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Abstract. In Systems Biology, there is a growing need for simulation
and optimization tools for the prediction of the phenotypical behavior
of microorganisms. In this paper, an open-source software platform is
proposed to provide support for research in Metabolic Engineering, by
implementing tools that enable the simulation and optimization of dy-
namic metabolic models using ordinary differential equations. Its main
functionalities are related with (i) phenotype simulation of both wild
type and mutant strains under given environmental conditions and (ii)
strain optimization tackling tasks such as gene knockout selection or the
definition of the optimal level of enzyme expression, given appropriate
objective functions. The central carbon metabolism of E. coli was used
as a case study, to illustrate the main features of the software.

1 Introduction

Systems Biology represents a new approach to biological research aiming to un-
derstand complex interactions at a global level, with the goal to simulate biolog-
ical systems under different environments and genetic perturbations. Metabolic
dynamic models allow to study the interaction of compounds in cells and its sim-
ulation results in the determination of the concentrations of the metabolites in
a system along a given time interval. There are several types of dynamic models
[13][18][4], but the most common is to represent metabolic networks as systems
of ordinary differential equations (ODEs).

The representation of metabolism using dynamic models and its simulation
has been approached before in some other computational tools: WebCell [11] is a
web platform that allows to solve dynamic models and visualize system interac-
tions; Copasi [16], that replaced its predecessor Gepasi, applies a large number of
optimization techniques to dynamic model simulation to find optimum metabo-
lite concentration (it does not try to improve the model structure, only allowing
to estimate parameters based on experimental data); the BIOCHAM system [2]
creates a programming environment for modeling biochemical systems, making
simulations and querying the model using temporal logic; CellDesigner [10] is
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a graphical visualization and modeling tool with simulation capabilities that
emphasizes the creation of metabolic models using a specific graphical represen-
tation (SBGN). In this field, several standards have also been proposed, such as
the Systems Biology Markup Language (SBML) [8], the standard file format for
biological model representation.

On the other hand, Metabolic Engineering (ME) is a field concerned with
the use of metabolic pathway modifications under an engineering perspective
to attain a specific objective [17]. Since dynamic models more closely capture
the properties of the metabolic network, when compared to other approaches
such as stoichiometric modeling, their use on ME application would be highly
desirable. However, the difficulty in obtaining kinetic data to build these models
is still a major problem [14]. However, it is expected that these difficulties will
be attenuated in the near future and the existence of appropriate computational
tools to take full advantage of these models is of foremost importance.

The main purpose of this work is to propose a generic framework for dynamic
model simulation and strain optimization, in the context of the research in ME.
A novel computational framework was built including a set of user-friendly tools
that should make life easier for ME researchers. The framework will mainly con-
sist of two distinct layers: (i) phenotype simulation and (ii) strain optimization.

Regarding the simulation layer, the proposed tools enable the study of wild
type strains and mutants with some gene/ reaction knockouts or over/ under-
expression of some enzymes/ reactions. Furthermore, environmental conditions
can be defined in both cases, by the definition of appropriate artificial reactions.

The optimization layer tackles two tasks: (i) the selection of a subset of reac-
tions to remove from the wild type and (ii) the definition of the optimal level of
expression for a set of enzymes/ reactions. In both cases, an appropriate objec-
tive function can be defined, typically related with an industrial aim. This layer
is defined in a general purpose way, to allow the use of a number of optimization
algorithms and to work with the simulation methods defined above. One of the
major design concerns was the loose coupling between the optimization and the
simulation modules to allow to optimize any model component independently of
the optimization algorithm and the simulation method.

In previous work [6], the authors have used some of these tools to identify
optimal or near-optimal sets of genetic changes in E. coli to achieve a given
metabolic engineering aim using the central carbon metabolism ODE model [4].
This case study is used here to show the main capabilities of the platform.

2 Framework Description

2.1 Dynamic Model Representation

The basis for the proposed platform is a flexible representation for dynamic
models that is illustrated in Figure 1. A dynamic model integrates a number of
components and subsequent parameters. A unified representation is built, called
model mapper that will answer any queries about the model components (e.g.
about the model structure or parameter values). The model view is composed by
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Fig. 1. A view of the layers involved in dynamic model representation

three layers: (3) the original model, (2) the decoder and (1) the override model.
When a query is made it is passed along this (in the order 1,2,3) until one is able
to answer the query. The decoder and the override model are fractional model
representations. The first gives a partial model view based on a specific encoding,
used mainly to provide a way to decode t he solutions of possible optimization
algorithms from their internal representations. The override model can be used to
redefine a set of model components, thus enabling to set conditions that remain
constant throughout the optimization process.

In more detail, a model is composed of:

– A set of parameters, each denoted by a name and a numerical value.
– A set of variables, defined by an upper and a lower limit, an initial value and

an ODE (represented by a sum of terms, where each has a multiplicative
coefficient and a function).

– A set of functions, where each can be any mathematical entity that receives
as its parameters the current time and a model representation, returning a
numerical result. Functions can also have local parameters.

The modular architecture of the proposed framework allows to replace any com-
ponent of the dynamic model. This allows the creation of multiparadigm models,
since different components can use distinct modeling paradigms. This feature
allows to replace less understood model components (e.g. unknown kinetic func-
tions), for instance using models created from experimental data (e.g. a trained
Neural Network).

2.2 Model Simulation and Optimization

The framework functionalities are divided into two logical parts: model simula-
tion and optimization (Figure 2).

The simulation modules allow to calculate the concentrations of the metabo-
lites in the model over a specified time interval. The simulation is based on the
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Fig. 2. General purpose framework for dynamical model simulation and optimization

numerical integration of the ODEs in the model, specifying the time interval.
This feature can be used to study the behavior of the original model (bottom
layer in Figure 1) thus simulating the phenotype of the wild type strain. To
simulate the phenotype of mutant strains, the override model layer is used. This
allows either to remove a set of reactions from the model or to simulate the over
or underexpression of an enzyme, changing the values of kinetic parameters.
Also, environmental conditions can be simulated by setting the values of some
external compounds to a given expression.

The optimization module allows modifications both in the model structure
and in several types of parameters. The purpose is to reach model configurations
that optimize a given fitness function. A user can impose changes over the model
in order to simulate specific cases. Furthermore, optimization algorithms can be
defined to search over the space of potential solutions, given the type of allowed
changes. Fitness functions can be defined in a flexible way, i.e. no restrictions
are imposed over their definition (they can be nonlinear, discontinuous, etc.). An
optimization process is represented by a model, an optimization algorithm and
its parameters, a decoder (to decode solutions for the optimization task) and an
override model (with similar goals as the ones defined before for simulation).

Several optimization algorithms can be employed, but given the complexity of
the underlying problems, the available options are meta-heuristics such as Multi-
start Local Search, Simulated Annealing, several evolutionary approaches, such
as Evolutionary Algorithms, Genetic Programming or Differential Evolution.

This framework currently addresses two strain optimization tasks in ME (al-
though others might me added following the same methodology): (i) gene/ re-
action knockout, i.e. to select the best subset of reactions to remove from the
model; (ii) expression level, i.e., to select the optimal level of expression for a
subset of enzymes (reactions) in the model. The first represents a combinatorial
optimization task, while the latter can be formulated as a numerical optimiza-
tion task. However, since the number of reactions within a model is typically
high, the simultaneous optimization of the expression level of all reactions is
generally impossible. This means that the user has to select a subset of reactions
to optimize. In alternative, the set of reactions to modify and their optimal levels
can be evolved simultaneously.
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3 Software Description

This section describes the major features involved in the development of the soft-
ware platform. The application is open-source and is available in the folling URL:
http://sysbio.di.uminho.pt/dynmetasim.php. The major concerns that drove the
software architecture were: (i) usability and user friendliness; (ii) portability
across operating systems and architectures; (iii) compliance to standards, such
as SBML; (iv) flexibility: support to a wide range of dynamic models and simu-
lation/ optimization methods.

The whole platform was developed using the Java programming language.
The graphical user interface and application logic was developed on top of
AIBench[1], an environment for the development of scientific applications, based
on the Model Model-View-Controller (MVC) software pattern. In AIBench, ap-
plications are built using the concepts of operations and datatypes. Operations
can be mapped to an application use cases and describe the functioning and
interactions of the different software components. Datatypes describe the appli-
cation core types using an object-oriented approach. Specific graphic interfaces
(views) are deployed to visualize certain datatypes. The main datatypes used in
this platform represent the entities involved, namely models and components,
simulation/ optimization setups and results.

The main functionalities of the software are the following: to load a model
from an SBML file; to simulate a model given a time range and initial parameter
values; to create an override model, a partial model representation that overrides
part of the original model; to optimize the level of expression of a selected set of
reactions; to find the best reaction knockout subset based on a given objective
function; to save the results of a simulation or optimization in a file; and, to plot
the simulation and optimization results.

The graphical user interface is divided into five distinct areas (Figure 3): the
Menu that allows to launch operations; the Toolbar with short-cuts for some
operations; the Clipboard area where existing objects are listed (grouped by
datatypes); the Visualization area where the objects views are displayed; and the
the Status bar that displays information regarding current operation execution.

The software can be divided in two distinct modules: simulation engine and
optimization module. In order to perform model simulation, the SUNDIALS

Fig. 3. Graphical user interface layout
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CVODE [5] solver using Java Native Interface is used. CVODE is suitable for
both stiff and non-stiff ODE problems and the code is available for several oper-
ating systems. The following libraries were also used: a library for optimization
metaheuristics developed by the authors, JFreeChart [9] to display graphical
simulation results and LibSBML [3] to parse SBML files.

4 Case Study

In this section, the use of the developed software is detailed in two distinct tasks,
both using the Escherichia coli glycolysis and pentose-phoshate pathway model
[4]. The model consists of mass balance equations for extra-cellular glucose and
for intracellular metabolites. The mass balances take the following form:

dCi

dt
=

∑

j

vijrj − µCi (1)

where Ci represents the concentration of metabolite i, µ is the specific growth
rate and vij is the stoichiometric coefficient for this metabolite in reaction j, the
rate of which is rj .

First of all, the simulation of the model will be shown, in the time interval
[0,20] seconds using the default initial conditions (Figure 4). To run a simulation
the user has to load the model. Next, she/he sets the time range for the simu-
lation and the metabolite initial values or uses the values supplied by default in
the model.

The second scenario is related with optimization, with two subtasks related
with the maximization of dihydroxyacetone phosphate (DHAP): (i) Find the
best knockout set; (ii) Optimize the reaction expression level by modifying the
value of one of the kinetic parameters of each reaction, in this case the vmax.
The maximization of the production of this compound was used as a case study
since it has several industrial applications, including synthetic chemistry using

Fig. 4. A screenshot for a simulation operation
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Fig. 5. Dialog for the optimization operations

the enzymatic Aldol syntheses [7]. An optimization operation can be sketched
in the following steps: first, the user selects which reactions can be removed.
Next, she/he selects a genome representation from the set of allowed ones. Last,
she/he defines the simulation options and runs the optimization (Figure 5).

5 Conclusions and Further Work

In this work, a novel tool was presented that allows the representation and
simulation of dynamic models and its use to achieve strain optimization tasks
in Metabolic Engineering. The software package allows to simulate metabolic
models based in ODEs and it is SBML compliant. Two strain optimization tasks
have been addressed, namely identifying optimal sets of knockouts or expression
levels for enzymes. The underlying framework for representation of dynamic
models and the modular architecture of the simulation and optimization modules
allow the easy extension of the platform. Furthermore, the component based
approach for software development enable the easy addition of new features.

In future work, the validation of this platform with other real-world case
studies will be tackled. Regarding the optimization layer, a number of other al-
gorithms have to be integrated in the framework, namely Genetic Programming.
The use of multi-objective optimization algorithms [15] is also a promising route.
The integration of these tools with steady-state and constraint based computa-
tional approaches [12] will also be pursued.
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