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[ Extended Abstract ]

1 Introduction

Multilocal programming aims to identify all the local (global and non-global) so-
lutions of constrained nonlinear optimization problems and it has a wide rdnge o
application in engineering field. The purpose of this paper is to analyzdfdu e

of stopping rules on the performance of a particular multistart method, wHiek re

on a derivative-free local search procedure to converge to a solutlten solving
multilocal optimization problems. The method herein presented implements a fil-
ter methodology to handle the constraints by forcing the local search tewrsd
feasible region. The problem to be addressed is of the following type:

min  f(x)
subjectto g;(z) <0, j=1,...m
Z,szgu“ izl,...,n

(1)

where, at least one of the functiofisg; : R — R is nonlinear and = {z €
R™:l; <zy <wi=1,...,n,g5(x) <0,5 =1,...,m} is the feasible region.
This kind of problems may have many global/local optimal solutions and so, it is
important to develop a methodology that is able to explore the entire seamh spa
and find all the minima guaranteeing, in some way, that convergence toiaysigv
found minimum is avoided.



2 The Proposed Filter Multistart Method

The methodology used to solve the problém (1) is a multistart algorithm coupled
with a clustering technique to avoid the convergence to already detecteéidsslu
Our proposal for the local search, a crucial procedure inside the taditiselies on

a technique that generates Approximate Descent Directions, without desiivg-
tives, denoted by ADD method inl[2]. In this study, the ADD method is combined
with a (line search) filter method that aims at generating trial solutions that might
be acceptable if they improve the constraint violation or the objective function

2.1 The multistart strategy

Multistart is a stochastic algorithm where a local search is applied to a poiitt) wh

is randomly generated in the search space, in order to converge to adbaadn.

To avoid detecting previously computed solutions, a clustering techniquel bas
on computing the regions of attraction of previously identified minima is applied.
The region of attractiom; of a local minimizery; associated with a local search
procedureL is defined asd; = {# € F: y;, = L(z)}. A multistart algorithm
aims at invoking the local search proceduvetimes, whereN is the number of
local solutions of[{ll). Since the region of attractidnof each minimizer; is not
easy to compute, a simple stochastic procedure is used to estimate the probability,
p, that a randomly generated point will not belong to a set, which is the unian of
certain number of regions of attraction, i.e.= Plz ¢ UF_, A;]. The probability

p is estimated[[3] taking into account that the maximum attractive radius of the
minimizery; is defined by:

R; = maX{Ha?Ej) —Yi
J

b (2)

wherexgj) are the generated points which (may) led to the minimizeGiven a
randomly generated point, let z = w If z < 1thenx is likely to be inside
the region of attraction of;. On the other hand, if the direction fromto yi IS

ascent therx is likely to be outside the region of attraction gf Based on the

suggestion in[4], an estimate of the probability that A; may be given by:

1, if z > 1 orthe direction fromz to y; is ascent
ple ¢ A;) = { 0 ¢(z,1), otherwise
®3)
where! is the number of timeg; has been recovered so far,c [0, 1] and the
function¢(z, 1) satisfies the properties:

lim ¢(z,0) — 0, lim ¢(z,1) — 1, lim ¢(z,1) = 0 and0 < ¢(z,1) < 1.
z—0 z—1 l—o0

The functiong(z,1) = zexp (—1*(z — 1)?), forall = € (0,1), is used as proposed
in the Ideal Multistart method [4].



2.2 The derivative-free filter procedure

The Approximate Descent Direction Filter (ADDF) method, a filter methodology
combined with the ADD method presentedlih [2], is proposed for the locatisea
The filter methodology incorporates the concept of nondominance,niriestine
field of multiobjective optimization, to build a filter that is able to accept a trial
point if it improves either the objective function or the constraint violatiolatiee

to the current point. In this way, problefd (1) is reformulated as a biobgptigb-

lem involving the original objective functiofiand the constraint violation function

0 defined by

m 2 n
0(x) = Z (mza,x {0, gl(:z)}) +Z (max {0, z; — u;})* + (max {0,1; — z;})?.
i=1

i=1
(4)
The ADDF is an iterative method that is applied to a randomly generated point
2 and provides a trial poing that is an approximate minimizer of probleph (1). The
pointy is computed based on a directidmand a step size € (0, 1] in such a way
that
y=x+ad. (5)

The procedure that decides which step size is accepted to generateeatabte
approximate minimizer is a filter method. After a search directiomas been
computed, a step sizeis determined by a backtracking line search technique. A
decreasing sequence afvalues is tried until a set of acceptance conditions are
satisfied. The trial poing, in (8), is acceptable if sufficient progressiior in f is
verified, relative to the current point as shown:

0(y) < (1 —19) 0(x) or f(y) < f(x) =7 0(x) (6)

whereyy,v¢ € (0,1). However, wherx is (almost) feasible, i.e., in practice when
0(z) < Omin, the trial pointy has to satisfy only the condition

fly) < f(x) =5 0(x) (7)

to be acceptable, whefe< 6.,;, < 1. To prevent cycling between points that
improve eitheid or f, at each iteration, the algorithm maintains the filiewhich
is a set of pairgd, f) that are prohibited for a successful trial point. During the
backtracking line search procedure, this acceptable only ifd(y), f(y)) ¢ F. If
the trial point does not satisfy the stopping conditions of the algorithm, theepso
is repeated withr < y.

The filter is initialized with pairg6, f) that satisfyd > 0yax, Wherefax > 0
is the upper bound o6. Furthermore, wheneveris accepted because condition
©) is satisfied, the filter is updated, and all entries that are dominated bgthe n
entry are withdrawn from the filter. When it is not possible to find a pgintith
a step sizevr > anin (0 < amin << 1) that satisfy one of the conditions] (6) or
(@), a restoration phase is invoked. In this phase, the algorithm rectwebest
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point in the filter and a new trial point is determined according to the strateggdba
on equation[(b). The algorithm implements the ADD methdd [2] to compute the
directiond, required in[(b). If the current point is feasible, the directibwill be
descent forf; otherwise will be descent fak.

2.3 Stopping rules

Some stopping rules have been proposed in the past in a multistart paraigm c
text (seel[8] and the references therein included). Since the stoppamaim to
identify multiple optimal solutions, they should exhibit special properties. They
should stop the algorithm when all minima have been identified with certainty, and
they should not require a large number of local searches to deciddlthahiana

have been found. Two different stopping rules have been tested.

First Stopping Rule If s denotes de number of recovered local minima after hav-
ing performedt local search procedures, then the estimate of the fraction of the

uncovered space is given B(s) = jgffll)) and the stopping rule is

P(s)<e (8)

with € being a small positive numberl[4].
Second Stopping RuleThis scheme is based on probabilistic estimates for the
number of times each of the minima is being rediscovered by the local sedrch [3
Let Ly, Lo, ..., Ls be the number of local searches that converged to the corre-
sponding local minima}, x3. ..., 2%, respectively; where7 is discovered with
only one local application of the local procedure. Furtherplebe the number of
subsequent applications of the local search uritils found for the first time; and
similarly for n3, ng,...,n,. Thatis,z is found afterl + n, local searchesy;
afterl + ny + ng, and so on.

Then the expected numbgf; of local search applications that have converged
to %, at the time when theth minimum is discovered for the first time, is

_ Ly _ Ly
S=L5 dng—1) =t =L 't (ng—1)=—, J<s—1,L5=1.
J J ( S )Zle Li J ( S )Zle n; — s
If K represents the number of local search performed without discovering a
new minimum, aftes minima have been found, then the expected number of times

the Jth minimum is found at that moment;’; (), is obtained by

L5(K)=L5(K—-1)+ with £5(0) = L5

. S
K + Z?:l n;
and thus the quantityss(s, K) = 135, ((£5(K) — Ly)/(>i, L;))* tends
asymptotically to zero. A stopping rule based on the variandg:ot?(Es), will
allow the algorithm to continue without finding new minima until the condition
0% (B2) < Tojasi( E2) )

holds, wheres2 (E-) is the variance ofZ, computed at the time when the last
minimum was retrieved antl < 7 < 1.



3 llustrative Examples and Remarks

To perform a preliminary analysis on the behavior of the algorithm wheareifit
stopping rules are applied, classical optimization problems, wits 2, multi-
modal objective functions and box and inequality constraints are comsidéhe
filter multistart method was coded in MatLab and the results were obtained in a
PC with an Intel(R) Core(TM)2 Duo CPU P7370 2.00GHz processor 288 8f
memory. Since derivatives are not provided to the algorithm, the fac®esti-
mated and set t0.05. In the ADD Filter methodsyy = ¢ = 1072, atpin = 1075,
Omin = 1073 max{1,1.250(xin)}, Omax = max{1,1.250(z;,)}, wherez;,, is the
initial point in the local search. For the tested stopping rules, we se0.06 and
7 = 0.5 as suggested in|[3]. Five minimization probleRi-P5 are defined using
different feasible regions.

1

P2 similar toP1with an additional constrairtc; + 5)% + (z2 — 5)2 — 100 < 0;
P3: similar toP2 with an additional linear constrairtz; — x9 — 3 < 0;

P4: min f(x) = 23:1 sin(z;) + sin (2?), defined in the bof3, 13]?;

P5: similar to P4 with an additional linear constrainxz; — 3x9 + 27 < 0.

PL min f(z) = 1 327 | (2} — 1622 + 5a;), defined in the box-5, 5]%;

Figurdl shows the contours ffz) and constraint boundary 83 (on the left)
andP5 (on the right). Tablels|1 amd 2 list the results obtained when the two stopping
rules are tested. Columns 2-5 represent average values obtainegl itheriB0
executions: average number of identified minimizers “# min”, average nuaiber
function evaluations “f.eval.”, average time (in seconds) “time(s)”, avetage
value of the obtained best global solutions “global”. The last column sepits
the standard deviation of the obtained global solutions.

Figure 1: Objective function and constraintsR8 andP5

When the first stopping rule is applidd (8), the time is less than the time needed
by the second stopping rule, in average. The time required by the algorithm in
creases with the number of function evaluations, which in turn dependseon th
number of local search calls. On the other hand, the stopping[rule (9)eigab

5



Table 1: Numerical results obtained using the first stopping rule.
Prob. #min feval. time(s) global S.D.
P1 3.9  4864.7 0.9 -78.3323 1.64525E-06
P2 3.8 97525 51.6 -78.3323 1.04324E-06
P3 3.1 134174 69.9 -64.1956 1.27448E-06
P4 3.9 41051 0.7 -2.4319 7.5900E-08
P5 4 7630.1 8.8 -2.4305 2.98961E-04

identify all the local solutions mostly. Further testing will be carried out spigcia
with large-dimensional problems.

Table 2: Numerical results obtained using the second stopping rule.

Prob. #min feval. time(s) global S.D.

P1 4 21326.4 6.8 -78.3323 1.82968E-06

P2 4 31670.6 235.3 -78.3323 1.13853E-06

P3 3.8 53014.1 149.6 -64.1956 7.01261E-07

P4 4 12974.2 2.2 -2.4319 5.06788E-08

P5 4 14336.9 115 -2.4305 1.04704E-04
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