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Equilibrium states of confined ions in two dimensions
A. Mughala, S. Hutzlerb and D. Weaireb

aDepartment of Mathematics, Aberystwyth University, Aberystwyth, Wales, UK;
bSchool of Physics, Trinity College Dublin, The University of Dublin, Dublin, Ireland

ABSTRACT
Ions that are trapped in two dimensions and are subject to a
harmonic confining potential have widely varying stationary
states that exhibit various asymptotic forms and bifurcations.
We present a ‘birds-eye’ view of these structures for N = 2 to
5 ions, and the full range of anisotropy. These results may be
interrogated in detail using the software provided here.
Energy variations at bifurcation points and limits are also
identified; for N = 5 these include blue-sky (or saddle-node)
bifurcations. A limited attempt is also made to explore such
features for a larger system of ions, i.e. N = 10.
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1. Introduction

There is an extensive, if fragmentary, literature on the structure of 2d ion crys-
tals. By this, we mean systems of identical ions confined by transverse harmonic
potentials to two dimensions in two orthogonal directions and interacting with
each other via a Coulomb potential. In practice, ion crystals can be realised by
the use of a Penning trap [1–5]. Interest in such systems has been driven by the
proposal that trapped ions can offer a practical system for quantum computing
[6]. Similar structures can also be obtained in systems of charges interacting via
Yukawa (or screened) potentials [7].

Ion crystals are found to have a wide variety of equilibrium states, depending
on the anisotropy of the confining potential [1,2,4,8,9]. Examples of calculations
taken from results presented in later sections are shown in Figure 1. The enumer-
ation and description of these states presents a challenge to computation which
has previously been taken up only to a limited extent [10]. Here we embark on an
exploration of the rich and complex scenario of the general problem.

Experimental work that dates back to at least 1992 [8] includes the case of a
linear chain (i.e. the limit of extreme anisotropy). This undergoes a zigzag
instability (similar to that seen in Figure 1(a)), as the confining potential in
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the transverse direction is relaxed. In the opposite extreme Bedanov and Peeters
[11] and Bolton and Rössler [12] investigated the lowest energy solutions for an
isotropic confining potential, for large numbers of ions. Rancova et al. [13]
explored and elucidated some structural transitions for small numbers.

More recently, interest in the use of trapped ions for quantum computing
[14] has stimulated further computations, mainly of the ‘kinks’ which may be
found in the zigzag chain [10,15]. Figure 1 of the paper by Landa et al. [10]
gives an impression of the complexity of this subject. It is a bifurcation
diagram for 31 ions, including various bifurcations relating to the generation
of kinks, as the initially strong radial confinement, resulting in a linear chain,
is progressively relaxed. This is the most comprehensive diagram which has
so far been advanced. It is confined to a narrow regime and is a schematic
sketch (although some quantitative information is included).

Our main contribution in the present paper is to take a wider view of the
subject. For a small number N of ions all of the (stable and unstable)

Figure 1. (a) Example of a computed stable arrangement of fifty ions (shown as black dots)
trapped in an anisotropic harmonic potential of the form 1

2 (kxx
2 + kyy2) with ky .. kx . Here

the anisotropy parameter l = 0.97 – see Section 2 for the definition. (b) An unstable equili-
brium arrangement of fifty ions in an isotropic harmonic potential (i.e. kx = ky or l = 0). In
both figures the contours are lines of increasing equipotential (from indigo to red). For
further details see Section 4.
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equilibrium solutions are presented (up to N = 5) for the full range of aniso-
tropy. We do so in terms of a diagram whose two axes are scaled energy
E∗(l) and an anisotropy parameter λ which varies from l = 0 (the isotropic
case) to l = 1 (the anisotropic limit).

The large number and wide variety of equilibrium structures is a challenge to
presentation, which we meet by the use of interactive notebooks which will
enable the reader to interrogate the results and explore particular structures.
Some of the structures found in the myriad of possibilities are remarkably
elegant and give the subject an aesthetic as well as a scientific appeal. Figure
1(b) presents an example, an unstable equilibrium configuration for a system
of fifty ions.

Our initial aim is to map out all of the stable and unstable equilibrium
configurations for N = 2, 3, 4 and 5 in terms of their values of energy and ani-
sotropy. We present less comprehensive results for N = 10.

We intend to domore than push back the frontiers of what is computationally
achievable: we hope to provide an extensive semi-analytic framework of under-
standing as well. In doing so we are not confined to the stable equilibrium states;
we alsomap out theunstable states.While unstable equilibrium statesmay not be
readily accessible in experiment, they are nevertheless important in constructing
a bifurcation diagram (representing the energy, position or any other parameter
of equilibrium structures as a function of the confining potential).

In the following sections, we give basic definitions and first examine the
trivial case of N = 2. We have recourse to numerical methods for larger
values of N. We also examine and analyse various parts of the diagram, such
as those involving bifurcation points (including blue-sky bifurcations).

Given the wealth of detail, it should prove helpful that we have developed a
computational tool (based on Mathematica) with which the reader may inter-
rogate the results (see hyperlinks in the various bifurcation diagrams shown
below). The notebooks for N = 2, 3 and 4 can be displayed and interrogated
using the links provided in the text. The case of N = 5 is too complex to be dis-
played in this way. Instead, we recommend that the user downloads a free copy
of the Wolfram Player [16] to increase the responsiveness of the notebooks.

2. Definition of the problem and scaling property

The total energy E of a cluster ofN chargesQ, confined by a 2d harmonic poten-
tial, is given by

E = 1
2

∑N
i

kxX
2
i + kyY

2
i

( )+ Q2

4pe0

∑N
i,j

[(Xi − Xj)
2 + (Yi − Yj)

2]−1/2, (1)

where Xi and Yi are the Cartesian coordinates of the ith charge, while kx and ky
are the force constants for the harmonic confining potential in the x and y
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directions, respectively. Note that the limits kx � 0 or ∞ (or similarly for ky)
take us to confined linear systems, while kx = ky defines an isotropic potential.
For convenience, we use a = Q2

4pe0
(e0 is the permittivity of free space) in what

follows.
The equilibrium values of E are dependent on kx, ky, and a, and are invariant

under kx + ky. Hence E is a function of a, (kx + ky), kx/ky. The last represents
the anisotropy of the potential and has been used by others (e.g. [10,17]), but we
prefer to use

l = |kx − ky|
kx + ky

, (2)

which is a measure of the anisotropy of the potential, symmetric in kx and ky.
Since the parameter a has the dimension of energy × length, while kx and ky

have the dimensions of energy/length2 and λ is dimensionless, it follows that
the energy must take the form

E = (kx + ky)
1/3a2/3E∗, (3)

where E∗ is a function of λ only, specified below (Equation (4)).
The dimensionless scaled energy E∗ is the quantity that we will compute and

present in the following sections. It may be rescaled in any particular case using
the above relation.

The goal is to find equilibrium states (and their energy) as a function of λ,
where l = 0 and l = 1 represent the isotropic and extreme anisotropic
cases, respectively. (See also Figure 1 for contours of constant equipotential
for two different values of λ.)

3. The elementary case of N = 2

The case of two charges in a harmonic potential is easily treated analytically and
it is instructive to examine it in detail, containing as it does, some key features
of the more complex diagrams for higher N.

The dimensionless energy E∗(l) of Equation (3) is readily evaluated as

E∗(l) = (1− l)
4

∑N
i

x2i +
(1+ l)

4

∑N
i

y2i +
∑N
i,j

[(xi − xj)
2 + (yi − yj)

2]−1/2,

(4)

where the xi and yi are dimensionless quantities, with Xi = ( a
kx+ky

)1/3xi,
Yi = ( a

kx+ky
)1/3yi. (Without loss of generality we have chosen ky . kx here, as

was done in our simulations.)
Let the first charge be located at,

(x1, y1) = d(cos u, sin u), (5)
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where δ is the distance from the centre of the system and θ is the polar angle.
For reasons of equilibrium and symmetry, the second charge must be located at,

(x2, y2) = d( cos (u+ p), sin (u+ p)) = −(x1, y1). (6)

From these coordinates and Equation (4) (expressed in polar coordinates δ and
θ), we can write down the (dimensionless) energy E∗ for a system of two
charges. To obtain the stationary states we apply the conditions dE∗

du = 0 (yield-
ing the two solutions u = 0 and u = p/2) and dE∗

dd = 0, resulting in

E∗ =
3

25/3 (1− l)1/3, if u = 0,
3

25/3 (1+ l)1/3, if u = p/2.

{
(7)

These values and their corresponding ion arrangements are shown in Figure 2,
which plots energy E∗(l) of the solutions against the anisotropy parameter λ,
ranging from zero (the isotropic case) to unity (the limit of anisotropy). The
images adjacent to Figure 2 identify examples of structures for l = 0 and
l = 0.8.

For the isotropic state (l = 0) Equation (7) yields,

E∗ = 3/25/3 � 0.945 (8)

for both u = 0 and u = p/2. The solution consists of a pair of points, as shown
in Figure 2 (structure labelled I1), and is in fact degenerate with respect to any
rotation.

Figure 2. Bifurcation diagram, in terms of scaled energy E* and anisotropy parameter λ, for N =
2. In the isotropic limit l = 0 there is only one solution I1 which is rotationally degenerate. For
finite anisotropy (i.e. 0 , l ≤ 1) there are two solutions, labelled A1 and A2. For an interactive
version of this figure see [18]. Note, in the bifurcation diagram, stable equilibrium solutions are
indicated in blue, while unstable equilibrium solutions are indicated in black. All images of
structures are plotted using dimensionless coordinates (i.e. positions are scaled by
L0 = (a/(kx + ky))

1/3). The configuration shown on the left is for l = 0, while l = 0.8 for
the configurations shown on the right.
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It can be seen from Equation (7) that anisotropy (i.e. l . 0) dictates that
there are two distinct solutions (these are also shown in Figure 2 and are
labelled A1 and A2), with the two charges orientated respectively parallel
(u = 0) and perpendicular (u = p/2) to the x-axis, the former stable, indicated
in blue, and the latter unstable (recall kx ≤ ky), indicated in black. In the aniso-
tropic limit (l = 1) we obtain

E∗ = 0, if u = 0,
3/24/3 � 1.191, if u = p/2.

{
(9)

4. Computational methods

For values N > 2 such direct calculations become impractical and we resort to
numerical methods. Equilibrium states may be found in various ways; we
describe two methods below. Calculations may be made for any chosen kx, ky
and a and rescaled to give E∗ and λ (see Section 2).

Stable equilibrium states may be obtained by direct minimisation of energy
(Equation (4)). For small values of N (and any given value of λ) we generated 50
random initial configurations and minimised their respective energies using a
conjugate gradient routine. Systems with small N typically possess only a few
stable minima and we found 50 random configurations to be sufficient to be
confident that we had identified all of the stable minima for a given value of λ.

For unstable equilibrium states we employed a different method, as follows.
The stationarity condition for Equation (4) requires

∂E
∂xi

= 0, and
∂E
∂yi

= 0 for i = 1 . . .N. (10)

Hence, to obtain a single objective function that satisfies this property we con-
sider the sum of the derivatives squared, i.e.

f =
∑N
i=1

∂E
∂xi

( )2

+ ∂E
∂yi

( )2
( )

. (11)

The task then is to minimise the objective f and search for cases in which it
vanishes.

We start with a randomly generated initial configuration and then mini-
mise f numerically with respect to the coordinates. The equilibrium states are
taken to be those for which the objective f is less than some small tolerance
(here we set the tolerance to be 1× 10−10). For a system of N charges the
search is conducted for a range of values of λ and for each value of λ we
typically trial 500 initial random configurations. For small N these result
in a handful of distinct equilibrium configurations, contained in the
figures presented below.
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5. Results

5.1. Case N = 3

In the isotropic case l = 0 there are two solutions, as shown in the inset in
Figure 3, both of which are degenerate with respect to rotation. Solution I1 is
stable (coloured blue) and consists of three charges at the vertices of an equilat-
eral triangle. Solution I2, consisting of three charges arranged in a straight line,
is unstable (coloured black) and has higher energy.

At an infinitesimal value of λ the I2 solution splits into two branches. I1 also
splits, but to second order in λ.

An additional feature is evident. As shown in the inset of Figure 3 at about
l = 0.4 the stable (blue) solution I1 � A1 meets the unstable solution
I2 � A1 (shown in black) at a bifurcation. Close to the limit l = 1 the vari-
ation of E is given by E ≈ C1(1+ l)

1
3 + C2(1− l)

1
3 where C1 and C2 are con-

stants (with C1 = 0 close to A1 and C2 = 0 close to A3). This is the same
scaling as analytically identified for the two solutions in the N = 2 case, see
Equation (7).

5.2. Case N = 4

For N = 4 (see Figure 4) we find three solutions in the isotropic limit (l = 0),
the I1 solution (in blue) is stable while I2 and I3 are unstable (black lines).
In the limit l � 1 there are six solutions with only the A1 case being stable.

Figure 3. N = 3. In the isotropic limit l = 0 there are two rotationally degenerate solutions I1
and I2. Close to the anisotropy limit (i.e. l & 1) there are three solutions, labelled A1, A2 and A3.
A bifurcation at λ = 0.41 is shown in close-up, in an inset. In the bifurcation diagram stable sol-
utions are indicated in blue while unstable solutions are in black. All images of structures are
plotted using dimensionless coordinates (for details see the caption of Figure 2). For an inter-
active version of this figure see [19].
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We have also shown the detail of four bifurcation points (see insets). Close to
the limit l = 1 the variation of E is again given by E ≈ C1(1+ l)

1
3 + C2(1− l)

1
3

with C1 = 0 for A1 and C2 = 0 for A6.
The states of higher energy close to l = 1 may be called cruciform since they

consist of two orthogonal straight lines in the x and y directions, respectively.
Except for the A1 solution, all of the cruciform states are unstable. This is
also the case for N = 5, discussed below.

5.3. Case N = 5

The case of N = 5 (see Figure 5) presents two further features. For low values of
λ there is more than one stable equilibrium state. In the isotropic case l = 0 the
two stable solutions are I1 and I2, where I1 has a lower energy compared to I2.
As shown in the first inset of Figure 5,with increasing λ the solution from I2
becomes unstable at the bifurcation point where it meets the unstable solution
from I3. Beyond l = 0.054 there is thus only one stable arrangement.

A second feature which we observed in the case ofN = 5 (and is expected to be
observed for all N > 5) is the presence of ‘blue-sky’ (saddle-node) bifurcations. In
this type of bifurcation, two solutions emerge together [22], as λ is increased.

The first of these is shown in Figure 6,a magnified version of a part of
Figure 5. A new unstable solution labelled B1 (as illustrated in the inset of

Figure 4. N = 4. In the isotropic limit l = 0 there are three rotationally degenerate solutions.
Close to the anistropy limit (i.e. l & 1) there are six solutions. The solid black dots in the inset
indicate bifurcation points. Stable solutions are shown in blue while unstable solutions are in
black. All images of structures are plotted using dimensionless coordinates (for details see
caption of Figure 2). For an interactive version of this figure see [20]

8 A. MUGHAL ET AL.



Figure 6) appears at l ≈ 0.2. With increasing λ it splits into two separate
unstable solutions, one of which eventually leads to the structure A3 while
the other branch leads to A7.

The second blue-sky bifurcation is shown in Figure 7 and is labelled B2. Here
we find that with increasing λ two solutions meet and annihilate at l = 0.432.
Tracing these two solutions back to the isotropic limit we find that they even-
tually lead to structures I4 and I5. For both blue-sky bifurcations the difference
in energy between the two branches scales as DE/ |l− l0|3/2, where l0 is the
value of λ at which the two solutions meet.

This scaling can be roughly explained by a simple argument, as follows. Con-
sider a simple one-dimensional system in which the energy has the following
dependence

E(f) = af+ bf2 + cf3,

where f is a free parameter and a, b and c are constants. The above equation
represents a prototype of a blue-sky bifurcation, for which the number of
stationary solutions (i.e. dE/df = 0) depends on the parameter
L = b2 − 3ac. There are no stationary solutions when L , 0, one solution
when L = 0 and two solutions when L . 0. The difference in energy

Figure 5. N = 5. For low values of λ there are two stable solutions I1 and I2 (indicated by the
light blue curves). The first inset shows that the solution from I2 is stable until it makes contact,
at the bifurcation point with the (unstable) solution from I3, further evolution with increasing λ
eventually leads to A5. The second inset shows that in the limit l ≤ 1 the only stable solution is
a straight chain with all the charges arranged along the x-axis. Decreasing λ leads to a bifur-
cation point at which there is a stable (blue) and unstable (black) solution. The stable solution
has a form similar to the zigzag arrangements seen in larger systems (see Figure 1(a)), upon
further decrease of λ this solution eventually leads to I1. All images of structures are plotted
using dimensionless coordinates (for details see the caption of Figure 2). For an interactive
version of this figure see [21].
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Figure 6. A close up of the section of Figure 5 showing a blue-sky bifurcation at l ≈ 0.2 where
two new solutions emerge from a point where the structure is B1 (inset). These two solutions, if
followed to the anisotropic limit (l = 1), eventually lead to the structures A3 and A7. The struc-
ture on the left is plotted using dimensionless coordinates (for details see the caption of Figure
2). For an interactive version of this figure see [23]. The blue inset shows the variation of the
(unscaled) Xsm and Ysm coordinates of the second moment for the bifurcation, from Equation
(12), the red dot indicates the point where the two branches meet.

Figure 7. A close up of a part of Figure 5 showing a blue-sky bifurcation at l ≈ 0.432 where
the structure is B2. These solutions, if followed to the isotropic limit (l = 0), eventually lead to
the structures I4 and I5. The structure on the right is plotted using dimensionless coordinates
(for details see caption of Figure 2). For an interactive version of this figure see [23]. The blue
inset shows the variation of the (unscaled) Xsm and Ysm coordinates of the second moment for
the blue sky bifurcation, the red dot indicates the point at which the two branches annihilate
with increasing λ.

10 A. MUGHAL ET AL.



between the two solutions when L ≥ 0 can easily be shown to scale as
DE/ L3/2.

An alternative means for presenting these blue-sky bifurcations is shown in
the insets of Figures 6 and 7. Here we compute the second moment of the X and
Y positions of the ions, which we define as

Xsm = 1
N

∑N
i=1

(Xi − Xcom)
2 and Ysm = 1

N

∑N
i=1

(Yi − Ycom)
2, (12)

where N is the number of ions and (Xcom, Ycom) is the centre of mass of the ions.
In both insets a large red dot indicates the point at which the two branches of
the bifurcation meet in the (reduced) energy plot.

The case of N = 5 contains a sufficient number of ions to enable us to study
structures of a zigzag-type arrangement, similar to those seen in larger system
(such asN = 50 as shown in Figure 1(a)). Decreasing λ from 1, the lowest energy
(stable) structure corresponds to a linear chain of ions, until a bifurcation
occurs at l = 0.724, where the stable lower-energy branch begins to develop
a zigzag structure, as shown in the second inset of Figure 5. A further decrease
of λ leads to the gradual development of the pentagonal structure I1 at l = 0.
The straight chain solution continues to exist for l , 0.724 but is unstable. It
leads to structure I5 for l = 0.

As for N = 4 we find what we have called ‘cruciform states’ near l = 1. Only
theA1 linear chain, i.e. a row ofN ions along the x-axis, is stable. The next cruci-
form state (which has a higher energy) contains a pair of charges stacked in the
orthogonal direction while the remaining charges are arranged along the x-axis.
The number of arrangements (with distinct energies) consisting of two adjacent
charges can then be enumerated. Continuing in this way the total number of
cruciform states can be computed for a given value of N; the sequence termi-
nates with the case of a linear chain in which all the ions are arranged along
the y-axis (i.e. the arrangement with the highest possible energy).

5.4. Case N = 10

For larger values of N it remains possible to find and catalogue the stable equi-
librium solutions using conjugate gradient methods. For example, in the case of
N = 10 we find that for low values of λ less than 0.0273 there are two stable equi-
librium solutions. At l = 0.0273 the stable solution with the higher energy
becomes unstable at a bifurcation point and only one stable solution
remains; see Figure 8. While such details can still be glimpsed for N = 10,
with increasing N the number of unstable equilibrium solutions rapidly pro-
liferates and the task of identifying solutions becomes nearly impossible. To
give some idea of the large number of states involved even for N = 10, we
have searched for all equilibrium solutions within a narrow range, as shown
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in Figure 9(a). Amongst the vast number of crossing lines it is possible to ident-
ify features such as blue sky bifurcations (see Figure 9(b)), similar to that seen
for N = 5.

6. Conclusion

We have shown that an extraordinary variety of interesting (stable and
unstable) equilibrium structures is found for the confined system of N ions.

Figure 8. N = 10. Stable equilibrium solutions are shown in blue. For low values of λ there are
two stable solutions, as shown in the inset. Also shown in the inset are some of the unstable
equilibrium solutions (in black), it can be seen that one of the stable solutions becomes
unstable at a bifurcation point (indicated by the large black dot).

Figure 9. N = 10. (a) A narrow region of the bifurcation diagram (i.e. Figure 8) for N = 10,
showing all the equilibrium solutions. (b) Close-up showing a blue sky bifurcation.
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We have examined these in various limits and diagrammed their evolution in
terms of the reduced energy and the anisotropy of the confining potential.
Only for small N can the dense interior of this diagram be readily explored
computationally (see Figures 2,3,4 and 5). We have tentatively explored some
of the features of larger systems (see Figures 8 and 9) and intend to confront
this problem in greater depth in future work. Included in such remaining chal-
lenges is the development of individual and multiple kinks in the zigzag struc-
ture of Figure 1(a).

All simulations presented here were for ions interacting via Coulomb forces.
Based on published experimental and numerical studies we expect qualitatively
similar results for ions interacting via a screened Coulomb (Yukawa) potential,
although the details of the energy bifurcation diagrams will differ [24].

We have previously analysed the properties of simpler but broadly analogous
systems, consisting of hard spheres (or disks), confined in a line by a transverse
harmonic potential and compressed between two hard walls (in two dimensions)
[25–29]. The insights gained from this, as regards bifurcation diagrams and
Peierls–Nabarro potentials [30], are valuable in the present context. In those pre-
vious studies the key property was the instability of linear arrangements with
respect to a lateral zigzag instability, when compressed, as is also found here.

While there are some similarities between the buckling of hard spheres and
ions there are also many subtle differences. For example, in the case of the hard
spheres unstable solutions were seen in the experiments, as they were stabilised
by friction [29]. While unstable equilibrium states may not be readily accessible
in the case of ions in experiment, they are nevertheless valuable in understand-
ing the reason why the linear chain becomes unstable. This is clearly demon-
strated in the case of N = 5 (see the second inset in Figure 5): the linear chain
becomes unstable with decreasing anisotropy at a bifurcation point, beyond
which the linear chain continues as an unstable solution while the zigzag
arrangement now becomes the only stable solution.

In further work we have computed hundreds of arrangements for the large
number of 50 ions [31]. The observed intricacy of the patterns makes them a
worthwhile object of study in their own right, be it in the context of compu-
ter-generated art, or for use in psycho-physical studies of the perception of ran-
domness and order.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

AM acknowledges the support of the Supercomputing Wales project, which is part-funded
by the European Regional Development Fund (ERDF) via the Welsh Government.

PHILOSOPHICAL MAGAZINE 13



References

[1] S. Mavadia, J.F. Goodwin, G. Stutter, S. Bharadia, D.R. Crick, D.M. Segal, and R.C.
Thompson, Control of the conformations of ion Coulomb crystals in a Penning trap,
Nat. Commun. 4 (2013), pp. 1–7.

[2] R.C. Thompson, Ion Coulomb crystals, Contemp. Phys. 56 (2015), pp. 63–79.
[3] G. Birkl, S. Kassner, and H. Walther, Multiple-shell structures of laser-cooled 24mg+

ions in a quadrupole storage ring, Nature 357 (1992), pp. 310–313.
[4] L. Yan, W. Wan, L. Chen, F. Zhou, S. Gong, X. Tong, and M. Feng, Exploring struc-

tural phase transitions of ion crystals, Sci. Rep. 6 (2016), pp. 1–9.
[5] D.J. Wineland, J. Bergquist, W.M. Itano, J. Bollinger, and C. Manney, Atomic-Ion

Coulomb Clusters in an Ion Trap, Phys. Rev. Lett. 59 (1987), pp. 2935–2938.
[6] D. Porras and J.I. Cirac, Effective quantum spin systems with trapped ions, Phys. Rev.

Lett. 92 (2004), Article ID 207901.
[7] G. Piacente, I. Schweigert, J.J. Betouras, and F. Peeters, Generic properties of a quasi-

one-dimensional classical Wigner crystal, Phys. Rev. B 69 (2004), Article ID 045324.
[8] S. Fishman, G. De Chiara, T. Calarco, and G. Morigi, Structural phase transitions in

low-dimensional ion crystals, Phys. Rev. B 77 (2008), Article ID 064111.
[9] J. Schiffer, Phase transitions in anisotropically confined ionic crystals, Phys. Rev. Lett. 70

(1993), pp. 818–821.
[10] H. Landa, B. Reznik, J. Brox, M. Mielenz, and T. Schätz, Structure, dynamics and bifur-

cations of discrete solitons in trapped ion crystals, New. J. Phys. 15 (2013), Article ID
093003.

[11] V.M. Bedanov and F.M. Peeters, Ordering and phase transitions of charged particles in
a classical finite two-dimensional system, Phys. Rev. B 49 (1994), pp. 2667–2676.

[12] F. Bolton and U. Rössler, Classical model of a Wigner crystal in a quantum dot,
Superlattices. Microstruct. 13 (1993), pp. 139.

[13] O. Rancova, E. Anisimovas, and T. Varanavičius, Structural transitions in laterally
compressed two-dimensional Coulomb clusters, Phys. Rev. E. 83 (2011), Article ID
036409.

[14] C.D. Bruzewicz, J. Chiaverini, R. McConnell, and J.M. Sage, Trapped-ion quantum
computing: Progress and challenges, Appl. Phys. Rev. 6 (2019), Article ID 021314.

[15] H.L. Partner, R. Nigmatullin, T. Burgermeister, K. Pyka, J. Keller, A. Retzker, M.B.
Plenio, and T.E. Mehlstäubler, Dynamics of topological defects in ion Coulomb crystals,
New. J. Phys. 15 (2013), Article ID 103013.

[16] Wolfram player. Available at https://www.wolfram.com/player/.
[17] A. Radzvilavičius, O. Rancova, and E. Anisimovas, Dimensional transitions in small

Yukawa clusters, Phys. Rev. E. 86 (2012), Article ID 016404.
[18] Figure 3. Available at https://www.wolframcloud.com/obj/527d1bd5-b4bf-4b47-b0af-

59219891550a.
[19] Figure 3. Available at www.wolframcloud.com/obj/8db4e637-1979-48fa-8036-

ca355d6bb7ef.
[20] Figure 4. Available at https://www.wolframcloud.com/obj/c8c78af4-fcdb-410a-98a8-

d6a8ac2c64a2.
[21] See accompanying file ‘figure-5-interactive.nb’ to be opened using Wolfram player.
[22] R.C. HilbornChaos and Nonlinear Dynamics: An Introduction for Scientists and

Engineers, 2nd ed., Oxford University Press, 2000.
[23] See accompanying file ‘Figure-6-and-7-interactive.nb’ to be opened using Wolfram

player.

14 A. MUGHAL ET AL.

https://www.wolfram.com/player/
https://www.wolframcloud.com/obj/527d1bd5-b4bf-4b47-b0af-59219891550a
https://www.wolframcloud.com/obj/527d1bd5-b4bf-4b47-b0af-59219891550a
http://www.wolframcloud.com/obj/8db4e637-1979-48fa-8036-ca355d6bb7ef
http://www.wolframcloud.com/obj/8db4e637-1979-48fa-8036-ca355d6bb7ef
https://www.wolframcloud.com/obj/c8c78af4-fcdb-410a-98a8-d6a8ac2c64a2
https://www.wolframcloud.com/obj/c8c78af4-fcdb-410a-98a8-d6a8ac2c64a2


[24] T. Sheridan and K. Wells, Dimensional phase transitions in small yukawa clusters,
Phys. Rev. E 81 (2010), Article ID 016404.

[25] J. Winkelmann, A. Mughal, D. Weaire, and S. Hutzler, Equilibrium configurations of
hard spheres in a cylindrical harmonic potential, EPL (Europhys. Lett.) 127 (2019),
Article ID 44002.

[26] D. Weaire, A. Irannezhad, A. Mughal, and S. Hutzler, A simple experimental system to
illustrate the nonlinear properties of a linear chain under compression, Am. J. Phys. 88
(2020), pp. 347–352.

[27] S. Hutzler, A. Mughal, J. Ryan-Purcell, A. Irannezhad, and D. Weaire, Buckling of a
linear chain of hard spheres in a harmonic confining potential: numerical and analytical
results for low and high compression, Phys. Rev. E. 102 (2020), Article ID 022905.

[28] D. Weaire, A. Mughal, J. Ryan-Purcell, and S. Hutzler, Description of the buckling of a
chain of hard spheres in terms of Jacobi functions, Physica D 433 (2022), Article ID
133177.

[29] A. Irannezhad, D. Weaire, A. Mughal, J. Ryan-Purcell, and S. Hutzler, Buckling of a
tilted line of confined hard spheres, Philos. Mag. 102 (2022), pp. 2506–2524.

[30] A. Mughal, D. Weaire, and S. Hutzler, Peierls-Nabarro potential for a confined chain of
hard spheres under compression, Europhys. Lett. 135 (2021), Article ID 26002.

[31] A. Mughal, S. Hutzler, and D. Weaire, Coulomb calligraphy, Forma (2022 –
submitted).

PHILOSOPHICAL MAGAZINE 15


	Abstract
	1. Introduction
	2. Definition of the problem and scaling property
	3. The elementary case of N = 2
	4. Computational methods
	5. Results
	5.1. Case N = 3
	5.2. Case N = 4
	5.3. Case N = 5
	5.4. Case N = 10

	6. Conclusion
	Disclosure statement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.245 841.846]
>> setpagedevice


