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Abstract. Time Series Forecasting (TSF) uses past patterns of an event
in order to predict its future values and is a key tool to support decision
making. In the last decades, Computational Intelligence (CI) techniques,
such as Artificial Neural Networks (ANN) and more recently Support
Vector Machines (SVM), have been proposed for TSF. The accuracy
of the best CI model is affected by both the selection of input time
lags and the model’s hyperparameters. In this work, we propose a novel
Evolutionary SVM (ESVM) approach for TSF based on the Estimation
Distribution Algorithm to search for the best number of inputs and SVM
hyperparameters. Several experiments were held, using a set of six time
series from distinct real-world domains. Overall, the proposed ESVM is
competitive when compared with an Evolutionary ANN (EANN) and
the popular ARIMA methodology, while consuming less computational
effort when compared with EANN.

Keywords: Evolutionary Computation, Support Vector Machines, Time
Series, Forecasting.

1 Introduction

Forecasting the future using past data is an important tool to reduce uncertainty
and support both individual and organization decision making. In particular,
multi-step ahead predictions (e.g., issued several months in advance) are useful
to aid tactical decisions, such as planning production resources or evaluating
alternative economic strategies [2]. The field of Time Series Forecasting (TSF)
deals with the prediction of a given phenomenon (e.g., umbrella sales) based
on the past patterns of the same event. TSF has become increasingly used in
distinct areas such as Agriculture, Finance, Production or Sales [14].
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Several Operational Research TSF methods have been proposed, such as Holt-
Winters (in the sixties) or the ARIMA methodology [14] (in the seventies). More
recently, several Computational Intelligence (CI) methods have been applied to
TSF, such as Artificial Neural Networks (ANN) [12,6], and Support Vector Ma-
chines (SVM) [15,9,3]. CI models such as ANNs and SVMs are natural solutions
for TSF, since they are more flexible (i.e., no a priori restriction is imposed)
when compared with classical TSF models, presenting nonlinear learning capa-
bilities. When compared with ANN, SVM presents theoretical advantages, such
as the absence of local minima in the learning phase.

When applying these CI methods to TSF, variable and model selection are
critical issues. A sliding time window is often used to create a set of training
examples from the series. A small time window will provide insufficient infor-
mation, while using a large number of time lags will increase the probability of
having irrelevant inputs. Thus, variable selection is useful to discard irrelevant
time lags, leading to simpler models that are easier to interpret and that usually
give better performances [4,9,6]. On the other hand, CI models such as ANN
and SVM have hyperparameters that need to be adjusted (e.g., number of ANN
hidden nodes or kernel parameter) [8]. Complex models may overfit the data,
losing the capability to generalize, while a model that is too simple will present
limited learning capabilities.

Several hybrid systems, which combine two or more CI techniques, have also
been proposed for TSF, such as Evolutionary ANN (EANN) [4]. Most EANNs
use the standard Genetic Algorithm (GA). More recently, the Estimation Dis-
tribution Algorithm (EDA) was proposed [13]. Such algorithm uses exploitation
and exploration properties to find a good solution. In [16], EDA was used as
the search engine of an EANN, outperforming a GA based EANN. Following
this result, in this paper we propose a novel Evolutionary SVM (ESVM) ap-
proach based on the EDA engine, in order to automatically select the best SVM
multi-step ahead forecasting model. Moreover, we also compare ESVM with the
EANN proposed in [16] and the popular ARIMA methodology.

The paper is organized as follows. First, Section 2 describes the ESVM ap-
proach. Next, Section 3 presents the experimental setup and the obtained results.
Finally, the paper is concluded in Section 4.

2 Evolutionary Support Vector Machine

2.1 Time Series Forecasting

The problem of TSF using CI models, such as ANN [16] or SVM [3], is considered
as obtaining the relationship from the value at period yt and the values from
previous elements of the time series, using several time lags {t−1, t−2, . . . , t−I},
to obtain a function as it is shown in [16]:

ŷt = f(yt−1, yt−2, . . . , yt−I) (1)

where ŷt denotes the estimated forecast as given by the function f (e.g., SVM),
and I the number of input values.
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In order to obtain a single model to forecast time series values, an initial
step has to be done with the original values of the time series, i.e., normalizing
the data. The original values (yt) are normalized into the range [0, 1] (leading
to the Nt values). Once the model outputs the resulting values, the inverse
process is carried out, rescaling them back to the original scale. Only one output
was chosen and multi-step ahead forecasts are built by iteratively using 1-ahead
predictions as inputs [4]. Therefore, the time series is transformed into a patterns
set depending on the I inputs of a particular model, each pattern consisting of:

– I inputs values: with the I-th normalized previous valuesNt−1, Nt−2, ..., Nt−I .
– one output value: Nt (the desired target).

This patterns set will be used to train and validate each model generated dur-
ing the evolutionary execution. Thus, the patterns set is split into two subsets,
training (with the first 70% elements of the series) and validation (with the
remaining ones), under a timely ordered holdout scheme.

2.2 Evolutionary Support Vector Machine Design

The problem of designing SVM for TSF can be seen as a search problem into the
space of all possible solutions. While several Evolutionary Computation methods
could be used for this search, we adopt the EDA algorithm, since it has outper-
formed the standard GA in our previous work [16]. When designing a ESVM,
there are three crucial issues: i) setting the solution’s space, i.e., what informa-
tion of the SVM is previously set and what is included into the chromosome; ii)
how each solution is codified into a chromosome, i.e., encoding schema; and iii)
what are we optimizing, i.e., defining the fitness function.

When designing a SVM, there are three crucial issues it should be taken
into account: the type of SVM to use, the selection of the kernel function and
tuning the parameters associated with the two previous selections. Since TSF is a
particular regression case, for the SVM type and kernel, we selected the popular
ε-insensitive loss function (known as ε-SVR) and Gaussian kernel combination,
as implemented in the LIBSVM tool [1]. In SVM regression [17], the input y =
(yt−kI , . . . , yt−k2 , yt−k1), for a SVM with I inputs, is transformed into a high
m-dimensional feature space, by using a nonlinear mapping (φ) that does not
need to be explicitly known but that depends of a kernel function. Then, the
SVM algorithm finds the best linear separating hyperplane, tolerating a small
error (ε) when fitting the data, in the feature space:

ŷt = w0 +
m∑

j=1

wjφj(y) (2)

This model requires setting three parameters: γ – the Gaussian kernel parameter,
exp(−γ||x − x′||2), γ > 0; C – a trade-off between fitting the errors and the
flatness of the mapping; and ε - the width of the ε-insensitive tube.

In this paper, an evolving hybrid system that uses EDA and SVM, is adopted.
Following the suggestion of the LIBSVM authors [1], SVM parameters are
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searched in terms an exponentially growing scale. We also take into account
the number of input values of the time series (I) used to train the SVM. There-
fore, we adopt a direct encoding scheme, using a numeric representation with 8
genes, according to the chromosome g1g2g3g4g5g6g7g8, such that:

I = round(α · n · 10g1+g2+1
100 ) , g1 ∈ {0, 1, ..., 9} ∧ g1 ∈ {0, 1, ..., 9}

γ = 2(g3+
g4
10 )−5 , g3 ∈ {−9,−8, ..., 9} ∧ g4 ∈ {−9,−8, ..., 9}

C = 2(g5+
g6
10 )+5 , g5 ∈ {−9,−8, ..., 9} ∧ g6 ∈ {−9,−8, ..., 9}

ε = 2(g7+
g8
10 )−8 , g7 ∈ {−9,−8, ..., 9} ∧ g8 ∈ {−9,−8, ..., 9}

(3)

where gi denotes the i-th gene of the chromosome. The input search range in-
cludes only integer numbers, due to the use of round function, and depends
on n, the length of the time series (#in-samples or training data), scaled by a
constant α factor. Based on our previous research using EANN for TSF [16],
we set α = 0.45. Thus, the ranges for the search space are: I, depends on
the series length (e.g., I ∈ {3, 7, 10, 13, 17, ..., 331} for Quebec); γ ∈ 2[−14.9,4.9];
C ∈ 2[−4.9,14.9]; and ε ∈ 2[−17.9,1.9].

The evolutionary process consists of the following steps:

1. First, a randomly generated population (composed of to 50 individuals), i.e.,
a set of randomly generated chromosomes, is obtained.

2. The phenotypes (SVM model) and fitness value of each individual of the
actual generation is obtained. This includes the steps:
(a) The phenotype of an individual of the actual generation is first obtained

(using LIBSVM [1]).
(b) Then, for each model, training and validation subsets are obtained from

time series data depending on the number of inputs nodes, as it was
explained in Section 2.1.

(c) The model is fitted using the Sequential Minimal Optimization algo-
rithm, as implemented in LIBSVM. The fitness for each individual is
given by the Mean Squared Error (MSE) validation error, during the
learning process. The aim is to reduce extreme errors (e.g., outliers)
that can highly affect multi-step ahead forecasts. Moreover, preliminary
experiments (with time series not present in Table 1), have shown that
this choice leads to better forecasts when compared with absolute errors.

3. Once the fitness values for whole population have been already obtained,
UMDA-EDA (with no dependencies between variables) [16] operators (se-
lection, estimation of the empirical probability distribution and sampling
solutions) are applied in order to generate the population of the next gener-
ation, i.e., a new set of chromosomes.

4. Steps 2 and 3 are iteratively executed until a maximum number of genera-
tions is reached.

The parameters of the EDA (e.g., population size of 50) were set to the same
values used by the EANN proposed in [16]. Since the EDA works as a second
order optimization procedure, the tuning of its internal parameters is not a
critical issue (e.g., using a population of 48 does not does not substantially
change the results). Also, this EDA has a fast convergence (shown in Fig. 1).
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3 Experiments and Results

3.1 Time Series

We selected a total of six time series, with different characteristics and from
distinct domains (Table 1). Five series were selected from the well-known Hyn-
dman’s time series data library repository [10]. These are named Passengers,
Temperature, Dow-Jones, Quebec and Abraham12. We also adopt the Mackey-
Glass series, which is a common nonlinear benchmark. It should be noted that
these six times series were also adopted by the NN3 and NN5 forecasting com-
petitions [5]. Except for Mackey-Glass, all datasets are from real-world domains
and such data can be affected by external issues (e.g., strikes), which make them
interesting datasets and more difficult to predict.

Table 1. Time series data

Series Description #in-samples #out-of-samples (H)

Passengers monthly int. airline passengers 125 19
Temperature monthly air temp. at Nottingham 206 19
Dow-Jones monthly index closings (1968-81) 129 19
Abraham12 gasoline demand at Ontario 168 24
Quebec daily number of births at Quebec 735 56
Mackey-Glass chaotic series 735 56

3.2 Evaluation

The Symmetric Mean Absolute Percentage Error (SMAPE) is given by [11]:

SMAPE =
1

H

T+H∑

t=T+1

|et|
(|yt|+ |ŷt|)/2 × 100% (4)

where et = yt− ŷt, T is the current time period and H is the forecasting horizon,
the number of multi-step ahead forecasts. SMAPE is a popular forecasting metric
that has the advantage of being scale independent when compared with MSE,
thus can be more easily used to compare methods across different series, ranging
from 0% to 200%. SMAPE was also the error metric used in NN3, NN5 and
NNGC1 forecasting competitions [5].

3.3 Results

For the comparison, we have chosen the EANN presented in [16], which is similar
to ESVM except that is uses a multilayer perceptron trained with the RPROP
algorithm, as implemented using the SNNS tool [18]. EANN optimizes the num-
ber of inputs (I ∈ {1, ..., 100}) and hidden nodes (from 0 to 99) and the RPROP
parameters (Δ0 ∈ {1, 0.01, 0.001, . . . , 10−9} and Δmax ∈ {0, 1, ..., 99}). Both the



528 P. Cortez and J.P. Donate

Table 2. Forecasting errors (%SMAPE, best values in bold) and best SVM models

Time Series ARIMA EANN ESVM I γ C ε

Passengers 4.50 3.39 5.35 14 2−4.1 212.7 2−8.6

Temperature 3.42 3.51 4.42 79 2−1.9 2−0.5 2−8.8

Dow-Jones 4.78 6.28 6.35 19 2−13.3 210.5 2−5.3

Abraham12 6.20 4.71 4.86 28 2−13.1 214.9 2−15.0

Quebec 10.36 10.83 9.31 301 2−13.6 212.7 2−16.3

Mackey-glass 26.20 7.06 1.32 10 22.0 21.70 2−16.0

Average 9.24 5.96 5.27
Median 5.49 5.49 5.11

ESVM and EANN experiments were conducted using code written in the C lan-
guage by the authors. As the stopping criterion, we used a maximum of 100
generations for ESVM and EANN. For a baseline comparison, we have also cho-
sen the ARIMA methodology, as computed by the ForecastPro c© tool [7]. The
rationale is to use a popular benchmark that can easily be compared and that
does not require expert model selection capabilities from the user. The obtained
results are shown in Table 2 (SMAPE errors and best SVM models).
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Fig. 1. Evolution of the ESVM best fitness value for all series (left, includes a zoom of
the bottom left area) and example of the ESVM forecasts for Quebec (right)

An analysis to tables shows that the proposed ESVM provides interesting
forecasts when compared with EANN and ARIMA. Each forecasting approach is
the best option for two series. Yet, ESVM provides the lowest average and median
(over all series, last two rows) results. The left of Fig. 1 plots the evolution of
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Table 3. Comparison of computational effort required by ESVM and EANN

Time EANN ESVM Rt

Series time (min) time (min)

Passengers 165 5 96.7%
Temperature 315 6 98.1%
Dow-Jones 161 3 98.2%
Abraham12 420 6 98.6%
Quebec 6603 95 98.5%
Mackey-glass 5649 105 98.1%

the best fitness values for ESVM (left), showing a fast convergence of the EDA
algorithm for all series. For demonstration purposes, the right of Fig. 1 plots the
ESVM forecasts for Quebec, showing a good fit.

The experimentation was carried out with an exclusive access to a server (Intel
Xeon 2.27 GHz processor using Linux). Table 3 shows the computational time
(in minutes) required by each evolutionary method and series. The last column
shows in percentage, the reduction of computational effort obtained by ESVM
when compared with EANN, where Rt = 1 − (tESVM/tEANN) and tM is the
time required for model M . As shown by the table, ESVM consumes much less
computational effort in all the time series tested. It can be observed a reduction
rate of at least 96% in all cases.

4 Conclusions

This paper proposes a novel Evolutionary Support Vector Machine (ESVM)
method for multi-step ahead TSF, which automatically searches best number of
inputs and SVM hyperparameters. The proposed ESVM was compared against
two approaches, an Evolutionary Artificial Neural Network (EANN) and the
popular ARIMA methodology. The experiments held using six time series from
distinct domains, revealed the proposed ESVM as the best forecasting method.
Moreover, when compared with EANN, ESVM requires much less computational
effort, with a reduction rate (in terms of time elapsed) greater than 96%. Thus,
ESVM is a good tool to quickly obtain accurate forecasts and this is a useful
characteristic for several TSF domains, such as critical or control systems. In the
future, we intend to address other SVM kernels (e.g., Polynomial) and extend
the experimentation to include time series from more domains (e.g., Medical
data).
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