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Extended Abstract

1 Introduction

Multilocal programming aims to identify all the local (global and non-global) so-
lutions of constrained nonlinear optimization problems and it has a wide range of
application in engineering field. The purpose of this paper is to analyze the effect
of stopping rules on the performance of a particular multistart method, which relies
on a derivative-free local search procedure to converge to a solution, when solving
multilocal optimization problems. The method herein presented implements a fil-
ter methodology to handle the constraints by forcing the local search towards the
feasible region. The problem to be addressed is of the following type:

min f(x)
subject to gj(x) ≤ 0, j = 1, ...,m

li ≤ xi ≤ ui, i = 1, ..., n
(1)

where, at least one of the functionsf, gj : Rn −→ R is nonlinear and F= {x ∈
R
n : li ≤ xi ≤ ui, i = 1, . . . , n, gj(x) ≤ 0, j = 1, . . . ,m} is the feasible region.

This kind of problems may have many global/local optimal solutions and so, it is
important to develop a methodology that is able to explore the entire search space
and find all the minima guaranteeing, in some way, that convergence to a previously
found minimum is avoided.
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2 The Proposed Filter Multistart Method

The methodology used to solve the problem (1) is a multistart algorithm coupled
with a clustering technique to avoid the convergence to already detected solutions.
Our proposal for the local search, a crucial procedure inside the multistart, relies on
a technique that generates Approximate Descent Directions, without usingderiva-
tives, denoted by ADD method in [2]. In this study, the ADD method is combined
with a (line search) filter method that aims at generating trial solutions that might
be acceptable if they improve the constraint violation or the objective function.

2.1 The multistart strategy

Multistart is a stochastic algorithm where a local search is applied to a point, which
is randomly generated in the search space, in order to converge to a localsolution.
To avoid detecting previously computed solutions, a clustering technique based
on computing the regions of attraction of previously identified minima is applied.
The region of attractionAi of a local minimizeryi associated with a local search
procedureL is defined asAi = {x ∈ F : yi = L(x)}. A multistart algorithm
aims at invoking the local search procedureN times, whereN is the number of
local solutions of (1). Since the region of attractionAi of each minimizeryi is not
easy to compute, a simple stochastic procedure is used to estimate the probability,
p, that a randomly generated point will not belong to a set, which is the union ofa
certain number of regions of attraction, i.e.,p = P [x /∈ ∪ki=1Ai]. The probability
p is estimated [3] taking into account that the maximum attractive radius of the
minimizeryi is defined by:

Ri = max
j

{
∥

∥

∥
x
(j)
i − yi

∥

∥

∥

}

, (2)

wherex(j)i are the generated points which (may) led to the minimizeryi. Given a

randomly generated pointx, let z = ‖x−yi‖
Ri

. If z ≤ 1 thenx is likely to be inside
the region of attraction ofyi. On the other hand, if the direction fromx to yi is
ascent thenx is likely to be outside the region of attraction ofyi. Based on the
suggestion in [4], an estimate of the probability thatx /∈ Ai may be given by:

p(x /∈ Ai) =

{

1, if z > 1 or the direction fromx to yi is ascent
̺ φ(z, l), otherwise

(3)
wherel is the number of timesyi has been recovered so far,̺ ∈ [0, 1] and the
functionφ(z, l) satisfies the properties:

lim
z→0

φ(z, l)→ 0, lim
z→1

φ(z, l)→ 1, lim
l→∞

φ(z, l)→ 0 and 0 < φ(z, l) < 1.

The functionφ(z, l) = z exp
(

−l2(z − 1)2
)

, for all z ∈ (0, 1), is used as proposed
in the Ideal Multistart method [4].
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2.2 The derivative-free filter procedure

The Approximate Descent Direction Filter (ADDF) method, a filter methodology
combined with the ADD method presented in [2], is proposed for the local search.
The filter methodology incorporates the concept of nondominance, present in the
field of multiobjective optimization, to build a filter that is able to accept a trial
point if it improves either the objective function or the constraint violation, relative
to the current point. In this way, problem (1) is reformulated as a biobjective prob-
lem involving the original objective functionf and the constraint violation function
θ defined by

θ(x) =
m
∑

i=1

(

max
i
{0, gi(x)}

)2

+
n
∑

i=1

(max {0, xi − ui})
2+(max {0, li − xi})

2 .

(4)
The ADDF is an iterative method that is applied to a randomly generated point

x and provides a trial pointy that is an approximate minimizer of problem (1). The
pointy is computed based on a directiond and a step sizeα ∈ (0, 1] in such a way
that

y = x+ αd. (5)

The procedure that decides which step size is accepted to generate an acceptable
approximate minimizer is a filter method. After a search directiond has been
computed, a step sizeα is determined by a backtracking line search technique. A
decreasing sequence ofα values is tried until a set of acceptance conditions are
satisfied. The trial pointy, in (5), is acceptable if sufficient progress inθ or in f is
verified, relative to the current pointx, as shown:

θ(y) ≤ (1− γθ) θ(x) or f(y) ≤ f(x)− γf θ(x) (6)

whereγθ, γf ∈ (0, 1). However, whenx is (almost) feasible, i.e., in practice when
θ(x) ≤ θmin, the trial pointy has to satisfy only the condition

f(y) ≤ f(x)− γf θ(x) (7)

to be acceptable, where0 < θmin ≪ 1. To prevent cycling between points that
improve eitherθ or f , at each iteration, the algorithm maintains the filterF which
is a set of pairs(θ, f) that are prohibited for a successful trial point. During the
backtracking line search procedure, they is acceptable only if(θ(y), f(y)) /∈ F . If
the trial point does not satisfy the stopping conditions of the algorithm, the process
is repeated withx← y.

The filter is initialized with pairs(θ, f) that satisfyθ ≥ θmax, whereθmax > 0
is the upper bound onθ. Furthermore, whenevery is accepted because condition
(6) is satisfied, the filter is updated, and all entries that are dominated by the new
entry are withdrawn from the filter. When it is not possible to find a pointy with
a step sizeα > αmin (0 < αmin << 1) that satisfy one of the conditions (6) or
(7), a restoration phase is invoked. In this phase, the algorithm recovers the best
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point in the filter and a new trial point is determined according to the strategy based
on equation (5). The algorithm implements the ADD method [2] to compute the
directiond, required in (5). If the current point is feasible, the directiond will be
descent forf ; otherwise will be descent forθ.

2.3 Stopping rules

Some stopping rules have been proposed in the past in a multistart paradigm con-
text (see [3] and the references therein included). Since the stopping rules aim to
identify multiple optimal solutions, they should exhibit special properties. They
should stop the algorithm when all minima have been identified with certainty, and
they should not require a large number of local searches to decide that all minima
have been found. Two different stopping rules have been tested.
First Stopping Rule If s denotes de number of recovered local minima after hav-
ing performedt local search procedures, then the estimate of the fraction of the
uncovered space is given byP (s) = s(s+1)

t(t−1) and the stopping rule is

P (s) ≤ ǫ (8)

with ǫ being a small positive number [4].
Second Stopping RuleThis scheme is based on probabilistic estimates for the
number of times each of the minima is being rediscovered by the local search [3].
Let L1, L2, . . . , Ls be the number of local searches that converged to the corre-
sponding local minimax∗1, x

∗
2. . . . , x

∗
s, respectively; wherex∗1 is discovered with

only one local application of the local procedure. Further, letn2 be the number of
subsequent applications of the local search untilx∗2 is found for the first time; and
similarly for n3, n4, . . . , ns. That is,x∗2 is found after1 + n2 local searches,x∗3
after1 + n2 + n3, and so on.

Then the expected numberLs
J of local search applications that have converged

to x∗J , at the time when thesth minimum is discovered for the first time, is

Ls
J = Ls−1

J +(ns− 1)
LJ

∑s
i=1 Li

= Ls−1
J +(ns− 1)

LJ
∑s

i=1 ni

, J ≤ s− 1, Ls
s = 1.

If K represents the number of local search performed without discovering any
new minimum, afters minima have been found, then the expected number of times
theJ th minimum is found at that moment,LsJ(K), is obtained by

LsJ(K) = LsJ(K − 1) +
LJ

K +
∑s

i=1 ni

with LsJ(0) = Ls
J

and thus the quantityE2(s,K) = 1
s

∑s
J=1 ((L

s
J(K)− LJ)/(

∑s
i=1 Li))

2 tends
asymptotically to zero. A stopping rule based on the variance ofE2, σ2(E2), will
allow the algorithm to continue without finding new minima until the condition

σ2(E2) < τσ2
last(E2) (9)

holds, whereσ2
last(E2) is the variance ofE2 computed at the time when the last

minimum was retrieved and0 < τ < 1.
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3 Ilustrative Examples and Remarks

To perform a preliminary analysis on the behavior of the algorithm when different
stopping rules are applied, classical optimization problems, withn = 2, multi-
modal objective functions and box and inequality constraints are considered. The
filter multistart method was coded in MatLab and the results were obtained in a
PC with an Intel(R) Core(TM)2 Duo CPU P7370 2.00GHz processor and 3GB of
memory. Since derivatives are not provided to the algorithm, the factor̺ is esti-
mated and set to0.05. In the ADD Filter method,γθ = γf = 10−5, αmin = 10−6,
θmin = 10−3max{1, 1.25θ(xin)}, θmax = max{1, 1.25θ(xin)}, wherexin is the
initial point in the local search. For the tested stopping rules, we setǫ = 0.06 and
τ = 0.5 as suggested in [3]. Five minimization problemsP1–P5 are defined using
different feasible regions.

P1: min f(x) ≡ 1
2

∑2
i=1(x

4
i − 16x2i + 5xi), defined in the box[−5, 5]2;

P2: similar toP1with an additional constraint(x1+5)2+(x2− 5)2− 100 ≤ 0;

P3: similar toP2with an additional linear constraint−x1 − x2 − 3 ≤ 0;

P4: min f(x) ≡
∑2

i=1 sin(xi) + sin
(

2xi

3

)

, defined in the box[3, 13]2;

P5: similar to P4 with an additional linear constraint−2x1 − 3x2 + 27 ≤ 0.

Figure 1 shows the contours off(x) and constraint boundary ofP3(on the left)
andP5(on the right). Tables 1 and 2 list the results obtained when the two stopping
rules are tested. Columns 2–5 represent average values obtained during the 30
executions: average number of identified minimizers “# min”, average numberof
function evaluations “f.eval.”, average time (in seconds) “time(s)”, and average
value of the obtained best global solutions “global”. The last column represents
the standard deviation of the obtained global solutions.
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Figure 1: Objective function and constraints ofP3andP5

When the first stopping rule is applied (8), the time is less than the time needed
by the second stopping rule, in average. The time required by the algorithm in-
creases with the number of function evaluations, which in turn depends on the
number of local search calls. On the other hand, the stopping rule (9) is able to
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Table 1: Numerical results obtained using the first stopping rule.
Prob. # min f.eval. time(s) global S.D.
P1 3.9 4864.7 0.9 -78.3323 1.64525E-06
P2 3.8 9752.5 51.6 -78.3323 1.04324E-06
P3 3.1 13417.4 69.9 -64.1956 1.27448E-06
P4 3.9 4105.1 0.7 -2.4319 7.5900E-08
P5 4 7630.1 8.8 -2.4305 2.98961E-04

identify all the local solutions mostly. Further testing will be carried out specially
with large-dimensional problems.

Table 2: Numerical results obtained using the second stopping rule.
Prob. # min f.eval. time(s) global S.D.
P1 4 21326.4 6.8 -78.3323 1.82968E-06
P2 4 31670.6 235.3 -78.3323 1.13853E-06
P3 3.8 53014.1 149.6 -64.1956 7.01261E-07
P4 4 12974.2 2.2 -2.4319 5.06788E-08
P5 4 14336.9 11.5 -2.4305 1.04704E-04

Acknowledgments.

This work was financed by FEDER funds through COMPETE-Programa Operacional Fa-
tores de Competitividade and by portuguese funds through FCT-Fundaç̃ao para a Cîencia
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