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Abstract. For the initial value problem (IVP) associated to the generalized Korteweg-de

Vries (gKdV) equation with supercritical nonlinearity,

ut + ∂3
xu+ ∂x(uk+1) = 0, k ≥ 5,

numerical evidence [3] shows that, there are initial data φ ∈ H1(R) such that the correspond-

ing solution may blow-up in finite time. Also, with the evidence from numerical simulation

[1, 18], it has been claimed that a periodic time dependent coefficient in the nonlinearity

would disturb the blow-up solution, either accelerating or delaying it.

In this work, we investigate the IVP associated to the gKdV equation

ut + ∂3
xu+ g(ωt)∂x(uk+1) = 0,

where g is a periodic function and k ≥ 5 is an integer. We prove that, for given initial data

φ ∈ H1(R), as |ω| → ∞, the solution uω converges to the solution U of the initial value

problem associated to

Ut + ∂3
xU +m(g)∂x(Uk+1) = 0,

with the same initial data, where m(g) is the average of the periodic function g. Moreover,

if the solution U is global and satisfies ‖U‖L5
xL

10
t
< ∞, then we prove that the solution uω

is also global provided |ω| is sufficiently large.

1. Introduction

Motivated from an earlier work in [5] for the critical KdV equation, we consider the initial

value problem (IVP) ut + ∂3xu+ g(ωt)∂x(uk+1) = 0,

u(x, t0) = φ(x),
(1.1)
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2 M. PANTHEE AND M. SCIALOM

where x, t, t0, ω ∈ R and u = u(x, t) is a real valued function, k ≥ 5 is an integer and

g ∈ C(R,R) is a periodic function with period L > 0. To make the analysis simple, we

translate the initial time t0 to 0 and consider the following IVPut + ∂3xu+ g(ω(t+ t0))∂x(uk+1) = 0,

u(x, 0) = φ(x).
(1.2)

Before analyzing the IVP (1.1) with time oscillating nonlinearity, we discuss some aspects

of the supercritical Korteweg-de Vries (KdV) equation,ut + ∂3xu+ ∂x(uk+1) = 0, k ≥ 5,

u(x, 0) = φ(x), x, t ∈ R.
(1.3)

For k = 4 the IVP (1.3) is called critical in the literature for three different reasons, see

[4], [14] and references therein. As described in [14], the first reason is that, for k = 1, 2, 3 the

solution exists globally for all data in H1(R), while for k = 4 the global existence holds only

for small data (i.e., data with small H1(R)-norm). Second reason is that the index k = 4 is

critical for the orbital stability of the solitary wave solutions, see [4]. More precisely, using

the arguments from Grillakis et al. [9], Bona et al. [4] prove that the solitary wave solutions

of the gKdV equation (1.3) are H1-stable if and only if k < 4 and instable if k > 4. However,

this argument does not apply for the case k = 4, see also [19]. Finally, the third reason is that

the case k = 4 is the only power for which a solitary wave solution cannot have arbitrarily

small L2-norm, see [14]. In the light of this observation, the equation (1.3) is known as the

supercritical KdV equation in the literature.

Well-posedness issues for the IVP (1.3) have been extensively studied in the literature,

see for example [10] and [14], [15] and references therein. A detailed account of the recent

well-posedness results can be found in Kenig et al. [14], where they proved that, there exists

δk > 0 such that the IVP (1.3) is globally well-posed for any data φ ∈ Hs(R), s ≥ sk := 1
2 −

k
2

satisfying ‖Dsk
x φ‖L2

x
< δk. They were also able to relax the smallness condition on the

given data to obtain local well-posedness result, but paying price that the existence time now

depends on the shape of the data φ as well, and not just on its size. These are the best

well-posedness results in the sense that s = sk is the critical exponent given by the scaling

argument. However, for data in Hs(R), s > sk, they were able to remove the size and shape

restriction and got local-well posedness for arbitrary data with life span T of the solution

depending on ‖φ‖Hs(R). Quite recently, Farah et al. [8] considered the IVP (1.3) to address

the global well-posedness for the data with low Sobolev regularity. In this context, they
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proved the following local well-posedness result in the function space slightly different from

the one used in [14].

Theorem 1.1. [8] Let k > 4 and s > sk := 1
2 −

k
2 . Then for any φ ∈ Hs(R) there exist

T = T (‖φ‖Hs(R)) > 0 (with T (s, ρ) → ∞ as ρ → 0) and a unique strong solution u to the

IVP (1.3) satisfying:

u ∈ C([0, T ];Hs(R)), (1.4)

‖∂xu‖L∞x L2
T

+ ‖Ds
x∂xu‖L∞x L2

T
<∞, (1.5)

‖u‖L5
xL

10
T

+ ‖Ds
xu‖L5

xL
10
T
<∞, (1.6)

‖Dγk
t D

αk
x Dβk

t u‖Lpkx L
qk
T
<∞, (1.7)

where

αk =
1

10
− 25k, βk =

3

10
− 6

5k
, γk = γk(s) =

s− sk
3

(1.8)

1

pk
=

2

5k
+

1

10
,

1

qk
=

3

10
− 4

5k
. (1.9)

Moreover, for any T ′ ∈ (0, T ), there exists a neighborhood V of φ in Hs(R) such that the

map φ̃ 7→ ũ from V into the class defined by (1.4) to (1.7) with T ′ in place of T is Lipschitz.

In what follows, we will modify the statement of this result to suit in our context for given

data in H1(R) (see Theorem 1.2 below).

We recall that, the L2
x(R) norm and energy are conserved by the flow of (1.3). More

precisely, ∫
R
|u(x, t)|2dx =

∫
R
|φ(x)|2dx, (1.10)

and

E(u(·, t)) :=
1

2

∫
R
{(ux(x, t))2 − ckuk+2(x, t)}dx = E(φ), (1.11)

are time independent quantities.

The conserved quantities (1.10) and (1.11) yield an a priori estimate for ‖∂xu(t)‖L2(R) if

the initial data φ is sufficiently small in H1(R). For a detailed work-out of this fact we refer

readers to [8]. This a priori estimate allows one to iterate the local solution to get the global

one for small data in H1(R). Recently, a numerical study carried out by Bona et al. [3]

(see also [2, 4]) reveled the existence of H1-data for which the corresponding solution to the

supercritical KdV equation may blow-up in finite time. This is the point that motivated us

to carry on this work in the light of the recent work of Abdullaev et al. in [1] and Konotop

and Pacciani in [18]. In the case of the critical KdV equation (k = 4), there is an extensive

series of works carried out by Martel and Merle [19, 20, 21] about the finite time blow-up
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solutions and their stability/instability analysis. For the most resent work in this series, see

[22]. As far as we know, for the supercritical case such analytical study does not exist.

The authors in [1] and [18] investigate the effect of a time oscillating coefficient in the

nonlinearity of the Bose-Einstein condensates. An investigation of solutions which are global

for large frequencies is carried out in [1], while in [18], a study of solutions which blow-up

in finite time is done. Their results are numerical. Roughly speaking, they claim that the

periodic time dependent coefficient in the nonlinearity would disturb the blow-up solution,

either by accelerating or delaying it. Recently, Cazenave and Scialom [6] considered the

nonlinear Schrödinger (NLS) equation and got an analytical insight to understand the problem

by showing that the solution really depends on the frequency of the oscillating term. They

proved that the solution u to the IVP associated to the NLS equation

iut + ∆u+ θ(ωt)|u|αu = 0, x ∈ RN , (1.12)

where 0 < α < 4
(N−2)+ is an H1 sub-critical exponent and θ is a periodic function, with initial

data φ ∈ H1(RN ) converges as |ω| → ∞ to the solution U of the limiting equation

iUt + ∆U + I(θ)|U |αU = 0, x ∈ RN , (1.13)

with the same initial data, where I(θ) is the average of θ. Moreover, they also showed that,

if the limiting solution U is global and has a certain decay property as t→∞, then u is also

global if |ω| is sufficiently large. A similar result has been proved for the critical KdV equation

in our earlier work [5]. In this work, we are interested in addressing the supercritical KdV

equation in the same spirit. The numerical evidences for the existence of blow-up solution

to (1.3) in H1(R) due to Bona et al. [3] (see also [2, 4]) and the discussion made above

strengthen our motivation of studying (1.1) with time oscillating nonlinearity.

As discussed above, our interest here is to investigate the behavior of the solution for given

data in H1(R) to the IVP (1.1) as |ω| → ∞. The natural limiting candidate to think of is

the solution to the following IVPUt + ∂3xU +m(g)∂x(Uk+1) = 0, k ≥ 5,

U(x, 0) = φ(x), x, t ∈ R,
(1.14)

where m(g) := 1
L

∫ L
0 g(t)dt is the mean value of g and is a real number. To this end, we

need an appropriate well-posedness result for the supercritical KdV equation in H1(R). We

recall the local well-posedness result from [8] for arbitrary data in Hs(R), s > sk, stated

in Theorem 1.1 (See also [14]). The function space used in Theorem 1.1 has an additional

norm ‖Dγk
t D

αk
x Dβk

t u‖Lpkx L
qk
T

that involves time derivatives of the solution. The presence of



SUPERCRITICAL KDV 5

this norm creates an extra difficulty to handle the time-oscillating nonlinearity. Therefore, to

deal with our case, we need to avoid the presence of the norm that involves time derivatives.

Also, it is very important to have an explicit expression that provides the local existence time

of the solution. In the literature, we did not find an explicitly written proof of the H1(R)

well-posedness for the IVP (1.3) that fulfills our requirement. Therefore, we will provide a

new proof for the well-posedness of the IVP (1.3) in H1(R). Our proof allows us to extend

the well-posedness result to the IVP (1.2) and as a consequence to have an estimate of the

local existence time.

Other than the recent works [5] and [6], there are very less works in the literature that

address the well-posedness issues for the equations of the KdV and NLS family with time

dependent nonlinearity (see [7], [23] and [24]). The authors in [7] deal with the NLS equation

in R2 with nonlinearity of the form cos2(Ωt)|u|p−1u in the critical and supercritical cases.

The author in [23] considered the transitional KdV equation with nonlinearity of the form

f(t)u∂xu, where f is a continuous function such that f ′ ∈ L1
loc(R), and proved the global

well-posedness in Hs(R), s ≥ 1. The transitional KdV arises in the study of long solitary

waves propagating on the thermocline separating two layers of fluids of almost equal densities

in which the effect of the change in the depth of the bottom layer, which the wave feels as it

approaches the shore, results in the coefficient of the nonlinear term, for details see [17]. In

[24], transitional Benjamin-Ono equation with time dependent coefficient in the nonlinearity

has been considered and the main result is the global existence of the solution for data in

Hs(R), s ≥ 3
2 .

Before stating the main results of this work, we define notations that will be used through-

out this work.

Notation: We use f̂ to denote the Fourier transform of f and is defined as,

f̂(ξ) =
1

(2π)1/2

∫
R
e−ixξf(x) dx.

The L2-based Sobolev space of order s will be denoted by Hs with norm

‖f‖Hs(R) =
(∫

R
(1 + ξ2)s|f̂(ξ)|2 dξ

)1/2
.

The Riesz potential of order −s is denoted by Ds
x = (−∂2x)s/2. For f : R × [0, T ] → R we

define the mixed LpxL
q
T -norm by

‖f‖LpxLqT =
(∫

R

(∫ T

0
|f(x, t)|q dt

)p/q
dx
)1/p

,
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with usual modifications when p = ∞. We replace T by t if [0, T ] is the whole real line R.

We use the notation f ∈ Hα+ if f ∈ Hα+ε for ε > 0.

We define two more spaces XT and YT with norms

‖f‖XT :=‖f‖L∞T H1 + ‖∂xf‖L∞x L2
T

+ ‖∂2xf‖L∞x L2
T

+ ‖f‖L5
xL

10
T

+ ‖∂xf‖L5
xL

10
T

+ ‖∂xf‖L20
x L

5/2
T

+ ‖f‖L4
xL
∞
T
,

(1.15)

and

‖f‖YT := ‖∂xf‖L2
xL

2
T

+ ‖f‖L2
xL

2
T
, (1.16)

respectively. We replace XT by Xt or X(T,∞), if the time integral is taken in the interval

(0,∞) or (T,∞) respectively, and similarly for YT .

We use the letter C to denote various constants whose exact values are immaterial and

which may vary from one line to the next.

First, let us state the H1-local well-posedness result for the IVP (1.3) in a function space

that does not use norms involving time derivatives of the solution.

Theorem 1.2. Suppose φ ∈ H1(R). Then there exist T = T (‖φ‖H1(R)) > 0 and a unique

solution u to the IVP (1.3) satisfying

u ∈ C([0, T ];H1(R)), (1.17)

‖∂xu‖L∞x L2
T

+ ‖∂2xu‖L∞x L2
T
<∞, (1.18)

‖u‖L5
xL

10
T

+ ‖∂xu‖L5
xL

10
T

+ ‖∂xu‖L20
x L

5/2
T

<∞, (1.19)

‖u‖L4
xL
∞
T
<∞. (1.20)

Moreover, for any T ′ ∈ (0, T ), there exists a neighborhood V of φ in H1(R) such that the

map φ̃ 7→ ũ from V into the class defined by (1.17) to (1.20) with T ′ in place of T is Lipschitz.

Using Duhamel’s principle, we prove Theorem 1.2 by considering the integral equation

associated to the IVP (1.3),

u(t) = S(t)φ−
∫ t

0
S(t− t′)∂x(uk+1)(t′) dt′, (1.21)

where S(t) is the unitary group generated by the operator ∂3x that describes the solution to

the linear problem. Our interest is to solve (1.21) using the contraction mapping principle in

an appropriate metric space.
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Remark 1.3. Since the average m(g) of g is a constant, the proof of Theorem 1.2 can be

adapted line by line to obtain a similar well-posedness result for the IVP (1.14). The only

difference in this case is that, to complete the contraction argument we need to choose T > 0

in such a way that C|m(g)|T 1/2‖φ‖kH1(R) <
1
2 . So the existence time T depends on |m(g)| and

‖φ‖H1(R). We also have the following bound

‖U‖XT ≤ C‖φ‖H1(R), ∀ t ∈ [0, T ]. (1.22)

Regarding the well-posedness results for the IVP (1.2), we have the following theorem.

Theorem 1.4. Suppose φ ∈ H1(R). Then there exist T = T (‖φ‖H1(R), ‖g‖L∞) > 0 and a

unique solution uω,t0 ∈ C([0, T ];H1(R)) to the IVP (1.2) satisfying (1.18)–(1.20).

Moreover, for any T ′ ∈ (0, T ), there exists a neighborhood V of φ in H1(R) such that the

map φ̃ 7→ ũω,t0 from V into the class defined by (1.17) to (1.20) with T ′ in place of T is

Lipschitz.

Now, we state the main results of this work.

Theorem 1.5. Fix φ ∈ H1(R). For given ω, t0 ∈ R, let uω,t0 be the maximal solution of the

IVP (1.2) and U be the solution of the limiting IVP (1.14) defined on the maximal time of

existence [0, Smax). Then, for given any 0 < T < Smax, the solution uω,t0 exists on [0, T ] for

all t0 ∈ R and |ω| large. Moreover, ‖uω,t0 − U‖XT → 0, as |ω| → ∞, uniformly in t0 ∈ R. In

particular, the convergence holds in C([0, T ];H1(R)) for all T ∈ (0, Smax).

Theorem 1.6. Let φ ∈ H1(R) and uω,t0 be the maximal solution of the IVP (1.1). Suppose

U be the maximal solution of the IVP (1.14) defined on [0, Smax). If Smax =∞ and

‖U‖L5
xL

10
t
<∞, (1.23)

then it follows that uω,t0 is global for all t0 ∈ R if |w| is sufficiently large. Moreover,

‖uω,t0 − U‖Xt → 0, when |w| → ∞, (1.24)

uniformly in t0. In particular, convergence holds in L∞((0,∞);H1(R)).

In view of the numerical prediction in [3] of the existence of blow-up solution for the

supercritical KdV equation in H1(R), the Theorem 1.6 is very interesting in the sense that

when m(g) ≤ 0 and k is even the solution U to the IVP (1.14) will be global for all H1-data

(see [8]) and the solution uω,t0 to the nonlinear problem (1.2) will be global too, for |ω| large

enough.
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Before leaving this section, we discuss the example constructed in [6] in the context of the

NLS equation with time oscillating nonlinearity. The authors in [6] showed that for small

frequency |ω|, the solution uω,t0 blows-up in finite time or is global depending on t0, while for

the large frequency |ω|, the solution uω,t0 is global for all t0 ∈ R. The same example can be

utilized with small modification in the context of the supercritical KdV equation. We present

it here for the convenience of the readers.

Example 1.7. Let L > 1, 0 < ε < L−1
2 and consider a periodic function g defined by

m(g) = 0, and g(s) =

1, |s| ≤ ε,

0, 1 ≤ s ≤ 1 + ε,
(1.25)

with period L.

Fix φ ∈ H1(R) and assume that the solution v of the IVPvt + vxxx + vk+1∂xv = 0, k ≥ 5,

v(x, 0) = φ(x),
(1.26)

blows-up in finite time, say T ∗. In the light of the numerical evidences presented in [2, 3] (see

also [4]) we can suppose that such a solution v(x, t) of (1.26) with t ∈ [0, T ∗), exists.

From Theorem 1.5, for this particular φ and the periodic function g, we have that the

solution uω,t0 to the IVP (1.2) converges, as |ω| → ∞, to the solution U of the linear KdV

equation with same initial data φ. So, in view of Theorem 1.6, uω,t0 is global as |ω| → ∞ for

all t0 ∈ R.

Now we move to analyze the behavior of the solution for |ω| small. Note that g(ωs) = 1

when |ωs| ≤ ε. Therefore, if we consider |ω| < ε
T ∗ , then we see that the solution v to the IVP

(1.26) satisfies (1.2) for t0 = 0 on [0, T ∗). By uniqueness, uω,0 = v. Hence the solution uω,0

of the IVP (1.2) blows-up in finite time, provided |ω| < ε
T ∗ .

Let ε = ε(A) be as in Corollary 3.5 with A = ‖g‖L∞t . From the linear estimate (2.6) we

have that S(·)φ ∈ L5
xL

10
t , so there exists T > 0 such that

‖S(·)[S(T )φ]‖L5
xL

10
t

= ‖S(·)φ‖L5
xL

10
(T,∞)

≤ ε. (1.27)

For ω > 0, if we consider t0 = 1
ω , we have that g(ω(s+t0)) = 0 for all 1 ≤ ω(s+t0) ≤ 1+ε,

i.e., for all 0 ≤ s ≤ ε
ω . Therefore, if we let ω > 0 satisfying ω ≤ ε

T (i.e., T ≤ ε
ω ), and choose

t0 = 1
ω , then g(ω(s + t0)) = 0 for all 0 ≤ s ≤ T . So, with this choice, uω,t0 solves the linear

KdV equation if 0 ≤ t ≤ T . Therefore, for ω ≤ ε
T , uω,t0 exists on [0, T ] and is given by
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S(t)φ, in particular uω,t0(T ) = S(T )φ. From (1.27), ‖S(·)uω,t0(T )‖L5
xL

10
t
≤ ε. Hence, from

Corollary 3.5 we conclude that uω,t0 is global.

This paper is organized as follows. In Section 2 we record some preliminary estimates

associated to the linear problem and other relevant results. In Section 3 we give a proof of

the local well-posedness result for the supercritical KdV equation in H1(R) and some other

results that will be used in the proof of the main Theorems. Finally, the proof of the main

results will be given in Section 4.

2. Preliminary estimates

In this section we record some linear estimates associated to the IVP (1.1). These estimates

are not new and can be found in the literature. For the sake of clearness we sketch the ideas

involved and provide references where a detailed proof can be found.

Lemma 2.1. If u0 ∈ L2(R), then

‖∂xS(t)u0‖L∞x L2
t
≤ C‖u0‖L2

x
. (2.1)

If f ∈ L1
xL

2
t , then ∥∥∥∂x ∫ t

0
S(t− t′)f(·, t′)dt′

∥∥∥
L∞t L

2
x

≤ C‖f‖L1
xL

2
t
, (2.2)

and ∥∥∥∂2x ∫ t

0
S(t− t′)f(·, t′)dt′

∥∥∥
L∞x L

2
t

≤ C‖f‖L1
xL

2
t
. (2.3)

Proof. For the proof of the homogeneous smoothing effect (2.1) and the double smoothing

effect (2.3), see Theorem 3.5 in [14] (see also Section 4 in [13]). The inequality (2.2) is the

dual version of (2.1). �

Now we give the maximal function estimate.

Lemma 2.2. If u0 ∈ Ḣ1/4(R), then

‖S(t)u0‖L4
xL
∞
T
≤ C‖D1/4

x u0‖L2(R). (2.4)

Also, we have

‖S(t)u0‖L∞x L∞T ≤ C‖u0‖H 1
2+(R)

. (2.5)

Proof. For the proof of the estimate (2.4) we refer to Theorem 3.7 in [14] (see also [12] and

[16]). The estimate (2.5) follows from Sobolev embedding. �

In what follows, we state some more estimates that will be used in our analysis.
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Lemma 2.3. If u0 ∈ L2(R), then

‖S(t)u0‖L5
xL

10
t
≤ C‖u0‖L2

x
. (2.6)

Also we have

‖∂xS(t)u0‖L20
x L

5/2
t
≤ C‖D1/4

x u0‖L2
x
. (2.7)

Proof. The proof of the estimates (2.6) and (2.7) can be found in Corollary 3.8 and Proposition

3.17 in [14] respectively. �

Lemma 2.4. Let u0 ∈ L2
x, then for any (θ, α) ∈ [0, 1]× [0, 12 ], we have

‖Dθα/2
x S(t)u0‖LqTLpx ≤ C‖u0‖L2

x
, (2.8)

where (q, p) = ( 6
θ(α+1) ,

2
1−θ ).

Proof. See Lemma 2.4 in [11]. �

We state next the Leibniz’s rule for fractional derivatives whose proof is given in [14],

Theorem A.8.

Lemma 2.5. Let α ∈ (0, 1), α1, α2 ∈ [0, α], α1 + α2 = α. Let p, p1, p2, q, q1, q2 ∈ (1,∞) be

such that 1
p = 1

p1
+ 1

p2
, 1
q = 1

q1
+ 1

q2
. Then

‖Dα
x (fg)− fDα

xg − gDα
xf‖LpxLqT ≤ C‖D

α1
x f‖Lp1x L

q1
T
‖Dα2

x g‖Lp2x L
q2
T
. (2.9)

Moreover, for α1 = 0 the value q1 =∞ is allowed.

Definition 2.6. Let 1 ≤ p, q ≤ ∞, −1
4 ≤ α ≤ 1. We say that a triple (p, q, α) is an

admissible triple if

1

p
+

1

2q
=

1

4
and α =

2

q
− 1

p
. (2.10)

Proposition 2.7. For any admissible triples (pj , qj , αj), j = 1, 2, the following estimate holds∥∥∥Dα1
x

∫ t

0
S(t− t′)f(·, t′)dt′

∥∥∥
L
p1
x L

q1
t

≤ C‖D−α2
x f‖

L
p′2
x L

q′2
t

, (2.11)

where p′2, q
′
2 are the conjugate exponents of p2, q2.

Proof. For the proof we refer to Proposition 2.3 in [15]. �

The following results will be used to complete the contraction mapping argument.
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Lemma 2.8. Let XT and YT be the spaces defined earlier and S be the unitary group asso-

ciated to the operator ∂3x, then we have

‖S(t)u0‖XT ≤ C0‖u0‖H1(R), (2.12)

∥∥∥∫ t

0
S(t− t′)f(t′)dt′

∥∥∥
XT
≤ CT 1/2‖f‖YT . (2.13)

Proof. The estimate (2.12) follows from the linear estimates in Lemmas 2.1, 2.2 and 2.3. For

the proof of the estimate (2.13), we refer to our earlier work in [5]. �

Lemma 2.9. The following estimate holds,

‖∂x(uk+1)‖YT ≤ C‖u‖
k+1
XT

. (2.14)

Proof. The idea of the proof is similar to the one we used in [5] for the critical KdV equation.

Using Hölder’s inequality and the fact that H1(R) ↪→ L∞(R), we get

‖∂x(uk+1)‖L2
xL

2
T
≤ C‖uk−2‖L∞x L∞T ‖u

2∂xu‖L2
xL

2
T
≤ C‖u‖k−2

L∞T H
1(R)‖u‖

2
L4
xL
∞
T
‖∂xu‖L∞x L2

T
. (2.15)

Similarly

‖∂2x(uk+1)‖L2
xL

2
T
≤C

[
‖uk−1(∂xu)2‖L2

xL
2
T

+ ‖uk∂2xu‖L2
xL

2
T

]
≤C

[
‖uk−2‖L∞x L∞T ‖u(∂xu)2‖L2

xL
2
T

+ ‖uk−2‖L∞x L∞T ‖u
2∂2xu‖L2

xL
2
T

]
≤C‖u‖k−2

L∞T H
1(R)
[
‖u‖L4

xL
∞
T
‖∂xu‖L5

xL
10
T
‖∂xu‖L20

x L
5/2
T

+‖u‖k−2
L4
xL
∞
T
‖∂2xu‖L∞x L2

T

]
.

(2.16)

In view of definitions of XT -norm and YT -norm, the estimates (2.15) and (2.16) yield the

required result (2.14). �

The following result from [6] will also be useful in our analysis.

Lemma 2.10. Let T > 0, 1 ≤ p < q ≤ ∞ and A,B ≥ 0. If f ∈ Lq(0, T ) satisfies

‖f‖Lq
(0,t)
≤ A+B‖f‖Lp

(0,t)
, (2.17)

for all t ∈ (0, T ), then there exists a constant K = K(B, p, q, T ) such that

‖f‖Lq
(0,T )
≤ KA. (2.18)
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3. Proof of the well-posedness results

We start this section by proving the well-posedness results for the IVP (1.3) announced in

Theorem 1.2.

Proof of Theorem 1.2. For a > 0, consider a ball in XT defined by

BT
a = {u ∈ C([0, T ] : XT (R)) : ‖u‖XT < a}.

Our aim is to show that, there exist a > 0 and T > 0, such that the application Φ defined

by

Φ(u) := S(t)φ−
∫ t

0
S(t− t′)∂x(uk+1)(t′)dt′, (3.1)

maps BT
a into BT

a and is a contraction.

Using the estimates (2.13) and (2.14), we obtain

‖Φ‖XT ≤ C0‖φ‖H1 + CT 1/2‖∂x(uk+1)‖YT

≤ C0‖φ‖H1 + CT 1/2‖u‖k+1
XT

.
(3.2)

Hence, for u ∈ BT
a ,

‖Φ‖XT ≤ C0‖φ‖H1 + CT 1/2ak+1. (3.3)

Now, choose a = 2C0‖φ‖H1 and T such that CT 1/2ak < 1/2. With these choices we get,

from (3.3),

‖Φ‖XT ≤
a

2
+
a

2
.

Therefore, Φ maps BT
a into BT

a .

With the similar argument, one can prove that Φ is a contraction. The rest of the proof

follows standard argument. �

Remark 3.1. From the choice of a and T in the proof of Theorem 1.2 it is clear that the

local existence time is given by

T ≤ C‖φ‖−2k
H1(R). (3.4)

Moreover, we have the following bound,

‖u‖XT ≤ C‖φ‖H1(R). (3.5)

In what follows, we sketch a proof for the local well-posedness result for the IVP (1.2).
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Proof of Theorem 1.4. As in the proof of Theorem 1.2, this theorem will also be proved by

considering the integral equation associated to the IVP (1.2),

u(t) = S(t)φ−
∫ t

0
S(t− t′)g(ω(t′ + t0))∂x(uk+1)(t′) dt′, (3.6)

and using the contraction mapping principle.

First of all, notice that the periodic function g is bounded, say ‖g‖L∞t ≤ A, for some positive

constant A. Since the norms involved in the space Y permit us to take out ‖g‖L∞t -norm as

a coefficient, the proof of this theorem follows exactly the same argument as in the proof of

Theorem 1.2. Moreover, as the initial data φ is the same, the choice of the radius a of the

ball is exactly the same. However, to complete the contraction mapping argument, we must

select T > 0 such that C‖g‖L∞t T
1/2a4 < 1

2 , which implies that the existence T is given by

T = T (‖g‖L∞t , ‖φ‖H1(R)) =
C

‖g‖2L∞t ‖φ‖
2k
H1(R)

. (3.7)

Furthermore, in this case too, from the proof, one can get

‖u‖XT ≤ C‖φ‖H1(R). (3.8)

�

In sequel, we present some results that play a central role in the proof of the main theorems

of this work. We begin with the following lemma whose proof can be found in [5].

Lemma 3.2. Let XT and YT be spaces as defined in (1.15) and (1.16). Let f ∈ YT , then we

have the following convergence∫ t

0
g(ω(t′ + t0))S(t− t′)f(t′)dt′ → m(g)

∫ t

0
S(t− t′)f(t′)dt′, (3.9)

whenever |ω| → ∞, in the XT -norm.

With the similar argument as in the case of the critical KdV equation (see [5]), we have

the following convergence result.

Lemma 3.3. Let the initial data φ ∈ H1(R). Let uω,t0 be the maximal solution of the

IVP (1.1). Suppose U be the maximal solution of the IVP (1.14) defined in [0, Smax). Let

0 < T < Smax and let uω,t0 exists in [0, T ] for |ω| large and that

lim sup
|ω|→∞

sup
t0∈R
‖uω,t0‖L∞T H1(R) <∞, (3.10)

and

lim sup
|ω|→∞

sup
t0∈R
‖uω,t0‖L4

xL
∞
T
<∞. (3.11)
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Then, for all t ∈ [0, T ],

sup
t0∈R
‖uω,t0 − U‖XT → 0, as |ω| → ∞. (3.12)

In particular, uω,t0 → U as |ω| → ∞, in H1(R).

Proof. Since uω,t0 and U have the same initial data φ, from Duhamel’s formula, we have

uω,t0 − U =

∫ t

0
g(ω(t′ + t0))S(t− t′)∂x(uk+1

ω,t0
)dt′ −m(g)

∫ t

0
S(t− t′)∂x(Uk+1)dt′

=

∫ t

0
g(ω(t′ + t0))S(t− t′)∂x(uk+1

ω,t0
− Uk+1)dt′

+

∫ t

0
[g(ω(t′ + t0))−m(g)]S(t− t′)∂x(Uk+1)dt′

=: I1 + I2.

(3.13)

We note that

|uk+1 − vk+1| ≤ C(|u|k + |v|k)|u− v| (3.14)

and

|∂x(uk+1−vk+1)| ≤ C
[
(|u|k + |v|k)|∂x(u−v)|+(|∂xu|+ |∂xv|)(|u|k−1 + |v|k−1)|u−v|

]
. (3.15)

Let ‖g‖L∞T ≤ A. Use of (2.2), (3.14), Hölder’s inequality and the assumptions (3.10) and

(3.11), yield

‖I1‖L∞T L2
x
≤ C‖g‖L∞T ‖u

k+1
ω,t0
− Uk+1‖L1

xL
2
T

≤ CA‖ukω,t0(uω,t0 − U)‖L1
xL

2
T

+ ‖Uk(uω,t0 − U)‖L1
xL

2
T

≤ CA‖ukω,t0‖L2
xL
∞
T
‖uω,t0 − U‖L2

xL
2
T

+ ‖Uk‖L2
xL
∞
T
‖uω,t0 − U‖L2

xL
2
T

≤ CA
[
‖uk−2ω,t0

‖L∞x L∞T ‖u
2
ω,t0‖L2

xL
∞
T

+ ‖Uk−2‖L∞x L∞T ‖U
2‖L2

xL
∞
T

]
‖uω,t0 − U‖L2

TL
2
x

≤ CA
[
‖uω,t0‖k−2L∞T H

1(R)‖uω,t0‖
2
L4
xL
∞
T

+ ‖U‖k−2
L∞T H

1(R)‖U‖
2
L4
xL
∞
T

]
‖uω,t0 − U‖L2

TL
2
x

≤ CA‖uω,t0 − U‖L2
TL

2
x
.

(3.16)

Again, using (2.2) and (3.15), one can obtain

‖∂xI1‖L∞T L2
x
≤ CA‖∂x(uk+1

ω,t0
− Uk+1)‖L1

xL
2
T

≤ CA
[
‖(|uω,t0 |k + |U |k)∂x(uω,t0 − U)‖L1

xL
2
T

+ ‖(|∂xuω,t0 |+ |∂xU |)(|uω,t0 |k−1 + |U |k−1)(uω,t0 − U)‖L1
xL

2
T

]
=: CA[J1 + J2].

(3.17)
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With the same argument as in (3.16)

J1 ≤ C‖∂x(uω,t0 − U)‖L2
TL

2
x
. (3.18)

Now we move to estimate the first term, ‖uk−1ω,t0
∂xuω,t0(uω,t0 −U)‖L1

xL
2
T

in J2, the estimates

for the other terms are similar. We have,

‖uk−1ω,t0
∂xuω,t0(uω,t0 − U)‖L1

xL
2
T
≤ C‖u2ω,t0‖L2

xL
∞
T
‖uk−3ω,t0

∂xuω,t0(uω,t0 − U)‖L2
xL

2
T

≤ C‖uω,t0‖2L4
xL
∞
T
‖uk−3ω,t0

‖L∞T L∞x ‖∂xuω,t0‖L∞T L2
x
‖(uω,t0 − U)‖L2

TL
∞
x

≤ C‖uω,t0‖2L4
xL
∞
T
‖uω,t0‖k−2L∞T H

1(R)‖(uω,t0 − U)‖L2
TH

1(R)

≤ C‖(uω,t0 − U)‖L2
TH

1(R).

(3.19)

Inserting (3.18) and (3.19) in (3.17), we get

‖∂xI1‖L∞T L2
x
≤ CA‖(uω,t0 − U)‖L2

TH
1(R). (3.20)

Combining (3.16) and (3.20), we obtain

‖I1‖L∞T H1(R) ≤ CA‖(uω,t0 − U)‖L2
TH

1(R). (3.21)

From Lemma 3.2, we have

‖I2‖L∞T H1(R) ≤ Cω → 0, as |ω| → ∞. (3.22)

Therefore, we have

‖uω,t0 − U‖L∞T H1(R) ≤ CA‖(uω,t0 − U)‖L2
TH

1(R) + Cω. (3.23)

Applying Lemma 2.10 in (3.23), we get

‖uω,t0 − U‖L∞T H1(R) ≤ KCω → 0, as |ω| → ∞. (3.24)

From (3.23) and (3.24), it is easy to conclude that

‖(uω,t0 − U)‖L2
TH

1(R) → 0, as |ω| → ∞. (3.25)

Now, we move to estimate the other norms involved in the definition of XT . Let,

L1 := ‖∂x(uω,t0 −U)‖L∞x L2
T

+ ‖∂2x(uω,t0 −U)‖L∞x L2
T

+ ‖uω,t0 −U‖L5
xL

10
T

+ ‖Dx(uω,t0 −U)‖L5
xL

10
T

and

L2 := ‖∂x(uω,t0 − U)‖
L20
x L

5/2
T

+ ‖uω,t0 − U‖L4
xL
∞
T
.
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Use of (2.2), (2.3), the estimate (2.11) from Proposition 2.7 with admissible triples (p1, q1, α1) =

(5, 10, 0), and (p2, q2, α2) = (∞, 2, 1) in (3.13), yields

L1 ≤ CA‖∂x(uk+1
ω,t0
− Uk+1)‖L1

xL
2
T

+ CA‖uk+1
ω,t0
− Uk+1‖L1

xL
2
T

+ ‖I2‖XT . (3.26)

Therefore, with the same argument as in (3.16)-(3.20), we can obtain

L1 ≤ CA‖uω,t0 − U‖L2
TH

1 + Cω. (3.27)

Hence, using Lemma 3.2 and (3.25) we get from (3.27) that

L1
|ω|→∞→ 0. (3.28)

Finally, to estimate L2 we use Proposition 2.7 with admissible triples (p1, q1, α1) = (20, 5/2, 3/4)

and (p2, q2, α2) = (20/3, 5, 1/4), to get∥∥∥∂x ∫ t

0
S(t− t′)f(·, t′)dt′

∥∥∥
L20
x L

5/2
T

≤ C‖f‖
L
20/17
x L

5/4
T

, (3.29)

and with admissible triples (p1, q1, α1) = (4,∞,−1/4), and (p2, q2, α2) = (20/3, 5, 1/4), to

have ∥∥∥∫ t

0
S(t− t′)f(·, t′)dt′

∥∥∥
L4
xL
∞
T

≤ C‖f‖
L
20/17
x L

5/4
T

. (3.30)

Using (3.29), (3.30), and the definition of XT , we get from (3.13) that

L2 ≤ CA‖∂x(uk+1
ω,t0
− Uk+1)‖

L
20/17
x L

5/4
T

+ ‖I2‖XT (3.31)

Using (3.15), we can obtain

‖∂x(uk+1
ω,t0
− Uk+1)‖

L
20/17
x L

5/4
T

≤ C
[
‖(|uω,t0 |k + |U |k)∂x(uω,t0 − U)‖

L
20/17
x L

5/4
T

+ ‖(|∂xuω,t0 |+ |∂xU |)(|uω,t0 |k−1 + |U |k−1)(uω,t0 − U)‖
L
20/17
x L

5/4
T

]
=: C[J̃1 + J̃2].

(3.32)

Hölder’s inequality, the fact that 20/13 > 10/7, Sobolev immersion and the assumption (3.10),

imply that

J̃1 ≤ C‖∂x(uω,t0 − U)‖L5
xL

10
T
{‖ukω,t0‖L20/13

x L
10/7
T

+ ‖Uk‖
L
20/13
x L

10/7
T

}

≤ C‖∂x(uω,t0 − U)‖L5
xL

10
T
{‖ukω,t0‖L10/7

T L
20/13
x

+ ‖Uk‖
L
10/7
T L

20/13
x
}

≤ C‖∂x(uω,t0 − U)‖L5
xL

10
T
T 7/10{‖uω,t0‖kL∞T H1 + ‖U‖kL∞T H1}

≤ C T 7/10‖∂x(uω,t0 − U)‖L5
xL

10
T
.

(3.33)
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As in (3.17), we give details in estimating the first term, ‖uk−1ω,t0
∂xuω,t0(uω,t0 −U)‖

L
20/17
x L

5/4
T

in J̃2, the estimates for the other terms are similar. Here too, Hölder’s inequality, the fact

that 20/3 > 5, Sobolev immersion and the assumption (3.10), yield

‖uk−1ω,t0
∂xuω,t0(uω,t0 − U)‖

L
20/17
x L

5/4
T

≤ C‖uk−1ω,t0
‖
L
20/3
x L5

T

‖∂xuω,t0‖L2
xL

2
T
‖uω,t0 − U‖L5

xL
10
T

≤ C‖uk−1ω,t0
‖
L5
TL

20/3
x
‖∂xuω,t0‖L2

TL
2
x
‖uω,t0 − U‖L5

xL
10
T

≤ C T 7/10‖uω,t0‖kL∞T H1‖uω,t0 − U‖L5
xL

10
T

≤ C T 7/10‖uω,t0 − U‖L5
xL

10
T
.

(3.34)

In view of (3.32), (3.33) and (3.34), we get from (3.31) that

L2 ≤ CAT 7/10{‖∂x(uω,t0 − U)‖L5
xL

10
T

+ ‖uω,t0 − U‖L5
xL

10
T
}+ Cω. (3.35)

Therefore, Lemma 3.2 and (3.28), imply

L2
|ω|→∞→ 0. (3.36)

Now, the proof of the Lemma follows by combining (3.24), (3.28) and (3.36). �

In what follows, as we did in our earlier work [5], consider the supercritical KdV equation

with more general time dependent coefficient on the nonlinearityut + uxxx + h(t)∂x(uk+1) = 0, x, t ∈ R, k ≥ 5

u(x, 0) = φ(x),
(3.37)

where h ∈ L∞ is given.

The results for the IVP (3.37) and their proofs that we are going to present here are quite

similar to the ones we have for the critical KdV equation in [5]. For the sake of clarity, we

reproduce them here.

Proposition 3.4. Given any A > 0, there exist ε = ε(A) and B > 0 such that if ‖h‖L∞ ≤ A
and if φ ∈ H1(R) satisfies

‖S(t)φ‖L5
xL

10
t
≤ ε, (3.38)

then the corresponding solution u of (3.37) is global and satisfies

‖u‖L5
xL

10
t
≤ 2 ‖S(t)φ‖L5

xL
10
t
, (3.39)

‖u‖Xt ≤ B‖φ‖H1(R). (3.40)

Conversely, if the solution u of (3.37) is global and satisfies

‖u‖L5
xL

10
t
≤ ε, (3.41)
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then

‖S(t)φ‖L5
xL

10
t
≤ 2‖u‖L5

xL
10
t
. (3.42)

Proof. Since ‖h‖L∞t ≤ A, as in Theorem 1.4 we can prove the local well-posedness for the IVP

(3.37) in H1(R) with time of existence T = T (‖φ‖H1(R), ‖h‖L∞). Let u ∈ C([0, Tmax);H1(R))

be the maximal solution of the IVP (3.37). For 0 ≤ t < Tmax, we have that

u(t) = S(t)φ+ w(t), (3.43)

where

w(t) = −
∫ t

0
S(t− t′)h(t′)∂x(uk+1)(t′) dt′.

Using (2.11) from Proposition 2.7 for admissible triples (5, 10, 0) and (∞, 2, 1), we obtain

‖w‖L5
xL

10
T
≤ CA‖uk+1‖L1

xL
2
T
≤ CA‖uk−4‖L∞x L∞T ‖u

5‖L1
xL

2
T

≤ CA‖u‖k−4
L∞T H

1‖u‖5L5
xL

10
T
≤ CA‖u‖5L5

xL
10
T
.

(3.44)

From (3.43) and (3.44) it follows that

| ‖u‖L5
xL

10
T
− ‖S(t)φ‖L5

xL
10
T
| ≤ CA‖u‖5L5

xL
10
T
. (3.45)

Thus, for all T ∈ (0, Tmax) one has

‖u‖L5
xL

10
T
≤ ε+ CA‖u‖5L5

xL
10
T
. (3.46)

Choose ε = ε(A) such that

CA(2ε)4 < 1/2, (3.47)

and suppose that the estimate (3.38) holds. As the norm is continuous on T and vanishes

at T = 0, using continuity argument, the estimate (3.46) and the choice of ε in (3.47), imply

that

‖u‖L5
xL

10
Tmax

≤ 2ε. (3.48)

Moreover, from (3.45)

‖u‖L5
xL

10
Tmax

≤ ‖S(t)φ‖L5
xL

10
Tmax

+ CA‖u‖5L5
xL

10
Tmax

≤ ‖S(t)φ‖L5
xL

10
Tmax

+ CA(2ε)4‖u‖L5
xL

10
Tmax

.
(3.49)

Therefore, with the choice of ε satisfying (3.47), the estimate (3.49) yields

‖u‖L5
xL

10
Tmax

≤ 2‖S(t)φ‖L5
xL

10
Tmax

. (3.50)
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In what follows, we will show that Tmax = ∞. The inequalities (2.2), (2.3), (2.11) with

admissible triples (5, 10, 0) and (∞, 2, 1), and Hölder’s inequality imply

‖w‖L∞T H1 +‖∂xw‖L∞x L2
T

+‖∂2xw‖L∞x L2
T

+‖w‖L5
xL

10
T

+‖∂xf‖L5
xL

10
T
≤ CA‖u‖4L5

xL
10
T
‖u‖XT . (3.51)

Now using (3.29), (3.30) and Hölder’s inequality, we have

‖∂xw‖L20
x L

5/2
T

+ ‖w‖L4
xL
∞
T
≤CA‖∂x(uk+1)‖

L
20/17
x L

5/4
T

≤CA‖uk‖
L
5/4
x L

5/2
T

‖∂xu‖L20
x L

5/2
T

≤CA‖uk−4‖L∞x L∞T ‖u
4‖
L
5/4
x L

5/2
T

‖∂xu‖L20
x L

5/2
T

≤CA‖u‖k−4
L∞T H

1‖u‖4L5
xL

10
T
‖∂xu‖L20

x L
5/2
T

≤CA‖u‖4L5
xL

10
T
‖∂xu‖L20

x L
5/2
T

. (3.52)

Combining (3.51) and (3.52), we obtain

‖w‖XT ≤ CA‖u‖
4
L5
xL

10
T
‖u‖XT . (3.53)

This estimate with (3.47) and (3.48) gives

‖w‖XT ≤ CA(2ε)4‖u‖XT <
1

2
‖u‖XT . (3.54)

Using (3.43) we obtain

‖u‖XT ≤ ‖S(t)φ‖XT + ‖w‖XT ≤ C‖φ‖H1(R) +
1

2
‖u‖XT , (3.55)

for all T ∈ (0, Tmax). Therefore, we have

‖u‖XTmax ≤ 2C‖φ‖H1(R). (3.56)

Hence, from the definition of ‖u‖XTmax , we have that

‖u‖L∞TmaxH1(R) ≤ C‖u(0)‖H1(R). (3.57)

Now, combining the local existence from Theorem 1.4 and the estimate (3.57), the blow-up

alternative implies that Tmax = ∞. Finally, the estimates (3.50) and (3.56) yield (3.39) and

(3.40) respectively with B = 2C.

Conversely, let Tmax = ∞ and (3.41) holds. With the similar argument as in (3.45), we

can get

| ‖u‖L5
xL

10
t
− ‖S(t)φ‖L5

xL
10
t
| ≤ CA‖u‖5L5

xL
10
t
. (3.58)

Thus, from (3.58) in view of (3.41) and (3.47), one has

‖S(t)φ‖L5
xL

10
t
≤ ‖u‖L5

xL
10
t

+ CAε4‖u‖L5
xL

10
t
≤ 2‖u‖L5

xL
10
t
. (3.59)
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�

Corollary 3.5. Let h ∈ L∞(R) satisfy ‖h‖L∞ ≤ A and ε and B be as in Proposition 3.4.

Given φ ∈ H1(R), let u be the solution of the IVP (3.37) defined on the maximal interval

[0, Tmax). If there exists T ∈ (0, Tmax) such that

‖S(t)u(T )‖L5
xL

10
t
≤ ε,

then the solution u is global. Moreover

‖u‖L5
xL

10
(T,∞)

≤ 2ε, and ‖u‖X(T,∞)
≤ B‖u(T )‖H1(R).

Proof. The proof follows by using a standard extension argument. For details we refer to the

proof of Corollary 2.4 in [6]. �

4. Proof of the main results

The argument in the proof of the main results, Theorem 1.5 and Theorem 1.6, is quite

similar to the one used in the case of the critical KdV equation [5]. As mentioned earlier,

Lemma 3.3 and the local existence Theorem 1.4 are used in the proof of Theorem 1.5. While,

Proposition 3.4 and Theorem 1.5 are crucial in the proof of Theorem 1.6. Here we adapt the

techniques used in [5] and [6] to complete the proofs.

Proof of Theorem 1.5. Let A = ‖g‖L∞ , T ∈ (0, Smax) fixed and set

M0 = 2 sup
t∈[0,T ]

‖U(t)‖H1(R). (4.1)

In particular, for t = 0, (4.1) gives ‖φ‖H1(R) ≤M0/2. From Theorem 1.4, we have that for

all ω, t0 ∈ R, uω,t0 exists on [0, δ]. Using (3.7) we have that the existence time δ, is given by

δ =
C

A2M8
0

. (4.2)

Moreover, from (3.8)

lim sup
|w|→∞

sup
t0∈R
‖uω,t0‖L∞δ H1(R) ≤ C‖φ‖H1(R) (4.3)

and

lim sup
|w|→∞

sup
t0∈R
‖uω,t0‖L4

xL
∞
δ H

1(R) ≤ C‖φ‖H1(R). (4.4)

From Lemma 3.3, we have that supt0∈R ‖uω,t0 − U‖XT
|w|→∞→ 0, in particular

sup
t0∈R
‖uω,t0(δ)− U(δ)‖H1(R)

|w|→∞→ 0. (4.5)
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Combining (4.1) and (4.5), for |w| sufficiently large, we deduce that

sup
t0∈R
‖uω,t0(δ)‖H1(R) ≤M0. (4.6)

We suppose δ ≤ T , otherwise we are done. Using Theorem 1.4 we can extend the solution

uω,t0 (as in the proof of Corollary 3.5) on the interval [0, 2δ], with ‖ũω,t0‖L∞t (0,δ)H1(R) ≤
C‖ũω,t0(0)‖H1(R), where ũω,t0(t) = uω,t0(t+ δ) i.e., ‖uω,t0‖L∞t (δ,2δ)H1(R) ≤ C‖uω,t0(δ)‖H1(R) ≤
C2‖φ‖H1(R). Therefore, (4.3) gives

lim sup
|w|→∞

sup
t0∈R
‖uω,t0‖L∞t (0,2δ)H1(R) ≤ C(1 + C)‖φ‖H1(R). (4.7)

Similarly, from (4.4),

lim sup
|w|→∞

sup
t0∈R
‖uω,t0‖L4

xL
∞
2δH

1(R) ≤ C(1 + C)‖φ‖H1(R). (4.8)

So, we can again apply the Lemma 3.3. Iterating this argument at a finite number of times

with the same time of existence in each iteration, we see that

lim sup
|w|→∞

sup
t0∈R
‖uω,t0‖L∞T H1(R) ≤ C‖φ‖H1(R)

and

lim sup
|w|→∞

sup
t0∈R
‖uω,t0‖L4

xL
∞
T
≤ C‖φ‖H1(R).

The result is therefore a consequence of Lemma 3.3. �

Proof of Theorem 1.6. Let ε ∈ (0, ε(A)), where ε(A) is as in Proposition 3.4. If T is sufficiently

large, from (1.23), we have that

‖U‖L5
xL

10
(T,∞)

≤ ε

4
. (4.9)

Applying Proposition 3.4 to the global solution Ũ(t) = U(t+ T ), the inequality (3.42) gives

‖S(t)U(T )‖L5
xL

10
t

= ‖S(t)Ũ(0)‖L5
xL

10
t
≤ 2‖Ũ‖L5

xL
10
t

= 2‖U‖L5
xL

10
(T,∞)

≤ ε

2
. (4.10)

From this inequality and Corollary 3.5 we get

‖U‖X(T ;∞)
≤ B‖U(T )‖H1(R). (4.11)

From Theorem 1.5 it follows that

sup
t0∈R

sup
0≤t≤T

‖uω,t0(t)− U(t)‖H1(R) → 0, as |ω| → ∞. (4.12)
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Thus, if |w| is sufficiently large, the triangular inequality along with (4.12) gives

‖S(t)uω,t0(T )‖L5
xL

10
t
≤ ‖S(t)uω,t0(T )− S(t)U(T )‖L5

xL
10
t

+ ‖S(t)U(T )‖L5
xL

10
t

≤ ‖uω,t0(T )− U(T )‖L2
x

+
ε

2

≤ ε.

(4.13)

Therefore, Corollary 3.5 implies that uω,t0 is global. Moreover,

sup
t0∈R
‖uω,t0‖L5

xL
10
(T,∞)

≤ 2ε, and ‖uω,t0‖X(T,∞)
≤ B‖uω,t0(T )‖H1(R), (4.14)

for |w| sufficiently large.

LetM0 = sup0≤t≤T ‖U(t)‖H1(R), as in (4.1). Now, we move to prove (1.24). The inequalities

(4.12) and (4.14) show that there exists L > 0 such that

sup
|w|≥L

sup
t0∈R

sup
t≥0
‖uω,t0(t)‖H1(R) ≤ (1 +M0) +B‖uω,t0(T )‖H1(R) = M1 <∞. (4.15)

In what follows, we prove that uω,t0 → U in the ‖ · ‖Xt-norm, when |ω| → ∞.

Using Duhamel’s formulas for uω,t0 and U we have

uω,t0(T + t)− U(T + t) = S(t)(uω,t0(T )− U(T ))

−
∫ t

0
S(t− t′)g(ω(T + t′ + t0))∂x(uk+1

ω,t0
)(T + t′)dt′

+m(g)

∫ t

0
S(t− t′)∂x(Uk+1)(T + t′)dt′

=: I1 + I2 + I3.

(4.16)

Using properties of the unitary group S(t) we have by (4.12) that

‖I1‖Xt = ‖S(t)(uω,t0(T )− U(T ))‖Xt ≤ C‖uω,t0(T )− U(T )‖H1(R)
|ω|→∞→ 0. (4.17)

With the same argument as in (3.53), we have

‖I2‖Xt ≤ CA‖uω,t0‖4L5
xL

10
(T,∞)
‖uω,t0‖X(T,∞)

, (4.18)

From (4.18), with the use of (4.14) and (4.15), we have

‖I2‖Xt ≤ CA(2ε)4BM1. (4.19)

As in I2, using (4.9) and (4.11), we get

‖I3‖Xt ≤ CA‖U‖4L5
xL

10
(T,∞)
‖U‖X(T,∞)

≤ CA
( ε

4

)4
BM0.

(4.20)
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Now given β > 0, we choose ε > 0 sufficiently small (T sufficiently large) such that

CA(2ε)4
[
BM0 + BM1

]
< β/3 and |ω| sufficiently large, so that (4.16), (4.17), (4.19) and

(4.20) imply

‖uω,t0(t)− U(t)‖X(T,∞)
= ‖uω,t0(T + t)− U(T + t)‖Xt

≤ ‖I1‖Xt + ‖I2‖Xt + ‖I3‖Xt

< β.

(4.21)

On the other hand, from Theorem 1.5, we have

‖uω,t0(t)− U(t)‖X(0,T )
= ‖uω,t0(t)− U(t)‖XT

|ω|→∞→ 0. (4.22)

Therefore, from (4.21) and (4.22), we can conclude the proof of the theorem. �
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