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and is solved using numerical methods. The simulation uses real data.
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1. Introduction

Water is becoming a scarce resource and its use has attained, in more advanced
countries, a certain degree of sophistication. This has impact on how the water
is used to produce electric energy. The management of multireservoir systems has
attracted the attention of many researchers (Labadie, 2004; Ladurantaye et al,
2009, e.g.). It is especially important if there is also a possibility of reusing the
downstream water in a situation of drought. This may be implemented in modern
reversible hydroelectric power stations, associated with reservoirs along a river
basin with a cascade structure, where it is possible both to discharge water from
upstream to produce electric power and to pump from downstream to refill an
upstream reservoir. Here we present a model for a cascade of hydro-electric power
stations where some of the stations have reversible turbines. There are restrictions
on the water level in the reservoirs and the objective is to optimize the profit of
power production. The problem is considered in the framework of a discrete-time
optimal control and is solved using numerical methods. The simulation uses real
data.
The paper is organized as follows: the model is presented and the problem is stated

∗Corresponding author. Email: mmguedes@fc.up.pt

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55621259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

in section 2; in section 3 the computational experiments are described and obtained
results are presented; section 4 contains some conclusions.

2. Problem statement

Consider a cascade of hydro-electric power stations like the one shown in Figure 1.
The dynamics of water volumes, Vi(t), in the reservoirs i = 1, 2, . . . , I, at time t, is

Figure 1. Example of a cascade of hydro-electric power stations.

described by the following discrete-time control system

Vi(t) = Vi(t− 1) + ai − qi(t)− si(t) +
∑
m∈Mi

qm(t) +
∑
n∈Ni

sn(t), (1)

t = 1, 2, . . . , T, i = 1, 2, . . . , I,

Vi(0) = V in
i i = 1, 2, . . . , I,

where V in = (V in
1 , . . . , V in

I ) is the vector of initial stored water volumes in the
reservoirs i = 1, . . . , I, Mi represents the set of reservoir indices from which the
water flow comes to reservoir i, from pumping or turbining, Ni is the set of reser-
voir indices contributing to the spillway to reservoir i, q(t) = (q1(t), . . . , qI(t)),
and s(t) = (s1(t), . . . , sI(t)), t = 1, 2, . . . , T , are the controls, representing the tur-
bined/pumped volumes of water and spillways for each reservoir at time t. The
controls and the water volumes satisfy the following constraints:

ζi
(
hi(t)− h0

i

)
− q0P

i ≤ qi(t) ≤ q0T
i

(
hi(t)/h

0
i

) 1

2 , (2)

Zmini ≤ Zi(t) ≤ Zmaxi , (3)

V in
i − ai ≤ Vi(T ), (4)
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where

Zi(t) = Z0
i + αi

(
Vi(t)

V 0
i

− 1

)βi

and

hi(t) = Zi(t)−max {Zj(t), ξi} .

Here j stands for the number of the downstream reservoir receiving water
from reservoir i, hi(t) are the differences between water levels (see Figure 2),
V 0
i , i = 1, 2, . . . , I, are the minimal water volumes; Zi(t), i = 1, 2, . . . , I, are

the water levels in the reservoirs; Z0
i , Zmini , and Zmaxi stand for the imposed

nominal, minimal and maximal water levels (meters above sea level) respectively;
h0
i , i = 1, 2, . . . , I, are nominal heads, and ξi, i = 1, 2, . . . , I, are tailwater

levels; q0T
i , i = 1, 2, . . . , I, and q0P

i , i = 1, 2, . . . , I, are the nominal turbined
and pumped water volumes; ai, i = 1, 2, . . . , I, are the incomming flows; finally
αi, βi, ζi, i = 1, 2, . . . , I, are positive constants.

Consider the following discrete-time optimal control problem with mixed
constraints. The functional, representing the profit, has the form

P (q, s, V in) =

∫ T

0
price(t)

(
I∑
i=1

ri(t)

)
dt.

The head losses in reservoir i at instant t, ∆hi(t), are given by

∆hi(t) = ∆h0T
i

(
qi(t)

q0T
i

)2

.

The functions ri(t), i = 1, 2, . . . , I, are given by

ri(t) =

{
9.8 ∗ qi(t) ∗

(
hi(t)−∆hTi (t)

)
∗ µTi ∗ (1− φi), if qi(t) ≥ 0,

9.8 ∗ qi(t) ∗
(
hi(t) + ∆hPi (t)

)
∗ 1/µPi ∗ (1− φi), if qi(t) < 0.

The functions ri(t) connect the amounts of turbined water and the values of the
gross head. The dynamics is described by discrete-time optimal control system (1)
with constraits (2)-(4).

The optimal values V in
i , i = 1, 2 . . . , I, give the mean volumes of water that are

necessary to keep in the reservoirs when the incomming flows are ai, i = 1, 2, . . . , I.
For example, in the case of the two reservoir system shown in Figure 3, the

respective optimization problem has the form:
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Figure 2. Two cascade reservoirs.

Figure 3. Two cascade reservoirs.

P (q, s, V0) =

∫ T

0
price(t)

(
2∑
i=1

ri(t)

)
dt→ max,

V1(t) = V1(t− 1) + a1 − q1(t)− s1(t),

V2(t) = V2(t− 1) + a2 − q2(t)− s2(t) + q1(t) + s1(t),

Vi(0) = V in
i i = 1, 2,

Zi(t) = Z0
i + αi

(
Vi(t)

V 0
i

− 1

)βi

, i = 1, 2

h1(t) = Z1(t)−max {Z2(t), ξ1} ,

h2(t) = Z2(t)− ξ2,

ζ1

(
h1(t)− h0

1

)
− q0P

1 ≤ q1(t) ≤ q0T
1

(
h1(t)/h0

1

) 1

2 ,

0 ≤ q2(t) ≤ q0T
2

(
h2(t)/h0

2

) 1

2 ,

Zmini ≤ Zi(t) ≤ Zmaxi , i = 1, 2

V in
i − ai ≤ Vi(T ) , i = 1, 2.
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where t = 1, 2, . . . , T .
A typical one day price function, price(t), is shown in Figure 3.

Figure 4. One day real market prices of electricity.

It should be noted that the high variability of prices certainly has a great influence
on the economically efficient use of water in the reservoirs to produce energy. The
restrictions are determined not only by economical reasons of producing electricity,
but also by ecological reasons and other uses of the reservoir water by the nearby
population. It is known that there is a higher use of electricity at 13h and 21h
which is related with domestic consumption and daily cycles, and we can see that
the price always increase at those times. One can then expect that this fact has
influence in the water management.

In the next section we study the above two reservoir system as well as the more
involved four reservoir system shown in Figure 5.

The problem of the profit optimization includes two main issues: one is how to
control the turbined/pumped water flows and the other one is how to project a
cascade of hydro-electric power stations. In particular we study the effectiveness of
introducing a reversible link L between reservoirs 2 and 4.

Figure 5. Four cascade reservoirs.
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3. Computacional experiments and results

Computational experiments with both models were fulfilled with real data of the
water levels and flows, as well as the market prices of electricity. The time period
considered was one day, 24 hours, because of the great variability of intra-day
electricity prices. Several type of days were tried, such as dry, mildly wet and
wet days, as well as different days of the week. Only a sample of these results is
presented. The optimization problems were solved using a penalty function method.
The problems had to be solved numerically because their complexity does not allow
for an analytical solution to be found.

In the case of two reservoirs for a very dry day the results are shown in Figure
6.

Figure 6. Example for two reservoirs: profit and power station controls.

The calculations were done with the market prices of electricity shown in Figure
4. It should be noticed that the hydroelectric power stations associated with the
two reservoirs only produce electricity when the price is high enough to justify that
production. The system chooses to produce energy mainly at meals time. As it was
a very dry day, the system had a small amount of water to manage. Because of
this, power station 1 being reversible pumped when the price was lower, allowing
the reuse of the water from reservoir 2. Pumping required a certain cost but this
increased the amount of available water in reservoir 1 allowing to discharge more,
even out of peak hours, augmenting the profit. The variation of the water flows
associated with power stations 1 and 2 can be seen in Figure 6. Before 8 o’clock
the system only pumps and costs money, but from 10 o’clock onwards, the system
produces energy and recovers giving a profit. It should be noted that the Profit
in Figure 6, is net profit. The optimal trajectory of the volume of water in the
reservoirs can be seen in Figure 7.

For the more complex cascade of four reservoirs (Figure 5), again with the same
day market prices for the electricity, the obtained results are presented in Figure 8
(Link L is included). It can be noticed a similar behaviour as in the previous case:
electricity is produced when high prices justify the production. Now, reservoirs 3
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Figure 7. The optimal trajectory.

and 4 are reversible and because of that water is pumped at dawn as in the previous
case.

Figure 8. Four cascade reservoirs: power station controls.

We also consider an intuitive water management scheme, that is, all the water is
used to produce electricity when its price reaches the highest value and pumping
is the option when the price is low enough, allowing later to use a bigger volume
of water for energy production. The results with this naif policy are presented in
Figure 9. From Figure 10 we can see that the control algorithm used provides an
intelligent water management with a final optimal profit much better than the
simple one.

For a 24 hour period the profit obtained using the ”optimal”policy, was
255348.32e and the profit with the naif policy was 136033.05 e. The above con-
siderations show that the use of optimal control methods can be important to
manage water in the best way.

Now let us illustrate how this model can be used to plan a cascade of hydro-
electric power stations. For example, we study the utility of link L in the cascade
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Figure 9. A naif control policy with four cascade reservoirs.

Figure 10. Comparison with a simple policy.

of four reservois as shown in Figure 5.
The same optimal control problems were solved with and without link L (see

Figure 5). The results are summarized in the following table:

Wet Average Dry

Cascade Inflow (m3) 555.6 277.8 95.2

Profit (ke) 387.6 359.1 261.9
With link L Turbined Flow (m3) 1095.9 1277.2 1140.8

Pumped Flow (m3) 892.6 832.3 1001.6

Profit (ke) 329.7 320.7 112.5
Without link L Turbined Flow (m3) 1102.2 924.5 785.8

Pumped Flow (m3) 713.0 535.3 646.6
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The profit in the case with the link L, with two reversible power stations, has better
values than in the case where the link L is out, even if there is no lack of water. For a
dry day, the profit obtained with link L has approximately doubled the one without
link L. Since the water to be managed by the system is very little, the inclusion of
a reversible reservoir is essential to its reuse. For a wet day, the disposable water is
enough. Since the level of water in each reservoir is nearer the maximum admissible
level, it is more difficult to manage the water and the situation becomes less flexible.
Anyway, the link is advantageous because the system continues to reuse the water
of the reservoir 2 having always a bigger profit. We can conclude that the inclusion
of a reversible reservoir is advantageous, and it shall be as more advantageous as
less water the system has, that is, as far away is the volume of water from its upper
limit.

4. Conclusions

A cascade of hydroelectric power stations was considered with a possibility of
turbining and pumping in some of the power stations. This was translated into
a discrete-time optimal control problem which was solved numerically. The data
used in our numerical experiments were real. The developed approach can be used
to plan and to manage cascade power stations.
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