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Abstract – Batteries of Electric Vehicles (EVs) and Plug-in 
Hybrid Electric Vehicles (PHEVs) have a large potential not 
only to provide energy for the locomotion of these vehicles, but 
also to interact, in dynamic way, with the power grid. Thereby, 
through the energy stored in the batteries, these vehicles can be 
used to regulate the active and the reactive power, as local 
Energy Storage Systems. This way, EVs can contribute to help 
the power grid to regulate the active and reactive power flow in 
order to stabilize the production and consumption of energy. 
For this propose should be defined usage profiles, controlled by 
a collaborative broker, taking into account the requirements of 
the power grid and the conveniences of the vehicle user. Besides, 
the interface between the power grid and the EVs, instead of 
using typical power converters that only work on unidirectional 
mode, need to use bidirectional power converters to charge the 
batteries (G2V - Grid-to-Vehicle mode) and to deliver part of 
the stored energy in the batteries back to the power grid (V2G - 
Vehicle-to-Grid mode). With the bidirectional power converter 
topology presented in this paper, the consumed current is 
sinusoidal and it is possible to regulate the power factor to 
control the reactive power, aiming to contribute to mitigate 
power quality problems in the power grid. To assess the 
behavior of the presented bidirectional power converter under 
different scenarios, are presented some computer simulations 
and experimental results obtained with a prototype that was 
developed to be integrated in an Electric Vehicle. 

I. INTRODUCTION 

Nowadays, the recent and massive investments in electric 
mobility, mainly in Electric Vehicles (EVs) and Plug-in 
Hybrid Electric Vehicles (PHEVs), represents a new 
paradigm in the transports sector, alternatively to the vehicles 
with Internal Combustion Engines (ICE). For simplicity, from 
now on in this paper, it will be used the terminology Electric 
Vehicle (EV) both for EVs and PHEVs. 

The proliferation of EVs will contribute do reduce the 
strong dependence from oil and other fossil fuels, allowing an 
effective reduction in the emissions of greenhouse gases. This 
way the impact of the transports sector in the climate change 
will be reduced. Nevertheless, for the electrical power grids 
EVs will be extra loads, which will consume energy to charge 
their batteries, and in many cases at the same time, and 
connected to the same distribution transformer. 

With the electric mobility increase, taking into account the 
stored energy in the batteries of EVs, arises a new concept in 
the electrical power grid market denominated Vehicle-to-Grid 
(V2G) [1][2][3]. In this sense, besides the battery charging 
mode, denominated as Grid-to-Vehicle (G2V), the owners of 
these vehicles and the power grid can interact, through a 
collaborative broker, to negotiate the energy stored in the 

batteries, respecting a schedule to charge the batteries and the 
total time required [4]. The integration of EVs in the power 
grid distribution network, respecting the technical restrictions 
of the system, requires data analysis of the electrical 
consumption to allow the smart utilization of the batteries, 
where the charging (G2V) or discharging (V2G) processes 
have to be coordinated with the users of the vehicles [5]. 

Focusing the integration of EVs in the power grid, in order 
to implement the V2G concept, it is necessary the use of 
bidirectional power converters. These converters, should be 
designed to allow the bidirectional flow of energy (with 
different control algorithms based on different stages of 
voltages and currents), and the current in the AC side should 
be sinusoidal with variable and controlled power factor. With 
these characteristics, it is preserved the lifetime of the 
batteries and the power quality of the electrical power grid. In 
this context, in [6][7] it is analyzed the impact of the battery 
chargers of EVs on the power quality, and it is proposed a 
tool that can be easily applied to determine the optimum 
charging time as function of the existing available power in 
the electrical power grid, the schedule and the ambient 
temperature. 

Relatively to the power converters of the battery chargers, 
which typically consist in AC-DC and DC-DC converters, 
there are several topologies presented in the literature. In [8] 
are compared the basic topologies for power factor correction 
(PFC), using the DC-DC converters buck, boost, buck-boost, 
flyback, forward, cuk, sepic, and zeta, highlighting the 
operation of the DC-DC converters in discontinuous mode. In 
[9] is presented a comprehensive review of various 
techniques to PFC with their control systems, advantages and 
disadvantages. In [10] is proposed a new low-stress buck-
boost converter for universal input PFC applications, and is 
made a comparison with the boost converter. Circuit 
topologies for PWM boost rectifiers are presented in [11]. 
Due to the unidirectional mode of operation, these converters 
are not suitable for V2G applications. For this purpose should 
be used topologies with bidirectional operation [12][13]. In 
[14] are presented basic requirements and specifications for 
the bidirectional converters of EVs. 

Independently of the power converter topology, the battery 
chargers can be categorized as on-board or off-board. The on-
board battery chargers are placed inside the vehicles, and 
typically are designed to allow charging the batteries in slow 
mode using standard plugs and sockets in the connection to 
the power grid, as in homes or public workspaces. On the 
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C. Power Quality 
Taking into account the electric mobility integration, the 

main problems associated with power quality [21] are: 
voltage and current harmonics; low power factor; noise 
(electromagnetic interference); and unbalances. As a way to 
solve these problems can be used shunt active power filters 
(used to solve problems related with the current), series active 
power filters (used to solve problems related with the 
voltage), and unified power quality conditioners (used to 
solve problems related with current and voltages) [22][23]. 

However, with the topology of bidirectional converter for 
battery charger presented in this paper, the current in the AC 
electrical power grid side will be sinusoidal (this way it will 
not contribute to degrade the line current and voltage), and it 
will be possible to control the power factor. In [24] is 
analyzed a particular case of the impact of Plug-in Hybrid 
Electric Vehicles (PHEVs) in the electric utility system, 
where, basically it is approached the consumption profile and 
how these vehicles will affect the utility operation by adding 
additional electricity demand. 

III. BATTERY CHARGERS ANALYSIS 

In EVs the battery chargers are composed by power 
converters, which allow transform the AC power grid voltage, 
into DC voltage to charge the batteries. 

The bidirectional power converter for EVs presented in this 
paper is composed by two power converters, one AC-DC and 
the other DC-DC. In Fig. 2 is shown the schematic of the 
proposed converter. Due to the topology of the bidirectional 
power converter, simultaneously with the charging of the 
batteries with the proper control algorithms, it is possible to 
consume sinusoidal current with controlled power factor. 
Thereby, besides controlling the active power it is also 
possible to control the reactive power. In Fig. 3 is shown the 

flow of active and reactive power involved in the interaction 
of this bidirectional power converter with the power grid. In 
Tab. I are summarized the different profiles of power 
consumption, considering inductive and capacitive power 
factor with different values. These different profiles of power 
consumption are configurable through the control system. 

Taking into account that the power grid voltage is given by 
(1), the reference to the sinusoidal current with variable 
power factor is given by (2), where k2 and k3 are the 
amplitude of the references of the current, respectively. 

The active power is adjusted taking into account the 
voltage and the current in the batteries, and the reactive 
power is adjusted according to the information provided by 
the collaborative broker concerning the current limits of the 
bidirectional power converter. 

� � t�sin.1kgridv �  (1) 

� � � � t�cos.3k t�sin.2krefi ��  (2) 

In a first stage to analyze the behavior of the bidirectional 
battery charger was performed several simulations with the 
simulation tool PSIM 9.1. In Fig. 4 are shown some of the 
obtained results, considering the voltage and the current in the 
power grid with different values of � in order to adjust the 
reactive power. As shown in this figure, the simulations were 
performed in eight different modes of operation in order to 
analyze the behavior of the power converter with unitary 
power factor, with inductive power factor, and with 
capacitive power factor. In the simulation model was 
considered the model of the bidirectional power converter, an 
electrical model of batteries, and a digital controller 
(programmed in C language). 

 
Fig. 2.  Schematic of the presented bidirectional power converter. 
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VI. CONCLUSIONS 

In this paper was presented a battery charger for Electric 
Vehicles (EVs) aiming their integration in Smart Grids. This 
battery charger allows the interaction with the power grid to 
charge the batteries (Grid-to-Vehicle - G2V mode) and to 
deliver part of the stored energy in the batteries back to the 
power grid (Vehicle-to-Grid - V2G mode). Through the 
operation of this bidirectional battery charger the EVs can be 
used to regulate the reactive power and to act as local Energy 
Storage Systems (ESS). This way, the EVs will be able to 
help the power grid to regulate the active and reactive power 
flow, stabilizing the production and consumption of energy. 

Taking into account the bidirectional power converter 
topology that was presented in this paper, the consumed 
current is sinusoidal and it is possible to regulate the power 
factor (to control the reactive power), aiming to contribute to 
mitigate power quality problems in the power grid. The 
reactive power control is performed considering the user 
interface of the Electric Vehicle, the requirements of the 
power grid defined by a collaborative broker, and concerning 
the current limits of the bidirectional power converter. 

In a first stage, the behavior of the bidirectional power 
converter was evaluated under different scenarios through 
computer simulations. Then the behavior of the bidirectional 
power converter was evaluated with a prototype, which was 
developed aiming to reduce its volume and weight, in order to 
be integrated in an Electric Vehicle with Absorbed Glass Mat 
(AGM) batteries. In this paper were presented the simulations 
and experimental results obtained. 
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