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Abstract

Surface plasmon-polaritons (SPPs) in a multilayer structure consisting of a metallic film

and one or more layers of nanocrystal (NC) quantum dots (QDs) are studied theoretically. It

is shown that there is a resonance coupling between the plasmon-polaritons propagating along

the metal/NC-layer interface and excitons confined in the dots, which produces a considerable

effect on the optical properties of the structure unless the dispersion of the QD size is too

large. Using a transfer matrix formalism, multilayer structures consisting of NC composite

and metallic films are considered and it is demonstrated that the coupling extends over several

layers constituting the structure. It can be explored in order to selectively excite QDs of dif-

ferent size by making a layer-by layer assembled NC planar structure and using an attenuated

total reflection (ATR) configuration for the SPP-enhanced excitation of the dots. In particular,

it opens the possibility to control the relative intensity of light of different color, emitted by the

QDs of different size.

Introduction

Semiconductor quantum dots (QDs), often referred to as "artificial atoms", have discrete energy

levels that can be tuned by changing the QD size and shape. The existence of zero-dimensional

states in QDs has been proved by high spectrally and spatially resolved photoluminescence (PL)

spectroscopy.1,2 During the last decade, efforts have been concentrated on the studies of single

QDs,3 on one hand, and the development of new nanostructures using QDs as building blocks or

combining them with traditional materials,4,5 on the other hand. In the limit of large numbers of

QDs, colloidal semiconductor nanocrystals (NCs) provide a promising route towards large-scale

nanoassemblies.5,6 With such artificial materials, exploiting the tunable optical properties of QDs,

a number of devices such as light emitting diodes,7 photodetectors8 and photovoltaic cells9 have

been demonstrated.

In QD assemblies, the question of coupling and coherence between the dots naturally arises.

Unlike single atoms, no two QDs are exactly the same and the energy levels fluctuate from dot
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to dot. If these fluctuations are large, no collective excitations should be possible. Even though

electronic excitations can, in principle, delocalize over multiple dots with a sufficiently uniform

size, it requires a considerable probability of electron tunneling across the interface and a high

degree of structural order in the QD assembly, conditions that are difficult to achieve.6 In fact,

electrical conductivity of ensembles of nanocrystal QDs is low, thermal-activated and probably

mediated by a thermal-assisted hopping mechanism.10 However, coupling between QDs can oc-

cur through a long-range electromagnetic interaction leading to the processes of energy transfer

without charge transport. It requires resonance between the optical transitions in different QDs

that can be separated by distances much larger than their size. Such processes have been proposed

as mechanisms for the formation of extended coherent exciton states in regular arrays (superstruc-

tures) of QDs,11,12 unidirectional energy transfer in size-gradient layered NC assemblies6,13 and

PL up-conversion in diluted QD ensembles.14

Colloidal chemistry techniques have proved the ability to synthesize high quality NCs with very

uniform size, which can be varied in the range of 2–10 nm.5 The size uniformity is important for the

electromagnetic coupling between QDs. With these NCs, a broad variety of nanostructures can be

prepared, in particular, multilayer structures of QDs of different average size, deposited on different

substrates.5 Combining such structures with other materials, such as organic dielectrics,15 epitaxial

quantum well heterostructures,16 patterned metallic surface,17,18 graphene,19 or even biological

molecules,20 can result in new interesting physics and applications related to the energy transfer

from photoexcited NCs to these materials or vice versa.

Recent experiments21 demonstrated the possibility of strong coupling between excitons con-

fined in NC quantum dots and surface plasmon-polaritons (SPPs) propagating along the interface

of a silver film and the QD layer deposited on top of it. The observation was achieved by measuring

attenuated total reflection (ATR) spectra of the structure. In this work we develop the theory of the

observed effect taking into account the QD size dispersion. We will show that the resonant SPP

coupling to excitons confined in QDs can be considerable unless the dispersion of the QD size is

too large or the dots are too far from the metal/dielectric interface. The resonant coupling can be
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used for controllable pumping the dots in order to explore their incomparable luminescence prop-

erties.5 Based on the calculated results, we will discuss possible applications of the ATR structures

containing, beyond the silver film, several layers of NCs of different average size.

The paper is organized as follows. First, we introduce the complex dielectric function for a

composite medium containing semiconductor NCs and exemplify it for the case of CdSe QDs em-

bedded in PMMA. Next, we obtain and illustrate the SPP dispersion relations and, finally, present

and discuss the calculated results for the reflectivity of ATR structures containing several QD and

metallic layers arranged in a number of different ways.

Dielectric function of a composite material containing quantum

dots

A single QD can be described by a bare electronic susceptibility that takes into account inter-band

transitions 1:

χ(ω) =
4 |dcv|2

3V ∑
n

[
|βn|2

En− iΓ− h̄ω
+

|βn|2

En− iΓ+ h̄ω

]
, (1)

where the sum runs over confined exciton states with energies Ei (i = 0 denotes exciton vacuum),

dcv is the transition dipole moment matrix element between valence and conduction bands of the

underlying semiconductor material, V is the QD volume and

βi = gi

∫
QD

Ψ
(i)
ex (r,r)dr

with gi and Ψ
(i)
ex (re,rh) denoting the degeneracy factor and the wavefunction of the corresponding

exciton states.

The quantity

εQD(ω) = ε
∞
s +4πχ(ω) (2)

1It relates the QD polarization to the electric field inside the dot.

4



can be regarded as a QD dielectric function, where ε∞
s is the high-frequency dielectric constant of

the QD material. However, it can be more convenient to define the QD polarizability (assuming

spherical shape of the dot),

α(ω) =
εQD(ω)− εh

εQD(ω)+2εh
a3 , (3)

where a is the QD radius and εh is the dielectric constant of the host material. Using these quantities

(2,3), one can calculate an effective dielectric function, ε∗, of the composite material containing

uniform size QDs embedded in the host matrix using one of the following schemes:

(i) Maxwell-Garnett approximation (MGA) valid in the low QD concentration limit,22

ε∗− εh

ε∗+2εh
=

4π

3
Nα , (4)

where N is the number of particles per unit volume;

(ii) Bruggemann mean field approximation (BA),23

f
εQD− ε∗

εQD +2ε∗
+(1− f )

εh− ε∗

εh +2ε∗
= 0 , (5)

where f = 4π

3 Na3 is the volume fraction of QDs. BA is valid when f ∼ 0.5. MGA can be extended

up to f ∼ 0.1 using a renormalized polarizability which takes into account the dipole-dipole inter-

actions between QDs as explained in Ref.24

The modified MGA (MMGA) proposed in Refs.24,25 allows for taking into account the QD ra-

dius dispersion. Let F(a) denote the radius distribution function. The renormalized polarizability,

α?, can be calculated by the following equations,

α
∗ =

∫
α(a′)

1−
√

1−4Θ(a′)
2Θ(a′)

F(a′)da′ ; (6)

Θ(a′) =
8π

3
Nα(a′)

∫
α(a)

(a′+a)3 F(a)da (7)

where α(a) is the polarizability of a QD of radius a. For uniform-size QDs Eqs. (6) and (7) reduce
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to

α
?(a) =

2a3

f α̃

(
1−
√

1− f α̃2
)

where α̃ = α/a3. α? replaces α in Eq. (4) [notice that for small QD volume fraction f we get

α? = α].

Using the mean-field idea of the absence of scattering "on average" in a composite where its

constituents are present in comparable fractions,26 we can generalize BA by taking into account

the QD radius dispersion. Thus, we introduce the modified BA (MBA) for ε∗ through the following

equation,

f
∫

εQD(a′,ω)− ε?

εQD(a′,ω)+2ε∗
F(a′)da′+(1− f )

εh− ε∗

εh +2ε∗
= 0 . (8)

The case of CdSe spherical QDs

Within the simplest model neglecting the Coulomb interaction between the electron and hole

(strong confinement limit) and multiple sub-band structure of the valence band, the QD exciton

spectrum is given by27

Ei = Eg +
h̄2

ξ 2
i

2µa2 (9)

where Eg is the band gap energy (=1.75 eV for CdSe), µ is the electron-hole reduced mass and

ξ1 = π , ξ2 ≈ 4.49, ξ3 ≈ 5.76, . . . are the roots of the spherical Bessel functions. Within this model,

βi = 2 for all i≥ 1. 2 The dipole moment matrix element can be expressed as

dcv =
eh̄

im0Eg
pcv

2We use this model for the sake of simplicity. Generalization to the more realistic one28,29 taking into account
the complex valence band structure of the underlying material and the fine structure of the confined hole states is
straightforward.
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where m0 is the free electron mass and 2p2
cv/m0 ≈20 eV.29 We take εh = 1.5 for PMMA matrix

and assume a Gaussian distribution of the QD radius,

F(a) =
1√

2π∆2
a

exp
[
−(a− ā)2

2∆2
a

]

where the mean, ā, and the variance, ∆a, describe QD’s average radius and size dispersion, re-

spectively. The real and imaginary parts of the effective dielectric function of the QD/PMMA

composite calculated for f = 0.1 and 0.3 are shown in Fig. 1. A small imaginary part, Γ = 1 meV,

was introduced in the denominators of Eq. (1).

As it can be seen from Fig. 1, the imaginary part of the effective dielectric function has a

resonance at the exciton frequency, with the broadening depending on the QD concentration and

size dispersion. The real part of ε∗ can reach negative values in the vicinity of the exciton frequency

only for vanishing dispersion [Fig. 1(a)], while for larger dispersion it always remains positive

[compare with Figs. 1(b) and 1(c)]. For higher f [Fig.1(d)] the difference in the real part of ε∗ in

the vicinity of the resonance becomes more pronounced. At the same time, increasing the filling

factor results in an increase and the proportional broadening of the peaks of the imaginary part of

the effective dielectric function [compare Figs. 1(c) and 1(d)]. This is in qualitative agreement

with the experimentally measured absorption spectra of dilute dispersions and close-packed films

of nanocrystal QDs.30

SPP’s at metal/NC-layer interface

In order to demonstrate the involved physics, we shall first discuss the dispersion relation for

surface plasmon-polaritons31 in a simplified structure. Let us consider an electromagneic wave

in the vicinity of a plane interface between two semi-infinite media, a metal and a QD/dielectric

composite, and assume that the wave is p−polarized. We choose x axis along the direction of

propagation of the electromagnetic wave within the interface plane and z axis perpendicular to the

interface. Assuming electromagnetic field’s time and x-coordinate dependence to be of the form
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exp(ikx− iωt) (where k and ω are the wavenumber and frequency, respectively), we can write

down the SPP dispersion relation in the form:32,33

εM(ω)

pM
+

ε∗(ω)

p∗
= 0, (10)

where pM =
√

k2−κ2εM(ω), p∗ =
√

k2−κ2ε∗(ω), κ = ω/c and εM(ω) is the Drude-type di-

electric function of the metal. Eq. (10) can be solved for the wavenumber k, yielding

k = κ

(
ε∗(ω)εM(ω)

ε∗(ω)+ εM(ω)

)1/2

. (11)

The amplitude of the electromagnetic wave decays exponentially at both sides of the interface,

∼ exp(−p∗z) for z > 0 and ∼ exp(pMz) for z < 0.

The frequency dependence of the real and imaginary parts of k for an Ag/QD–PMMA interface

is shown in Figs. 2(a), 2(c), 2(e) and 2(g). Im(k) increases drastically in the vicinity of QD exciton

transition frequencies. It reflects the resonant coupling between SPPs and QD excitons. Again,

the resonance peak broadens with the increase of the QD size dispersion [compare Figs.2(a), 2(c),

2(e)] because of the weaker coupling involving fewer QDs for each given ω . Notice that the

strengthening and relative narrowing of the resonance peak can be achieved by increasing the

filling factor f [compare Figs. 2(e) and 2(g)].

As known, SPPs can be probed in the ATR geometry schematically shown in Fig. 3. The

system consists of a prism, an Ag film 3, and a semi-infinite layer of CdSe QD–PMMA composites.

Qualitatively the mechanism of SPP’s excitation can be expressed in the following manner. The

frequency and the x-projection of the wavevector of an external electromagnetic wave, connected

by the relation known as "ATR scanline",

kx =
ω

c
√

εg sinθ (12)

3For the dielectric function of silver we used the expression and parameters given in Ref.34
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should match ω and Re(k) of the surface polaritons.31 In Eq.(12) εg is the dielectric constant of the

prism and θ is the angle of incidence. In other words, the ATR scanline should intersect the SPP

dispersion curve given by Eq.(11) in the case of a single interface. The matching is achieved by

adjusting ω and/or θ and is detected by measuring the reflectance, R, which shows characteristic

dips corresponding to the resonant transfer of the electromagnetic energy into SPPs.

The reflectivity of the structure depicted in Fig. 3 can be obtained using the transfer matrix

formalism (see Supporting Information for details). The SPP properties, qualitatively similar to

those outlined above for the simplified structure containing just two semi-infinite media, determine

the features of the ATR reflectivity spectra of the system. The minima in the ATR spectra shown

in Figs. 2(b), 2(d), 2(f), and 2(h) correspond to the intersections of the SPP dispersion curves with

the ATR scanline and resemble the structure of the corresponding Re(k) versus ω dependencies

[Figs. 2(a), 2(c), 2(e), and 2(g)].

Results and discussion

Let us consider the properties of the exciton-SPP resonances in more detail. For an arbitrary multi-

layer structure, the SPP dispersion relation can also be obtained using the transfer matrix formalism

(see Eq. (9) in the Supporting Information). This relation between ω and k may determine multiple

branches corresponding to different EM eigenmodes of the structure itself (without ATR prism).

If we neglect the imaginary part of the SPP wavevector (damping), the intersections of the ω(k)

curves with the ATR scanline correspond to the resonances. Adding a new layer may result in an

additional resonance. Already considering finite QD composite layer requires the full treatment

because it may be necessary to take into account the reflection at its interface with vacuum. The

calculated results for this case are presented in Fig. 4.

How does the CdSe QD–PMMA layer thickness influence the ATR spectrum? In the case

of semi-infinite composite with CdSe NCs [Figs. 2(f)] the resonant interaction of modes occurs

at θ ≈ 50o for f = 0.1, ∆a = 0.1ā. If the QD–PMMA layer thickness is finite [see the structure
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sketch in the inset of Fig. 4(d)], the ATR resonance minima are shifted to lower angles of incidence

[compare Figs. 2(f) and 4(a)]. This shift increases with the decrease of the thickness [Fig. 4(d)].

At the same time, the intensity of the SPP-exciton interaction becomes lower. For example, in the

case of Fig. 4(d) the resonance is hardly distinguishable (as confirmed also by Fig.4(f), where the

positions of resonant minima are shown explicitly).

In the vicinity of the resonant angle (θ ≈ 42.5o in Fig. 4(b) and θ ≈ 39o in Fig. 4(e)) the

dependence R(ω) exhibits two minima with approximately equal depth, while for other angles

of incidence one of the minima is significantly deeper than the other [see Fig. 4(b,e)]. This is

characteristic of mode anticrossing and corresponds to the experimental observation of Ref.21 The

positions of these minima (i.e., the angles of incidence, θmin, at which the reflectance reaches its

minimum, Rmin, for a given frequency) are depicted in Fig. 4(c,f), where one can clearly see the

resonant SPP-exciton interaction, or mode anticrossing. Thus, with the decrease of the QD–PMMA

layer thickness, the mode anticrossing becomes weaker as manifested by the smaller separation of

the reflectance minima in Fig. 4(e) for θ ≈ 39o, as well as in Fig. 4(f). The change in the reflectivity

spectrum when the angle θ is tuned into resonance, shown in Fig. 4(e), can be compared to the

experimental data of Ref.21 showing a good agreement with Fig. 3 of that article. The depth of the

resonant minima of the reflectivity, Rmin(ω), at the corresponding angles θmin demonstrates that

there are at least three points (ω ≈ 2.2eV, ω ≈ 2.47eV, ω ≈ 2.7eV) where the reflectivity of the

ATR structure reaches zero, Rmin = 0. The values of Rmin far from the exciton resonance frequency

are higher for smaller d1 [compare Figs. 4(c) and 4(f)].

Now let us turn to the structures with the same silver film and two composite layers, one

of thickness d1 containing QDs of average radius a1 and the other (semi-infinite) with QDs of

radius a2 [Fig. 5(a)]. In the ATR spectrum of this structure [Figs. 5(b), 5(e)], one can observe

resonances corresponding to both a1 [ω ≈ 2.12eV, ω ≈ 2.5eV and ω ≈ 2.95eV] and a2 QDs

[ω ≈ 2.3eV and ω ≈ 2.85eV]. Increasing d1 results in a stronger anticrossing between the SPP and

the a1 QD exciton modes, and in a weakening of the a2 resonance [compare Figs. 5(b) and 5(e)].

Nevertheless, choosing an appropriate composite layer thickness, one can achieve SPP coupling to
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QD excitons localized in the composite layer which is not adjacent to the metallic film.

The ATR minima correspond to some particular values of ω and θ for which the energy of the

incident electromagnetic wave is most efficiently transferred to SPP and, consequently, to the QD

excitons. This is shown in Figs. 5(c), 5(d), 5(f) and 5(g), where the squared average amplitude

of the electric field is plotted for each of the CdSe QD–PMMA layers. It represents the intensity

of excitation of QDs located in the layer. If these dots can emit light4, the relative intensity of

light of different colours emitted by two or more composite layers containing QDs of different

average radii can be controlled by sdjusting the angle of incidence or the excitation frequency. It

may open the possibility of building a lighting device based on a planar structure of multiple NC

layers, similar to that presented in Ref.,13 with controllable color characteristics.

If the average size of the NCs belonging to different layers of the structure is chosen in such

a way that the frequencies of the excitonic resonances are different but close to each other, then

it is possible to achieve the double resonance (or double anticrossing) due to the simultaneous

interaction of SPPs with two kinds of excitons. In this case the ATR spectrum contains three

minima correspond to one value of θ , as illustrated in the Supporting Information [Figs. S1(a) and

S1(b)]. It agrees with the experimental observation of Ref.35 and corresponds to a SPP-mediated

hybridization of slightly detuned excitons.

Finally, we considered several other types of potentially interesting sandwich-type structures

containing two or three interfaces between silver and CdSe QD–PMMA composite (see Supporting

Information, Fig. S2) and also periodic sequences of metallic and composite layers, i.e. "superlat-

tices" (Fig. 6). For the former, the calculated reflectivity spectra contain (at different θ for a given

frequency) two or three minima, respectively, as it might be expected. There is a rather complex

"bunching" of modes in the vicinity of the excitonic resonance. The tendency holds for "superlat-

tices" (SLs) of alternating NC composite and metal layers. In order to explain the properties of the

ATR structures containing a SL, in Fig. 6(a) we depict the dispersion curves of SPPs in SLs with

layer’s parameters identical to those of Figs. S2(a, b). The SPP spectrum of an infinite SL can be

4The neighborhood of the metallic layer may lead to the quenching of the QD emission.
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obtained using the Bloch theorem (see Supporting Information for details of the calculation) and

consists of two finite-width bands [shaded regions in Fig. 6(a)] separated by a gap. The edges

of the bands correspond to the SPP dispersion curves with Bloch vectors qB = 0 and qB = π/D,

respectively (D = d∗+dM is the SL period). Notice that at a certain SPP frequency, ω0 ≈ 2.68eV,

the gap in the spectrum disappears. At the same time, the dispersion curve of a finite SL truncated

by silver (the dispersion relation is derived in Supporting information) extends to the frequencies

ω > ω0, while the spectrum of a SL truncated by CdSe QD–PMMA composite exists only for

ω < ω0. These curves are located inside the gap between the two bands of the SPP spectrum of

the infinite SL. Notice that decreasing the silver layer thickness in the SL [see Fig. 6(b)] leads to

a broadening of the bands of the SPP spectrum and a red shift of ω0 [note ω0 ≈ 1.82eV in Fig.

6(b)]. In the finite SL the spectra corresponding to the infinite SL are quantized (because of the

finite number of periods). Not all of the modes are clearly seen in the scale of Figs. 6(c) and

6(d), in fact, the number of the observed minima is less than the number of metal-dielectric inter-

faces in the structure. However, the surface mode, localized at the metal-SL interface, is clearly

seen in Fig. 6(c) at ω > ω0. At the same time, in Fig. 6(d) the surface mode is seen both at

ω > ω0 and ω < ω0 (in the frequency range ω < ω0 the reflectivity minima correspond to the

CdSe QD–PMMA composite/SL interface, the last one truncating the superlattice).

Conclusion

In summary, we have shown that the resonant coupling between the plasmon-polaritons propa-

gating along the metal/NC-layer interface and the excitons confined in chemically synthesized

semiconductor NCs, experimentally observed in Ref.,21 are nicely described theoretically using

the appropriate effective dielectric function for the NC composite layer and the standard multi-

layer optics. The SPP-exciton interaction produces a considerable effect on the optical properties

of the structure if the dispersion of the NC size in the composite layer is not too large. In partic-

ular, it can be used for obtaining the metal-enhanced fluorescence of QDs.17 Moreover, we have

12



shown that combining several composite layers with appropriately sized quantum dots and/or more

than one metallic films can result in interesting interactions between the various SPP and exciton

modes. Owing to these interactions, the energy of an incident electromagnetic wave can be dis-

tributed, by means of surface plasmons, between the different QD species, as it has been suggested

for molecules adsorbed on a metallic surface.36 It can provide the possibility to control the relative

intensity of pumping of the QDs of different sizes layer-by-layer assembled into a planar structure.

Also, it can lead to the coupling of slightly detuned excitons localized in different layers.35 In a

hypothetical structure containing a (silver/CdSe QD - PMMA composite) superlattice, the coupled

SPP-exciton modes are expected to form Bloch bands leading to broad resonances in the ATR

spectra. It would be interesting to study this effect experimentally.
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Figure 1: Real (solid lines) and imaginary (dashed lines) parts of the CdSe QD - PMMA composite
dielectric function for average QD radius ā = 3nm, calculated using either MMGA with filling
factor f = 0.1 and QD radius dispersion ∆a = 0 (panel a), ∆a = 0.005ā (panel b), and ∆a = 0.1ā
(panel c), or MBA with filling factor f = 0.3 and QD radius dispersion ∆a = 0.1ā (panel d).
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Figure 2: (a, c, e, g) Real (solid lines) and imaginary (dashed lines) parts of the SPP wavevector
versus frequency, calculated for the interface between semiinfinite CdSe QD - PMMA composite
and silver. (b, d, f, h) Reflectivity R versus angle of incidence θ , and frequency ω for the ATR
structure with a glass prism (εg = 2.9584), a silver film of thickness d = 53.3nm, and a semiinfinite
composite medium. The composite dielectric function was calculated for average QD radius ā =
3nm using MMGA with filling factor f = 0.1, and ∆a = 0 (panels a, b), ∆a = 0.005ā (panels c, d),
and ∆a = 0.1ā (panels e, f) or MBA with filling factor f = 0.3 and ∆a = 0.1ā (panels g, h).
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Figure 3: ATR structure composed of a glass prism, a silver plate, and a semi-infinite composite
layer containing semiconductor QDs.

Figure 4: Reflectivity versus angle of incidence (θ ) and frequency (ω) [panels (a, d)]; reflectivity
versus frequency ω for a fixed θ [panels (b, e)]; minimal reflectivity Rmin (dashed lines) and cor-
responding angle of incidence θmin (solid lines) for a given ω [panels (c, f)] for the ATR structure
[depicted in inset of panel (d)] with glass prism εg = 2.9584, silver film of thickness d = 53.3nm,
CdSe QD–PMMA composite layer of thickness d1 = 53.3nm (a–c), or d1 = 19.78nm (d–f), fol-
lowed by semi-infinite vacuum. The composite dielectric function was calculated using MMGA
with f = 0.1, ā = 3nm and ∆a = 0.1ā.
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Figure 5: (a) ATR structure consisting of glass prism εg, Ag film of thickness d and two CdSe
QD–PMMA composite layers, one of thickness d1, and the other semi-infinite. (b–g) Reflectivity
[panels (b, e)], and relative electric field square amplitude |Ex(z)/Ei|2 at z = d [panels (c, f)]
and z = d + d1 [panels (d, g)] versus angle of incidence and frequency for the structure depicted
in panel (a) with εg = 2.9584, d = 53.3nm, d1 = 19.78 nm (a–c) or d1 = 53.3nm (d–e). The
dielectric functions for both CdSe QD–PMMA composite layers were calculated using MMGA
with f = 0.1, average QD radii a1 = 3.7nm (finite layer), a2 = 3nm (semi-infinite layer), and QD
radius dispersions ∆a = 0.1a1,2.
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Figure 6: SPP dispersion relations and reflectivity spectra of structures containing a (silver/CdSe
QD - PMMA composite) superlattice. Panels (a, b): Real part of the SPP wavevector versus
frequency, calculated for a SL with layer thicknesses d∗ = 300nm and dM = 69.23nm (a) or dM =
19.78nm (b). Shaded regions, bordered by the lines corresponding to the Bloch vectors qB = 0
(green and red solid lines) and qB = π/D (blue and black solid lines) represent two bands of the
SPP spectrum in the infinite SL, while the dashed lines correspond to the surface modes of the SLs
terminated by a silver (orange lines) or QD–PMMA composite (pink lines) semi-infinite medium;
Panels (c, d): Reflectivity versus angle of incidence and frequency for the ATR structure consisting
of glass prism, one silver film of thickness d = 53.3nm, and a 5 period SL of CdSe QD–PMMA
composite and Ag terminated by a semi-infinite CdSe QD–PMMA composite medium.

Figure 7: TOC figure
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