [9]. (A detailed description
of the AFM indentation technique for studying cell mechanics and pericellular
coat is available elsewhere [10].)

Akeypoint ineffective applicationofAFMinmechanobiology is anappropriate
mathematical model for interpreting AFM raw data (deflection of the AFM canti-
lever, d, with respect to relative displacement of the AFM piezo-scanner, Z, which
describes the vertical position of the AFM cantilever base). With a known bending
stiffness of the AFM cantilever, kc, the contact force, F, exerted by an AFM probe
(indenter) on the surface of a tested cell is usually evaluated by means of the
linear relation F = kcd. A much more difficult challenge is to relate the absolute (i.e.
with respect to the laboratory frame) scannerdisplacementZ to the absolute indenter
(probe) displacement, δ, because the latter quantity reflects the deformation
responseof thebrush/cell system.At thesame time, themechanobiologicalmarkers
can be revealed via the analysis of the force–displacement curve (F versus δ).

The choice of a correct contact model depends on a number of factors such
as a constitutive equation for the cell body, the shape of indenter, the cell
geometry and the interface conditions among others. In particular, in the case
of a spherical AFM probe (figure 1), the classical Hertz model is often used
with no regard for the assumptions which the model is based on. We recall
[11,12] that the Hertzian force–displacement relation takes the form

F ¼ 4
3
E� ffiffiffiffi

R
p

d3=2, ð1:1Þ
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Figure 1. Schematic of the AFM-based indentation of a cell with a pericellular
coat (brush). Cell body: Rcell is the curvature radius of the cell’s surface, H is the
characteristic cell thickness, E* is the reduced elastic modulus. Brush layer: L is
the brush thickness. Atomic force microscopy, (AFM) model: kc is the cantilever
bending stiffness, Rprobe is the radius of the AFM indenter. Contact variables: F is
the contact force, δ is the indenter displacement, and h is the separation
distance between the AFM tip and the surface of the cell.
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where R is the effective curvature radius (which, besides the
probe radius, Rprobe, also accounts for the local curvature
radius, Rcell, of the cell surface at the point of indentation),
and E* is the so-called effective elastic modulus (which,
besides the cell Young’s modulus, E, and Poisson’s ratio, ν,
may also account for the elasticity of the probe). In the analy-
sis presented below, the indenter elasticity is neglected, and
therefore, E* becomes the reduced elastic modulus, which is
also called the indentation modulus [13].

It is important to highlight that equation (1.1) adopts the
linearly elastic half-space approximation for evaluating the
contact deformations of a cell in the region near the contact
zone [11]. Moreover, when equation (1.1) is applied to the
analysis of theAFM-based testing of living cells, it is tentatively
assumed that cells have bare surfaceswithout being covered by
any membrane protrusions or corrugations [14,15]. The latter
simplifying assumption has been criticized for not being realis-
tic enough for many types of living cells that are coated with
pericellular brushes [14] and the so-called brush model has
been introduced [16], which complements equation (1.1) by
the model of entropic brush in the exponential form [17,18]
for the relation between the contact force F and the separation
distance, h, of the indenter tip from the brush grafting surface.

In the present study,wemakeuse of a general nonlinear con-
stitutive equation for describing the compression deformation
of a pericellular coat. The kinematic contact condition takes
into account the simultaneous contact deformation of the
brush layer and the cell body. The resulting problem for the con-
tact pressure is formulated as a nonlinear integral equation, and
an approximate analytical solution for the displacement–force
relation is obtained in the form of a system of coupled nonlinear
equations. A parametric analysis of the developedmodel is per-
formed, and an example of fitting the model to a set of
experimental data taken from the literature is outlined.

Generally speaking, the force–displacement relation in the
indentation of a brush/cell system can be represented in the
parametric form as

F ¼ F 1ða; E�, p1Þ ð1:2Þ
and

d ¼ F 2ða; E�, p1Þ, ð1:3Þ
where a is the contact radius, E* and p1 are characteristic
(effective) stiffness parameters of the cell body and the
brush layer, respectively, both of which have the physical
dimension of pressure, and F 1, F 2 are two functions given
in explicit form. It should be emphasized that our model
aims at evaluating both the effective reduced elastic modulus
E* of the cell body and the stiffness parameter p1 of the peri-
cellular coat. It should be noted that the latter characteristic is
also found to be useful in mechanobiological research for
discriminating between normal and abnormal cells [19].
Moreover, it should be underlined that though the brush par-
ameter p1 has the same dimension as the cell reduced elastic
modulus E*, the mechanical interpretation of these stiffness
characteristics is different (see [20]).

Since the contact radius a cannot be directlymeasured in the
AFM-based indentation, the use of equations (1.2) and (1.3) for
analysis of experimental data is not straightforward. In many
cases, it is convenient to regard the contact force F as a primary
variable, and equation (1.2) can be resolved for a to obtain

a ¼ F�1
1 ðF; E�, p1Þ, ð1:4Þ

where F�1
1 is the inverse function of the function F 1. Then, the

substitution of the above expression into equation (1.3) yields
the indenter displacement δ as an explicit function of F. The
main difficulty in this approach is the lack of analytical rep-
resentation for the inverse function F�1

1 in equation (1.4), and
therefore, equation (1.2) should be solved numerically. How-
ever, this can be accomplished in an efficient manner using
standard computational software.

In the indentation brush/cell model developed below, the
problem with the force–displacement relation is even more
difficult, because the three contact variables F, δ and a are
connected by two equations in the implicit form

G1ðF, a; E�, p1Þ ¼ 0 ð1:5Þ
and

G2ðF, a; E�, p1Þ ¼ d, ð1:6Þ
where G1, G2 are two functions given in explicit form. Never-
theless, by numerically solving equation (1.5) for a and
substituting the obtained result into equation (1.6), we
again obtain the explicit relation between the contact force
F and the indenter displacement δ.

The rest of the paper is organized as follows. In §2, we give
a technical introduction to the indentation brush/cell model
and derive the force–displacement relation in implicit form.
In §3, we represent the model in the non-dimensionalized
form and outline themethod of fitting themodel to experimen-
tal data. Finally, in §4, we discuss the constructed model, some
of its generalizations, and formulate our conclusions. Elec-
tronic supplementary material contains parametric analyses
of both the indentation brush model and the indentation
brush/cell model.
2. Theory
2.1. Nonlinear compliance model for a pericellular

brush
As it was mentioned in the introduction, the majority of
living cells are covered with protrusions and corrugations of
diverse shapes and sizes [21]. This means that modelling the
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mechanical deformation of a pericellular brush from first
principles is very challenging and not always feasible due
to lack of specific data. On the other hand, in the literature
there is a number of simplemodels applicable tomonodisperse
polymer brushes [22,23]. In particular, the Alexander–
de Gennes (AdG) theory [24,25] predicts that the quasi-static
compression of a grafted polymer brush of uniform thickness,
L, in contact with a rigid planar surface is governed by
the equation

p ¼ p1f
D
L

� �
, 0 , D � L: ð2:1Þ

Here, p is the compression pressure, D is the distance between
the two rigid surfaces (one ofwhich is a brush grafting surface),
p1∼ kBT/s

3 with s being the average distance between grafting
points, and in the AdG theory, we have f (λ) = fAdG(λ), where

fAdGðlÞ ¼ l�9=4 � l3=4, ð2:2Þ
and λ =D/L is the stretch ratio.

We note that the flexibility of the phenomenological
model (2.1) can be increased by adopting the two-parameter
approximation f ðlÞ ¼ l�n1 � ln2 , where ν1 and ν2 are positive
fitting constants. A physical motivation for the choice of the
AdG model for describing deformations of a pericellular
coat is given in [14]. It should be emphasized that the AdG
model has been represented in the generalized form of
equation (2.1), and the specific law (2.2) for the constitutive
function f (λ) is used only in considering a specific example
of experimental data.

It is also pertinent to note here that the variable D
has a geometrical meaning of the brush thickness in the
loaded state, and therefore, in a progressive compression D
decreases.

Observe that the prefactor p1 has a physical dimension of
pressure, which is the same as that of Young’s modulus of
elasticity. That is why, when equation (2.1) is applied to poly-
disperse brushes, p1 can be interpreted as a characteristic
modulus, while L is treated as an effective brush thickness.

In what follows, we need the inverse constructive relation

D ¼ Lf�1 p
p1

� �
, 0 � p , 1, ð2:3Þ

where f−1 is the inverse function to f. According to the
unloaded equilibrium condition, we have f (1) = 0, from
where it follows that f−1(0) = 1. We note that in the case of
the AdG model (2.2), the evaluation of f−1 can be reduced
to solving a quartic algebraic equation.

As it was noted [17], the constitutive function (2.2)
is roughly exponential in the range from 0.2 to 0.9 (see
electronic supplementary material, figure S9), i.e.

fAdGðlÞ � 100 expð�2plÞ: ð2:4Þ

The exponential approximation (2.4) is widely used for
fitting experimental data due to its simplicity [18,26]. How-
ever, it cannot be applied for modelling the initial contact
between the brush layer and an indenter.
2.2. Hertz-type contact with a brush-like interface
To simplify the mathematical analysis, we consider the
axisymmetric contact configuration (referred to cylindrical
coordinates r, w and z) and employ the following Boussinesq’s
solution to approximate (normal) surface elastic displacements
of a cell:

uzðrÞ ¼ 1
pE�

ð2p
0

df
ða
0

pðrÞrdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2 � 2rr cosf

p : ð2:5Þ

Here, E* = E/(1− ν2) is the so-called reduced elastic modulus
(with E and ν being the cell Young’s modulus and Poisson’s
ratio, respectively), p(r) is the density of normal surface loads,
ϕ is the integration variable (the left-hand side of equation
(2.5) does not depend on the angular coordinate w of the
point of observation), a is the radius of a loaded region and ρ
is the integration variable. For our purposes, we make use of
formula (2.5) only for approximating the surface displacements
inside the circular area 0≤ r≤ a.

It should be made clear that the cell thickness parameter H
does not enter any formula of the analysis below. This means
that the cell thickness effect or the so-called bottom effect has
been neglected. In other words, the contact deformations of
the cell body are evaluated by treating it as an elastic half-
space and using Boussinesq’s solution (2.5). However, follow-
ing the asymptotic modelling approach [27,28], we can
account for the main contribution of the bottom effect in the
case of a relatively thick cell body (i.e. roughly speaking
when R <H). This generalization will be published elsewhere.

We note also that the bottom-effect models, which are
specifically adopted for AFM indentation experiments, have
been recently developed in the literature [29,30]. A more gen-
eral asymptotic analysis of the thickness/substrate effect (for
indenter of arbitrary axisymmetric convex shape and trans-
versely isotropic material properties of the layer/substrate
system) was presented in [28]. The main difference of our
present approach to the brush effect compared with those
mentioned above is the specific deformation response of the
brush layer, which acts according to a nonlinear Winkler
foundation model.

Let FðrÞ denote the initial gap between the brush surface
and the surface of the AFM probe in the unloaded state when
the two surfaces are brought into a single point contact
(figure 2a). For a spherical probe of radius Rprobe, the follow-
ing paraboloidal approximation is usually employed:

FðrÞ ¼ r2

2R
, ð2:6Þ

where R is the one-half of the harmonic mean of Rprobe and the
curvature radius of the cell surface, Rcell, that is R =RprobeRcell/
(Rprobe +Rcell). It should be emphasized that the utilization of
Boussinesq’s solution (2.5) in the framework of the Hertzian
contact mechanics does not distinguish between the two
contact geometries shown in figure 2a,b.

In the loaded state (figure 2c), the indenter receives some
normal (vertical) displacement, δ, under the action of an exter-
nal force, F. According to the equilibrium equation, we have

F ¼ 2p
ða
0
pðrÞrdr: ð2:7Þ

Now, letD(r) denote the variable thickness of a pericellular
brush, which is squeezed between both brush/probe and
brush/cell interfaces. Since contact between the AFM probe
and the brush surface is assumed to be unilateral and non-
adhesive, the radius of contact a is determined by the condition

pðaÞ ¼ 0, ð2:8Þ



L

Rcell

Rprobe R
r

z

L

h

δ

F

L

(b)(a) (c)

Φ(r)

Figure 2. Schematic of the unilateral contact between a spherical probe of radius Rprobe and an elastic cell of curvature radius Rcell covered by a pericellular brush of
thickness L: (a) unloaded state with a single point contact; (b) equivalent model for an elastic half-space covered by a nonlinear Winkler-type coating and indented
by a spherical indenter of effective radius R that defines the initial gap FðrÞ (see equation (2.6)); (c) loaded state: the brush thickness outside the contact zone
remains the same as in the unloaded state.

2a

p(r)
F F

p(r)

(b)(a) (c)

Figure 3. Schematic of the brush/cell equilibrium in the loaded state: (a) the external contact load F is distributed by means of the indenter on the surface of the
brush layer; (b) the brush layer transfers the distributed load, which is characterized by the pressure density p(r), to the surface of the cell; (c) the only surface load
that acts on the cell is the contact pressure p(r), distributed over a circular area of a priori unknown radius a.
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which, in view of equation (2.3), implies that

DðaÞ ¼ L: ð2:9Þ

The kinematic contact condition,

DðrÞ ¼ Lþ uzðrÞ � dþFðrÞ, ð2:10Þ

states that the thickness of the compressed brush is deter-
mined by a balance of displacements due to the indenter-
induced vertical-downward displacements d�FðrÞ at the
brush interface and the cell displacements uz(r) at the brush
bottom surface.

Figure 3 shows a schematic of the equilibrium in the
brush/cell system in the loaded state. Since the brush layer
does not exhibit any shear resistance, the contact pressure
p(r) will be directly transmitted from the indenter/brush
interface to the brush/cell interface. This explains the use of
the same contact radius in equations (2.9) and (2.5) for the
radius of the indenter/brush contact region and the radius
of the loaded region at the brush/cell interface, respectively.
It is to emphasize that in figure 3, we have employed the
general property of brush-like models that the brush layer
does not transfer any shear load, and as such, the contact
pressure produced by the indenter on the brush top surface
is transferred (without changes) to the cell top surface.

Further, according to the inverse constitutive equation
(2.3), we have

DðrÞ ¼ Lf�1 pðrÞ
p1

� �
, ð2:11Þ

thereby relating the variable thickness of the deformed brush
layer D(r) to the contact pressure p(r).
Thus, from equations (2.5), (2.10) and (2.11), it follows that

L 1� f�1 pðrÞ
p1

� �� �
þ 1
pE� Bpð ÞðrÞ ¼ d�FðrÞ, ð2:12Þ

where ðBpÞðrÞ denotes the integral operator on the right-hand
side of equation (2.5), i.e.

Bpð ÞðrÞ ¼ 4
ða
0
K

2
ffiffiffiffiffi
rr

p
rþ r

� �
pðrÞr
ðrþ rÞ dr, ð2:13Þ

and K(x) is the complete elliptic integral of the first kind.
We note that equation (2.12), which represents the gov-

erning integral equation of the indentation problem, can be
reduced to a nonlinear integral equation of the Hammerstein
type. In the next sections, we construct an approximate sol-
ution to equation (2.12) satisfying the boundary condition
(2.8), which allows us to derive an analytical approximation
for the relation between the contact force F and the indenter
displacement δ.
2.3. Analysis of the limit cases
Observe that the governing integral equation (2.12) describes
the simultaneous deformation of the brush layer and the cell
body. It is known [16] that the pericellular coat is often much
softer than the cell body, meaning that the indenter displace-
ment effect might not be transmitted to the cell surface under
a relatively small level of indentation. In such a case, the
second term on the left-hand side of equation (2.12) is negli-
gible, and thus, the integral equation reduces to the algebraic
equation Lf1� f�1ðpðrÞ=p1Þg ¼ d�FðrÞ, which describes the
deformation of solely the brush layer. This is in complete
agreement with the above hypothesis for the experimentally
established relative brush/cell stiffness. However, as the
level of indentation increases, the effect of the second term
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on the left-hand side of equation (2.12) becomes increasingly
important, and meanwhile there is an intermediate indenta-
tion range at which the two terms on the left-hand side of
equation (2.12) are of the same order.

In the absence of a brush layer, as L tends to zero,
equation (2.12) reduces to the governing integral equation
of the Hertz theory implying the relation between contact
force and indenter displacement in the form of equation
(1.1), which is complemented by the following relation
between contact radius and indenter displacement:

a ¼
ffiffiffiffi
R

p
d1=2: ð2:14Þ

The inverse relation to equation (1.1) takes the form

d ¼ 3

4E� ffiffiffiffi
R

p
� �2=3

F2=3, ð2:15Þ

and represents the displacement–force curve.
By differentiating both sides of equation (2.15) with

respect to the contact force F, we evaluate the incremental
indentation compliance

dd
dF

¼ 2
3

3

4E� ffiffiffiffi
R

p
� �2=3

F�1=3: ð2:16Þ

We note that usually the incremental indentation stiffness
dF/dδ is used in indentation testing (e.g. [13,31]). However, a
series connection of brush and cell, which are subjected
to normal indentation, warrants the use of namely the
indentation compliance.

On the other hand, in the limit as E* tends to infinity,
when the brush/cell system reduces to a brush layer grafted
on a rigid substrate, the integral term in equation (2.12)
disappears and the latter simplifies to the equation

pðrÞ ¼ p1f
d�FðrÞ

L

� �
, ð2:17Þ

which, in turn, in view of (2.8), implies the equation FðaÞ ¼ d

for evaluating the contact radius a.
In the case of a paraboloidal indenter with the shape

function (2.6), we have

a ¼
ffiffiffiffiffiffi
2R

p
d1=2: ð2:18Þ

By integrating the contact pressure density (2.17) over the
circular contact region of radius (2.18) (see e.g. [20]), we can
arrive at the following force–displacement relation [23,32]:

F ¼ 2pp1RL
ð1
ðL�dÞ=L

f ðlÞdl: ð2:19Þ

Moreover, based on the exponential approximation (2.4),
the following Derjaguin’s approximation can be deduced [18]:

FAdG � 100p1RL exp �2p
h
L

� �
: ð2:20Þ

Here, h is the thickness of the compressed brush beneath the
indenter tip, i.e.

h ¼ L� d: ð2:21Þ

It can be shown (see electronic supplementary material)
that the exponential approximation (2.20) is fairly accurate
in the range from 0.2 to 0.7 for the relative contact brush
thickness h/L.
Further, by differentiating both sides of equation (2.19)with
respect to the indenter displacement, we evaluate the brush
incremental indentation stiffness as dF/dδ = 2πp1Rf(1− δ/L),
so that the incremental indentation compliance can be
expressed in the form

dd
dF

¼ 2pp1Rf 1� dðFÞ
L

� �� ��1

, ð2:22Þ

where δ(F ) denotes the solution of equation (2.19).We note that
in the case of the exponential approximation (2.20), in view of
(2.21), we have δ(F ) = L + (L/2π)ln(F/100 p1RL).

To compare the two limit models, we adopt the following
characteristic values for the model parameters [14]: E =
2.1 kPa, ν = 0.5, L = 2.36 μm, and R = 5 μm. Also, based on the
average valueN = 290 brushmolecules per μm2 for the grafting
density, we have estimated the AdG prefactor as p1 = 10.6 Pa.

Figure 4 shows the behaviour of the indentation (contact)
compliances (2.16) and (2.22). Observe that, as it should be
expected, both incremental indentation compliances decrease
by virtue of the fact that the contact area (which is produced
by paraboloidal indenter) increases with the level of indenta-
tion. It is of paramount importance that the two curves in
figure 4 cross each other at a single point F� approximately
3 nN. This means that in the initial period of loading (for
F , F�), the brush layer exhibits a relatively large compliance
compared with that of the elastic cell body. Hence, the displa-
cement of the AFM indenter pressed into an elastic body
covered with a brush (that is, in the case when the two systems
are connected in series) would be primarily accommodated via
the brush compression deformation. In the advanced stage of
loading (for F . F�), the Hertzian compliance is larger by
approximately an order of magnitude than the indentation
compliance of the brush layer, so that theHertzian contribution
to the indenter displacement now becomes dominant.

In indentation testing, neitherE* nor p1 is known a priori, and
therefore, it is not possible to draw the curves in figure 4 in the
physically dimensional variables given only the set of AFM
indentationdataandwithout its post-processingusinganappro-
priate mathematical model. The corresponding δ–F and a–F
curves are presented in figure 5. The most important lesson
learned from this figure is that the contact radii for the two
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models, which correspond to the same value of the contact force,
are essentially different. This means that the Hertz model and
the AdG model, which are regarded as the sub-models of the
indentation brush/cell model, do not work independently.

Yet another limit situation occurs when the brush layer is
much stiffer than the cell body. From a mathematical point of
view, we consider the governing integral equation as p1 tends
to infinity, so that equation (2.12) reduces to the governing
equation of the Hertz theory.

Remark. In the mechanobiological literature [16,21], the con-
cept of cell modulus of elasticity was introduced in connection
to AFM indentation testing. When the Hertz theory-based for-
mula dF=dd ¼ 2E� ffiffiffiffiffiffi

Rd
p

is used for the interpretation of the
incremental indentation stiffness S = dF/dδ, evaluated with a
spherical indenter, the quantity E� ¼ S=ð2 ffiffiffiffiffiffi

Rd
p Þ should be rela-

tively independent of indentation depth in order to serve as an
effective material characteristic of the cell body. Thus, namely,
the plateau of the relative incremental stiffness curves (see
electronic supplementary material, figure S13) is decisive for
determining E* rather than their initial part influenced by the
pericellular coat. However, even though theoretically the
impact of the brush layer tends to zero for larger indentation
depth, practically it is not always possible to effectively mini-
mize the brush effect. That is why the use of the brush/cell
model allows to increase the reliability of the determination of
the effective cell modulus.
2.4. Displacement–force relation in implicit form
In solving the indentation problem (2.9), (2.12), we take advan-
tage of the experimentally supported assumption [14] that the
brush is softer then the cell body. This means that the first term
on the left-hand side of equation (2.12) can be neglected as a
zero-order approximation, and we arrive at the Hertz solution

pðrÞ ¼ 3F
2pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

a2

r
: ð2:23Þ
Now, the substitution of (2.23) into equation (2.12) leads
to an approximate relation, which can be used to produce a
first-order approximation. In this way, by reinforcing thus
derived approximate relation at the centre of the contact
area (r = 0) and the contact contour (r = a), we derive the
approximate equations

L 1� f�1 3F
2pa2p1

� �� �
þ 3F
8E�a

¼ a2

2R
ð2:24Þ

and

3F
8E�a

þ a2

2R
¼ d: ð2:25Þ

The coupled system of equations (2.24) and (2.25) consti-
tutes the displacement–force relation in implicit form.
Namely, for a given value of the contact force F, equation
(2.24) determines the corresponding value of the contact
radius a, and then substituting both F and a into equation
(2.25) yields the indenter displacement δ.

According to equations (2.11) and (2.23), the brush layer
thickness at the centre of the contact area, h =D(0), will be
given by

h ¼ Lf�1 3F
2pa2p1

� �
, ð2:26Þ

from where, in view of equations (2.24) and (2.25), it follows
that

h ¼ Lþ d� a2

R
: ð2:27Þ

It is also of interest to evaluate the cell contact displace-
ment u0z ¼ uzð0Þ, which according to equation (2.12) can be
approximated as

u0z ¼
3F
4E�a

: ð2:28Þ

It should be emphasized that the Hertz model is recovered
from equations (2.24) and (2.25) in the limit as L tends to zero or
p1 tends to infinity. Moreover, it can be easily verified that
equation (2.25) is in complete agreement with the Hertz
model. On the other hand, it can be shown that equation
(2.27) agrees with Derjaguin’s approximation for a brush
layer, which implies that h = L− δ and a2 = 2Rδ. Indeed, the sub-
stitution of the latter expressions into equation (2.27) leads to an
identity.
3. Results
3.1. Indentation model in the non-dimensionalized

form
Let us introduce the dimensionless variables

�a ¼ a
R
, �d ¼ d

R
and �F ¼ 3F

8E�R2 , ð3:1Þ

and the dimensionless parameters

�L ¼ L
R

and x� ¼ 4E�

pp1
: ð3:2Þ



1

3

2

40

20

10

0
–3 –2 –1 0

30

AFM scanner position, µm A
FM

 c
an

til
ev

er
 d

ef
le

ct
io

n,
 n

m
 

4

10–1

co
nt

ac
t f

or
ce

, n
N

10–2

10–3
0 0.5 1.0 1.5

indenter displacement, �m
2.0 2.5

10

F

1

102

δ

Figure 6. An example of processing raw data [10] (see the insert), deflection
of the AFM cantilever versus vertical position of the AFM scanner (red dotted
line). Solid lines 1, 2, 3 and 4, respectively, denote the present model (blue
line, 1), the Hertz model (green line, 2), the AdG indentation model (2.2),
(2.19) (orange line, 3) and the exponential model (2.20) (brown line, 4). The
dotted red line of the main graph represents the processed loading part of
the insert graph.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20220857

7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 F

eb
ru

ar
y 

20
23

 

Then, equations (2.24) and (2.25), respectively, can be
represented in the form

x�
�F
�a2

¼ f 1� �a3 � 2�F
2�L�a

� �
ð3:3Þ

and
�F
�a
þ �a2

2
¼ �d: ð3:4Þ

We note that by transforming equation (2.24) to equation
(3.3), we get rid of the inverse function f−1 to simplify its
numerical solution. Observe that equations (3.3) and (3.4)
contain two dimensionless parameters, namely, χ* and �L
that govern the portrait of the force–displacement relation.
3.2. Fitting the model to experimental data
We consider one example of raw data (see the insert in figure 6)
from AFM-based indentation of an eukaryotic cell with a 5 μm
silica particle as the AFM probe, which was published in [10].
The cantilever spring constant is taken to be kc = 0.069 N m−1

[33]. We note that the contact force F on the main ordinate
axis is evaluated from theAFM cantilever deflection d depicted
on the ordinate axis of the insert graph by the formula F = kcd.
The effective radius R is assumed to be coincident with the
probe radius Rprobe, since the effect of the cell curvature
radius Rcell is relatively small.

The numerical solution of the system of equations (3.3)
and (3.4) was carried out within the Mathcad software
environment. In what follows, the numerical solution of
equation (3.3) will be denoted as

�F ¼ Fð�a, x�Þ, ð3:5Þ
so that equation (3.4), in view of equation (3.5), yields

�d ¼ 1
�a
Fð�a, x�Þ þ �a2

2
: ð3:6Þ

According to equations (3.1) and (3.2), formulae (3.5) and
(3.6) contain the two-dimensionless parameters χ* and �L.
Yet, another dimensional parameter, F1, is introduced to pro-
vide the dimensional scaling for the force data. Thus, the
force–displacement relation in the parametric form can be
represented as follows:

F ¼ F1Fð�a, x�Þ ð3:7Þ
and

d ¼ R
1
�a
Fð�a, x�Þ þ �a2

2

� �
: ð3:8Þ

Here, F1 and χ* are fitting constants, �a is a parameter which
takes positive values, and �L is a model parameter whose
value (ratio of the brush thickness L to the effective radius
R) is fixed from geometrical considerations.

We recall that equation (3.5) follows from equation (3.3),
when it is solved for �F as a function of �a. Now, let the numeri-
cal solution of equation (3.3) with respect to �a be denoted as

�a ¼ A F
F1

, x�
� �

: ð3:9Þ

By adopting the usual notation F�1 for the inverse function
of the function F , we note that A ¼ F�1. In this way,
equation (3.7) can be inverted to evaluate the value of the
parameter �a for a given value of the contact force �F. It is to
emphasize that the model implementation is straightforward
as it requires only numerically solving algebraic equations
(for evaluating the function F and its inverse F�1) in
addition to nonlinear regression by least-squares method,
which is routinely used in data fitting.

Hence, the substitution of equation (3.9) into equation
(3.8) yields the relative indenter displacement δ/R as a func-
tion of the relative contact force F/F1, that is

�d ¼
�F

Að�F, x�Þ þ
1
2

Að�F, x�Þ� �2
: ð3:10Þ

After performing the fitting by minimizing the discre-
pancy between model prediction and data for δ/R using
equation (3.10), the reduced modulus (in view of (3.1)3) can
be evaluated as

E� ¼ 3F1
8R2 , ð3:11Þ

whereas the other fitting constant χ*, which is defined by
equation (3.2), yields the dimensional deformation
parameter of the pericellular brush layer

p1 ¼ 4E�

px�
, ð3:12Þ

where E* is already given by formula (3.11).
Figure 6 shows the processed F–δ curve (dotted line)

along with the two fits according to the present model
(curve 1), using equations (3.7) and (3.8), and the Hertz
model (curve 2). Also, the post-prediction of the so-called
steric model (curve 3) and its exponential approximation
(curve 4) is shown based on equations (2.2) and (2.19).

In the dimensionless variables (3.1), the Hertzian
equation (1.1) takes the form �F ¼ ð1=2Þ�d3=2. Since the Hertzian
model becomes applicable in advanced stages of indentation,
curve 2 in figure 6 was obtained by using the fitting formula
F ¼ ðF2=2Þð�d� �d2Þ3=2, where F2 is a dimensional scaling par-
ameter, and �d2 is a dimensionless offset parameter that
accounts for the accumulated deformation of the pericellular
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brush. The corresponding prediction for the reduced elastic
modulus is given by the formula E* = 3F2/(8R

2), which is
analogous to equation (3.11).

Finally, curves 3 and 4 in figure 6 were obtained based on
Derjaguin’s approximations (2.19) and (2.20), applied for the
AdG model (2.1) and (2.2) with the model parameters p1 and
L evaluated by equations (3.12).

Based on the indentation brush/cell model (3.10), the fol-
lowing fitting results have been obtained for the assumed
geometrical parameters R = 5 μm and L = 2.36 μm (average
value for the brush thickness taken from [14]): E1 =
401.58 Pa, p1 = 15 Pa, and χ* = 45.4. At the same time, the
Hertzian model-based fitting yields E2 = 586.5 Pa. Though
we considered only one example based on a single data
curve, the results would be qualitatively similar if we apply
the model for the analysis of a number of other AFM inden-
tation force–displacement curves for the same type of cells. In
other words, the evaluated parameters E*, p1 and χ* should
be regarded as indicative (approximate), as they were
obtained without proper statistics.

Here and in what follows we shall refer to the ability
of the constructed model to fit (more or less accurately)
a set of data with a minimum number of adjustable par-
ameters as its robustness. The robustness of the constructed
model is demonstrated by fitting a set of experimental data
for the whole range, including the brush-like behaviour,
(figure 6) with the minimum of two adjustable (free) par-
ameters (one for the brush layer and another one for the
cell body). As it is seen from figure 6, the two limit
models (the Hertzian model and the AdG brush model)
provide accurate fitting only for certain ranges of the
indenter displacement, which are not overlapping. In order
to increase the quality of fit of the present model, it has
the potential not only to increase the number of fitting
parameters (e.g. exponents ν1 and ν2 of the constitutive func-
tion f ðlÞ ¼ l�n1 � ln2 ), but also to account for the bottom
effect (by incorporating the characteristic cell thickness H).
Namely, the latter effect seems to be responsible for the
deviations at larger indentation depth, as the experimental
force–displacement curve shows a more rapid increase
with indentation.

Figure 7 shows the variation of the contact parameters
(2.27) and (2.28) for the evaluated values of the parameters
of the brush/cell system. It is clearly seen from this figure
that the pericellular coat (modelled in the framework of the
AdG theory) is not completely squeezed out at the advanced
stage of indentation.

Observe that the value of E1 is obtained to be somewhat
lower than E2. The explanation for this phenomenon lies in
the fact that the radius of curvature of the deformed brush/
cell interface beneath the tip of the AFM probe is equal to
R + h. If we take the latter value with h = 0.21 L (figure 7)
that approximately corresponds to the advanced stage of
indentation, then the corrected value will be E2 = 400.59 Pa,
which is very close to the above provided value for E1.
4. Discussion and conclusion
First of all, let us discuss in more detail possible generaliz-
ations of the developed model. One of the ways to extend
the range of applicability of the model is to adopt a more gen-
eral theory of elasticity for the cell body. In particular, the
elastic cell material can be assumed to be transversely isotro-
pic. Provided the plane of elastic symmetry is parallel to the
cell surface, equations (2.12), (2.24) and (2.25) will still apply,
although the reduced elastic modulus E* should be modified
accordingly (e.g. [13,34]).

Following [15], we can account for the effect of the cell
prestress by modifying the elastic constant E*. We refer to
papers [35,36] for more details. However, a more elaborated
approach [27,37] is needed to take into consideration the
effect of substrate on which a cell adheres. Following
[38,39], a second-order asymptotic model can be worked
out to account for a finite thickness of the cell body beneath
the point of indentation.

It should be also noted that viscoelasticity is an intrinsic
feature of the cell’s mechanical response to AFM indentation
[40]. Following [13,41], the viscoelasticity of the cell body can
be considered as well.

A generalization of the model for the case of conical [42]
or monomial [43] indenters can be produced in a straightfor-
ward way, following the mathematical modelling approach
outlined above. However, a special study is needed to
account simultaneously for both the indenter shape effect
[44] and the effect of spherical cell finite geometry [45].

Further, when regarding the role of the pericellular brush
model (2.1) in the governing integral equation (2.12), it
should be emphasized that equation (2.1) includes only two
dimensional parameters p1 and L, while the constitutive func-
tion f (λ) is dimensionless. It goes without saying that
experimental studies are required to determine a mechano-
biologically motivated constitutive model for pericellular
coat in compression.

We would like to underline that equation (2.11) tenta-
tively employs the hypothesis of planar compression of the
brush layer, which is strictly applicable for relatively thin
brushes, i.e. for L≪R. It is pertinent to note here also that
the Hertzian theory of contact employs a number of simplify-
ing assumptions which are not always valid in practice. For
example, the Hertzian force–displacement relation (1.1)
assumes that δ≪R (small strains) and a≪R (paraboloidal
approximation for the spherical indenter geometry). The
latter restriction can be relaxed by adopting the geometrically
exact equation for a spherical indenter, following the method
developed in [28,46].
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In addition, a remark should be made concerning pre-
vious developments in contact problems with interface
effects. When the first (nonlinear) term on the left-hand
side of equation (2.12) is linearized in the limit of relatively
small pressures (when p(r)≪ p1), equation (2.12) reduces to
a linear Fredholm type integral equation of the second
kind. Such a linear model describes the effect of a thin
Winkler-type coating and was previously considered in
[47]. If the nonlinear term in equation (2.12) is replaced
with a power-law nonlinearity of the form C½pðrÞ�n, the result-
ing nonlinear integral equation was studied using analytical
methods in [48,49].

Finally, we note that any effects of adhesion (at the
indenter/brush interface) and time-dependent deformation
of both cell body [50] and brush layer [51] are neglected
(indentation models for thin viscoelastic and biphasic layers
have been developed in [52–54]), and thus, the modelling
framework is applicable for quasi-static indentation only.

To conclude, the analytical model of the frictionless, non-
adhesive, quasi-static AFM-based indentation of a living cell
covered with a pericellular brush is shown to be robust in
fitting experimental data and reveals a strong potential for
further refinement.
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