
Bárbara Isabel de Sousa Vieira

June,2012

U
M

in
ho

|2
01

2

Formal Verification of Cryptographic
Software Implementations

F
o

rm
a

l V
e

ri
fi

ca
ti

o
n

 o
f

C
ry

p
to

g
ra

p
h

ic

S
o

ft
w

a
re

 I
m

p
le

m
e

n
ta

ti
o

n
s

B
ár

ba
ra

 Is
ab

el
 d

e
So

us
a

Vi
ei

ra

Universidade do Minho

Escola de Engenharia

Dissertation for the Ph.D. degree in Informatics

Bárbara Isabel de Sousa Vieira

June, 2012

Formal Verification of Cryptographic
Software Implementations

Universidade do Minho

Escola de Engenharia

Supervisor:
Professor Doutor Manuel Bernardo Barbosa

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE APENAS PARA EFEITOS
DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE
COMPROMETE;

Universidade do Minho, ___/___/______

Assinatura: __

Acknowledgements

My journey as a PhD student finally came to the end, after almost three years and a
half. In the beginning I was not really aware of what doing a PhD is, and I was really
doubting if I should or not embark on this long trip. I think I felt inspired by the words of
my supervisor, Manuel Barbosa, who patiently explained me what is adopting research
as a lifestyle. For those words, I really want to say: thank you! You were completely
right! I really love what I’m doing now! Somewhat this defines me, this is who I am.

These last years looked like a roller coaster of emotions, with many many ups and
downs, and go through them was not possible without the support and love of very
important people. To these people I want to dedicate a few words.

First of all I want to thank my supervisor Manuel Barbosa, for his supportive words
in the most di�cult times and guiding me during these years. Thanks for all (sometimes
crazy) fruitful discussions and for unconditionally supporting all my decisions such
as having di�erent research experiences in other centers out of Portugal. Besides, you
were always there! Many many thanks.

I was really a lucky girl, who had not one, but three supervisors! The wisdom,
incisive comments, patience and brilliant mind of José Bacelar were fundamental for
the good results of this work. Also the tranquility, understanding, wise words in the
crucial moments and expertise of Jorge Sousa Pinto underpinned all the good results
achieved. For them, goes a huge thank you.

Of course, I will never forget the time I spent at INRIA Saclay Île-de-France on the
supervision of Jean-Christophe Filliâtre. I really loved the three months internship in
the first semester of 2009! Jean-Christophe Filliâtre is really an inspiring and motivating
person and I really loved to work with him.

I want to say thanks to many more people, starting by my o�ce colleagues of always,
Miguel Marques (who unfortunately, to my regret, left the o�ce a year ago), Hugo
Pacheco (the funny crabber) and Hugo Macedo (the political guy). To my new and

iii

iv

recent colleagues Paulo Silva, Jácome Cunha and Nuno Macedo I want to also say
thanks. Of course I cannot forget the crazy teacher with whom I really like to talk and
laugh, José Bernardos Barros (aka JBB).

I would like to thank all my outside work friends. Again in no special oder: Andreia
Machado, Hugo Machado, Miguel Domingues, Ana Pereira, Bruno Marques, Maria
Joana, João Pedro Silva, Sofia Pontes and Marilia Braga. To all of you, thank you very
much for everything.

Finally, to the most important persons of my life, my love Marco and my mother,
I really want to say thank you. You are the persons that I love most and without you
I could not have done this. Mom thank you for always believing in me and make me
believe in me too. Marco thank you for supporting me, trust and encourage me. Yes, I
will marry you (some day). You are the one!

The work in this thesis has been carried out at the Departamento de Informática, Universidade

do Minho, Portugal. The author was funded by the CACE European project (co-financed by the

European Commission under EU Framework Programme 7), by the research center INRIA Saclay-

Île-France and by Fundação para a Ciência e Tecnologia (Portugal), under grant number SFRH / BD

/ 75010 / 2010.

Formal Verification of Cryptographic Software Implementations

Abstract

Security is notoriously di�cult to sell as a feature in software products. In addition to
meeting a set of security requirements, cryptographic software has to be cheap, fast,
and use little resources. The development of cryptographic software is an area with
specific needs in terms of software development processes and tools. In this thesis we
explore how formal techniques, namely deductive verification techniques, can be used
to increase the guarantees that cryptographic software implementations indeed work as
prescribed. This thesis is organized in two parts.

The first part is focused on the identification of relevant security policies that may
be at play in cryptographic systems, as well as the language-based mechanisms that can
be used to enforce such policies in those systems. We propose methodologies based on
deductive verification to formalise and verify relevant security policies in cryptographic
software. We also show the applicability of those methodologies by presenting some
case studies using a deductive verification tool integrated in the Frama-c framework.

In the second part we propose a deductive verification tool (CAOVerif) for a domain-
specific language for cryptographic implementations (CAO). Our aim is to apply the
methodologies proposed in the first part of this thesis work to verify the cryptographic
implementations written in CAO. The design of CAOVerif follows the same approach
used in other scenarios for general-propose languages and it is build on top of a plug-in
from the Frama-c framework. At the very end, we conclude the work of this thesis by
reasoning about the soundness of our verification tool.

v

vi

Verificação Formal de Implementações de Software Criptográfico

Resumo

O software criptográfico possui requisitos específicos para garantir a segurança da
informação que manipula. Além disso, este tipo de software necessita de ser barato,
rápido e utilizar um número reduzido de recursos. Garantir a segurança da informação
que é manipulada por tais sistemas é um grande desafio, sendo por isso de grande objecto
de estudo actualmente. Nesta tese exploramos como as técnicas formais, nomeadamente
as técnicas de verificação dedutiva, podem ser utilizadas por forma a garantir que as
implementações de software criptográfico funcionam, de facto, como prescrito. O
trabalho desta tese está organizado em duas partes.

A primeira parte foca-se essencialmente na identificação de políticas de segurança
relevantes nos sistemas criptográficos, bem como nos mecanismos baseados em lingua-
gens que podem ser aplicados para garantir tais políticas. Neste contexto, propomos
metodologias baseadas em verificação dedutiva para formalizar e verificar políticas
de segurança. Mostramos também como essas metodologias podem ser aplicadas na
verificação de casos de estudo reais, utilizando a ferramenta de verificação dedutiva
integrada na ferramenta Frama-c.

Na segunda parte, propomos uma ferramenta de verificação dedutiva (CAOVerif)
para uma linguagem de domínio específico para implementações criptográficas (CAO).
O desenvolvimento de tal ferramenta tem como objectivo aplicar as metodologias desen-
volvidas na primeira parte deste trabalho às implementações criptográficas definidas em
CAO. O desenho desta ferramenta segue a mesma aproximação de outras ferramentas
de verificação dedutiva já existentes para outras linguagens. Concluímos o trabalho
desenvolvido dando um prova formal da correcção da ferramenta.

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 The CAO language . 2
1.3 Deductive program verification . 3
1.4 Main results . 5
1.5 Thesis organization . 7

2 Preliminaries 11
2.1 WhileC language . 11
2.2 While⇤ language . 21
2.3 Security properties . 24

2.3.1 Safety properties . 24
2.3.2 Information flow . 25
2.3.3 Functional correctness properties 26

3 Related work 29
3.1 Language-based security . 29
3.2 Deductive verification . 30
3.3 Frama-C . 33

3.3.1 ACSL . 33
3.3.2 Jessie plug-in . 34
3.3.3 Why platform . 35
3.3.4 Jessie input language . 35
3.3.5 Other deductive verification platforms 36

3.4 Information flow . 38
3.5 Functional correctness . 43

ix

x CONTENTS

3.6 Side-channel countermeasures . 44

I Verifying security properties in cryptographic software 47

4 Verifying functional correctness and information flow properties 49
4.1 Verifying safety properties using Frama-c 49
4.2 Proofs by composition and self-composition 54

4.2.1 Natural invariants . 56
4.2.2 Self-composition lemmas 60
4.2.3 Equivalence by composition lemmas 61
4.2.4 Verification infrastructure 65

4.3 Verifying absence of error propagation 70
4.4 Verifying correctness with respect to reference implementations . . . 72
4.5 Defining natural invariants for loops in general 80
4.6 Summary . 82

5 Verifying side-channel countermeasures 85
5.1 Side-channel attacks . 85
5.2 A formal verification-based approach 86
5.3 Formalisation and verification of side-channel countermeasures 88

5.3.1 Security policy as a semantic property 89
5.3.2 Instrumented semantics . 89
5.3.3 Formal security definition 93
5.3.4 Verification of security . 94

5.4 Case study: NaCl cryptographic library 97
5.4.1 A simple example . 97
5.4.2 A more challenging verification example 101

5.5 Summary . 103

II CAOVerif : A deductive verification tool for CAO 105

6 A deductive verification tool for CAO 107
6.1 The CAO programming language . 107

6.1.1 CAO language overview . 108

CONTENTS xi

6.1.2 Safety in CAO . 110
6.2 Implementation . 111

6.2.1 Tool architecture . 112
6.2.2 Strategy . 114
6.2.3 Emphasis on automation . 115

6.3 CAO to Jessie translation . 116
6.3.1 Container types . 117
6.3.2 Rings, fields and extension fields 123
6.3.3 Structured types . 128
6.3.4 Casts and coercions . 128
6.3.5 Automatic safety proof obligations 129

6.4 Case studies . 131
6.4.1 Elliptic-curve scalar multiplication in NaCl 131
6.4.2 Minimizing exposure to side channel attacks in NaCl core . . 133

6.5 Summary . 134

7 Establishing the soundness of CAOVerif 137
7.1 Proof strategy . 138
7.2 Summary . 144

8 Conclusions 147
8.1 Contributions . 147
8.2 Directions for future work . 148

A Verifying openSSL implementation of RC4 151
A.1 openSSL implementation of RC4 . 151
A.2 ACSL: openSSL RC4 implementation with safety annotations 152

B NaCl implementation of crypto_verify 155
B.1 Equivalence by composition . 155
B.2 Annotated self-composed crypto_verify function 158

C CAO implementation of crypto_scalar_mult 161

D Cao to Jessie translation 165
D.1 Expressions . 165

xii CONTENTS

D.2 Statements . 167
D.3 Annotations . 168
D.4 Global declarations . 170

E CAO implementation of AES 171

Bibliography 175

List of Figures

2.1 Syntax of WhileC . 12
2.2 Evaluation semantics of WhileC (error denotes the error state) 14
2.3 Inference system for safety-sensitive Hoare triples 16
2.4 Inductive definition of wp and vc for WhileC 20
2.5 Axiomatic semantics for While⇤ . 22
2.6 Inductive definition of the functions vc and wpc 23

3.1 Jessie plug-in of the Frama-c framework 34
3.2 Dimensions of information release 42

4.1 Block diagram of the RC4 cipher . 51

5.1 NaCl Security Policies . 86
5.2 Evaluation semantics . 91
5.3 Transformation for internalising trace information 95

6.1 Tool architecture . 113
6.2 Type translation. 117
6.3 Declarations and axioms for vector types. 119
6.4 Casts (!) and coercions ()) . 128

7.1 Proof strategy . 139
7.2 Translation from WhileC to While⇤ 140
7.3 Derivation trees of While⇤ and WhileC of the proof of Lemma 27 . . . 145

xiii

xiv LIST OF FIGURES

List of Tables

6.1 Safety proof obligations . 130

xv

xvi List of Tables

Chapter 1

Introduction

1.1 Context

Software implementations of cryptographic algorithms and protocols are at the core
of security functionality in many IT products. However, the development of this class of
software products is understudied as a domain-specific niche in software engineering.

The development of cryptographic software is clearly distinct from other areas
of software engineering due to a combination of factors. Firstly, cryptography is an
inherently interdisciplinary subject. The design and implementation of cryptographic
software draws on skills from mathematics, computer science and electrical engineering.
The assumption that such a rich body of research can be absorbed and applied without
error is tenuous for even the most expert software engineer. Secondly, security is
notoriously di�cult to sell as a feature in software products, even when clear risks such
as identity theft and fraud are evident. An important implication of this fact is that
security needs to be as close to invisible as possible in terms of computational and
communication load. As a result, it is critical that cryptographic software be optimised
aggressively, without altering the security semantics. Finally, typical software engineers
develop systems focused on desktop class processors within computers in our o�ces
and homes. The special case of cryptographic software is implemented on a much
wider range of devices, from embedded processors with very limited computational
power, memory and autonomy, to high-end servers, which demand high-performance
and low-latency. Not only must cryptographic software engineers understand each
platform and the related security requirements, they must also optimise each algorithm
with respect to each platform, since each one will have vastly di�erent performance

1

2 1 Introduction

characteristics.
CACE (Computer Aided Cryptography Engineering1) was an European Project that

aimed to improve on the lack of support currently o�ered to cryptographic software
engineers. The main output of the project was the development of a tool-box of domain-
specific languages, compilers and libraries, that support the production of high quality
cryptographic software. Specific components within the produced tool-box address
particular software development problems and processes; and combined use of the
constituent tools is enabled by designed integration between their interfaces. In particular,
one of the work packages in the project focused on adding formal methods technology to
the CACE tool-box, as a means to increase the degree of assurance than can be provided
by the development process. The adopted strategy was to adapt existing results in the
state of the art of formal methods to the specific domain of cryptography. This thesis is
a direct result of a specific challenge put forward within this CACE work package: to
explore the application of deductive program verification techniques to implementations
of low-level cryptographic primitives, and extend the CACE toolbox to permit carrying
out this type of formal verification over implementations of low-level cryptographic
primitives in a domain-specific language called CAO.

In the remainder of this introductory chapter, we will give an overview of what this
challenge entails and how it was approached, highlight the main results in this work,
and explain how their presentation is organized throughout this thesis.

1.2 The CAO language

The CAO language aims to allow natural description of cryptographic software
implementations, which can be analysed by a compiler that performs security-aware
analysis, transformation and optimisation. The driving principle behind the design of
CAO is that the language should support cryptographic concepts as first-class language
features, so as to eliminate some of the di�culties arising in the use of languages such
as C or Java. However, unlike the languages used in mathematical software packages
such as Magma2 or Maple3, which allow the description of high-level mathematical
constructions in their full generality, CAO is restricted to enabling the implementation
of cryptographic components such as block ciphers, hash functions and sequences of

1http://www.cace-project.eu
2http://magma.maths.usyd.edu.au/magma
3http://www.maplesoft.com

http://www.cace-project.eu
http://magma.maths.usyd.edu.au/magma
http://www.maplesoft.com

1.3 Deductive program verification 3

finite field arithmetic for Elliptic Curve Cryptography (ECC).
CAO preserves some higher-level features to be familiar to an imperative programmer,

with a syntax that is very close to that of C, whilst focusing on the implementation
aspects that are most critical for security and e�ciency. The memory model of CAO is,
by design, extremely simple to prevent memory management errors (there is no dynamic
memory allocation and it has call-by-value semantics). Furthermore, the language
does not support any input/output constructions, as it is targeted at implementing the
core components in cryptographic libraries. In fact, a typical CAO program comprises
only the definition of a global state and a set of functions that permit performing
cryptographic operations over that state. Conversely, the native types and operators in
the language are highly expressive and tuned to the specific domain of cryptography.
CAO introduces as first-class features pure incarnations of mathematical types commonly
used in cryptography (arbitrary precision integers, ring of residue classes modulo an
integer, finite field of residue classes modulo a prime, finite field extensions and matrices
of these mathematical types) and also bit strings of known finite size. In short, the
design of CAO allowed trading o� the generality of a language such as C or Java, for a
richer type system that permits expressing cryptographic software implementations in a
more natural way.

As mentioned above, the driving objective of this work was to develop a tool that
allows formally verifying CAO implementations of cryptographic algorithms. Such
a tool should carry over to the specific domain of cryptography the capabilities of
state-of-the-art deductive verification tools.

A necessary stepping stone towards achieving this goal was to evaluate the capabili-
ties of existing deductive verification platforms, and to explore their applicability to the
formal verification of cryptographic software.

1.3 Deductive program verification

Program verification refers to obtaining assurance that a particular piece of software
will display a particular property when it is executed. Program verification can be
performed using di�erent methodologies, with more or less support from development
tools, and providing varying degrees of assurance.

One can envision tool support for checking whether a particular property is present,
and also tool support for enforcing a particular property. Verification can also be dy-

4 1 Introduction

namic and/or static. In the first case, verification is performed at run-time, and it can be
implemented by using reference monitors. These mechanisms detect a problem, when-
ever they are about to occur, and take appropriate mitigation action. Static verification
is carried out before the code is executed and has obvious performance and reliability
advantages.

Another important aspect of verification is whether the outputs of the verification
process, i.e. the assurance obtained, must be transferred to a party other than the
software developer. In many scenarios this is in fact the case. Such guarantees may
need to be transferred to the consumer of the product, for example when a company
is outsourcing part of the development of an application and wants assurance that the
supplier is meeting the requirements. One may also need to transfer assurance to a
certification body, for example when a company is trying to get a product approved for
a particular use. Certification standards such as the Common Criteria [31, 32, 33] point
to formal methods as a technology that enables the development of verification methods
which can be used to transfer assurance.

This work focuses on technology that can be used in these demanding scenarios.
The techniques employed allow formally proving properties of programs statically.
These properties are established through deductive reasoning based on Hoare Logic [54,
47], and the verification process is therefore termed deductive verification. These
techniques are brought to practice through the use of contracts – specifications consisting
of preconditions and post-conditions, annotated into the programs. In recent years
verification tools based on contracts have become more and more popular, as their
scope evolved from toy languages to very realistic fragments of languages like C, C#, or
Java [30, 25, 44, 14, 16, 46].

In a nutshell, the typical architecture of a deductive verification infrastructure consists
of a verification condition generator (VCGen for short) and a proof tool, which may
be either an automatic theorem prover or an interactive proof assistant. The VCGen
reads in the annotated code (which contains contracts and other annotations meant to
facilitate the verification, such as loop invariants and variants) and produces a set of
proof obligations known as verification conditions, that are sent to the proof tool. The
correctness of the VCGen guarantees that if all the proof obligations are valid then the
program is correct with respect to its specification.

In this work we have built upon an existing verification platform called Frama-c [21].
This is a framework for the static analysis of C programs annotated using the ANSI-C

1.4 Main results 5

Specification Language (ACSL [21]). Frama-c includes a deductive verification tool
called Jessie, which contains a multi-prover VCGen [45], that can target a set of proof
tools including the Coq proof assistant [89], and the Simplify [39] and Alt-Ergo [34]
automatic theorem provers. Frama-c has proven to be a good choice for two main
reasons. Firstly, it includes a powerful deductive verification tool for C programs, which
is by far the programming language that shares the most characteristics with CAO, and
for which there exists huge volume of cryptographic implementations that can be used
as case studies. Secondly, the Frama-c architecture is highly modular, which allowed us
to reuse some of its underlying components in the implementation of the CAO deductive
verification tool.

The first aspect facilitated our exploration of the potential applications of deductive
verification over cryptographic software. This led to interesting results that, not only
guided us in the design a new deductive verification tool for CAO – called CAO-
Verif – but are also independent contributions in the area of formal verification. The
second possibility was critical in the management of our development work and greatly
simplified carrying over the applicability of the previous results to the CAO language.

1.4 Main results

The results in this thesis are presented in two parts. Part I focuses on our results on
applying deductive verification techniques to cryptographic software. Part II presents
our achievements in the development of a deductive verification tool for the CAO domain
specific language.

Part I - Deductive verification of cryptographic software

Extensive work was done in the CACE project [65] to identify and classify a set
of relevant properties of cryptographic software implementations in a wide range of
application scenarios. Given the security-critical nature of cryptographic software, we
refer to these properties as security properties.

In this part of the thesis we focus on a subset of properties that are applicable
to C or CAO implementations of low-level cryptographic primitives. The results we
present here stem from our e�ort in determining how these properties can be formalized
and verified using deductive verification techniques, with subsequent validation of our
approach using real-world examples of C cryptographic code and Frama-c. The security

6 1 Introduction

properties we address are diverse and include safety properties, where the goal is to
exclude fatal errors and exception conditions such as those arising from invalid memory
accesses and numeric errors; functional correctness properties where the aim is to
establish that the input/output behavior of a program agrees with its specification; and
information flow properties, where the goal is to ensure compliance to security policies
that exclude sensitive information leakage or contamination.

Technically, we extend the notion of self-composition introduced by Barthe et
al. [17] to a generalized notion of composition-based proofs and apply it to these new
scenarios. We show that it can be used to tackle interesting new properties including
the correctness of code optimizations that are common in C cryptographic code; non-
interference properties such as the absence of error propagation on stream ciphers; and
adherence to state-of-the-art side-channel attacks countermeasures that are adopted in
the C implementation of the NaCl (read salt) cryptographic library4 developed in the
CACE project.

We are also concerned with the level of automation that can be introduced to help
the end-user in the application of our techniques. One of the main hurdles in scaling
deductive verification techniques to more complex verification targets is perhaps the
need for intensive use intervention in annotating the code and managing the discharge
of a large number of verification conditions. This is also true with our techniques,
and hence we have explored the use of natural invariants (a technique to derive loop
invariants and detailed in Chapter 4) as a means to increase the level of automation and
the complexity of the use cases that can be tackled using composition based proofs and
deductive verification platforms.

The main results comprised in this part of the thesis were published in [4, 6, 7] and
in [5].

Part II - A deductive verification tool for CAO

The results above show that a tool such as Frama-c has great potential for verifying a
wide variety of security-relevant properties in cryptographic software implementations.
However, our experience also showed us that the intrinsic characteristics of the C
language make it a hard target for formal verification, particularly when the goal is to
increase the level of automation. This problem is amplified when the verification target
is in the domain of cryptography, because implementations typically explore language

4http://nacl.cr.yp.to

http://nacl.cr.yp.to

1.5 Thesis organization 7

constructions that are little used in other application areas, including bit-wise operations,
unorthodox control-flow (loop unrolling, single-iteration loops, break statements, etc.),
intensive use of macros, etc.

In constructing a deductive verification tool for CAO we therefore had the opportunity
to take advantage of the characteristics of this programming language to construct a
domain-specific verification tool, allowing for the same generic verification techniques
that can be applied over C implementations, simplifying the verification of security-
relevant properties, and hopefully providing a higher degree of automation.

In the second part of the thesis we describe the design and implementation of CAO-
Verif (the deductive verification tool for CAO). We show that CAO presents interesting
challenges for formal verification, concerning not only its rich type system, but also
the cryptography-oriented language constructions that it o�ers. We describe how we
tackle these problems, namely by presenting what we believe is the first formalisation in
first-order logic of the rich mathematical data types that are used in cryptography in the
context of deductive verification. We also demonstrate that the development time of
such a complex verification tool can be greatly reduced by relying on the Jessie plug-in
of the Frama-c framework as a back-end.

We base our presentation on real-world examples of CAO code, extracted from the
open-source code of the NaCl cryptography library. We show how we fine tuned our
tool to enable the fully automatic formal verification of simple properties (in particular
safety properties), and also how more ambitious proof goals (arising in general proofs
of functional correctness) can be factored by resorting to specific lemmas (that will be
introduced in Chapter 4).

We complement this work by giving a formal proof of the soundness of our veri-
fication tool. Part of the results presented in the second part of the thesis have been
published in [11].

1.5 Thesis organization

Chapter 2 This chapter introduces the main theoretical concepts underlying the work
presented in this thesis. More specifically, it describes two toy languages which capture
the main features of CAO and Jessie, as well as the formalisms we have adopted to
tackle the security properties addressed in this thesis.

8 1 Introduction

Chapter 3 In this chapter we revise related work in the study of formal techniques that
can be used to verify general propose software systems, specially focusing on deductive
verification techniques. We also give a broader view of the Frama-c framework and its
deductive verification plug-in, named Jessie, as well as, of other formal approaches
commonly used to verify the security properties addressed in our work.

Part I - Deductive verification of cryptographic software

Chapter 4 This chapter focuses on the formalisation and verification of a specific set
of functional correctness and information flow properties in cryptographic software.
We apply deductive verification techniques to formally verify safety; correctness with
respect to reference implementations and absence of error propagation properties. The
main results comprised in this chapter were published in [4, 6] and in [7].

Chapter 5 In this chapter we extend the work presented in the previous chapter to
demonstrate the power of our methodology to reduce exposure to side-channel attacks.
We focus our attention on the recently proposed NaCl cryptographic library and we
analyse a set of high-level non-functional security properties, whose purpose is to
minimise exposure to side-channel attacks in the C implementation of this library. We
introduce an instrumented trace semantics which plays a key role here, since it makes
possible to express these policies as non-interference-like properties, thus allowing
us to bridge an important gap between the general, theoretical formulation of security
properties employed in our previous work, and the real-world concerns and coding
practices of cryptographers. The main results comprised in this chapter were published
in [5].

Part II - CAOVerif: A deductive verification tool for CAO

Chapter 6 In this chapter we describe the design and implementation details of the
deductive verification tool for CAO, named CAOVerif. We present the formalisation in
first-order logic of the rich mathematical data types of this language and also demonstrate
that the development time of such a complex verification tool can be greatly reduced
by relying on the Jessie plug-in of the Frama-c framework as a back-end. The main
results comprised in this chapter were published in [11].

1.5 Thesis organization 9

Chapter 7 In this chapter we establish the correctness of our approach by giving a
formal proof of the soundness of the CAOVerif tool, i.e., that it only allows to prove the
correctness of programs that are indeed correct.

Chapter 8 This chapter summarises the work presented in this thesis, by giving the
main conclusions and presenting directions for future work.

10 1 Introduction

Chapter 2

Preliminaries

In this chapter we introduce some important notions and definitions that will be
used throughout this thesis. We begin with the description of two simple imperative
languages which we use to formalise the security properties we have addressed; and
we conclude the chapter by presenting the formal definition (we have adopted) of such
properties.

2.1 WhileC language

WhileC is a simple imperative language with integer expressions, bounded arrays
and booleans. This is an abstraction of a higher-level language such as CAO, where we
assume that the type information for array variables includes length information (these
and other features of the CAO language are detailed in Chapter 6). For this reason, when
formalising the operational semantics of the language, we consider the existence of the
function len, which given an array retrieves its length. The syntax of the language is
shown in Figure 2.1.

Integer literals are ranged by n and boolean literals are true and false. Integer and
boolean variables are ranged by xi and xb, respectively, and array variables are ranged by
a. For simplicity, whenever it is implicit from the context, we will omit the superscripts
i and b when referring to integer and boolean expressions. We will also write e to refer
to expressions in general.

11

12 2 Preliminaries

Integers Int 3 ei
::= n | xi | a[e] | ei + ei | ei - ei | ei * ei | ei / ei

Booleans Bool 3 eb
::= true | false | xb | eb == eb | eb != eb | ei < ei | ei > ei

Commands Comm 3 C ::= skip | x:= e | a[ei]:= ei | if (eb
) {C

1

} else {C
2

} |
while (eb

) C | C
1

; C
2

Figure 2.1: Syntax of WhileC

Semantics We consider an error semantics for WhileC to deal with the occurrence of
run-time errors. The semantics is extended with a special error value (error) used to
denote the result of undefined expressions. Essentially, this error value is used to capture
divisions by zero and out-of-bounds array accesses (we remark that in a language such
as CAO, the set of runtime errors is much greater). Integer expressions are interpreted
as (unbound) integers (Z), boolean expressions as values of {true, false}, and arrays
as functions from integers to integers (Z ! Z). We consider a State type defined as
the cartesian product of the corresponding interpretation domains (each variable is
associated to a particular position) and ranged by s. We also consider an equivalence
relation ⌘ that captures equality on states.

The semantics of expressions is given by a functional [[.]] which maps every ex-
pression e to a function [[e]] : State ! D, where D corresponds to the interpre-
tation domain of e. This functional [[.]] maps every integer expression ei to a func-
tion [[ei

]] : State ! (Z
S{error}) and every boolean expression eb to a function

[[eb
]] : State! ({true, false}S{error}), as follows:

• [[ei
]] : State! ZS{error} is inductively defined by:

[[n]](s) = n [[xi
]](s) = s(xi

)

[[ei
1

op ei
2

]](s) =

8>>><
>>>:

[[ei
1

]](s) op [[ei
2

]](s) if [[ei
1

]](s) , error ^ [[ei
2

]](s) , error

error otherwise

for op 2 {+, -, *}

[[ei
1

/ ei
2

]](s) =

8>>>>>>><
>>>>>>>:

[[ei
1

]](s) / [[ei
2

]](s) if [[ei
1

]](s) , error ^ [[ei
2

]](s) , error^
[[ei

2

]](s) , 0

error otherwise

2.1 WhileC language 13

[[a[ei
]]](s) =

8>>><
>>>:

s(a)([[ei
]](s)) if [[ei

]](s) , error ^ 0  [[ei
]](s) < len(a)

error otherwise

• [[eb
]] : State! {true, false}S{error} is inductively defined by:

[[true]](s) = true [[false]](s) = false [[xb
]](s) = s(xb

)

[[e
1

op e
2

]](s) =

8>>><
>>>:

[[e
1

]](s) op [[e
2

]](s) if [[e
1

]](s) , error ^ [[e
2

]](s) , error

error otherwise

for op 2 {==, !=}

[[ei
1

op ei
2

]](s) =

8>>><
>>>:

[[ei
1

]](s) op [[ei
2

]](s) if [[ei
1

]](s) , error ^ [[ei
2

]](s) , error

error otherwise

for op 2 {<, >}

Note that, in the evaluation semantics of the comparison operators (op 2 {==, !=}), the
expressions e

1

and e
2

can be either booleans or integer expressions.

We consider a natural (big-step) semantics for WhileC. The evaluation semantics
of commands is given by the relation + ✓ Comm ⇥ State ⇥ (State

S {error}) (where
error denotes a special error state) inductively defined by the rules given in Figure 2.2.
The judgement (C, s) + s0 means that the evaluation of the program C in the initial
state s results in a final state s0. The co-domain of + includes an error state, the idea
being that if some of the program expressions involved evaluate to an error value, the
corresponding program also evaluates to an error state. The function upd: (Z! Z)!
Z! Z! (Z! Z), used in the definition of the semantics rules to update the values of
an array, is defined by:

upd(a, i, x) = � j.

8>>><
>>>:

a(j) if i , j

x if i = j

which means that upd(a, i, x) is equal to the function that maps an index j to the value
x when i = j and to a(j) when i , j.

14 2 Preliminaries

1. (skip, s) + s

2. If [[e]](s) = error then (x:= e, s) + error

3. If [[e]](s) , error then (x:= e, s) + s[x [[e]](s)]

4. If [[a[e
1

]]](s) = error or [[e
2

]](s) = error then (a[e
1

]:= e
2

, s) + error

5. If [[a[e
1

]]](s) , error and [[e
2

]](s) , error then
(a[e

1

]:= e
2

, s) + s[a upd(s(a), [[e
1

]](s), [[e
2

]](s))]

6. If [[e]](s) = error then (if (e) {C
1

} else {C
2

}, s) + error

7. If [[e]](s) = true and (C
1

, s) + s0 then (if (e) {C
1

} else {C
2

}, s) + s0

8. If [[e]](s) = false and (C
2

, s) + s0 then (if (e) {C
1

} else {C
2

}, s) + s0

9. If [[e]](s) = error then (while (e) C, s) + error

10. If [[e]](s) = true and (C, s) + s0 and (while (e) C, s0) + s00

then (while (e) C, s) + s00

11. If [[e]](s) = false then (while (e) C, s) + s

12. If (C
1

, s) + error then (C
1

; C
2

, s) + error

13. If (C
1

, s) + s0 and (C
2

, s0) + s00 then (C
1

; C
2

, s) + s00

Figure 2.2: Evaluation semantics of WhileC (error denotes the error state)

Hoare Logic for WhileC

In this section we introduce the Hoare logic formal system [54] to reason about
the correctness of WhileC programs. The correctness is expressed in terms of safety-
sensitive Hoare triples used to specify the desired behaviour of the underlying programs.
Recall that we defined an error semantics for the WhileC language to capture possible
errors during the execution of programs, therefore, the correctness of WhileC programs
is defined accordingly.

Given a command C, a precondition ' and a postcondition , a safety-sensitive
Hoare triple, denoted by {|'|} C {| |}, has the following meaning: if ' holds in a given
state and C is executed in that state and terminates, then that state is di�erent from the
error state and holds (in that state).

The syntax of these first-order logic predicates (' and , also called assertions) is

2.1 WhileC language 15

given by:

�, ::= true | false | e
1

== e
2

| e
1

! = e
2

| ei
1

< ei
2

| ei
1

> ei
2

|
¬� | �

1

^ �
2

| �
1

_ �
2

| �
1

! �
2

| �
1

$ �
2

| 8x. � | 9x. � |

and the semantics is given by the function [[�]]M : State ! {true, false} inductively
defined by:

[[true]]M(s) = true [[false]]M(s) = false

[[e
1

== e
2

]]M(s) = true iff [[e
1

]](s) = [[e
2

]](s)

[[e
1

! = e
2

]]M(s) = true iff [[e
1

]](s) , [[e
2

]](s)

[[ei
1

< ei
2

]]M(s) = true iff [[ei
1

]](s) < [[ei
2

]](s)

[[ei
1

> ei
2

]]M(s) = true iff [[ei
1

]](s) > [[ei
2

]](s)

[[^ �]]M(s) = true iff [[]]M(s) = true and [[�]]M(s) = true

[[_ �]]M(s) = true iff [[]]M(s) = true or [[�]]M(s) = true

[[! �]]M(s) = true iff [[]]M(s) = false or [[�]]M(s) = true

[[$ �]]M(s) = true iff [[]]M(s) = true and [[�]]M(s) = true

or [[]]M(s) = false and [[�]]M(s) = false

[[8x.]]M(s) = true iff [[]]M(s[x v]) = true for all values v

[[9x.]]M(s) = true iff [[]]M(s[x v]) = true for some value v

whereM is the first-order model that interprets expressions/operations according to the
semantics of WhileC (partial operations are totalized in some pre-determined way, e.g.
divisions by zero return zero and arrays do not overflow). Accordingly, the semantics of
safety-sensitive Hoare triples is given by the following definition.

Definition 1. (Safety-sensitive Hoare triple)
The semantics of a safety-sensitive Hoare triple {|'|} C {| |} is given by a function

[[{|'|} C {| |}]]M : State! {true, false} defined as follows:

[[{|'|} C {| |}]]M(s) = true iff if [[']]M(s) = true and (C, s) + s0 then

s0 , error and [[]]M(s0) = true

and C is said to be partially correct with respect to the predicate ' if the triple {|'|}C {| |}
is valid.

16 2 Preliminaries

(skip) {|'|} skip {| |} if '!

(assign) {|'|} x := e {| |} if '! safe(e) ^ '! [e/x]

(assign-array) {|'|} a[e
1

] := e
2

{| |} if '! safe(a[e
1

]) ^ '! safe(e
2

) ^
'! [upd(a, e

1

, e
2

)/a]

(if-else)
{|e ^ '|} C

1

{| |} {|¬e ^ '|} C
2

{| |}
{|'|} if (e) {C

1

} else {C
2

} {| |} if '! safe(e)

(seq)
{|'|} C

1

{|✓|} {|✓|} C
2

{| |}
{|'|} C

1

; C
2

{| |}

(while)
{|✓ ^ safe(e) ^ e|} C {|✓ ^ safe(e)|}
{|'|} while {✓} (e) {C} {| |} if '! (✓ ^ safe(e)) ^

(✓ ^ safe(e) ^ ¬e!)

(assert) {|'|} assert ✓ {| |} if '! (✓ ^)

Figure 2.3: Inference system for safety-sensitive Hoare triples

We define next an axiomatic semantics for the WhileC language with annotations,
in the form of an inference system for safety-sensitive Hoare triples, together with the
corresponding verification condition generator (VCGen).

Axiomatic semantics We consider now the WhileC language extended with anno-
tations. Annotated WhileC programs include, besides pre- and postconditions, loop
invariants – predicates which hold during the loop execution; and general assertions –
predicates inserted between statements that must be valid when the program reaches
that point during its execution. The inference system which defines the axiomatic se-
mantics of this WhileC annotated language is presented in Figure 2.3, where safe(e) is
a safety-condition whose validity implies that the evaluation of e in any state will not
produce an error. This predicate is inductively defined by:

safe(true) = true safe(false) = true

safe(xi
) = true safe(xb

) = true

safe(a[e]) = safe(e) ^ 0  e < len(a) safe(e1 op e2) = safe(e1) ^ safe(e2)

2.1 WhileC language 17

safe(e1 / e2) = safe(e1) ^ safe(e2) ^ e
2

, 0 op 2 {*, +, -, <, >, ==, !=}

The assign-array rule refers in its side-condition the upd operator whose semantics
is given by [[upd(a, e

1

, e
2

)]](s) = upd(s(a), [[e
1

]](s), [[e
2

]](s)), where the former upd
corresponds to the operator, and the later to the function, defined earlier, used to update
the contents of an array. For convenience the operator is overloaded, as happens with the
arithmetic operations. This operator is only part of the assertion language and cannot
be used in annotations.
Remarks:

• The inference system from Figure 2.3 is di�erent from the standard Hoare inference
system to allow the derivation of proofs in a deterministic way. Note that it does
not include the consequence rule, avoiding the ambiguity created by this rule,
and satisfies the sub-formula property. In fact, the definition of such system is
inspired by [48] and its purpose is allowing the use of VCGens;

• Just like in [48] we also consider that loop invariants must be provided as inputs to
the program verification process. For this reason the while rule already includes
the invariant annotation;

• When a safety-sensitive Hoare triple {|'|} C {| |} is not derivable using this system,
it does not mean that the C program (without annotations) is not correct; it just
means that assuming ' before executing C is not su�cient to prove that holds
at the end of its execution;

Soundness of the axiomatic semantics The axiomatic semantics defined by the rules
and axioms of Figure 2.3 is sound relatively to the operational semantics of the WhileC

language (defined by the rules of Figure 2.2). Thus, any safety-sensitive Hoare triple
that is derivable from the rules and axioms of Figure 2.3, is indeed valid [48]. Lemma 3
formally establishes this result. The proof of this lemma requires proving that the validity
of safe(e), for some expression e, implies that e does not evaluate to an error value in
any state (and vice-versa). This result is established by the following lemma.

Lemma 2. Let e be an expression in WhileC.

8 s 2 State. [[safe(e)]]M(s) = true iff [[e]](s) , error

18 2 Preliminaries

Proof. By induction on the structure of e. ⇤

Lemma 3. (Soundness of the axiomatic semantics of WhileC)
Let {|'|} C {| |} be a safety-sensitive Hoare triple in WhileC and `WhileC {|'|} C {| |}

denote that {|'|} C {| |} is derivable using the axioms and rules from the inference system
of Figure 2.3.

`WhileC {|'|} C {| |} =) 8s 2 State. [[{|'|} C {| |}]]M(s) = true

Proof. By induction on the structure of C. We will only present the proof for a[e
1

] := e
2

and for while {✓} (e) {C}, since these are the more interesting cases.

• a[e
1

] := e
2

By Definition 1, [[{|'|} a[e
1

] := e
2

{| |}]]M(s) = true if and only if ([[']]M(s) =

true ^ (a[e
1

] := e
2

, s) + s0) =) s0 , error ^ [[]]M(s0) = true. Let us assume
that ([[']]M(s) = true ^ (a[e

1

] := e
2

, s) + s0). According to the operational
semantics of WhileC, either s0 = error, if [[a[e

1

]]](s) = error or [[e
2

]](s) = error,
or s0 = s[a upd(s(a), [[e

1

]](s), [[e
2

]](s))], if [[a[e
1

]]](s) 6= error and [[e
2

]](s) 6=
error.

Assuming that `WhileC {|'|} a[e1

] := e
2

{| |}, then by the axioms and rules of
the inference system of Figure 2.3, [[' ! safe(a[e

1

])]]M(s) = true, [[' !
safe(e

2

)]]M(s) = true and [[' ! [upd(a, e
1

, e
2

)/a]]]M(s) = true. So, by
Lemma 2, follows that [[a[e

1

]]](s) 6= error and [[e
2

]](s) 6= error, hence s0 =

s[a upd(s(a), [[e
1

]](s), [[e
2

]](s))]. Since syntactic and semantic substitution are
compatible, and by definition [[upd(a, e

1

, e
2

)]](s) = upd(s(a), [[e
1

]](s), [[e
2

]](s)),
follows that [[]]M(s0) = true.

• while {✓} (e) {C}
Again, by Definition 1, [[{|'|} while {✓} (e) {C} {| |}]]M(s) = true if and only if
([[']]M(s) = true ^ (while {✓} (e) {C}, s) + s0) =) s0 , error ^ [[]]M(s0) =

true. Let us assume that ([[']]M(s) = true ^ (while {✓} (e) {C}, s) + s0), we
need to prove that s0 , error ^ [[]]M(s0) = true. Assuming now that `WhileC

{|'|} while {✓} (e) {C} {| |}, then by the rules of the axiomatic semantics of WhileC,
we have that

1. `WhileC {|✓ ^ e|} C {|✓|} =) 8s 2 State. [[{|✓ ^ e|} C {|✓|}]]M(s) = true (by
induction hypothesis) and

2.1 WhileC language 19

2. ('! ✓ ^ safe(e)) ^ (✓ ^ safe(e) ^ ¬e!);

According to the operational semantics of WhileC, we have three possibilities for
(while {✓} (e) {C}, s) + s0: either [[e]](s) = error which implies that s0 = error;
or [[e]](s) = true and (C, s) + s00 ^ (while {✓} (e) {C}, s00) + s0; or [[e]](s) = false

which implies that s0 = s. By (2) we have that '! safe(e). So by Lemma 2 we
conclude that [[e]](s) , error and consequently, s0 , error. Now let us assume
that [[e]](s) = false. Since by (2), ' ! ✓ and (✓ ^ safe(e) ^ ¬e !), using
Lemma 2, we immediately conclude that [[]]M(s0) = true.

Finally, considering that [[e]](s) = true and (C, s) + s00 and (while {✓} (e) {C},
s00) + s0 and assuming that the loop terminates in n iterations, we can use the
well-known equivalence,

while {✓} (e) {C} ⌘ if (e) {C; while {✓} (e) {C}} else {skip}

to unfold the loop n+1 times, where in the last iteration we have [[e]](sn+1

) = false

and s0 = sn+1

. For instance in the first iteration we have

(while {✓} (e) {C}, s) + s0 ⌘ (if (e) {C; while {✓} (e) {C}} else {skip}, s) + s0

which implies that for some state s
0

[[e]](s) = true ^ (C, s) + s
0

^ (while {✓} (e) {C}, s
0

) + s0

and using the induction hypothesis, we can conclude that [[✓]]M(s
0

) = true. In
the second iteration, we will have

(while {✓} (e) {C}, s
0

) + s0 ⌘ (if (e) {C; while {✓} (e) {C}} else {skip}, s
1

) + s0

for some state s
1

. Using again the induction hypothesis and the fact that [[✓]]M(s
0

) =

true, we can conclude that [[✓]]M(s
1

) = true. So we can repeat this process un-
til iteration n + 1, where [[e]](sn+1

) = false and [[✓]]M(sn+1

) = true. But since
✓ ^ safe(e) ^ ¬e! , we can conclude that [[]]M(sn+1

) = true. Notice that by
Lemma 2 we can conclude that [[safe(e)]](s0) = true, since we have assumed that
[[e]](s0) = false.

⇤

20 2 Preliminaries

vc(skip,) = true
vc(x := e,) = true
vc(a[e

1

] := e
2

,) = true
vc(if (e) {C

1

} else {C
2

},) = vc(C
1

,) ^ vc(C
2

,)

vc(while {✓} (e) {C},) = vc(C, ✓ ^ safe(e)) ^ (✓ ^ safe(e) ^ ¬e!) ^
(✓ ^ safe(e) ^ e)! wp(C, ✓ ^ safe(e))

vc(C
1

; C
2

,) = vc(C
1

,wp(C
2

,)) ^ vc(C
2

,)

vc(assert ✓,) = true

wp(skip,) =

wp(x := e,) = safe(e) ^ [e/x]

wp(a[e
1

] := e
2

,) = safe(a[e
1

]) ^ safe(e2) ^ [upd(a, e
1

, e
2

)/a]

wp(if (e) {C
1

} else {C
2

},) = safe(e) ^ (e! wp(C
1

,)) ^ (¬ e! wp(C
2

,))

wp(while {✓} (e) {C},) = ✓ ^ safe(e)

wp(C
1

; C
2

,) = wp(C
1

,wp(C
2

,))

wp(assert ✓,) = ✓ ^

Figure 2.4: Inductive definition of wp and vc for WhileC

Verification condition generator The Verification Condition Generator (VCGen) for
WhileC is defined by:

VCGen({|'|} C {| |}) = ('! wp(C,)) ^ vc(C,)

where vc corresponds to the function which retrieves the verification conditions and
wp corresponds to the function which computes the weakest precondition1 [40] for
annotated WhileC. Once again, these functions are defined in accordance with the
operational (error) semantics we have defined for the WhileC language. Their inductive
definition is presented in Figure 2.4.

1Note that the weakest precondition of the annotated program is an approximation to the weakest
precondition of the original program.

2.2 While⇤ language 21

2.2 While⇤ language

For the purpose of this thesis, we also consider While⇤, an abstraction of the Jessie
language (whose features are detailed in Chapter 3). While⇤ includes logic types that
abstract CAO/WhileC types. For instance, the array data type is defined as a logic
type and its axiomatisation intends to capture the properties of the CAO/WhileC array
operations. Such as in Jessie, we do not intend to execute While⇤ programs, therefore
its operational semantics is not defined (we will only be concerned with its axiomatic
semantics).

While⇤ is an imperative language that includes unbounded integers, booleans and
arrays of arbitrary size, and exhibits a syntax very similar to that of WhileC.

Integers Int 3 ei
::= n | xi | ei + ei | ei - ei | ei * ei | ei / ei | get(a, ei

)

Booleans Bool 3 eb
::= true | false | xb | eb == eb | eb != eb | ei < ei | ei > ei

Commands Comm 3 C ::= skip | x:= e | a := set(a, ei
1

, ei
2

) |
if (eb

) {C
1

} else {C
2

} | while (eb
) C | C

1

; C
2

Integer literals are ranged by n and boolean literals are true and false. Integer and
boolean variables are ranged by xi and xb, respectively, and array variables are ranged
by a. Again, whenever it is implicit from the context, we will omit the superscripts i
and b when referring to integer and boolean expressions, and e will be used to denote
expressions in general. Integer variables are interpreted as (unbound) integers (Z) and
booleans as values of {true, false}. Array variables are mapped to values of a type A
with the following operations:

get : A ⇥ Z! Z
set : A ⇥ Z ⇥ Z! A

where get(a, i) returns the element stored in the position with subscript i of array a and
set(a, i, e) stores the value e in the position with subscript i of array a. These operations
are constrained by the following axioms:

8 a e
1

e
2

. get(set(a, e
1

, e
2

), e
1

) = e
2

8 a e
1

e
2

e
3

. e
1

, e
3

! get(set(a, e
1

, e
2

), e
3

) = get(a, e
3

)

22 2 Preliminaries

(skip) {'} skip { } if '! (assign) {'} x := e { } if '! [e/x]

(assign-array) {'} a := set(a, e
1

, e
2

) { } if '! [set(a, e
1

, e
2

)/a]

(if-else)
{e ^ '} C

1

{ } {¬e ^ '} C
2

{ }
{'} if (e) {C

1

} else {C
2

} { } (seq)
{'} C

1

{✓} {✓} C
2

{ }
{'} C

1

; C
2

{ }

(while)
{✓ ^ e} C {✓}

{'} while {✓} (e) {C} { } if ('! ✓) ^ (✓ ^ ¬e!)

(assert) {'} assert ✓ { } if '! (✓ ^)

Figure 2.5: Axiomatic semantics for While⇤

Hoare logic for While⇤

The Hoare logic formal system to reason about the correctness of While⇤ programs
is expressed in terms of partial correctness Hoare triples of the form {'} C { }, where '
and are first-order logic predicates and C is a While⇤ program. Again, the predicates
(also called assertions) ' and are called pre- and postconditions, respectively. While⇤

programs are also annotated with loop invariants and general assertions.
The syntax of the assertion language is the same to that of WhileC (defined in the

previous section). The definition of validity of an assertion ' is given by the regular
notion of validity considered in first-order logic, and is denoted by |= T ', where T
corresponds to the theory TZ

STbool plus the set of axioms (defined above) which
constrain the array operations.

Axiomatic semantics The axiomatic semantics for the While⇤ language is given by
the rules and axioms depicted in Figure 2.5 and can be used to establish the validity of
partial correctness Hoare triples.

Definition 4. (Derivability of a partial correctness Hoare triple)
Let {'} C { } be a partial correctness Hoare triple in While⇤. We say that {'} C { }

is derivable assuming the theory T (defined above), denoted `T {'} C { }, if there exists
a proof of {'} C { }, using the axioms and rules of the axiomatic semantics of While⇤

(defined in Figure 2.5), which uses as assumptions only assertions from T .

2.2 While⇤ language 23

vc(skip,) = true
vc(x := e,) = true
vc(a := set(a, e

1

, e
2

),) = true
vc(if (e) {C

1

} else {C
2

},) = vc(C
1

,) ^ vc(C
2

,)

vc(assert �,) = true

vc(while {✓} (e) {C},) = vc(C, ✓) ^ (¬ e ^ ✓ !) ^ (e ^ ✓ ! wp(C, ✓))

vc(C
1

; C
2

,) = vc(C
1

,wp(C
2

,)) ^ vc(C
2

,)

wp(skip,) = wp(x := e,) = [e/x]

wp(a := set(a, e
1

, e
2

),) = [set(a, e
1

, e
2

)/a] wp(C
1

; C
2

,) = wp(C
1

,wp(C
2

,))

wp(while {✓} (e) {C},) = ✓ wp(assert ✓,) = ✓ ^
wp(if (e) {C

1

} else {C
2

},) = (e! wp(C
1

,)) ^ (¬ e! wp(C
2

,))

Figure 2.6: Inductive definition of the functions vc and wpc

Verification condition generator The Verification Condition Generator (VCGen) for
While⇤ is defined as follows:

VCGwhile⇤({'} C { }) = ('! wp(C,)) ^ vc(C,)

where again vc corresponds to the function which retrieves the verification conditions and
wp corresponds to the function which computes the weakest precondition for annotated
While⇤. Their inductive definition is presented in Figure 2.6.

A While⇤ annotated program is correct if all of the generated verification conditions
are valid. The soundness of this VCGen with respect to the axiomatics semantics can
be establish by the following proposition.

Proposition 5. (VCGen soundness)
Let {'} C { } be a Hoare triple in While⇤.

|= T VCGwhile⇤({'} C { }) iff `T {'} C { }

The result above implies that if all the verification conditions are valid, there always
exist a derivation tree using the rules of the axiomatic semantics of While⇤, whose
side-conditions are valid too (and vice-versa) [48].

24 2 Preliminaries

2.3 Security properties

Deductive verification based techniques can be used to enforce security policies
in software systems implementations. This section introduces some of the security
policies addressed in this thesis, together with their formalisation over single program
executions.

2.3.1 Safety properties

Safety is related with preventing runtime errors which are due to not accounted
situations in the evaluation semantics of the programming language. To reason about
program safety, one has to consider an operational semantics which deals with such
errors. The WhileC language, for example, captures in its operational semantics an error
state. A program C written in WhileC is considered to be safe if for every state s, if C

evaluates to a state s0 then s0 is di�erent from the error state.

Definition 6. (Safe program)
A program C is safe, if 8s 2 State. ((C, s) + s0) =) s0 , error.

This property can be captured by safety-sensitive Hoare triples. The inference system
for these safety-sensitive Hoare triples (already defined in Figure 2.3) does not depend
only on the structure of the command, but also on expressions that may occur in it. Note
that the side-conditions of each rule include special conditions, called safety conditions,
whose validity implies that the program does not evaluate to an error state.

Termination Some authors consider program termination as a safety property (e.g.
Frama-c). In this thesis, termination is treated separately.

Program termination is characteristic of total correctness specifications and in lan-
guages such as WhileC (without recursive, or such as CAO, where recursion is limited),
is established by proving the termination of the loops. In this setting, the while rule
includes a loop variant which is a program expression whose value decreases with each
iteration. In this total correctness rule, presented below, V corresponds to the loop
variant (also annotated in the code) and ⌫

0

to its initial value.

(while)
[✓ ^ b ^ V = ⌫

0

] C [✓ ^ V < ⌫
0

]

[✓] while {✓,V} (b) {C} [✓ ^ ¬b]

if ✓ ^ b! (V � 0)

2.3 Security properties 25

Typically, the rule expresses that the value V must decrease at each iteration and be
greater or equal to zero at the very end. As such, to prove program termination one has
to annotate each loop with a proper loop variant.

2.3.2 Information flow

Information flow policies are security policies concerned with controlling the way
information is propagated in the system during execution. A formalisation of these
properties, proposed by Denning and Denning [38], includes a set of security classes, a
flow relation and a method of binding. Information is associated to a security class using
the binding method and the flow relation is responsible for dictating how information
of di�erent classes can flow during the program execution. A program is considered
to be secure if there exist no violations of the flow policy. This approach has several
advantages since it can be used to formalise noninterference, an information flow policy,
introduced by Goguen and Meseguer [50], which inspires the formal definition of the
security policies addressed in this thesis.

Noninterference Informally, noninterference expresses that, during the program exe-
cution, private (high) inputs must not influence the computation of public (low) outputs.
A possible formalisation of this intuition is based on programming-language semantics.

Consider the evaluation semantics of the WhileC language and let VH and VL de-
note the sets of high-security and low-security variables of program C, respectively,
where VL = Vars(C) \ VH. Let also s

1

X
= s

2

denote that the states s
1

and s
2

are X-
indistinguishable, i.e., 8x 2 X. s

1

(x) = s
2

(x), for some set of variables X. We consider
termination insensitive and termination sensitive definitions of noninterference.

Definition 7. (Termination-insensitive non-interference)
A program C satisfies termination-insensitive non-interference if,

8s
1

, s
2

2 State. (s
1

VL
= s

2

^ (C, s
1

) + s0
1

^ (C, s
2

) + s0
2

) =) s0
1

VL
= s0

2

Definition 8. (Termination-sensitive non-interference)
A program C satisfies termination-sensitive non-interference if,

8s
1

, s
2

2 State. (s
1

VL
= s

2

^ (C, s
1

) + s0
1

) =) ((C, s
2

) + s0
2

^ s0
1

VL
= s0

2

)

26 2 Preliminaries

Self-composition Barthe et al. [17] propose a simple methodology based on program-
ming logics to prove that a program satisfies non-interference. The authors observe that
noninterference of a program C can be reduced to a property about a single program
execution of the program C; Cr, where Cr is a renamed copy of C. This characterization
of noninterference relies on the idea of self-composition.

More rigorously, given some program C, let Cr be the program that is equal to C

except that every variable x is renamed to a fresh variable xr. Non-interference can be
formulated considering a single execution of the self-composed program C; Cr. Note
that any state s of C; Cr can be partitioned into two states so and sr with disjoint domains,
such that s = so [sr and dom(so

) = Vars(C) and dom(sr
) = {xr|x 2 Vars(C)} (where

dom(s) retrieves the domain of the state s).
C satisfies termination-insensitive noninterference if any terminating execution of

the self-composed program C; Cr, starting from a state s such that so and sr di�er only
in the values of high-security variables, results in a final state s0 such that s0o and s0r are
equivalent with respect to the values of low-security variables.

Definition 9. (Self-composition: termination-insensitive non-interference)
Let C be a program, Cr a renamed copy of C and s a state. C satisfies termination-

insensitive noninterference if,

8x 2 VL. (s(x) = s(xr
) ^ (C; Cr, s) + s0) =) s0(x) = s0(xr

)

Using the definition above (based on self-composition), termination-insensitive non-
interference can now be formalised as a Hoare logic partial correctness specification of
the form: 8>>><

>>>:

^

x2VL

x = xr

9>>>=
>>>;

C; Cr

8>>><
>>>:

^

x2VL

x = xr

9>>>=
>>>;

We remark that termination-sensitive non-interference can be captured by total correct-
ness Hoare triples.

2.3.3 Functional correctness properties

To handle program equivalence we propose a generalisation of the self-composition
technique [17] introduced above, called equivalence by composition.

Considering two programs C
1

and C
2

written in WhileC, we are interested in proving
their equivalence. Let V be the set of variables occurring in both programs (we admit

2.3 Security properties 27

both use the same set of variables, otherwise we may let V = Vars(C
1

)\Vars(C
2

)). The
idea that we want to capture is that if the programs are executed from indistinguishable
states with respect to V , they terminate in states that are also indistinguishable.

Definition 10. (Program equivalence)
Let C

1

and C
2

be programs and V a set of variables occurring in both programs. We
say that C

1

is equivalent to C
2

if,

8s
1

, s
2

2 State. (s
1

V
= s

2

^ (C
1

, s
1

) + s0
1

^ s0
1

, error) =)

((C
2

, s
2

) + s0
2

^ s0
2

, error ^ s0
1

V
= s0

2

)

Observe now that the execution of C
1

and C
2

can be reduced to a property about a
single program execution of the program C

1

; C
2

r, where again C
2

r is a renamed copy of
C

2

. Therefore C
1

and C
2

will be defined as equivalent if every execution of the composed
program C

1

; C
2

r, starting from a state in which the values of corresponding variables are
equal, terminates in a state with the same property. Notice that any state s of C

1

; C
2

r can
be seen as a disjoint union of s

1

and s
2

such that s = s
1

[s
2

and dom(s1) = Vars(C1)

and dom(s2) = Vars(C2
r
).

Definition 11. (Equivalence by composition)
Let C

1

and C
2

be programs and V a set of variables occurring in both programs.
Considering that C

2

r is the program C
2

where all variables x are renamed to fresh xr,
we say that C

1

is equivalent to C
2

if,

8s 2 State. 8x 2 V. (s(x) = s(xr
) ^ (C

1

; C
2

r, s) + s0 ^ s0 , error) =) s0(x) = s0(xr
)

This property can be expressed as the following Hoare logic total correctness speci-
fication: 2

666664
^

x2V
x = xr

3
777775 C

1

; C
2

r

2
666664
^

x2V
x = xr

3
777775

Note that the definition of program equivalence (Definition 10) requires that if C
1

terminates in a state di�erent from the error state, then C
2

must also terminate in a
non-error state, therefore this property can only be expressed using total correctness
Hoare triples (as happens with termination sensitive noninterference).

Weaker notions of equivalence can be handled by taking V to be a subset of Vars(C
1

)\
Vars(C

2

). In fact, we are not restricted to equivalence relations – arbitrary relations can

28 2 Preliminaries

be considered between the two partitions of the state:

⇥
R

1

(s, sr
)

⇤
C

1

; C
2

r ⇥R
2

(s, sr
)

⇤

where s and sr denote the state partitions associated with C
1

and C
2

r respectively.
Notice that the specification presented above covers the original definition of self-

composition [17]. Considering C
2

r a renamed copy of C
1

, and defining the following
equality of predicates:

R
1

(s, sr
) ⌘ R

2

(s, sr
) ⌘ s

VL
= sr

it is easy to see, that the definition of self-composition fits into the definition above.

Chapter 3

Related work

In the previous chapter we introduced the key concepts underlying the work of this
thesis. In this chapter we present related work that contextualises these concepts. It is
divided in di�erent parts, according to the organisation of this thesis. First we explain
how deductive verification can be used in the context of language-based security. We
then introduce deductive verification related concepts and the deductive verification
platform included in the Frama-c framework. We conclude by presenting some work
that has been done to enforce security properties akin to the ones studied in this thesis,
namely information flow policies, functional correctness and non-functional properties,
using language-based approaches.

3.1 Language-based security

Language based security is the area that addresses the study of formal techniques to
enforce security in software at programming language level [59, 83]. The work carried
out in this area, follows two main approaches: Dynamic techniques enforce the security
requirements during the program execution (runtime); Static techniques are based on
the verification of security requirements at compile-time.

Dynamic techniques usually introduce an overhead on program execution, although
in some cases they may be the only feasible way to enforce conformance to a security
policy. In-lined reference monitors (IRM) are one of the techniques that rely on dynamic
analysis. This technique resorts to program rewriting to embed a reference monitor
in the target system. The reference monitor dynamically observes program execution
and intervenes whenever it is close to violating some security policy. The behavior

29

30 3 Related work

of an IRM can be defined through a security automata residing somewhere between
the program and the machine where the program executes. The automata examines a
sequence of actions that are security relevant and terminates program execution when
it detects an action that violates some security policy. Some work on this direction is
presented in [22, 82, 51, 61].

On the other hand, static analysis techniques do not modify the performance of the
target program. These techniques can be themselves split according to the language
level at which they operate: the semantic level or type system level [59, 83]. Language-
based techniques applied at the type system level, are based on writing the program in
conformance with a type system. Type-checking can be applied at di�erent levels of the
compilation process: at high-level or at low-level. At high-level, the security is enforced
by type-checking the source program written in a high-level language [72, 74, 73, 93, 94].
On the other hand, at low-level, security is granted by type-checking an augmented
assembly language/object-code with a type system [98, 20, 19, 69]. Usually, type systems
used in this approach assume a particular form of a collection of typing rules which
describe what security type is assigned at each program expression. A disadvantage on
the use of custom type systems is that for each new variation of the security policy and
programming language, the type system needs to be redefined and proven sound.

Techniques applied at the semantic level model security as a program behavior
property. Deductive verification techniques, the ones we address in this thesis, fit into
this classification: security policies are expressed using contract-based specification
and deductive verification platforms are used to verify if the software systems satisfy
them [57, 95, 17, 88, 76, 42, 23]. Several reasons led us to adopt deductive verification
techniques in this work: unlike dynamic techniques, they do not introduce an overhead
on program execution; a single formalism can be used to verify and specify a relevant set
of security properties; the existence of huge set of deductive verification tools for general
purpose languages, such as C or Java. The next section details the most important
concepts about deductive verification. We emphasize that there are also other techniques
based on semantic models which rely on other formal models such as temporal logic [36],
for example.

3.2 Deductive verification

Formal verification (or program verification) aims to study mathematically based
methodologies to validate if a program rigorously satisfies a given property or a pre-

3.2 Deductive verification 31

defined formal specification of the system. Di�erent mathematical models are usually
used to abstract the systems behaviour, depending on the systems nature, giving rise to
di�erent approaches, such as deductive verification [54, 47], abstract interpretation [35],
model checking [43] and symbolic execution [29]. In this work, we focus on deductive
verification based approaches.

Hoare logic Deductive verification is a formal approach which relies on Hoare
logic [54, 47] to model the systems behaviour. Hoare logic is formal system intro-
duced by C.A.R. Hoare [54] in 1968, with a specific notation – the Hoare triples – to
specify the desired behaviour of the programs. A Hoare triple for a given command C

is a specification of the form {'} C { }, where:

• ', called precondition, corresponds to a predicate, in first-order logic, on the
initial values (initial state) of program variables. The validity of this condition
implies the correct execution of the program. If the precondition is not verified
before the program executes, it can behave in unexpected ways;

• , called postcondition, corresponds to a predicate (also in first-order logic) on
the final values (final state) of program variables. If the predicate is valid, then it
implies that the program satisfies the specification.

The meaning of the logical predicate {'} C { } is as follows: if ' holds before C

execute, and if C terminates, then must be valid after the execution. This standard
specification is partial, because for the predicate {'} C { } to be true, it is not required
that C terminates, when started in state where ' is valid. The fundamental requisite
is that if C terminates, then must be valid. Nevertheless, there is a stronger kind of
specification, usually represented by ['] C [] and called total correctness specification,
which is true if and only if two conditions are valid:

• whenever C is executed in a state satisfying ', then it terminates;

• after termination, holds in the final state.

The usual method to validate if the program is according with the specification, is
to use a sound inference system. This defines the axiomatic semantics of the underlying
language, which is usually seen as an alternative to the semantics of the programming
language. A proof in Hoare logic is then a sequence of lines, each of which is either an
axiom or follows from earlier lines by an inference rule. These are usually presented

32 3 Related work

as trees, called derivation trees (or proof trees). Therefore, verifying if a Hoare triple
{'}C { } is valid in this system, implies constructing a derivation tree whose conclusion
is {'} C { } and all the side-conditions evaluate to true [8].

Verification condition generators Proofs using inference systems are typically long
and tedious to write. For this reason, many attempts have been made to mechanise the
proof, by designing systems to partially handle formal proof generation in Hoare logic.
Even if those systems cannot prove everything automatically, it is possible to check
whether an arbitrary formal proof is valid.

When the inference system is well behaved (there is no ambiguity in the choice
of the rule to apply) and satisfies the sub-formula property (all assertions that occur
in premises also occur in conclusions) one can define a strategy to derive proofs in a
deterministic way. The usual approach taken in these cases is the use of verification
conditions generators (VCGens), which are systems that generate a set of purely mathe-
matical statements called proof obligations (also known as verification conditions) from
annotated specifications (with pre- and postconditions). The validity of the verification
conditions can be established by an external proof tool, such as theorem prover (e.g.:
Simplify, Alt-Ergo, Z3, etc) or a proof assistant (e.g.: Coq, Isabelle, PVS, etc).

Summing up, in the past few years a lot of research has been done to automate the
generation of proof obligations for general-purpose languages, and verification platforms
based on variations of Hoare logic came up. These platforms tend to speed up the proof
process, by providing means to automate the generation of annotations and associated
verification conditions. They are usually structured around the following components:

• Annotation Language: the specification (Hoare triples specifications) is included
in the source code by means of program annotations. Besides pre- and postcon-
ditions, annotated programs include loop annotations and general assertions, in-
tended to facilitate the proof process. Annotations are embedded in the code [62]
or inserted as comments with a special notation [21, 14];

• Verification condition generator (VCGen): this is responsible for taking the
annotated program and generate the proof obligations;

• Proof generation: proof obligations are essentially formulas in first-order logic,
so that a first-order proof tool (an automatic prover such as Simplify, or a proof

3.3 Frama-C 33

assistant such as Coq) is required to construct the proof that the formulas are valid.
Their validity will imply that the software is indeed correct with respect to the
specification.

The next section details the most important aspects of the deductive verification plat-
form included in the Frama-c framework. We also highlight other deductive verification
platforms, noting that their architectures are very close to that of Frama-c.

3.3 Frama-C

Frama-c is a framework for the static analysis of C programs which includes an o�-
the-self deductive verification tool. It allows static analyzers implemented as plug-ins,
enabling a fine-grained collaboration of analysis techniques between them. For example,
a new plug-in may rely on the functionalities and results of existing plug-ins. At the
moment, there are three important plug-ins that almost all of the other plug-ins rely on:
the value analysis plug-in, the Jessie plug-in and the weakest precondition plug-in. The
first one is based on abstract interpretation and computes supersets of possible values for
expressions on the program. The Jessie plug-in and the weakest precondition plug-in
can be used for deductive verification of C programs. In our work we are focused on
the Jessie plug-in. This plug-in can be seen as a translator between Frama-c and the
Why platform, as depicted in Figure 3.1.

3.3.1 ACSL

ACSL [21] is the behavioral interface specification language of Frama-c and is
mostly inspired by the specification language of Caduceus [44] which is itself inspired
by JML [62]. The main di�erence between ACSL and JML lies on the fact that ACSL is
only focused in the static analysis of C programs, whereas JML aims both at runtime
assertion checking and static analysis of Java programs [46].

ACSL annotations are introduced in the C source files as comments with a special
notation (start with /*@ or //@). Annotations are classified as global or statement
annotations. Function contracts (pre- and postconditions) and global invariants are
considered to be global annotations. On the other hand, assertions and loop annotations
are said to be statement annotations.

34 3 Related work

Figure 3.1: Jessie plug-in of the Frama-c framework

Besides standard contract specifications, the programmer can also annotate the
program with logic specifications (global annotation) and ghost code (statement anno-
tation). Logic specifications are definitions of logic functions or predicates, lemmas
and axiomatisations. The latter is very useful to include the axiomatisation of new logic
types, logic functions and predicates by defining the axioms they satisfy. Ghost code is
regular C code only allowed to modify ghost variables and only visible in annotations.
Appendix B contains examples of C source files annotated with ACSL specifications.

3.3.2 Jessie plug-in

The verification process using the Jessie tool consists of analysing the annotated C
program and generating a set of proof obligations using the Why VCGen [45] (introduced
in the following section). The first step of the verification process is to conveniently
annotate the C programs using the behavioural interface specification language ACSL.
After verifying that the C annotated code is syntactically correct, the Frama-c Core
translates it to the Jessie input language. The Jessie plug-in is then responsible for
translating the output of the Frama-c Core into Why. Afterwards, Why is used to generate
the proof obligations than can be proved by a multitude of proof tools. The validity
of these proof obligations implies that the source program satisfies the specified set of
properties. In addition to the specification annotated into the program, the Jessie plug-in
automatically generates proof obligations that imply the safeness of the underlying code.

3.3 Frama-C 35

Safety here is related with memory safety, arithmetic safety and program termination.

3.3.3 Why platform

Why [45] is a software verification platform developed by the ProVal team and is
currently in its third version: Why3. The Why tool is based on the Weakest Precondition
calculus [40] to derive the proof obligations. Nevertheless, it is not a proof tool: it
produces proof obligations for existing external proof tools such as automatic provers
(like Simplify, Z3, etc) or proof assistants (like Coq, PVS or Isabelle). Furthermore,
Why is easily extensible to target other automatic prover or proof assistant back-end.
The Why input language consists of a programming language very similar to ML, with
imperative features (references and arrays), exceptions and annotations. Typing rules
totally exclude aliasing between di�erent mutable variables. Why supports exceptions
that can be declared by the user, and the notion of effects (e.g. read or write), which
indicate a possible raise of an exception.

Although Why can be directly used to verify programs, the general purpose of Why
is to be used as a back-end by other verification tools. As we will see further in this
chapter, besides the Jessie plug-in, there are also other verification tools which rely on
the Why tool.

3.3.4 Jessie input language

Jessie is only used in the verification of C programs in the Frama-c framework
and programmers are not expected to produce Jessie source programs from the scratch.
However, Jessie itself can be seen as a separate tool with its own input language. The
Jessie input language is a simply typed imperative language, developed in parallel with
ACSL, from which it inherits many of its constructions.

The language combines operational and logical features, very much like While⇤

introduced in the previous chapter. The operational part refers to statements which
describe the control flow and instructions that perform operations on data, including
memory updates. The logical part consists of first-order logic formulas, attached to
statements and functions in the form of annotations. Jessie provides primitive types,
abstract datatypes, and also allows the definition of new datatypes. Programs can
be annotated using pre- and postconditions, loop invariants, and other intermediate
assertions. The logical language is typed and includes built-in structural equality.

36 3 Related work

Syntax The abstract syntax defined in [70] includes the syntax of types, terms, state-
ments and global variables and functions. In Jessie a type is either a base type or a user
defined type. Base types are mathematical integers, booleans and real numbers plus
unit (the void type). User-defined types can be either limited range integers, structured
types such as arrays and structs, or pointers to structured types. Jessie terms include
variables, memory locations (pointer access or access to fields of structs), constants
and integer and real literals. Operations such like integer/real arithmetic, integer/real
comparison, pointer operations (pointer arithmetic, di�erence and comparison), boolean
operations, unary and binary operations and cast operations are also taken into account.
Jessie statements are structured around conditionals and loops. It also includes a mech-
anism to manage exceptions, which allows for exceptional control flow. A special main
function, with unit return type and no parameters is considered to be the entry point of
the program. Unlike in C, in Jessie there is no implicit initialization of variables. In
this thesis we only take advantage of some of these constructions (such as some of the
Jessie base types – integers, booleans and unit – and some of the Jessie statements).

Annotation language Additional constructs are included in Jessie in the form of an
annotation language that allows reasoning about the execution of Jessie programs.
Since Jessie programs are not meant to be executed, annotations appear naturally in
the program, contrary to happens with ACSL annotations. The inheritance from ACSL
is more clear in the annotation language. It includes the definition of logic types (user-
defined types that can be used in the program); logical terms, including logical function
application and range location; first-order logic propositions (comparison, conjunction,
disjunction and implication); definition of logical functions, predicates and lemmas.
Moreover, just like in ACSL, one can also define new logic types, logic functions and
predicates by means of axioms. This is perhaps the most interesting feature of the Jessie
language, since it allows the introduction of new types and first-order logic theories
associated to them, as we will see in Chapter 6.

3.3.5 Other deductive verification platforms

The verification infrastructure introduced in the Jessie plug-in and also in the
CAOVerif tool (the one we propose in this thesis in Chapter 6), was already used in
the development of other verification tools for C and Java. Caduceus [44] (currently
deprecated), a tool for C, and Krakatoa [67], a tool for Java, are also built on the top

3.3 Frama-C 37

of Why tool. The main di�erence in the infrastructure of Caduceus and Krakatoa is
that the first one compiles directly into Why and Krakatoa compiles to Jessie first (and
then uses the Jessie plug-in to generate the verification conditions). Caduceus [44] is
the predecessor of the Jessie plug-in. Just like in Jessie, in addition to the specification
annotated into the program, the tool automatically generates proof obligations that imply
the safety of the program with respect to absence of null pointer dereferencing and
out-of-bounds array accesses.

Boogie [13] is a verification condition generator very similar to Why. The input
languages to Boogie and Why are both languages with imperative features (such as goto
statements in Boogie and conditional branches in Why) and first-order propositions. In
both cases, the generation of verification conditions is based on the weakest precondition
calculus [40]. Boogie has front-ends for extensions to C# and C which enrich the
languages with annotations in first-order logic, such as pre- and postconditions, assertions
and loop invariants. The C# extension, known as Spec# [14], corresponds to a superset
of the C# language in the .Net framework. The Spec# tool-chain encompasses di�erent
transformations of the source code in order to get the verification conditions. Firstly,
the Spec# compiler, from an annotated C# program, generates the bytecode written in
the Common Intermediate Language of the .Net framework (CIL). This bytecode is
then translated to BoogiePL, the input language for Boogie. At the very end, Boogie
performs loop-invariant inference using abstract interpretation and finally generates the
verification conditions for Simplify [39] or Z3 [37].

VCC [30, 25] is a deductive verification tool for low-level concurrent C programs
where the core component is also Boogie. VCC includes a C front-end which from
an annotated program, generates BoogiePL. Boogie then generates the verification
conditions for an automatic prover or to HOL-Boogie, a verification environment based
on VCC/Boogie and Isabelle/ HOL.

Esc/Java [46] is another deductive verification tool for Java programs whose
annotation language is a subset of JML [62]. Its architecture is similar to the ones
presented above and based on the earlier checker for the Modula-3 language. The tool
is composed by a front-end, that parses and type-checks the annotated Java program, a
translator and a VCGen. The translator is responsible for producing the VCGen input,
from the parsed and type-checked program. The VCGen is also based on Dijkstra’s
weakest precondition calculus [40] and produces the verification conditions to the
theorem prover Simplify [39]. The particularity of this tool is that it performs loop

38 3 Related work

unrolling and the verification conditions generation include optimizations to avoid the
exponential blow-up inherent in a naive weakest-precondition computation. It looks for
run-time errors in annotated Java programs, but it does not model arithmetic overflow.
Jack (Java Applet Correctness Kit) [16] is a static verification tool for JML-annotated

programs. It provides support for annotation generation and for interactive verification
of functional specifications, as well as support for verification of byte-code programs. Its
integration in EclipseIDE1 allows proof obligation inspection and visualising where in
code they are originated. Such like Caduceus and Frama-c, Jack is prover independent
and supports an automatic (Simplify) and interactive prover (Coq).

3.4 Information flow

As we will see in the following chapters (Chapter 4 and Chapter 5), some of the
security properties addressed in this thesis are classified as information flow policies.
Information flow policies are security policies which aim to control the way information
is propagated in the system during its execution. Extensive work has been done in the
study of language-based techniques to enforce these properties in software systems.
This is due to the fact that important security requirements, such as confidentiality and
integrity, can be modeled as information flow policies. In fact, for confidentiality and
integrity requirements, two di�erent models, but at the same time dual, are widely used.
Bell et. all proposed the well-known Bell-LaPadula[60] model, which is related with
enforcement of confidentiality and Biba[24] proposed a model to enforce integrity. In
both models, information is classified through security levels, from public to top secret,
and entities that have access to information are also assigned to security levels. These
security levels are partial ordered forming a lattice, known as the security lattice. This
lattice corresponds to the flow relation introduced by Denning and Denning in [38].

Information flow type-systems Attempts to model information flow policies using
information flow type-systems were first proposed by Volpano et al. [93]. These corre-
spond to augmented type-systems where every program expression has a security type
with two parts: an ordinary type, e.g.: int, and a label that expresses an information
flow policy on the uses of labeled data. The label corresponds to the security level that
is associated to the data and typing rules establish the flow relation. For example, if

1www.eclipse.org

www.eclipse.org

3.4 Information flow 39

the variables that store public (low) information are classified as low (L), and variables
that store secret (high) information are classified as high (H), a flow relation to enforce
confidentiality of secret information will express that information is only allowed to
flow from L to H. A survey on this subject can be found at [80]. Information flow
type-systems for low-level languages were also proposed [98, 20, 19], nevertheless
low-level languages exhibit some problems that must be overcome in order to use this
technique in realistic scenarios [98].

The main challenge in designing information flow type-systems is that they are often
too conservative in practice, so that secure programs may be rejected. To illustrate this
point, consider a security lattice with only two levels: public/low (L) and private/high
(H) and the confidentiality policy defined above. Consider now the following code:
l := h ;
l := 0 ;

where l is a variable classified as low (L) and h a variable classified as high (H).
Recall the definition of non-interference introduced in the previous chapter. Typically,

confidentiality can be formalised as a non-interference property such that it states that
executing the program twice, for the same low input values, the program must produce
the same low output values. Under this definition the program above is indeed secure.
However, type-checking the program using an information flow type-system will fail,
because there is an information flow from a high-level variable to a low-level variable
in the assignment l := h. Even if at the very end the value of the variable l is always 0,
most of the times, type-systems are not sensitive to such fact.

To overcome this gap, several approaches based on semantic models were proposed
to prove information flow properties formalised as non-interference. In this thesis we rely
on the self-composition technique proposed by Barthe et al. [17] to prove composition-
based properties using o�-the-shelf deductive verification tools. As introduced in
Chapter 2, this technique relies on the composition of the program with its renamed
copy to prove non-interference-like properties, using Hoare logic [54, 47] based systems.
Some researchers studied how this technique can be applied to existing programming
languages and tools. Next we describe some of this work.

Self-composition The work of Barthe et al. [17] was inspired by Leino and Joshi [57],
the first to propose a semantic approach to check non-interference. Leino and Joshi
identified several desirable features of this approach. It gives a more precise charac-

40 3 Related work

terisation of security, it applies to all programming constructs whose semantics are
well-defined and it can be used to reason about indirect information leakage through
variations in program behaviour (e.g., whether or not the program terminates). The
authors formalized non-interference as

S is secure ⌘ (HH;S;HH ⌘ S;HH)

where S is a program and HH denotes the idea: “assign an arbitrary value to high
variables”. Intuitively, the property expresses an equivalence between two program
executions: (1) assigning an arbitrary value to high variables before executing the
program, then executing the program and finally making the arbitrary assignment again;
and (2) running the program and making the arbitrary assignment only once, right at
the end. Informally, the property tries to capture the idea that the public outputs of the
program are not a�ected by any confidential inputs.

Some attempts to model the property of Leino and Joshi in program logics using
JML [62] were presented by Warnier and Oostdijk [95]. The authors proposed an algo-
rithm, based on the strongest postcondition calculus [41], that from an input file written
in a subset of sequential Java, generates an annotated source file with specification
patterns for confidentiality in JML. Intuitively Leino and Joshi’s noninterference formal-
ization is seen here as a property between program states: the values of low variables in
the post-state are independent of the values of high variables in the pre-state.

Terauchi and Aiken [88] identified problems in the self-composition approach,
arguing that automatic tools aren’t powerful enough to verify this property over programs
of realistic size. To compensate for this, the authors proposed a program transformation
technique to an extended version of the self-composition approach. This incorporates the
notion of security levels downgrading through relaxed non-interference [63] property,
to enforce secure information flow. The program transformation technique is based
on rewriting the original program composed with its renamed version, but rather than
replicating the original code, the renamed version is interleaved and partially merged
with it. This transformation is assisted by type-directed translation rules.

Naumann [76] extended Terauchi and Aiken’s work to encompass heap objects,
adding ghost fields to every object to express heap partition into dashed and undashed
parts and to encode a partial bijection between those parts. This author also presented a
systematic method to validate transformations on self-composition, proposed in [88],
and reported his experiments of applying self-composition in object-oriented programs
to prove noninterference with ESC/JAVA2 [56] and Spec # [15] tools.

3.4 Information flow 41

Dufay et al. [42] proposed an extension of the JML specification to enforce non-
interference through self-composition. The Krakatoa [67] tool, used to implement
this extension, generates proof obligations for the Coq proof assistant, from JML-
annotated Java programs. This extended annotation language allows a simple definition
of noninterference in Java programs, although generated proof obligations are complex
and in some methods they could not be completed. The authors appealed to ghost
variables to keep track the invoked method parameters and result values of the first run
to help the resolution of some proof obligations.

Beringer and Hofman [23] adapted the definition of self-composition to prove the ab-
sence of illicit flows in programs written in IMP. IMP is an imperative language equipped
with an augmented type system that enforces termination-insensitive noninterference.
The self-composition definition in this particular case is based on an invariant property �
which intuitively tries to relate the pre-states and post-states with the intermediate states
achieved when a program is self-composed with itself. The authors also expressed this
property to cover arbitrary security lattices and showed that from the typing derivations,
it is possible to automatically generate proofs in programs logic.

In our work we extend the notion self-composition to account for a wide range of
security properties that can be proved using composition-based approaches. However,
contrary to Terauchi and Aiken [88], instead of modifying the target program to use o�-
the-shelf verification tools, we propose a methodology to increase the level of automation
of the proof process. This methodology presents some similarities with the work of
Beringer and Hofman [23] as we will see in Chapter 4.

Downgrading information flow policies Although the standard definition of non-
interference seems the most appropriated to model information flow policies, in some
cases it is too restrictive. Sometimes, it is not feasible to demand for full noninterference.
For example, a program that checks a password always releases some information
about confidential information, and would therefore be rejected under a strict non-
interference definition. Significant work has been done to refine the noninterference
definition to allow the downgrading of the security level associated with particular
pieces of information [3, 64, 74, 75, 73, 49, 72, 91]. Sabelfeld and Sands [81] present a
comprehensive survey about the directions of information downgrading. The authors
proposed a classification of the basic goals that underlie declassification according to
what can be downgraded, who can downgrade the information, when information can

42 3 Related work

Figure 3.2: Dimensions of information release

be downgraded and where the system can release information. Figure 3.2 [81] provides
a visual road-map of the main directions of current research on this topic.

Relaxed non-interference, proposed by Li and Zdancewic [63], is an example of a re-
finement of noninterference concerned about how information can be declassified. Their
framework relies on type-checking and the end-user is free to specify in which circum-
stances the information can be downgraded. Other techniques such as the decentralized
label model [72, 74, 73, 90, 101, 91, 71], robust declassification [100, 99, 75, 28], ab-
stract non-interference [49], intransitive noninterference [64], and dynamic labels [102],
are also examples of di�erent models which rely on relaxed notions of non-interference.

Although in the thesis we do not directly address this subject, we believe that some
of the techniques we propose can be used to capture some of the relaxed notions of
non-interference proposed in the literature. Nevertheless, we leave this for future work.
Similarly, significant work has been done in extending notions of noninterference, to
programs that are not deterministic, which we do not consider in this work and also
leave as future work.

3.5 Functional correctness 43

3.5 Functional correctness

Functional correctness properties are related with verifying the correctness of the
functional requirements in software systems, i.e., if they work as prescribed. This
verification is based in some intended specification of the systems behavior. The goal
is to establish if the input-output behaviour of the implementation matches that of the
specification.

The specification of a cryptographic algorithm is often given as a reference im-
plementation. This is the case, not only in symmetric-key techniques such as ciphers,
message authentication codes and cryptographic hash functions; but also in the imple-
mentation of algebraic calculations supporting public-key techniques such as digital
signature and encryption schemes. When producing an implementation, the program-
mer will follow the operational description but is free to introduce optimisations or
internal reorganisations, say for improving e�ciency or maintainability, or satisfying
non-functional security properties, as long as the input-output behaviour is preserved.

To some extent, the specification acts as a reference implementation and verifying
functional correctness reduces to proving program equivalence. Indeed, the sort of
equivalence proof we require for cryptographic software configures what in software
engineering is usually known as code refactoring. Software code refactoring aims to
introduce optimisations in the code by changing its internal structure, but maintaining its
observable/external behaviour. Functional correctness of cryptographic implementations
is then a proof of equivalence between a reference implementation and an optimised
version of the code. In Chapter 4 we propose a methodology to verify such properties.

In [97], the authors aim to verify the functional correctness of the AES block cipher
implementation, written in C. They first extract the original FIPS [1] specification of
the algorithm in PVS [78], then translate the original implementation (written in C) into
SPARK Ada [12] language and annotate it with pre- and postconditions. Next the authors
apply a semantic-preserving set of refactoring steps to that specification. Afterwards,
from the last refactored version they mechanically extract a high-level specification (in
PVS), using a tool called Echo [86]. To verify if the original implementation satisfies
the PVS specification, they check if the high-level specification (extracted from the
refactored version of the program) implies the original specification (extracted from the
FIPS specification). We remark that, although it has the same purpose, our approach
distinguishes itself from the one presented in [97].

A continuation of this work is presented in [96], where the authors explore the

44 3 Related work

notion of semantics preserving refactoring transformations. The idea is that a refactoring
transformation of a program P to a program P’ is semantic preserving if for the same
initial states they terminate in the same final states. Our definition of equivalence by
composition (introduced in Chapter 2) aims to prove exactly this property, however our
technique is directly applied to the original (C) implementations of the algorithms.

3.6 Side-channel countermeasures

A lot of research has been done to verify if the software systems are secure against
side-channels attacks. In Chapter 5 we give our contribution in this field, by proposing
a technique to verify if cryptographic implementations are secure against a specific set
of side-channel attacks.

Volpano and Smith [94] first explored the use of type systems to protect programs
against covert termination and timing channels. We apply deductive verification tech-
niques to this end, yet we do not turn away completely from their work. Specifically, the
authors define a timing agreement theorem which refers to a type-system that essentially
captures our notion of security. The distinction between both security notions relies on
the fact that our definition, being defined by semantic means, is slightly more inclusive.
But admittedly, our main motivation for departing from the type-based approach was
methodological, since we want to rely on the same set of deductive tools used in the
verification of other properties (e.g. information flow properties).

The Program Counter security model (PC-model) proposed by D. Molnar et. al [68]
captures the behavior of an attacker capable of observing the sequence of program
counter positions during the execution of programs. Our security definition also takes
into account these sequences, however it is broader than the one proposed by D. Molnar
et. al [68], since it also captures the memory accesses done by the program during its
execution. The primary aim in [68] was not to check conformance of programs with a
security property, but rather transform potentially insecure programs into secure ones.
In particular, the authors were able to justify several established countermeasures found
in the literature.

Svenningsson and Sands [87] have adopted the PC-model and addressed control-flow
independence using self-composition. They also considered the issue of declassification,
enabling the formal verification that only controlled amounts of leakage can occur
(e.g. the leakage of the hamming weight of a secret during a modular exponentiation).

3.6 Side-channel countermeasures 45

Regarding the security notions, our work di�ers from this in two main aspects. On one
hand, we consider a more restrictive security notion where we also check for data memory
access pattern independence. On the other hand, we do not consider declassification.
Our approach to applying self-composition to a transformed version of the original
program is close to [87]. However, not only do we present a full theoretical framework
to justify our approach, but also and most importantly, our practical implementation
approach allows us to go beyond the results reported in [87]. In particular, we have not
restricted the class of accepted programs to the so-called unnested programs.

The side-channel related security policies we have addressed in our work can also
be seen as integrity-preserving information-flow restrictions. Indeed, it is well known
that one can see high variables as untrusted inputs, that (one wants to check) do not
interfere with the control flow and addresses accessed by the program. Intuitively, one
is showing that attackers manipulating these inputs cannot influence the behavior of
the program. This sort of security policy is sometimes addressed through so-called
taint-analysis. Static taint analysis techniques tend to be based on type systems [26]
or on control-dependency graphs (CFG) [27]. Our work can be seen as an alternative
approach to taint analysis.

46 3 Related work

Part I

Verifying security properties in
cryptographic software

47

Chapter 4

Verifying functional correctness and
information flow properties

As introduced in Chapter 1, the first part of this thesis is devoted to the application of
deductive verification techniques to prove that cryptographic implementations enforce
a specific set of security properties. In this chapter we focus on the formalisation and
verification of information flow and functional correctness properties in cryptographic
implementations, using the Frama-c framework. We apply deductive verification tech-
niques to formally verify correctness with respect to reference implementations and
absence of error propagation in cryptographic implementations. Furthermore, we show
how Frama-c can be used to prove safety properties in such implementations. A case-
study presents the application of such techniques to the openSSL implementation of
the RC4 algorithm.

4.1 Verifying safety properties using Frama-c

Programming languages like C and C++ support arbitrary pointer arithmetic, casts
and memory allocation and deallocation. Mismanagement of pointers, casts to incorrect
(smaller) types or attempt to access arrays with invalid indexes, can cause memory
errors during the program execution, forcing the program to stop. For example, bu�er
overflow may appear in programs that write more data into a bu�er (memory location)
than the memory that is allocated to that bu�er, causing the corruption of adjacent data
on the stack. The following program is an example of a C program that contains a bu�er
overflow.

49

50 4 Verifying functional correctness and information flow properties

inc lude < s t d i o . h>
inc lude < s t r i n g . h>

i n t main (i n t argc , char � a r g s []) {
char b u f f [1 0 0] , copy [1 0 0] ;

g e t s (b u f f) ;
s t r c p y (copy , b u f f) ;
re turn 0 ;

}

This program simply reads a string from the input and copies it to a bu�er. The problem
is that it does not prevent the users from writing a string with more than 100 characters.
In fact, the function strcpy itself is not safe, because it does not guard against copying
strings where the destination string is smaller than the origin. Thus, malicious users
can take advantage of such exploit by choosing a string large enough, and changing the
return address of the strcpy function to an address which contains code controlled by
them. A way to prevent this kind of attacks is to guarantee that the program is (memory)
safe. Safety here is related with preventing runtime errors which are due to not accounted
situations in the evaluation semantics of the programming language. As introduced in
Chapter 2 this can be verified using deductive verification techniques.

The Jessie plug-in in the Frama-c framework allows users to perform a safety
analysis of the C code, which may be run independently of functional verification.
This produces a special class of verification conditions, called safety conditions. Their
validity implies that the program will execute safely with respect to a restricted set of
common programming errors that may result in incorrect or unreliable implementations,
or even to security vulnerabilities. These comprise memory safety, including the ab-
sence of bu�er overflows, and also the absence of numeric errors due to overflows in
integer calculations. We present next a case-study of verification of safety properties of
cryptographic algorithms using the Frama-c framework.

Case Study: openSSL implementation of RC4

The implementation of a cryptographic algorithm chosen as a case study was the
implementation of the RC4 algorithm in the openSSL library. RC4 is a symmetric
cipher designed by Ron Rivest at RSA labs in 1987. It is a proprietary algorithm, and
its definition was never o�cially released. Source code that allegedly implements the
RC4 cipher was leaked on the Internet in 1994, and this is commonly known as ARC4

4.1 Verifying safety properties using Frama-c 51

Key Stream Generator
SK

x

y

t

tkt

Figure 4.1: Block diagram of the RC4 cipher

due to trademark restrictions. In this work we will use the RC4 denomination to denote
the definition adopted in literature [84].

RC4 selection was mostly inspired by the fact that this algorithm is widely used in
commercial products, as it is included as one of the recommended encryption schemes
in standards such as TLS, WEP and WPA. In particular, the selected implementation of
RC4 provided in open-source library openSSL is pervasively used.

RC4 algorithm In cryptographic terms, RC4 is a synchronous stream cipher, which
means that it is structured as two independent blocks, as shown in Figure 4.1. The security
of the RC4 cipher resides in the strength of the key stream generator, which is initialized
with a secret key SK. The key stream output is a byte sequence kt that approximates a
perfectly random bit string, and is independent of plaintext and ciphertext (we adopt the
most widely used version of RC4, implemented in C programming language, which
operates over byte-sized words). The encryption operation consists simply of XOR-ing
each plaintext byte xt with a fresh key stream byte kt. Decryption operates in an identical
way.

The key stream generator operates over a state which includes a permutation table
S = (S [l])l=255

l=0

of (unsigned) byte-sized values, and two (unsigned) byte-sized indices i
and j. We denote the values of these variables at time t by S t, it and jt. The state and
output of the key stream generator at time t (for t � 1) are calculated according to the
following recurrence, in which all additions are carried out modulo 256.

it = it�1

+ 1 (4.1)

jt = jt�1

+ S t�1

[it] (4.2)

S t[it] = S t�1

[jt] (4.3)

S t[jt] = S t�1

[it] (4.4)

kt = S t[S t[it] + S t[jt]] (4.5)

The initial values of the indices i
0

and j
0

are set to 0, and the initial value of the

52 4 Verifying functional correctness and information flow properties

permutation table S
0

is derived from the secret key SK. The details of this initialisation
are immaterial for the purpose of this thesis, as they are excluded from the analysis.

In Appendix A.1 we include the C implementation of RC4 from openSSL open-
source library. The function receives the current state of the RC4 key stream generator
(key), and two arrays whose length is provided in parameter len. The first array
contains the plaintext (indata), and the second array will be used to return the ciphertext
(outdata). The same function can be used for decryption by providing the ciphertext
in the indata bu�er. Notice that this implementation is much less readable than the
concise description provided above, as it has been optimised for speed using various
tricks, including macro inlining and loop unrolling.

Safety analysis In Appendix A.2 we enrich the original implementation (Appendix A.1)
with annotations that facilitate the verification of a set of safety properties (memory
safety and absence of numeric errors) supported by Frama-c. This annotated version of
RC4 gave rise to 869 verification conditions. All of these verification conditions could
be automatically proved using a set of automatic theorem provers that includes Simplify,
Alt-Ergo, and Z3. Important points in the verification process are described next.

Frama-c interprets C primitive types (e.g. char, int, etc.) as integers with di�erent
precisions, based on the number of bits of each type. This means that a number of proof
obligations must be automatically generated to ensure the validity of each arithmetic
operation, by imposing range limits on the corresponding results. Proof obligations that
ensure that every memory access is safe are also automatically generated. Note that,
even though these proof obligations do not result from explicit assertions made by the
programmer, it is usually necessary to annotate the code with preconditions that permit
justifying the proof goals. These preconditions limit the analysis to function executions
for which the caller has provided valid inputs. To better explain this principle, recall the
inference system for safety-sensitive Hoare triples of the WhileC language (Section 2).
The rule referent to the command a[e

1

] := e
2

has the following safety condition:

'! (safe(e
1

) ^ 0  e
1

< len(a) ^ safe(e
2

))

where ' is the precondition and safe(e) denotes that the evaluation of e must be safe,
i.e. does not generate a run-time error (the condition safe(e

1

) ^ 0  e
1

< len(a) comes
from the definition of safe(a[e

1

])). The evaluation of the command a[e
1

] := e
2

in C
language is very similar to that of WhileC. However, if the array a is a function parameter
passed by reference, there is no away to statically infer the length of a, which interferes

4.1 Verifying safety properties using Frama-c 53

with the proof of the safety condition 0  e
1

< len(a). One way to solve this problem
is to establish as a precondition that the length of a is some natural n and the code
consumer has to fulfill this contract in order to guarantee that his/her program is safe.

For instance, in RC4 one must impose that the indata and outdata arrays have a
valid addressable range between 0 and len-1 for the safety conditions to be valid. This
is expressed by adding the following annotations.

. . .
@ \ v a l i d (i n d a t a + (0 . . (l e n - 1))) &&
@ \ v a l i d (o u t d a t a + (0 . . (l e n - 1))) ;
. . .

In Appendix A.2 it is visible that the required preconditions also include the validity of
the memory region in which the RC4 key stream generator state (key) is passed to the
function.

As introduced in Chapter 2, Frama-c considers that program termination is a safety
property, and it automatically generates conditions to prove loop termination. Since
the RC4 algorithm from Appendix A.2 includes two loops, one has to annotate the
program with loop variants, to be able to prove all the generated safety conditions. Recall
that these are program expressions whose value decreases with each iteration, and are
included in the program as annotations. For example, in the following code of the first
loop, the variant clause expresses that at each iteration the value of the index i tends to
0, and the invariant permits establishing that index i lies between 0 and len»3L.

. . .
/�@ loop i n v a r i a n t (0 < i <= (len >>3L)) &&

@ i n d a t a == o l d _ i n d a t a + ((o l d _ i i) � 8) &&
@ o u t d a t a == o l d _ o u t d a t a + ((o l d _ i i) � 8) ;
@ loop var i an t i ;
@� /

whi le (1)
{
RC4_LOOP(i n d a t a , o u t d a t a , 0) ;

. . .

To keep track of how the indata and outdata pointer values change during the
loop execution, the invariant also includes annotations which relate the initial values
(before loop execution) of the pointers and their values at each iteration.

Given the high number of proof obligations to be proved, and to guide the automatic
provers in the process of establishing the validity of some of these conditions, additional
assertions were introduced in the code. For example, at the end of the first loop, one
assertion is introduced to force the provers to pinpoint the condition that must be valid

54 4 Verifying functional correctness and information flow properties

i n t f i b 1 (i n t n) {
i n t f1 = 0 ; i n t f2 = 1 ; i n t tmp = 0 ; i n t i =0 ;
whi le (n > 0) { tmp = f1 + f2 ; f1 = f2 ; f2 = tmp ; n = n - 1 ; }
re turn f1 ;

}

Listing 4.1: Reference implementation of the Fibonacci algorithm in C

i n t f i b 2 (i n t n) {
i n t f1 = 0 ; i n t f2 = 1 ;
whi le (n > 0) { f2 = f1 + f2 ; f1 = f2 - f1 ; n = n - 1 ; }
re turn f1 ;

}

Listing 4.2: Optimised version of the implementation of the Fibonacci algorithm in C

at the end of the loop execution. Whenever a proof obligation is proved, it becomes part
of the context and can be used to prove subsequent goals.

Finally, and given that cryptographic code tends to make use of some arithmetic
operators that are not commonly used in other application domains, we noted that the
proof tools lacked appropriate support in some cases, namely for bit-wise operators. To
overcome this di�culty we added some very simple axioms to the annotated RC4 code
that express bounds on the outputs of these operators.

4.2 Proofs by composition and self-composition

In this section we introduce a methodology to derive functional correctness proofs
using the equivalence by composition technique introduced in Chapter 2. As an example
of the application of this technique consider two versions of the implementation of the
algorithm to calculate the nth element of the Fibonacci sequence, written in C and shown
in Listings 4.1 and 4.2. Note that, the observable behaviour of both implementations is
the same: the input of both implementations is a natural number n and the result should
be the nth element of the Fibonacci sequence. The refactoring step only removes the
need to use the variable tmp.

Consider that we want to prove the correctness of the code presented in Listing 4.2
with respect to reference implementation presented in Listings 4.1. Applying the equiv-
alence by composition technique we obtain the program depicted in Listing 4.3. Firstly,

4.2 Proofs by composition and self-composition 55

/�@ r equ i r e s n==n1 ;
@ ensures � f i b 1 == � f i b 2 ;
@� /

void f ib_composed (i n t n , i n t n1 , i n t � f i b1 , i n t � f i b 2) {
i n t f1 = 0 ; i n t f2 = 1 ; i n t tmp = 0 ;
i n t f11 = 0 ; i n t f21 = 1 ;

whi le (n > 0) { tmp = f1 + f2 ; f1 = f2 ; f2 = tmp ; n = n - 1 ; }
� f i b 1 = f1 ;

whi le (n1 > 0) { f21 = f11 + f21 ; f11 = f21 - f11 ; n1 = n1 - 1 ; }
� f i b 2 = f11 ;

}

Listing 4.3: Recursive implementation of the Fibonacci algorithm in C

we compose the Listing 4.1 with the renamed copy of Listing 4.2 (every variable x is
renamed to x

1

) and the return values of both implementations are passed by reference in
the variables *fib1 and *fib2 (these must be pointers, otherwise their value cannot be
captured in the post-state). Then, using the ACSL notation, we establish as a precondi-
tion that all input values are equal (requires n==n1) and as a postcondition that all
output values must be equal too (ensures *fib1==*fib2).

Because both implementations contain loops, one has to annotate each program with
a loop invariant to prove the postcondition. Sometimes it is hard to find the appropriate
loop invariant which exactly captures the state transformation introduced in the loop
evaluation. For this reason, we propose a methodology, based on the notion of natural
invariant, to automate the definition of the loop invariant and consequently the proof
process. This methodology can be summarised as follows:

Loop invariants predicates First, extract a specification of a program from its rela-
tional semantics. Since the critical point of the verification process is the automatic
construction of appropriate loop invariants, each invariant is turned into a predi-
cate, used to annotate the respective loop in the source code.

Lemmas Second, identify and interactively prove additional facts involving the named
invariant predicates. For equivalence proofs, for example, these facts correspond
to basic refactoring steps that are recurrently used in the development of crypto-
graphic software. They are written as lemmas that capture the non-trivial parts of
the proofs required for verification.

Proof Finally, augment the source file with the previous lemmas, which can be justified
once-and-for-all by interactive proofs. The availability of these lemmas will allow

56 4 Verifying functional correctness and information flow properties

automatic provers to carry out the verification process, validating the verification
conditions generated by a potentially large number of composition-based proofs.

When both programs share much of the underlying control structure, the user may
easily guide the interactive verification process by providing hints on the relevant code
refactorings. The remaining parts can be checked with a high degree of automation.

4.2.1 Natural invariants

The notion of natural invariant arises from the di�culty of applying the self-
composition technique. Note that the generalization of self-composition leads to similar
di�culties to those mentioned for standard self-composition [17]. The di�culties
pointed out by Terauchi and Aiken [88], are related with proving the postcondition in
programs with loops. After a loop a new state is always introduced in the program, and
even if the loop does not assign any value to any variable, a final state for each variable
is introduced 1. Consequently, the postcondition goals cannot be proved because no
information is present concerning the values of the variables in the final state. To show
how the values of the variables change during loop execution, a loop invariant must
be introduced. Defining an appropriate loop invariant that captures the change of the
state, can be a non-trivial task even for simple examples. Our methodology is based on
the definition of a natural invariant which consists in the extraction of the relational
specification from each program, such that the program trivially satisfies it.

Informally, this methodology resides on the definition of an abstract invariant that
captures in logical form the state transformation associated with the loop, written as
a formula that uses an inductively defined predicate (as supported by Frama-c). Let ~v
denote the vector of variables used inside a given loop. The predicate

natinv(~vi,~v)

will be defined with the meaning that the execution of the loop started with initial values
of the variables given by ~vi; and the current values of the variables are given by ~v. The
inductive definition of this predicate has in general a base case of the form

natinv(~vi, ~vi)

1Recent versions of Frama-c eliminate the need to create new states for variables which are not
assigned to any value during the loop execution.

4.2 Proofs by composition and self-composition 57

(corresponding to the loop initialization) and an inductive case of the form

natinv(~vi, ~vt)! B! R(~vt,~v)! natinv(~vi,~v)

where B is the boolean condition of the loop, and the formula R(~vt,~v) relates the values
of the variables in two successive iterations.

Natural invariants can be used to automate the proof process of general composi-
tion-based proofs. Their formal definition is presented next.

Relational specification Consider safe WhileC (toy language defined in Chapter 2)
programs, i.e., WhileC programs whose safety were previously verified. For states s and
s0 we define:

specskip(s, s0) = s ⌘ s0

specC
1

;C
2

(s, s0) = 9s00. specC
1

(s, s00) ^ specC
2

(s00, s0)

specx:= e(s, s0) = s0 ⌘ s[x [[e]](s)]

speca[e
1

]:= e
2

(s, s0) = s0 ⌘ s[a upd(a, [[e
1

]](s), [[e
2

]](s))]

specif (e) {C
1

} else {C
2

}(s, s0) = (([[e]](s) = true) ^ specC
1

(s, s0)) _
(([[e]](s) = false) ^ specC

2

(s, s0))

specwhile (e) C(s, s0) = 9n. loopn
e,specC�R

(s,s00),specC�K
(s00,s0)(s, s0) ^ ([[e]](s0) = false)

where

• C �K denotes the restriction of C to the statements responsible for the control flow
of the loop (loop condition);

• C �R the restriction of C to the remaining instructions (i.e., statements which do
not influence the control flow of the loop) – note that this can be obtained by a
simple dependency analysis2.

The relation loopn
B,R,K(s, s0) denotes the loop specification for the body R and increment

K under condition B and is inductively defined by

2Observe that specC�R
(s, s00)^specC�K

(s00, s0) ⌘ specC(s, s0), because C �R and C �K write on disjoint
parts of the state. Besides, C �K also reads from a disjoint part of the state.

58 4 Verifying functional correctness and information flow properties

loop0

B,R,K(s, s0) = s ⌘ s0

loopsucc(n)

B,R,K (s, s0) = 9s00 s000. loopn
B,R,K(s, s00) ^ ([[B]](s00) = true) ^ R(s00, s000) ^ K(s000, s0)

where succ(n) denotes the successor of the natural n. Let ⇡B the project of the fragment
of the state that influences the control flow structure (i.e., loop conditions). We remark
that the relation R enjoys the following property on states: 8s s0. R(s, s0) =) ⇡B

(s) ⌘
⇡B

(s0).
The relation loopn

B,R,K(s, s0) provides a natural choice for a loop’s invariant; and
this is the reason to call it the natural invariant for the loop. The following example
demonstrates how one can easily extract the relational specification of a simple program
with loops and the corresponding natural invariant.

Example 1. Consider the program P defined as:
i := 0;
whi l e (i < n) {

x := x + y ;
i := i + 1;

}

and let L denote the code of the while loop of P and B its body. The relational specifica-
tion of P is given by:
specP(s, s0) =9s00. speci:=0

(s, s00) ^ specL(s00, s0)

=9s00.s00 ⌘ s[i 0] ^ (9n. loopn
i<n,R(s00,s000),K(s000,s0)(s00, s0) ^ [[i < n]](s0) = false)

where R(s, s) = specB�R
(s, s0) and K(s, s0) = specB�K

(s, s0). The predicate loopn
i<n,R,K(s, s00) is

defined as:

loop0

i<n,R(s,s00),K(s00,s0)(s, s0) = s ⌘ s0

loopsucc(n)

i<n,R(s
1

,s0),K(s0,s
5

)

(s
1

, s
5

) = 9s
2

s
3

s
4

. loopn
i<n,R(s

1

,s
2

),K(s
2

,s
3

)

(s
1

, s
3

) ^

([[i < n]](s
3

) = true) ^ R(s
3

, s
4

) ^ K(s
4

, s
5

)

and

R(s, s0) = specB�R
(s, s0) = specx:=x+y(s, s0) = s0 ⌘ s[x [[x + y]](s)]

K(s, s0) = specB�K
(s, s0) = speci:=i+1

(s, s0) = s0 ⌘ s[i [[i + 1]](s)]

⇤

The definition makes explicit the iteration rank (iteration count) in superscript – we
will see, further in this chapter, that this will often be convenient in the proofs (when

4.2 Proofs by composition and self-composition 59

omitted, it should be considered as existentially quantified). Subscripts will be omitted
(both in loop and spec) when the corresponding programs are clear from the context.

In practice, it is convenient to produce the relational specification formula in prenex-
form. This is easily accommodated introducing new fresh state variables in each ele-
mentary statement:

specC
1

;C
2

;...;Cn
(s, s0) = 9s

0

. . . sn, s
0

= s ^ s
1

= PC
1

(s
0

) ^ . . . ^ sn = PCn(sn�1

) ^ s0 = sn

where si = PCi(si�1

) denotes specCi
(si�1

, si), i.e., corresponds to the atomic specification
associated with statement Ci. By construction, spec enjoys the following properties.

Lemma 12. Let R and K be deterministic relations on states and B a boolean condition.
Then, loopB,R,K(s, s0) is deterministic whenever [[B]](s0) = false, i.e.

loop synchronisation 8n
1

n
2

s
1

s
2

s0
1

s0
2

. s
1

⌘ s
2

^ loopn
1

B,R,K(s
1

, s0
1

) ^
([[B]](s0

1

) = false) ^ loopn
2

B,R,K(s
2

, s0
2

) ^ ([[B]](s0
2

) = false) =) n
1

= n
2

;

loop determinism 8n s
1

s
2

s0
1

s0
2

. s
1

⌘ s
2

^ loopn
B,R,K(s

1

, s0
1

) ^
loopn

B,R,K(s
2

, s0
2

) =) s0
1

⌘ s0
2

.

Proof. Both statements are proved by a simple induction (on max(n
1

, n
2

) in the first
case, and n in the second). We remark that the proof of the synchronisation lemma
requires the proof of the following property:

8n
1

n
2

s
1

s
2

s0
1

s0
2

. s
1

⌘ s
2

^ loopn
1

B,R,K(s
1

, s0
1

) ^
loopn

2

B,R,K(s
2

, s0
2

) ^ n
1

< n
2

=) ([[B]](s0
1

) = true)

that can be easily proved by simple induction on n
2

. ⇤

Proposition 13. spec is a morphism that preserves ⌘ and is deterministic. More
precisely, for every program fragment C and states s

1

, s
2

, s0
1

, s0
2

,

• If s
1

⌘ s
2

, s0
1

⌘ s0
2

and specC(s
1

, s0
1

) then specC(s
2

, s0
2

).

• If specC(s, s0
1

) and specC(s, s0
2

) then s0
1

⌘ s0
2

.

Proof. By induction on the structure of P using Lemma 12. ⇤

The strategy for reasoning about multiple executions (for self-composition or to
justify interesting refactorings) is based on identifying a set of general lemmas that

60 4 Verifying functional correctness and information flow properties

can be proven once-and-for-all, and then included in the annotations provided to the
verification platform, allowing other proof obligations to be automatically discharged.

4.2.2 Self-composition lemmas

The determinism property is not relevant to reason about a non-interference property
by self-composition: it merely states that the two instances of the program will produce
the same outputs when all of their inputs are equal. What is needed is a rephrasing of
that property using an equality relation on low-security variables. If the control structure
of the program does not depend on high-security variables, the determinism property
proof can be carried over to non-interference lemmas. More explicitly, Lemma 12 can
be reformulated as follows.

Lemma 14. Let B be a boolean condition and R and K deterministic relations on the
low part of the states, i.e.,

8s
1

, s
2

, s0
1

, s0
2

, s
1

⌘L s
2

^ R(s
1

, s0
1

) ^ R(s
2

, s0
2

)) s0
1

⌘L s0
2

;

8s
1

, s
2

, s0
1

, s0
2

, s
1

⌘L s
2

^ K(s
1

, s0
1

) ^ K(s
2

, s0
2

)) s0
1

⌘L s0
2

.

Then, loopB,R,K(s, s0) is deterministic on the low part of the states whenever [[B]](s0) =
false, i.e.

loop synchronisation 8n
1

n
2

s
1

s
2

s0
1

s0
2

. s
1

⌘L s
2

^ loopn
1

B,R,K(s
1

, s0
1

) ^
([[B]](s0

1

) = false) ^ loopn
2

B,R,K(s
2

, s0
2

) ^ ([[B]](s0
2

) = false) =) n
1

= n
2

;

loop determinism 8n s
1

s
2

s0
1

s0
2

. s
1

⌘L s
2

^ loopn
B,R,K(s

1

, s0
1

) ^
loopn

B,R,K(s
2

, s0
2

) =) s0
1

⌘L s0
2

.

Proof. Both statements are proved by a simple induction (on max(n
1

, n
2

) in the first
case, and n in the second). ⇤

This lemma establishes that a non-interference result for each loop follows easily
from noninterference in its body. Its precondition can be seen as an additional proof-
obligation that must be verified. For simplicity, to prove noninterference of a program,
instead of annotating the program with the properties specified in Lemma 14, we only
provide one lemma which directly results from the ones above.

Lemma 15. (Self-composition lemma)

4.2 Proofs by composition and self-composition 61

Let B be a boolean condition, R(s, s0) and K(s, s0) deterministic relations on the low
part of the states.

8s
1

, s
2

, s0
1

, s0
2

. s
1

⌘L s
2

^ loopn
1

B,R,K(s
1

, s0
1

) ^ ([[B]](s0
1

) = false) ^
loopn

2

B,R,K(s
2

, s0
2

) ^ ([[B]](s0
2

) = false)) s0
1

⌘L s0
2

.

Proof. By induction on the number of iterations and using Lemma 14. ⇤

A Coq library to mechanise these proofs was proposed in [7], however its devel-
opment is not part of this thesis work. We remark that proving noninterference for
loop-free programs by self-composition can be easily automated.

4.2.3 Equivalence by composition lemmas

In the setting of equivalence proofs, justifying code refactorings is slightly harder
when the refactorings a�ect loops. For the sake of presentation, we restrict our attention
to specifications obtained from single loops with loop-free bodies, i.e., we consider
natural invariants of the form loopB,specC�R

,specC�K
(s, s0) where C contains no loops. This

is su�cient to cover the refactorings needed for the case-studies addressed in Section 4.4.
We note however that natural invariants can be easily defined for loops whose body
also contain loops (as we will see in Section 4.5).

The simplest loop refactoring that can be addressed using our technique is loop
unrolling, which detaches instances of the loop body. This transformation is justified by
the following property that results from direct inversion of the definition of loop:

8n n0 s s0, loopn
(s, s0) ^ n0 < n =) 9s00, loopn0

(s, s00) ^ loopn�n0
(s00, s0)

Simple transformations like these are in fact better handled directly at the annotation
level, rather than through explicit lemmas. A single natural invariant can be defined
for the original loop, and then used in the annotations of the unrolled loop, in order
to establish the necessary relation between the execution of the two programs. Let
us illustrate this by a small example that mimics an optimising transformation for the
real-world example presented in Section 4.4.

Example 2. Consider the program:
i := 0;
whi l e (i <N) { x := x + y ; i := i + 1; }

62 4 Verifying functional correctness and information flow properties

To implement it, the programmer chooses to unfold two copies of the original loop ,
yielding

N2 := N / 2 ;
i := 0;
i f (i <N2) t h en {

whi l e (i <N2) { x := x + y ; i := i + 1; } ;
i :=0;
whi l e (i <N2) { x := x + y ; i := i + 1; } ;
i f (2�N2 != N) t h en x := x + y e l s e s k i p

}
e l s e s k i p

To verify the equivalence between this implementation and the original program it
su�ces to identify each loop invariant in the second program as the following,

loopn/2
((x, y, i)@Init, (x, y, i))

where s@Init evaluates the state s in the pre-state of the loop, and loop refers to the
natural invariant of the loop in the first program. By providing the invariant, we are
making explicit the correspondence between both loop executions. ⇤

This kind of guidance is reasonable to expect from someone intending to prove
correctness of the target implementation. Alternatively, one could establish that both
programs are equivalent using direct logical arguments, as will be now explained. This
would be the only option for more complex refactorings.

General loop fusions To justify more significant code refactorings such as loop fu-
sions (i.e. combining the bodies of two consecutive loops with the same control struc-
ture), we need to rely on an explicit lemma. Consider the equivalence between two
consecutive loops (loops 1 and 2) and one single fused loop (loop 3). This is reminiscent
of another real-world code refactoring that will occur in our case-study in Section 4.4.

Let us denote the natural invariants of these loops by loop
1

, loop
2

and loop
3

, re-
spectively. Since we assume that all the loops share the same control structure (loop
condition and associated state) 3, it is possible to prove mixed synchronisation lemmas
as the following one.

Lemma 16. (Mixed synchronisation lemma)
3This means that B

1

= B
2

= B
3

and K
1

= K
2

= K
3

; and loops share the same set of initialisation
statements.

4.2 Proofs by composition and self-composition 63

Let ⇡B be the projection of the fragment of the state that influences the control flow
structure, B a boolean condition and R

1

, R
2

and K deterministic relations on states.

8n
1

n
2

s
1

s
2

s0
1

s0
2

. ⇡B
(s

1

) ⌘ ⇡B
(s

2

) ^ loopn
1

1

(s
1

, s0
1

) ^ ([[B]](s0
1

) = false) ^
loopn

2

2

(s
2

, s0
2

) ^ ([[B]](s0
2

) = false) =) n
1

= n
2

and each loopni
i denotes loopni

B,Ri,K
, for i = 1, 2.

Proof. The proof is a straightforward generalisation of the single loop version. ⇤

Now let init denote a deterministic relation responsible for the initialisation of the
variables that intervene in the control flow of the loop, such that,

8s s0. init(s, s0) =) ⇡B
(s) ⌘ ⇡B

(s0)

8s
1

s
2

s0
1

s0
2

. init(s
1

, s0
1

) ^ init(s
2

, s0
2

) =) ⇡B
(s0

1

) ⌘ ⇡B
(s0

2

)

where ⇡B corresponds to projection of the fragment of the state that does not influence the
control flow structure of the program. Let also Rk denote the relation R at iteration k, i.e.,
Rk

(s, s0) = R(s, s0) ^ ⇡B
(s) = ⇡B

(sk) where sk is the state such that 8s. 9s0. init(s, s0) ^
Kk

(s0, sk) and Kk denotes the relation K applied k times.
We are now in conditions to establish the following main lemma that can be used to

justify the fusion refactoring.

Lemma 17. (Fusion refactoring)
Let B a boolean condition and R

1

, R
2

, R
3

and K deterministic relations on states.

(BodyFusion(R
1

,R
2

,R
3

) ^ BodySwap(R
1

,R
2

)))
8n s

1

s
2

s0
1

s00
1

s1

1

s2

1

s00
2

s0
2

. s
1

⌘ s
2

^ init(s
1

, s1

1

) ^ loopn
1

1

(s1

1

, s00
1

) ^
([[B]](s00

1

) = false) ^ init(s00
1

, s2

1

) ^ loopn
2

2

(s2

1

, s0
1

) ^ ([[B]](s0
1

) = false) ^
init(s

2

, s00
2

) ^ loopn
3

3

(s00
2

, s0
2

) ^ ([[B]](s0
2

) = false) =) s0
1

⌘ s0
2

where
BodyFusion(R

1

,R
2

,R
3

) = 8 s s0. 9s00. R
3

(s, s0) ⌘ R
1

(s, s00) ^ R
2

(s00, s0)

BodySwap(R
1

,R
2

) = 8k k0 s s0 s00. k0 < k) 9s000.

Rk
1

(s, s00) ^ Rk0
2

(s00, s0) ⌘ Rk0
2

(s, s000) ^ Rk
1

(s000, s0)

64 4 Verifying functional correctness and information flow properties

and each loopni
i denotes loopni

B,Ri,K
, for i = 1, 2, 3.

Proof. By induction on the number of iterations and using Lemma 16. ⇤

BodyFusion establishes fusion for the corresponding body relations for each iteration
k; and BodySwap establishes that iteration k of the first loop commutes with iteration
k0, for k0 < k of the second. This last is required to capture the less-than relation on
iterations. These predicates denote simple properties concerning the loop bodies which,
as was the case with the self-composition lemmas, are all non-recursive and can thus be
regarded as additional proof-obligations, easily discharged by automatic provers.

As stated, the proof of the fusion lemma is done by induction on the number of
iterations and using Lemma 16. We explain now the proof intuition, by explaining the
need of the BodyFusion and BodySwap properties to prove the lemma.

First, applying the mixed synchronisation lemma we can conclude that n
1

= n
2

= n
3

– observe that the predicate init establish that ⇡B
(s1

1

) ⌘ ⇡B
(s2

1

) and applying Lemma 16
follows that n

1

= n
2

; since s
1

⌘ s
2

, in particular ⇡B
(s

1

) ⌘ ⇡B
(s

2

) and again by Lemma 16
we have n

1

= n
3

.
Now, we need to prove that starting from equal initial states, executing loop1 and then

loop2, will generate a final state that is equivalent to the one obtained by the execution
of loop3. Assuming that n is the number of iterations, this intuition can be expressed
using the following diagram:

s
1

s1

1

s2

1

... s00
1

s001
1

s002
1

... s0
1

s1

2

s2

2

...

R1

1

R2

1

R3

1

Rn
1

R1

2

R2

2

R3

2

Rn
2

R1

3

R2

3

R3

3

Rn
3

where [[B]](s00
1

) = [[B]](s0
1

) = false, si
1

and s00i
1

, for i = 1 . . . n � 1, are the intermediate
states achieved during each loop iteration, and Rk

j denotes the loop body j at each
iteration k, for j = 1, 2, 3 and k = 1 . . . n.

The idea is that, unfolding each loop body n times, we need to prove that for each
iteration k, the property 8ss0. Rk

3

(s, s0) ⌘ 9s00. Rk
1

(s, s00) ^ Rk
2

(s00, s0) holds (i.e., an
instance of the BodyFusion predicate). Notice that this proof requires reordering each

4.2 Proofs by composition and self-composition 65

body execution for each iteration k. Therefore, a set of exchanges must be done between
loop bodies of di�erent iterations, which it is only possible if we are able to prove the
BodySwap predicate.

For instance consider that n = 3. Unfolding the definitions of loop3

i (s, s0), for i = 1, 2

in loop3

1

(s
1

, s00
1

) ^ loop3

2

(s00
1

, s0
1

) and assuming that [[B]](s) = true for any intermediate
state s, we obtain:

R1

1

R2

1

R3

1

R1

2

R2

2

R3

2

Now to prove the BodyFusion predicate for each iteration k one needs to reorder the
loop body predicates for each iteration. So, starting with the swap,

R1

1

R2

1

R1

2

R3

1

R2

2

R3

2

it is required to prove that R3

1

· R1

2

⌘ R1

2

· R3

1

, i.e., an instance of the BodySwap predicate.
If we apply this methodology to obtain the diagram,

init R1

1

init R1

2

R2

1

R2

2

R3

1

R3

2

we have to prove Rk
1

· Rk0
2

⌘ Rk0
2

· Rk
1

, for each iteration k and k0 such that k0 < k. At the
very end we have to use the BodyFusion predicate to prove the property Rk

3

⌘ Rk
2

· Rk
1

,
for each iteration k.

4.2.4 Verification infrastructure

We have used the deductive verification tool included in the Frama-c framework (the
Jessie plug-in), to do composition-based proofs in cryptographic software implementa-
tions. This section describes our use of this tool to support the approaches described
above and provides an illustrative example.

Frama-c usage Frama-c takes as input annotated C programs in the form of ACSL
files. In particular, loop invariants are mandatory for the verification to succeed. This
means that in order to verify a property by composition, it is not enough to properly
construct the composed program and to specify the intended contract (pre- and post-
conditions) – this would certainly generate unprovable verification conditions. It is also

66 4 Verifying functional correctness and information flow properties

required to complement the ACSL file with definitions and annotations. The following
steps detail the procedure needed to perform the verification:

1. Extracting the relational specification of the code (which comprises the natural
invariants definition of each loop);

2. Including ACSL definitions corresponding to the inductive properties associated
to each loop;

3. For each loop specification, annotating the program with a loop invariant of the
form

Invloop(s) = loopn
B,R,K(s@Init, s)

where n is the number of iterations, B is the loop’s condition and R and K the
loop’s body (K is the body fragment that influences the control structure and R

corresponds to the remaining instructions), s@Init denotes the snapshot of the
loop’s initial state (Frama-c supports this notion through the use of explicit state
labels in annotations, as we will see in Sections 4.3 and 4.4);

4. Augmenting the ACSL file with specific lemmas; these lemmas are important to
allow the remaining proof goals, related with the composition-based proofs, to be
discharged automatically.

5. Generating proof obligations using the deductive verification plug-in of the Frama-
c framework (the Jessie plug-in);

6. Using an automatic prover (e.g. Alt-Ergo) to discard the generated obligations;
and a proof assistant (e.g. Coq) to prove the composition-based lemmas.

The choice of the required lemma is based on the specific property under scrutiny (e.g.
a self-composition lemma for a non-interference property). We remark that this user-
dependent choice is an important ingredient for the success of the verification process.
The goal of our method is to allow the user to concentrate on this critical part of the
verification process by providing assistance in dealing with the remaining tasks, which
are tedious but luckily prone to automation. Notice that in the case study presented in
Section 4.4 the specification was extracted by hand, but we remark that the process is
certainly amenable to mechanisation.

4.2 Proofs by composition and self-composition 67

/�@ i n d u c t i v e f i b 2 _ l o o p (i n t e g e r n1 , i n t e g e r n2 , i n t f 1 i , i n t f 1 f ,
@ i n t f 2 i , i n t f 2 f) {
@ case ba s e_ c a s e :
@ \ f o r a l l i n t e g e r n ; \ f o r a l l i n t f1 , f2 ; f i b 2 _ l o o p (n , n , f1 , f1 , f2 , f2) ;
@ case i n d _ c a s e :
@ \ f o r a l l i n t e g e r n1 , n2 , n3 ; \ f o r a l l i n t f1 , f2 , f11 , f12 , f21 , f22 ;
@ f i b 2 _ l o o p (n1 , n2 , f1 , f11 , f2 , f21) ==> n2 > 0 ==>
@ loop_body (n2 , n3 , f11 , f12 , f21 , f22) ==> f i b 2 _ l o o p (n1 , n3 , f1 , f12 , f2 , f22) ;
@ }
@� /

Listing 4.4: Definition of the natural invariant predicate

A simple example As an example, consider the implementations presented in List-
ings 4.1 and 4.2, which calculate the nth element of the Fibonacci sequence. The
first step to prove that the implementations are equivalent is to extract the relational
specification of the code. According to the previous section, the specification for the
code of Listing 4.2 (presented in the prenex-form as suggested) is given by:

spec(x
1

, x
2

) = 9s
0

. . . s
2

, x
1

= s
0

^ s
1

= s
0

[f
1

 0] ^ s
2

= s
1

[f
2

 1] ^
9n

0

. loopn
0

n>0,specC�R
(s

2

,s0
2

),specC�K
(s0

2

,s
3

)

(s
2

, s
3

) ^ ([[n > 0]](s
3

) = false) ^ x
2

= s
3

where loopn
0

n>0,R,K(s, s0) is the natural invariant defined by:

loop0

n>0,R,K(s, s0) = s ⌘ s0

loopsucc(k)

n>0,R,K(s, s0) = 9s00s000. loopk
n>0,R,K(s, s00) ^ ([[n > 0]](s00) = true ^

R(s00, s000) ^ K(s000, s0)

and R = specC�R
and K = specC�K

are defined as:

specC�R
(s, s0) = 9s

0

s
1

. s
0

⌘ s[f
2

 [[f
1

+ f
2

]](s)] ^
s

1

⌘ s
0

[f
1

 [[f
2

� f
1

]](s
0

)] ^ s
1

⌘ s0

specC�K
(s, s0) = s0 ⌘ s[n [[n � 1]](s)]

The definition of such invariant using the ACSL notation is shown in Listing 4.4, where
loop_body corresponds to the predicate specC�R

· specC�K
defined in ACSL as follows:

/�@ pred i c a t e loop_body (i n t e g e r n1 , i n t e g e r n2 , i n t f11 ,
@ i n t f12 , i n t f21 , i n t f22) =
@ n2 == n1 - 1 && f22 == f11 + f21 && f12 == f22 - f11 ; @� /

68 4 Verifying functional correctness and information flow properties

/�@ r equ i r e s n>=0 && n==n1 ;
@ ensures � f i b 1 == � f i b 2 ;
@� /

void f ib_composed (i n t n , i n t n1 , i n t � f i b1 , i n t � f i b 2) {
i n t f1 = 0 ; i n t f2 = 1 ; i n t tmp = 0 ;
i n t f11 = 0 ; i n t f21 = 1 ;

/ / @ghost i n t n_o ld = n ;
/ / @ghost i n t n1_o ld = n1 ;

/ /@ ghos t goto L1 ;
/ /@ ghos t L1 :

/�@ loop i n v a r i a n t f i b 1 _ l o o p (n_old , n , tmp , \ at (f1 , L1) , f1 , \ at (f2 , L1) , f2) ;
@� /

whi le (n > 0) { tmp = f1 + f2 ; f1 = f2 ; f2 = tmp ; n = n- 1 ; }
� f i b 1 = f1 ;

/�@ loop i n v a r i a n t f i b 2 _ l o o p (n1_old , n1 , \ at (f11 , L1) , f11 , \ at (f21 , L1) , f21) ;
@� /

whi le (n1 > 0) { f21 = f11 + f21 ; f11 = f21 - f11 ; n1 = n1- 1 ; }
� f i b 2 = f11 ;

}

Listing 4.5: Recursive implementation of the Fibonacci algorithm in C

In ACSL notation, (for this particular case) the values of successive iterations are
represented by variables with di�erent names, to capture the state transformation (in the
following sections we will see that these values will be captured in ACSL in a di�erent
way). For example, f11 represents the value of the variable f1 in the previous state
and f12 represents its value in the current state. The boolean condition of the loop is
n > 0. Thus, in the definition of the natural invariant, fib2_loop, the boolean condition
that must be valid in the current iteration is n2>0, because n2 represents the value of
variable n in the previous state.

After defining the appropriate loop invariants, one has to annotate the loops with
such predicates in the composed program, as shown in Listing 4.5. The natural invariant
for the first loop is given by the predicate fib1_loop(integer i1, integer i2, int tmp, int
f1i, int f1, int f2i, int f2).

So far, we are only able to discharge the proof obligations related with the loop
invariants (initialisation and preservation). To prove the postcondition we need to include
the following lemma:
/�@ lemma f u s i o n :

@ \ f o r a l l i n t n_old , n , tmp , f 1 i , f1 , f 2 i , f2 , n1_old , n1 , f 11 i , f11 , f 21 i , f21 ;
@ n_o ld == n1_o ld ==> f 1 i == f 1 1 i ==> f 2 i == f 2 1 i ==>
@ f i b 1 _ l o o p (n_old , n , tmp , f 1 i , f1 , f 2 i , f2) ==> n<=0 ==>
@ f i b 2 _ l o o p (n1_old , n1 , f 11 i , f11 , f 21 i , f21) ==> n1 <=0 ==> (f1 == f11 && f2 == f21) ;@� /

4.2 Proofs by composition and self-composition 69

which captures the equivalence property, i.e., for equal initial states, the execution of
both loops must produce the equal final states. Summing up, the resulting annotated
input file includes:

• the definition of natural invariants of each loop;

• the equivalence lemma;

• loop invariants annotated with the natural invariant predicates;

• and pre- and postconditions annotations to express the desired property.

Afterwords, the Jessie plug-in can be used to automatically discharge all the proof
obligations. We detail next how the proof of the equivalence lemma can be manually
done. Alternatively, one can use the Coq library [7] developed for that purpose.

Let C
1

denote the loop body of Listing 4.1 and C
2

the loop body of Listing 4.2.
Now, let R

1

denote the predicate specC
1

�R
, R

2

the predicate specC
2

�R
, K

1

the predicate
specC

1

�K
and finally K

2

the predicate specC
2

�K
. The proof of the fusion lemma requires

establishing first a mixed determinism property on the loop’s body predicates.

8 s
1

s
2

s0
1

s0
2

. s
1

⌘ s
2

^ R
1

(s
1

, s0
1

) ^ R
2

(s
2

, s0
2

) =) s0
1

⌘ s0
2

(4.6)

8 s
1

s
2

s0
1

s0
2

. s
1

⌘ s
2

^ K
1

(s
1

, s0
1

) ^ K
2

(s
2

, s0
2

) =) s0
1

⌘ s0
2

(4.7)

But, since by definition

R
1

(s, s0) = 9s
0

, s
1

, s
2

, s
3

. s
0

⌘ s[tmp [[f
1

+ f
2

]](s)] ^
s

1

⌘ s
0

[f
1

 [[f
2

]](s
0

)] ^ s
2

⌘ s
1

[f
2

 [[tmp]](s
1

)] ^ s
2

⌘ s0

= s0 ⌘ s[f
1

 [[f
2

]](s), f
2

 [[f
1

+ f
2

]](s)]

R
2

(s, s0) = 9s
0

, s
1

, s
2

. s
0

⌘ s[f
2

 [[f
1

+ f
2

]](s)] ^
s

1

⌘ s
0

[f
1

 [[f
2

� f
1

]](s
0

)] ^ s
1

⌘ s0

= s0 ⌘ s[f
2

 [[f
1

+ f
2

]](s), f
1

 [[f
2

]](s)]

K
1

(s, s0) = K
2

(s, s0) = s0 ⌘ s[n [[n � 1]](s)]

the proof that the properties 4.6 and 4.7 hold, is straightforward. We remark that the
proof of such properties can be done automatically, using the Frama-c framework, simply
by introducing the (mixed) lemma depicted in Figure 4.6 as a program annotation and
using some automatic prover such as Alt-Ergo to discharge the related proof obligation.
The proof of the lemma,

70 4 Verifying functional correctness and information flow properties

/�@ lemma body_equ iv :
@ \ f o r a l l i n t n2_1 , n2_2 , n3_1 , n3_2 , f11_1 , f11_2 , f12_1 , f12_2 ;
@ \ f o r a l l i n t tmp , f21_1 , f21_2 , f22_1 , f22_2 ;
@ n2_1 == n2_2 ==> f11_1 == f11_2 ==> f21_1 == f21_2 ==>
@ loop_body_1 (n2_1 , n3_1 , f11_1 , f12_1 , tmp , f21_1 , f22_1) ==>
@ loop_body_2 (n2_2 , n3_2 , f11_2 , f12_2 , f21_2 , f22_2) ==>
@ (n3_1 == n3_2 && f12_1 == f12_2 && f22_1 == f22_2) ;
@� /

Listing 4.6: Lemma which captures the property 4.6

8 s
1

s
2

s0
1

s0
2

. s
1

⌘ s
2

^ loopn
1

1

(s
1

, s0
1

) ^ ([[B]](s0
1

) = false) ^ loopn
2

2

(s
2

, s0
2

) ^
([[B]](s0

2

) = false) =) s0
1

⌘ s0
2

is straightforward using the mixed synchronisation Lemma 16 and the property,

8 s
1

s
2

s0
1

s0
2

. s
1

⌘ s
2

^ loopn
1

(s
1

, s0
1

) ^ loopn
2

(s
2

, s0
2

) =) s0
1

⌘ s0
2

whose proof can be done by simple induction on n and using the properties 4.6 and 4.7
established above.

4.3 Verifying absence of error propagation

An important property of stream ciphers is their behavior when a bit in the ciphertext
is flipped over the communication channel. The change may be due to a transmission
error or maliciously introduced by an attacker. The way in which the decryption process
reflects a wrong ciphertext symbol in the resulting plaintext is relevant: depending on the
encryption scheme construction, a ciphertext error may simply lead to a corresponding
flip in a plaintext symbol, or it may a�ect a significant number of subsequent symbols.
This property, sometimes called error propagation, is usually taken as a criterion for
selecting ciphers for noisy communication media, where the absence of error propagation
can greatly increase throughput. For this purpose we studied the behavior of RC4 to
evaluate if bit errors are not propagated in any way, i.e., if a ciphertext bit is flipped
during the transmission, the only corresponding plaintext bit is a�ected. To this end,
we formalised this property as an information flow property, using the noninterference
definition (see Chapter 2).

Error propagation formalised as non-interference The intuition underlying the for-
malisation of error-propagation with non-interference is that secure information flow

4.3 Verifying absence of error propagation 71

can be guaranteed by checking that arbitrary changes in low-integrity input variables
cannot be detected by observing high-integrity output variables. We remark that the
notion of a low-integrity input variable can be naturally associated with a transmission
error over a communications channel. Hence, we map the ith possibly erroneous ci-
phertext symbol to a non-trusted low-integrity input (we are looking at the decryption
algorithm that, in the case of RC4, is identical to the one used for encryption). The
definition of non-interference can then conveniently be used to capture the absence of
error propagation. For this, we also associate the output plaintext symbols starting at
position i+ 1 to trusted high-integrity outputs. More precisely, our formulation captures
the following idea: if an arbitrary change in the ith input ciphertext symbol cannot be
observed in the output plaintext symbols following position i, this implies that the stream
cipher does not introduce error propagation in decryption.

Formally, considering VH and VL respectively as the sets of low-integrity input
variables and high-integrity output variables of the RC4 implementation, and recalling
the definition of noninterference from Chapter 2, we have for some i 2 [0, len[:

VH = { indata[i] }
VL = {outdata[j] | 0  j < len}

[
key

[
{indata[j] | 0  j < len & j , i }

We remark that the information-flow model of integrity can be treated as the dual to
the confidentiality model, thus to apply the noninterference definition from Chapter 2,
one has to consider the low-integrity inputs to be the set VH and high-integrity outputs to
be VL. To verify if the RC4 implementation from openSSL enforces this property using
Frama-c, we applied the self-composition approach (see Chapter 2). However, even for
such a small example, it was a non-trivial exercise. The limitations that we encountered
were essentially due to the growth of the problem size due to the aggressive optimisations
that were used in the RC4 implementation in openSSL: (1) the use of macros rather
than (inline) function calls leads to a source code size expansion; (2) the use of loop
unrolling leads to intricate control flow inside the function (namely the extensive use
of the break statement); and (3) the use of pointer arithmetic greatly increases the
complexity of the generated proof obligations. For this reason, a refactoring of the code
was required in order to achieve the goals that we set out in the beginning of this section.

72 4 Verifying functional correctness and information flow properties

unsigned char RC4NextKeySymbol (RC4_KEY �key) {
unsigned char �d , x , y , tx , t y ;

x=key->x ; y=key->y ; d=key-> d a t a ;
x = ((x+1)&0 x f f) ; t x =d [x] ;
y =(t x +y)&0 x f f ; d [x]= t y =d [y] ;
d [y]= t x ; key->x=x ; key->y=y ;
re turn d [(t x + t y)&0 x f f] ;

}

void RC4(RC4_KEY �key , cons t unsigned long l en ,
cons t unsigned char � i n d a t a , unsigned char � o u t d a t a) {

i n t i =0 ;
whi le (i < l e n) { o u t d a t a [i]= i n d a t a [i] ^ RC4NextKeySymbol (key) ; i ++; }

}

Listing 4.7: RC4 reference implementation

Listing 4.7 shows the version of RC4 we used.
The Frama-c input file used to show that the RC4 function above does not introduce

error propagation is shown in Listings 4.8 and 4.9. The function is composed with
itself and disjoint sets of variables are created for the two copies of the function, which
is parametrised with the position i in which a transmission error could occur. The
preconditions imposed on the composed function establish the equality of the high-
integrity input variables for both copies of the function: all input variables except
position i in the indata bu�ers. The postcondition on the composed function requires
that the high-integrity output variables have equal values upon termination.

The verification of this code with Frama-c resulted in the generation of 18 proof
obligations, all of which are automatically discharged by the back-end prover Simplify.
This is made possible by the inclusion of the self-composition lemma, spec1_sc (proved
o�ine with Coq following [7]) in the ACSL annotations.

4.4 Verifying correctness with respect to reference im-
plementations

A direct transcription of the RC4 specification presented in the beginning of this
chapter to a C implementation could look something like the code in Listing 4.7. Al-
though this implementation is quite readable, and arguably verifiable by inspection, it
was created without the slightest consideration for e�ciency. This stands in contrast
with the openSSL implementation of RC4 (see Appendix A.1) where readability (and

4.4 Verifying correctness with respect to reference implementations 73

t ypede f s t r u c t r c 4 _ k e y _ s t { unsigned char x , y ; unsigned char d a t a [2 5 6] ; }RC4_KEY;

/�@ pred i c a t e eqCondByK{L1 , L2 } (i n t e g e r k , unsigned char �u1 , unsigned char �u2) =
@ \ f o r a l l i n t e g e r l ; l != k ==> \ at (u1 [l] , L1)== \ at (u2 [l] , L2) ;
@� /

/�@ pred i c a t e eqAr r ays {L1 , L2 } (unsigned char �u1 , unsigned char �u2) =
@ \ f o r a l l i n t e g e r l ; \ at (u1 [l] , L1)== \ at (u2 [l] , L2) ;
@� /

/�@ ax iomat i c RC4KeyAxiom {
@ l o g i c unsigned char RC4KeyLogic{L1 , L2 } (unsigned char �x , unsigned char �y ,
@ unsigned char �d) ;
@ axiom RC4KeyLogic_unique {L1 , L2 , L3 , L4 } :
@ \ f o r a l l unsigned char �x , unsigned char �y , unsigned char �d ,
@ unsigned char �x1 , unsigned char �y1 , unsigned char �d1 ;
@ \ at (� x , L1)== \ at (� x1 , L3) ==> \ at (� y , L1)== \ at (� y1 , L3) ==>
@ eqAr rays {L1 , L3 } (d , d1) ==>
@ (RC4KeyLogic{L1 , L2 } (x , y , d) == RC4KeyLogic{L3 , L4 } (x1 , y1 , d1) &&
@ \ at (� x , L2)== \ at (� x1 , L4) && \ at (� y , L2)== \ at (� y1 , L4) &&
@ eqAr rays {L2 , L4 } (d , d1)) ;
@ }
@� /

/�@ i n d u c t i v e spec1 {L1 , L2 } (i n t e g e r i1 , i n t e g e r i2 , i n t e g e r k , unsigned char � inp ,
@ unsigned char � out , unsigned char �x , unsigned char �y , unsigned char �d) {
@ case spec1_ba s e {L } : \ f o r a l l i n t e g e r i1 , i n t e g e r i2 , i n t e g e r k ,
@ unsigned char � inp , unsigned char � out , unsigned char �x ,
@ unsigned char �y , unsigned char �d ;
@ i 1 == i 2 ==> spec1 {L , L} (i1 , i2 , k , inp , out , x , y , d) ;
@
@ case s p e c1 _na t {L1 , L2 , L3} :
@ \ f o r a l l i n t e g e r i1 , i n t e g e r i2 , i n t e g e r i3 , i n t e g e r k , unsigned char � inp ,
@ unsigned char � out , unsigned char �x , unsigned char �y , unsigned char �d ;
@ spec1 {L1 , L2 } (i1 , i2 , k , inp , out , x , y , d) ==> i 3 == i 2 +1 ==>
@ eqCondByK{L2 , L3 } (k , inp , i np) ==>
@ \ at (ou t [i 2] , L3) == (\ at (i np [i 2] , L2) ^ RC4KeyLogic{L2 , L3 } (x , y , d)) ==>
@ spec1 {L1 , L3 } (i1 , i3 , k , inp , out , x , y , d) ;
@ }
@� /

/�@ lemma spec1_ s c {L1 , L2 , L3 , L4} :
@ \ f o r a l l i n t e g e r i , i n t e g e r i1 , i n t e g e r i2 , unsigned char � inp1 ,
@ unsigned char � inp2 , unsigned char � out1 , unsigned char � out2 ,
@ unsigned char �x1 , unsigned char �x2 , unsigned char �y1 , unsigned char �y2 ,
@ unsigned char �d1 , unsigned char �d2 , i n t e g e r k ;
@ spec1 {L1 , L2 } (i , i1 , k , inp1 , out1 , x1 , y1 , d1) ==>
@ spec1 {L3 , L4 } (i , i2 , k , inp2 , out2 , x2 , y2 , d2) ==>
@ eqCondByK{L1 , L3 } (k , inp1 , i np2) ==> eqAr r ays {L1 , L3 } (out1 , ou t2) ==>
@ eqAr rays {L1 , L3 } (d1 , d2) ==> \ at (� x1 , L1)== \ at (� x2 , L3) ==>
@ \ at (� y1 , L1)== \ at (� y2 , L3) ==> i 1 == i 2 ==>
@ (eqCondByK{L2 , L4 } (k , inp1 , i np2) && eqAr rays {L2 , L4 } (d1 , d2) &&
@ \ at (� x1 , L2)== \ at (� x2 , L4) && \ at (� y1 , L2)== \ at (� y2 , L4) &&
@ eqCondByK{L2 , L4 } (k , out1 , ou t2)) ;
@� /

/ /@ ensures \ r e s u l t == RC4KeyLogic{Old , Here }(&(key->x) ,&(key->y) , key-> d a t a) ;
unsigned char RC4NextKeySymbol (RC4_KEY �key) {

r e g i s t e r unsigned char �d ; r e g i s t e r unsigned char x , y , tx , t y ;
x = key->x ; y = key->y ; d = key-> d a t a ; x = ((x + 1) & 0 x f f) ; t x = d [x] ;
y = (t x + y) & 0 x f f ; d [x] = t y = d [y] ; d [y] = t x ; key->x = x ; key->y = y ;
re turn d [(t x + t y) & 0 x f f] ; }

Listing 4.8: Annotations and auxiliary functions to verify absence of error propagation
in the RC4 implementation

74 4 Verifying functional correctness and information flow properties

/�@ r equ i r e s l en >=0 && len1 >=0 && l e n == l en1 &&
@ eqCondByK{Here , Here } (k , i n d a t a , i n d a t a 1) &&
@ eqAr rays {Here , Here } (key->da ta , key1-> d a t a) &&
@ key->x==key1->x && key->y==key1->y &&
@ eqAr rays {Here , Here } (ou t d a t a , o u t d a t a 1) ;
@ ensures l e n == l en1 && eqCondByK{Here , Here } (k , i n d a t a , i n d a t a 1) &&
@ eqAr rays {Here , Here } (key->da ta , key1-> d a t a) &&
@ key->x==key1->x && key->y==key1->y &&
@ eqCondByK{Here , Here } (k , o u t d a t a , o u t d a t a 1) ;
@� /

void RC4_SC(RC4_KEY �key , cons t unsigned long l en , cons t unsigned char � i n d a t a ,
unsigned char � ou t d a t a , RC4_KEY �key1 , cons t unsigned long l en1 ,
cons t unsigned char � i n d a t a 1 , unsigned char � ou t d a t a1 , i n t k) {
i n t i = 0 ; i n t i 1 = 0 ;

/�@ loop i n v a r i a n t 0<= i <= l e n &&
@ spec1 { Pre , Here } (0 , i , k , i n d a t a , o u t d a t a ,&(key->x) ,&(key->y) , key-> d a t a) ;
@ loop var i an t (l e n - i) ;
@� /

whi le (i < l e n) { o u t d a t a [i] = i n d a t a [i] ^ RC4NextKeySymbol (key) ; i ++; }

/�@ loop i n v a r i a n t 0<= i1 <= l en1 &&
@ spec1 { Pre , Here } (0 , i1 , k , i n d a t a 1 , ou t d a t a 1 ,&(key1->x) ,&(key1->y) , key1-> d a t a) ;
@ loop var i an t (l e n1 - i 1) ;
@� /

whi le (i 1 < l en1) { o u t d a t a 1 [i 1] = i n d a t a 1 [i 1] ^ RC4NextKeySymbol (key1) ; i 1 ++;}
}

Listing 4.9: Annotated RC4 implementation to verify absence of error propagation

the inherent assurance of correctness) was sacrificed to achieve better performance.
This example supports the domain-specific motivation for the discussion presented in

this thesis: the natural way to obtain assurance that an implementation of a cryptographic
algorithm is correct, is to verify that it is functionally equivalent to another (more
readable) implementation of the same algorithm. We have investigated how this goal
can be achieved for the particular case of RC4, by identifying refactoring steps that may
require a proof of equivalence in order to establish the correctness of di�erent RC4
implementations.

We present next our approach to verifying the identified class of equivalence relations
using the Frama-c tool. The results obtained are, of course, not only applicable to
implementations of other cryptographic algorithms, but also to other application domains
where similar program transformations may be employed (as it is shown in Section 4.2.4
with the Fibonacci implementations).

A simple refactoring to capture key pre-processing. A possible refactoring of the
RC4 specification in Listing 4.7 is suggested by a common optimisation performed
when using stream ciphers. Indeed, one of the ways of speeding up the throughput of

4.4 Verifying correctness with respect to reference implementations 75

void RC4(RC4_KEY �key , cons t unsigned long l en ,
cons t unsigned char � i n d a t a , unsigned char � o u t d a t a) {

unsigned char keys t r e am [l e n] ;

i n t i =0 ;
whi le (i < l e n) { keys t r e am [i] = RC4NextKeySymbol (key) ; i ++; }

i =0 ;
whi le (i < l e n) { o u t d a t a [i]= i n d a t a [i] ^ keys t r e am [i] ; i ++; }

}

Listing 4.10: RC4 implementation with key pre-processing

stream cipher processing is to compute (a portion of) the key stream before the plaintext
is available (or the ciphertext if one is decrypting). This means that the encryption
operation to be performed on-the-fly is then reduced to simple masking using an XOR
operation, which can be done extremely fast. For sychronous ciphers such as RC4,
the number of key stream bits that can be pre-computed can be arbitrarily large, as
this is totally independent of the encrypted data. The version of RC4 presented in
Listing 4.10 moves in this direction by separating the key stream generation process
from the plaintext masking (or ciphertext unmasking process).

To prove the equivalence between the programs in Listings 4.7 and 4.10, one can
apply the equivalence by composition technique. In short, considering the programs
C

1

and C
2

respectively as the programs of Listings 4.10 and 4.7, the steps to apply this
technique are the following:

1. create a program that results from the composition of C
1

with C
2

, where all the
variables of C

2

are renamed;

2. annotate the composed program with pre- and postconditions to express that all
the input and output variables in both programs (C

1

and C
2

) are equal;

3. annotate each loop with a loop invariant using the natural invariants technique
(introduced in Section 4.2.1);

4. define a fusion lemma which expresses that the specifications of the loop invariants
are equivalent. This is a mixed fusion lemma because the structure of C

1

separates
the key stream generation process from the plaintext masking, thus having two
loop invariants, whose conjunction must be equivalent to the loop invariant defined
to C

2

;

76 4 Verifying functional correctness and information flow properties

5. finally, before annotating the function RC4NextKeySymbol with a post-condition,
we must define a logic function and axiomatise its properties, stating that for
the same inputs it produces the same outputs. The postcondition predicate must
express that the result of RC4NextKeySymbol is equal the result of the logic
function. Establishing a postcondition such as this, we are expressing that the
result of RC4NextKeySymbol enjoys the same properties as the result of the logic
function. We remark that this postcondition can be automatically proved using an
automatic theorem prover such as Yices SMT Solver4.

Part of the annotated source code used to achieve this result is shown in Listings 4.11
and 4.12.

A sequence of refactorings leading to the openssl implementation. We now
discuss a more elaborate sequence of refactoring steps that permit reaching the openSSL
implementation of RC4 in Appendix A.1, departing from the reference implementation
in Listing 4.7. The first refactoring step, leading to the RC4 function in Listing 4.13, is
not very interesting from a verification point of view. It consists of a number of simple
transformations:

1. removing the auxiliary function by inlining the corresponding code in the main
function body;

2. rearranging local variables to match those in the openSSL implementation;

3. applying the transitivity property of assignments in C to combine two statements;

4. replacing modular operations by their equivalent bit-wise operations. A macro is
also introduced to improve readability.

The next refactoring steps, leading to the version shown in Listing 4.14, are more
interesting examples of transformations involving loop refactorings. Concretely, the
main loop is first separated into two loops with the same body, which are sequentially
composed to realise the original number of iterations. The first loop is then modified by
explicitly composing the original body with itself 8 times, and altering the increments

4http://yices.csl.sri.com/

http://yices.csl.sri.com/

4.4 Verifying correctness with respect to reference implementations 77

/�@ i n d u c t i v e spec1 {L1 , L2 } (i n t e g e r i1 , i n t e g e r i2 , unsigned char � s t r eam ,
@ unsigned char �x , unsigned char �y , unsigned char �d) {
@ case s p e c1ba s e {L} :
@ \ f o r a l l i n t e g e r i1 , i n t e g e r i2 , unsigned char � s t ream ,
@ unsigned char �x , unsigned char �y , unsigned char �d , i n t e g e r l e n ;
@ i 1 == i 2 ==> spec1 {L , L} (i1 , i2 , s t r eam , x , y , d) ;
@
@ case s p e c1 _na t {L1 , L2 , L3} :
@ \ f o r a l l i n t e g e r i1 , i n t e g e r i2 , i n t e g e r i3 , unsigned char � s t ream ,
@ unsigned char �x , unsigned char �y , unsigned char �d ;
@ spec1 {L1 , L2 } (i1 , i2 , s t r eam , x , y , d) ==> i 3 == i 2 +1 ==>
@ \ at (s t r e am [i 2] , L3) == RC4KeyLogic{L2 , L3 } (x , y , d) ==>
@ spec1 {L1 , L3 } (i1 , i3 , s t r eam , x , y , d) ; }
@� /

/�@ i n d u c t i v e spec2 {L1 , L2 } (i n t e g e r i1 , i n t e g e r i2 , unsigned char � inp ,
@ unsigned char � out , unsigned char �key) {
@ case spec2_ba s e {L} :
@ \ f o r a l l i n t e g e r i1 , i n t e g e r i2 , unsigned char � inp ,
@ unsigned char � out , unsigned char �key ;
@ i 1 == i 2 ==> spec2 {L , L} (i1 , i2 , inp , out , key) ;
@
@ case s p e c2 _na t {L1 , L2 , L3} :
@ \ f o r a l l i n t e g e r i1 , i n t e g e r i2 , i n t e g e r i3 , unsigned char � inp ,
@ unsigned char � out , unsigned char �key ;
@ spec2 {L1 , L2 } (i1 , i2 , inp , out , key) ==> i 3 == i 2 +1 ==>
@ eqAr rays {L2 , L3 } (inp , i np) ==> eqAr r ays {L2 , L3 } (key , key) ==>
@ \ at (ou t [i 2] , L3) == (\ at (i np [i 2] , L3) ^ \ at (key [i 2] , L3)) ==>
@ spec2 {L1 , L3 } (i1 , i3 , inp , out , key) ;
@ }
@� /

/�@ i n d u c t i v e spec3 {L1 , L2 } (i n t e g e r i1 , i n t e g e r i2 , unsigned char � inp ,
@ unsigned char � out , unsigned char �x , unsigned char �y , unsigned char �d) {
@ case spec3_ba s e {L} :
@ \ f o r a l l i n t e g e r i1 , i n t e g e r i2 , unsigned char � inp , unsigned char � out ,
@ unsigned char �x , unsigned char �y , unsigned char �d ;
@ i 1 == i 2 ==> spec3 {L , L} (i1 , i2 , inp , out , x , y , d) ;
@
@ case s p e c3 _na t {L1 , L2 , L3} :
@ \ f o r a l l i n t e g e r i1 , i n t e g e r i2 , i n t e g e r i3 , unsigned char � inp ,
@ unsigned char � out , unsigned char �x , unsigned char �y , unsigned char �d ;
@ spec3 {L1 , L2 } (i1 , i2 , inp , out , x , y , d) ==> i 3 == i 2 +1 ==>
@ eqAr rays {L2 , L3 } (inp , i np) ==>
@ \ at (ou t [i 2] , L3) == (\ at (i np [i 2] , L2) ^ RC4KeyLogic{L2 , L3 } (x , y , d)) ==>
@ spec3 {L1 , L3 } (i1 , i3 , inp , out , x , y , d) ;
@ }
@� /

/�@ lemma fus ion_ lemma {L1 , L2 , L3 , L4 , L5} :
@ \ f o r a l l i n t e g e r i1 , i n t e g e r i2 , i n t e g e r i3 , i n t e g e r i4 , i n t e g e r i5 ,
@ i n t e g e r i6 , unsigned char � inp1 , unsigned char � inp2 , unsigned char � out1 ,
@ unsigned char � out2 , unsigned char �x1 , unsigned char �x2 , unsigned char �y1 ,
@ unsigned char �y2 , unsigned char �d1 , unsigned char �d2 , unsigned char �key ;
@ spec1 {L1 , L2 } (i1 , i2 , key , x1 , y1 , d1) ==> spec2 {L2 , L3 } (i3 , i4 , inp1 , out1 , key) ==>
@ spec3 {L4 , L5 } (i5 , i6 , inp2 , out2 , x2 , y2 , d2) ==>
@ (i 1 == i 3 && i 3 == i 5 && i 2 == i 4 && i 4 == i 6) ==>
@ eqAr rays {L1 , L4 } (inp1 , i np2) ==> eqAr r ays {L1 , L4 } (d1 , d2) ==>
@ \ at (� x1 , L1) == \ at (� x2 , L4) ==> \ at (� y1 , L1) == \ at (� y2 , L4) ==>
@ eqAr rays {L3 , L5 } (out1 , ou t2) ;
@� /

Listing 4.11: RC4 refactoring for key pre-processing – natural invariants specification
and fusion lemma

78 4 Verifying functional correctness and information flow properties

/�@ r equ i r e s l e n == l en1 && eqAr rays {Here , Here } (i n d a t a , i n d a t a 1) &&
@ eqAr rays {Here , Here } ((unsigned char �) key->da ta ,
@ (unsigned char �) key1-> d a t a) && key->x==key1->x &&
@ key->y==key1->y ;
@ ensures eqAr r ays {Here , Here } (ou t d a t a , o u t d a t a 1) ;
@� /

void RC4_SC(RC4_KEY �key , cons t unsigned long l en ,
cons t unsigned char � i n d a t a ,
unsigned char � ou t d a t a , RC4_KEY �key1 ,
cons t unsigned long l en1 ,
cons t unsigned char � i n d a t a 1 ,
unsigned char � ou t d a t a1 ,
unsigned char � keys t r e am)

{

i n t i , i 1 ; i 1 = 0 ;

/���������������������������Pre- p r o c e s s i n g ������������������������ � /

i = 0 ;

/�@ loop i n v a r i a n t 0<= i <= l e n && spec1 { Pre , Here } (0 , i , keys t r eam ,
@ (unsigned char �)&(key->x) , (unsigned char �)&(key->y) ,
@ (unsigned char �) key-> d a t a) ;
@ loop var i an t (l e n - i) ;
@� /
whi le (i < l e n) {

keys t r e am [i] = RC4NextKeySymbol (key) ;
i ++;

}

/ /@ ghos t goto L ;
/ /@ ghos t L :
i = 0 ;

/�@ loop i n v a r i a n t 0<= i <= l e n && spec2 {L , Here } (0 , i , i n d a t a , o u t d a t a , k ey s t r e am) ;
@ loop var i an t (l e n - i) ;
@� /

whi le (i < l e n) {
o u t d a t a [i] = i n d a t a [i] ^ keys t r e am [i] ;
i ++;

}

/����������������������������� S p e c i f i c a t i o n �������������������������� � /

/�@ loop i n v a r i a n t 0<= i1 <= l en1 && spec3 { Pre , Here } (0 , i1 , i n d a t a 1 , ou t d a t a 1 ,
@ (unsigned char �)&(key1->x) , (unsigned char �)&(key1->y) ,
@ (unsigned char �) key1-> d a t a) ;
@ loop var i an t (l e n1 - i 1) ;
@� /

whi le (i 1 < l en1) {
o u t d a t a 1 [i 1] = i n d a t a 1 [i 1] ^ RC4NextKeySymbol (key1) ;
i 1 ++;

}
}

Listing 4.12: RC4 refactoring for key pre-processing

4.4 Verifying correctness with respect to reference implementations 79

void RC4(RC4_KEY �key , cons t unsigned long l en ,
cons t unsigned char � i n d a t a , unsigned char � o u t d a t a) {

unsigned char x , y , tx , ty , �d ;
i n t i ;
x = key->x ; y = key->y ; d = key-> d a t a ;

i =0 ;
whi le (i < l e n) { RC4LOOP(i n d a t a , o u t d a t a , i) ; i ++; }
key->x=x ; key->y=y ;

}

Listing 4.13: RC4 refactoring step 1

void RC4(RC4_KEY �key , cons t unsigned long l en ,
cons t unsigned char � i n d a t a , unsigned char � o u t d a t a) {

unsigned char x , y , tx , ty , �d ; i n t i ;
x = key->x ; y = key->y ; d = key-> d a t a ;
i = (i n t) (l en >>3L) ;
whi le (i >0) {

RC4LOOP(i n d a t a , o u t d a t a , 0) ;
RC4LOOP(i n d a t a , o u t d a t a , 1) ;
RC4LOOP(i n d a t a , o u t d a t a , 2) ;
RC4LOOP(i n d a t a , o u t d a t a , 3) ;
RC4LOOP(i n d a t a , o u t d a t a , 4) ;
RC4LOOP(i n d a t a , o u t d a t a , 5) ;
RC4LOOP(i n d a t a , o u t d a t a , 6) ;
RC4LOOP(i n d a t a , o u t d a t a , 7) ;
i n d a t a +=8; o u t d a t a +=8; i -- ;

}

i =(i n t) (l e n&0x07) ;
whi le (i >0) {RC4LOOP(i n d a t a , o u t d a t a , i) ; i -- ; }
key->x=x ; key->y=y ;

}

Listing 4.14: RC4 refactoring step 2

accordingly. The annotated code that was used to construct a proof of equivalence
corresponding to the jump between these more elaborate refactoring steps can be found
in http://crypto.di.uminho.pt/CACE. It is itself divided into two intermediate
steps, in order to tame the complexity of the exercise.

The final refactoring steps, leading to the openSSL version of RC4 in Appendix A.1,
are introduced to achieve additional speed-ups. Firstly, pointer arithmetic is used to
reduce the range of indexing operations, and loop counting is inverted. Then, di�erent
control flow constructions are applied: all while loops are reformulated using the break
statement to remove the final backward jump, and if constructions are introduced to
detect termination cases.

http://crypto.di.uminho.pt/CACE

80 4 Verifying functional correctness and information flow properties

s t a t i c vo id mulmod (unsigned i n t h [1 7] , cons t unsigned i n t r [1 7]) {
unsigned i n t hr [1 7] ; unsigned i n t i ; unsigned i n t j ; unsigned i n t u = 0 ;
f o r (i = 0 ; i < 17 ; ++ i) {

u = 0 ;
f o r (j = 0 ; j <= i ; ++ j) u += h [j] � r [i j] ;
f o r (j = i + 1 ; j < 17 ; ++ j) u += 320 � h [j] � r [i + 17 j] ;
h r [i] = u ;

}
f o r (i = 0 ; i < 17 ; ++ i) h [i] = h r [i] ;
s queeze (h) ;

}

Listing 4.15: Example extracted from the crypto-core NaCl library

4.5 Defining natural invariants for loops in general

In this section we show how the natural invariants technique can be extended to more
complex examples, such as loop-bodies which also contain loops. For this, we consider
the example depicted in Figure 4.15, extracted from the core of the NaCl library, which
contains a loop whose loop-body contains two inner loops. The intuition underlying the
definition of this natural invariant for the outermost loop is given next.

The first step is to define a natural invariant for each innermost loop, as shown
in Figure 4.16, where loop_2 and loop_3 correspond to the natural invariants for the
first and second innermost loops, respectively. Recall that the definition of the natural
invariant predicate has a base case and an inductive case. The base case is straightforward.
To define the inductive case, we need first to identify the intermediate states introduced
in its loop body. The easiest way is to introduce a new state after each instruction. As
we can see below, in this case three intermediate states are introduced (where loop

1

corresponds to the outermost loop and loop
2

and loop
3

correspond to the first and
second innermost loops, respectively).

s
1

s0
1

s0
2

s0
3

s
2

u = 0

loop
2

loop
3 hr[i] = u

loop
1

The assignment u = 0 introduces the first intermediate state S 0
1

. The execution of
the first innermost loop (loop

2

) introduces the second intermediate state S 0
2

and the
execution of the second innermost loop introduces the last intermediate state S 0

3

. All
these intermediate states must be included in the inductive definition. However, new

4.5 Defining natural invariants for loops in general 81

/�@ i n d u c t i v e l oop_2 {L1 , L2 } (i n t e g e r j1 , i n t e g e r j2 , i n t e g e r i ,
@ unsigned i n t u1 , unsigned i n t u2 , unsigned i n t �h , unsigned i n t � r) {
@ case ba s e_c a s e_ l oop_2 {L } : \ f o r a l l i n t e g e r j1 , j2 , i ;
@ \ f o r a l l unsigned i n t u1 , u2 , � h , � r ;
@ j 1 == j 2 ==> u1==u2 ==> l oop_2 {L , L} (j1 , j2 , i , u1 , u2 , h , r) ;
@ case i n d_ c a s e_ l oop_2 {L1 , L2 , L3 } :
@ \ f o r a l l i n t e g e r j1 , j2 , j3 , i ; \ f o r a l l unsigned i n t u1 , u2 , u3 , � h , � r ;
@ loop_2 {L1 , L2 } (j1 , j2 , i , u1 , u2 , h , r) ==>
@ j 3 == j 2 + 1 &&
@ u3 == u2 + (\ at (h [j 2] , L2) � \ at (r [i j 2] , L2)) ;
@ j 2 <= i ==> l oop_2 {L1 , L3 } (j1 , j3 , i , u1 , u3 , h , r) ;
@ }
@� /

/�@ i n d u c t i v e l oop_3 {L1 , L2 } (i n t e g e r j1 , i n t e g e r j2 , i n t e g e r i ,
@ unsigned i n t u1 , unsigned i n t u2 , unsigned i n t �h , unsigned i n t � r) {
@ case ba s e_c a s e_ l oop_3 {L } : \ f o r a l l i n t e g e r j1 , j2 , i ;
@ \ f o r a l l unsigned i n t u1 , u2 , � h , � r ;
@ j 1 == j 2 ==> u1==u2 ==> l oop_3 {L , L} (j1 , j2 , i , u1 , u2 , h , r) ;
@ case i n d_ c a s e_ l oop_3 {L1 , L2 , L3 } :
@ \ f o r a l l i n t e g e r j1 , j2 , j3 , i ; \ f o r a l l unsigned i n t u1 , u2 , u3 , � h , � r ;
@ loop_3 {L1 , L2 } (j1 , j2 , i , u1 , u2 , h , r) ==>
@ j 3 == j 2 + 1 && u3 == u2 + 320 � \ at (h [j 2] , L2) � \ at (r [i + 17 j 2] , L2) ;
@ j 2 < 17 ==> l oop_3 {L1 , L3 } (j1 , j3 , i , u1 , u3 , h , r) ;
@ }
@� /

Listing 4.16: Natural invariant for the innermost loops

labels are not always needed. In fact, if the variables modified in those states are not
pointers or arrays, it su�ces the introduction of a new fresh variable for each state. This
is exactly what happens in this case, as can be seen in the ACSL definition of the natural
invariant of the loop.

/�@ i n d u c t i v e l oop_1 {L1 , L2 } (i n t e g e r i1 , i n t e g e r i2 ,
@ unsigned i n t u , unsigned i n t �h , unsigned i n t � r , unsigned i n t � hr) {
@ case ba s e_c a s e_ l oop_1 {L } :
@ \ f o r a l l i n t e g e r i ; \ f o r a l l unsigned i n t u , � h , � r , � hr ;
@ loop_1 {L , L} (i , i , u , h , r , h r) ;
@ case i n d_ c a s e_ l oop_1 {L1 , L2 , L3 , L4 } :
@ \ f o r a l l i n t e g e r i1 , i2 , i3 , j , k ; \ f o r a l l unsigned i n t u1 , u2 , u3 , u4 , � h , � r , � hr ;
@ loop_1 {L1 , L2 } (i1 , i2 , u1 , h , r , h r) ==> u2 == 0 ==>
@ loop_2 {L2 , L3 } (0 , j , i2 , u2 , u3 , h , r) ==>
@ loop_3 {L3 , L4 } (i 2 +1 , k , i2 , u3 , u4 , h , r) ==>
@ \ at (h r [i 2] , L4) == u4 ==> i 3 == i 2 + 1 ==> i 2 < 17 ==>
@ loop_1 {L1 , L4 } (i1 , i3 , u4 , h , r , h r) ;
@ }
@� /

The only value that is modified between each intermediate state is the value of u. Since
u is an integer variable, the variables u2, u3 and u4 represent its value in states S 0

1

,

82 4 Verifying functional correctness and information flow properties

S 0
2

and S 0
3

, respectively. The label L3 is only introduced to refer to the state S 0
2

in the
inductive predicates of the innermost loops.

Annotating now the source code with the natural invariants defined for each loop,
implies the introduction of labels which capture the intermediate states identified above.
These labels can be introduced in the source code by means of ghost code annotations,
using the ACSL notation.

/ /@ ghos t goto L1 ;
/ /@ ghos t L1 :
/�@ loop i n v a r i a n t l oop_1 {L1 , Here } (0 , i , u , h , r , h r) ;

@ loop var i an t 1 7 i ;
@� /

f o r (i = 0 ; i < 17 ; ++ i) {
u = 0 ;
/ /@ ghos t goto L2 ;
/ /@ ghos t L2 :
/�@ loop i n v a r i a n t l oop_2 {L2 , Here } (0 , j , i , \ at (u , L2) , u , h , r) ;

@ loop var i an t i j ;
@� /

f o r (j = 0 ; j <= i ; ++ j) { u += h [j] � r [i - j] ; }

/ /@ ghos t goto L3 ;
/ /@ ghos t L3 :
/�@ loop i n v a r i a n t l oop_3 {L3 , Here } (i +1 , j , i , \ at (u , L3) , u , h , r) ;

@ loop var i an t 1 7 j ;
@� /

f o r (j = i + 1 ; j < 17 ; ++ j) { u += 320 � h [j] � r [i + 17 j] ; }
h r [i] = u ;

}

The state needed to annotate each loop invariant with the corresponding natural invariant
predicate is referenced by the label that immediately precedes it (label L1 represents the
state S

1

and labels L2 and L3 represent the states S 0
1

and S 0
2

, respectively).
The proof of composition-based lemmas can be easily done, if the definition of the

natural invariants for such implementations follows the steps described above.

4.6 Summary

Summing up, we have focused on the verification of three security-relevant prop-
erties of real-world cryptographic implementations (using Frama-c), with increasing
degrees of verification complexity: (1) safety properties (absence of numeric errors
and memory safety); (2) absence of error propagation formalised as non-interference;

4.6 Summary 83

and (3) functional equivalence with respect to a reference implementation. Firstly we
have proved that the RC4 implementation does not cause null pointer de-referencing
exceptions, always performs array accesses with valid indices and computations do
not overflow (Section 4.1). In other words, the implementation is secure against bu�er
overflow attacks. Then we have studied the behaviour of stream ciphers (such as RC4)
when a bit in the ciphertext is flipped over a communication channel. The behaviour
of RC4 is common to other synchronous ciphers: bit errors are not propagated in any
way, i.e. if a ciphertext bit is flipped during transmission, then only the corresponding
plaintext bit is a�ected. We have formalised this property as a novel application of the
non-interference concept, and subsequently proved that the RC4 implementation indeed
enjoys this property (Section 4.3). Finally, we have generalised the self-composition
method [17] to prove the correctness of real implementations with respect to reference
implementations (Section 2.3.3). Cryptography is a prime candidate for equivalence
proofs, since specifications are usually given as reference implementations rather then
using some high level model or language. In concrete terms we have proved the equiv-
alence between a reference implementation of RC4 and the realistic implementation
included in openSSL (Section 4.4).

84 4 Verifying functional correctness and information flow properties

Chapter 5

Verifying side-channel
countermeasures

In this chapter, we extend the range of applications of the methods introduced in
our previous chapter, to cope with a set of high-level non-functional security policies
adopted by the developers of the NaCl cryptographic library. These policies, enforce
software countermeasures against (timing) side-channel attacks.

5.1 Side-channel attacks

One of the most challenging aspects of cryptographic software implementation is
the fact that functional correctness is not a su�cient condition to guarantee security.
It is possible (and likely) that a naive implementation of a theoretically secure cryp-
tographic algorithm is functionally correct, and yet turns out to be insecure. This is
because cryptographic algorithms are designed and validated, in theory, by idealizing
the computational platform in which they will execute: computation is seen as taking
place inside a black box, from which only explicitly released outputs can be extracted.
In practice, this is far from the truth, as physical observation of computational platforms
can enable an adversary to recover sensitive information, often with very little e�ort.
This type of attack is usually called a side-channel attack.

Protection against side-channel attacks is one of the most active areas of research in
applied cryptography, involving both hardware and software implementation aspects.
On the hardware side, the goal is to devise a platform that aproximates the idealized
black-box mentioned above. Smart-cards, for example, incorporate various hardware

85

86 5 Verifying side-channel countermeasures

No data-dependent branches. The CPU’s instruction pointer, branch predictor, etc. are not designed
to keep information secret. For performance reasons this situation is unlikely to change. The literature
has many examples of successful timing attacks that extracted secret keys from these parts of the CPU.
NaCl systematically avoids all data flow from secret information to the instruction pointer and the branch
predictor. There are no conditional branches with conditions based on secret information; in particular,
all loop counts are predictable in advance. This protection appears to be compatible with extremely high
speed, so there is no reason to consider weaker protections.

No data-dependent array indices. The CPU’s cache, TLB, etc. are not designed to keep addresses secret.
For performance reasons this situation is unlikely to change. The literature has several examples of
successful cache-timing attacks that used secret information leaked through addresses. NaCl systemati-
cally avoids all data flow from secret information to the addresses used in load instructions and store
instructions. There are no array lookups with indices based on secret information; the pattern of memory
access is predictable in advance. The conventional wisdom for many years was that achieving acceptable
software speed for AES required variable-index array lookups, exposing the AES key to side-channel
attacks, specifically cache-timing attacks. However, the paper “Faster and timing-attack resistant AES-
GCM” by Emilia Käsper and Peter Schwabe at CHES 2009 introduced a new implementation that set
record-setting speeds for AES on the popular Core 2 CPU despite being immune to cache-timing attacks.
NaCl reuses these results.

Figure 5.1: NaCl Security Policies

countermeasures to reduce exposure to side-channel attacks, e.g. by minimizing power
consumption fluctuations when di�erent operations are executed by the processor. How-
ever, it is not realistic to assume that one can resort to special purpose hardware whenever
one needs to employ cryptography. Furthermore, hardware countermeasures are, by
design, meant to thwart specific forms of physical data collection, which means that
there is always room for new sources of leakage to be uncovered and exploited. Finally,
even the most advanced cryptographic hardware cannot protect against side channel
leakage caused by bad software implementation choices.

5.2 A formal verification-based approach

Software side-channel countermeasures aim to minimize the correlation between the
sensitive inputs to the algorithm and physically observable variations in the behavior of
the underlying computational platform, when the algorithm is executing. In this work we
focus on a particular class of countermeasures aiming to eliminate timing dependencies,
in both execution and memory access times, that may give rise to so-called timing
attacks. In particular, we address a set of non-functional security policies, quoted in

5.2 A formal verification-based approach 87

Figure 5.1, adopted by the developers of the NaCl cryptographic library. Concretely,
code is written so as to ensure that the sequence of executed instructions (i.e. the control
flow) and the sequence of accessed memory addresses are independent of the sensitive
inputs. We refer the interested reader to [58] for details on programming techniques that
make this possible without forsaking performance.

We consider deductive formal verification as a means to obtain further guarantees that
these side-channel countermeasures are correctly deployed in cryptographic software
implementations. In practice, these guarantees are important not only for the end-users
of the code, but also for developers working, say, in collaborative projects, in which the
eligibility of contributions must be analyzed with respect to well-defined code quality
criteria. Transferral of an increased level of assurance to a third party may be necessary,
for example, in the context of software certification processes.

Our strategy to formally verify compliance to security policies such as those de-
scribed above, which enforce the elimination of control flow and memory access de-
pendencies as countermeasures against timing side-channel attacks, is to view them as
information flow security restrictions. Our approach can be summarized as follows:

1. We extend the operational semantics of the WhileC language (introduced in Chap-
ter 2), to explicitly capture the flavour of side-channel leakage addressed by the
NaCl security policies (quoted in Figure 5.1 from the NaCl specifications). Con-
cretely, the semantics constructs traces of the memory addresses read or written to
by a program, including program and data memory. Based on this, we propose a
definition of secure program in the sense intended by the NaCl developers. This
is essentially a termination-sensitive non-interference requirement stating that
the address traces should be independent of secret data. Technically, our security
notion can be seen as an extension of the Program Counter Model of [68, 87],
where we add the capability to handle a wider range of attacks, including cache
timing attacks [77] and branch prediction analysis attacks [2] by extending the
model to cover data memory access patterns.

2. To formally verify that a program meets the previous definition of security it then
su�ces to proceed with the following two steps:

(a) One transforms the original program P into one that explicitly collects in its
output state (minimal) additional information about the execution of P; and

88 5 Verifying side-channel countermeasures

(b) One then formally verifies (using the composition-based methods introduced
in the previous chapter) that this extra information is independent of secret
data.

We theoretically validate this technique by showing that a proof of safety (including
termination) of a program, and a proof of non-interference for the correspond-
ing transformed program, together imply that the original program is indeed
secure with respect to the intended security policy. The details are described in
Section 5.3.

3. Finally, we discuss how our proof techniques can be deployed using real-world de-
ductive verification tools, namely the Frama-c framework. We cover in Section 5.4
practical examples extracted form the NaCl cryptographic library, highlighting
the potential for automation of the program transformation and self-composition
proofs using natural invariants. In doing so, we answer questions raised in [87, 88]
regarding the feasibility of addressing these problems using o�-the-shelf veri-
fication tools. Concretely, we show that it is possible to carry out verification
directly over the composed program, for a much wider class of programs than
was previously achieved. Furthermore, we do not need to transform the input
program into a more convenient form that goes around the limitations of the
verification framework. In Section 5.4 we further elaborate on the di�erences and
improvements with respect to related work.

5.3 Formalisation and verification of side-channel coun-
termeasures

We illustrate now how the framework presented in Chapter 4 can be used to attest
adherence to non-functional security policies. We start by explaining in Section 5.3.1
how the security policies put forward by the developers of the NaCl library can be
understood semantically as a non-interference-like property, that cannot be expressed
using the standard semantics of WhileC language. In Section 5.3.2 we then instrument
the semantics of the language (adding memory and control-flow traces) and use it in
Section 5.3.3 to faithfully capture the policies under scrutiny. Section 5.3.4 applies a
simple program transformation to reify the instrumented semantics (by internalising
trace information in the programs), which allows expressing security as a standard
non-interference property.

5.3 Formalisation and verification of side-channel countermeasures 89

5.3.1 Security policy as a semantic property

Consider the WhileC language introduced in Chapter 2. Let C be a safe program
in WhileC, H a set of high-security variables and VL = Vars \ H. Then informally, C

complies with the NaCl side-channel security policies if

for any two states s
1

, s
2

such that s
1

VL
= s

2

, if (C, s
1

) + s0
1

then for some state
s0

2

one has that (C, s
2

) + s0
2

, with the same memory trace and control flow
for both executions.

i.e., the memory locations accessed and the execution paths followed are equal for both
initial states. More specifically, in order to the program to be safe according to the NaCl
policies, these (memory trace and control-flow) cannot depend on the values of the
secret inputs. This clearly ensures that the control flow and array lookups do not depend
on secret information, as prescribed. Naturally, a plain state-based semantics does not
allow expressing this property formally (since no trace information is manipulated),
which motivates the introduction of an extended instrumented semantics.

5.3.2 Instrumented semantics

We consider two additions to the WhileC language. Firstly, all commands except
sequential composition are now labelled. This is equivalent to labeling every atomic
statement and every boolean condition. We further assume that all considered programs
are well-labelled, meaning that all the labels in a program are distinct. Labels can then be
thought of as abstractions of the instruction-pointer to the corresponding code. Secondly,
a new syntactic class of list-expressions is considered (together with the corresponding
variables and assignment statements). Such lists are useless for programming, but
they are convenient to capture the NaCl policies under a standard non-interference
formulation, so we include them in the language and treat them consistently with the
other constructions. Furthermore, our implementation in Frama-c of such lists is natural
and consistent with this formalisation (see Section 5.4).

We will refer to this extended language as WhileC
+ . We remark that we restrict our

attention to safe WhileC
+ programs, i.e., safety is checked separately. Its syntax is given

90 5 Verifying side-channel countermeasures

as follows.

Integers Int 3 ei
::= n | xi | ei + ei | ei - ei | ei * ei | ei / ei | a[ei]

Booleans Bool 3 eb
::= true | false | xb | eb == eb | eb != eb | ei < ei | ei > ei

List expressions List 3 le ::= nil | cons(e, le)

Commands Comm 3 C ::=
⇥skip⇤l | [x:= e]

l |
h
a[ei]:= ei

il | [xl:= le]

l |
h
if (eb

) {C
1

} else {C
2

}
il |
h
while (eb

) C
il | C

1

; C
2

We will use the notation stmtC(l) to refer to the statement annotated with label l in
program C (recall that labels are assumed to be distinct). Moreover, we remark that
by construction every program should use a non-empty set of labels. We denote the
leftmost label used in a program C by firstLabel(C).

To capture the memory locations accessed during the execution of a program, the
operational semantics is instrumented in order to keep track of the sequence of performed
accesses – the memory trace, ranged by �. Each element of the memory trace consists of
a pair (v, o↵set) where v is the variable identifier and o↵set is the index of the accessed
memory location (0 for non-array variables). The control-flow is also made explicit by
computing the sequence of labels executed during the computation — the control-flow
trace, ranged by �. We will then consider judgements of the form (C, s) + (s0, �, �)

meaning that program C executed in state s terminates in state s0, having followed the
control-flow path � and performed memory accesses �. An auxiliary judgment is used
for expressions: (e, s) + e

(n, �) means that expression e evaluated in state s returns the
value n, having performed accesses �. When the traces in the final configuration are
not important they will be omitted as in (C, s) + s0. Figure 5.2 presents the big-step
rules for both expressions and programs, where ✏ denotes the empty sequence, · denotes
concatenation of sequences, and the singleton sequence is identified with its element
(e.g. l · � denotes the addition of l in front of �).

We now state a few useful lemmas. A first observation is that the control-flow trace
constrains significantly the memory access trace of any given program. If an execution
path is fixed, only indices for array accesses are allowed to vary. Let us denote by
projFst(�) the function that projects the first component of a memory trace �, returning
a list of variable identifiers.

Lemma 18. Let C be a program, e an expression, and s
1

, s
2

states.

5.3 Formalisation and verification of side-channel countermeasures 91

(n, s) + e
(n, ✏)

(xi, s) + e
(s(xi

), (xi, 0))

(e, s) + e
(v, �)

(a[e], s) + e
(s(a)(v), (a, v) · �)

(true, s) + e
(true, ✏) (false, s) + e

(false, ✏)
(xb, s) + e

(s(xb
), (xb, 0))

(e
1

, s) + e
(v

1

, �
1

) (e
2

, s) + e
(v

2

, �
2

)

(e
1

op e
2

, s) + e
(v

1

[[op]] v
2

, �
1

· �
2

)

op 2 {+, -, *, /, ==, !=, <, >}

(nil, s) + e
(nil, ✏)

(e, s) + e
(v, �

1

) (le, s) + e
(lv, �

2

)

(cons(e, le), s) + e
(cons(v, lv), �

1

· �
2

)

(

⇥skip⇤l , s) + (s, l, ✏)

(e
1

, s) + e
(v

1

, �
1

) (e
2

, s) + e
(v

2

, �
2

)

([a[e
1

]:= e
2

]

l , s) + (s[a upd(s(a), v
1

, v
2

)], l, (a, v
1

) · �
1

· �
2

)

(e, s) + e
(v, �)

([x:= e]

l , s) + (s[x v], l, (x, 0) · �)

(le, s) + e
(lv, �)

([xl:= le]

l , s) + (s[xl lv], l, (xl, 0) · �)

(e, s) + e
(v, �) (C

1

, s) + (s
1

, �
1

, �
1

)

([if (e) {C
1

} else {C
2

}]l , s) + (s
1

, l · �
1

, � · �
1

)

if v , 0

(e, s) + e
(v, �) (C

2

, s) + (s
2

, �
2

, �
2

)

([if (e) {C
1

} else {C
2

}]l , s) + (s
2

, l · �
2

, � · �
2

)

if v = 0

(e, s) + e
(v, �) (C, s) + (s

1

, �
1

, �
1

) ([while (e) C]

l , s
1

) + (s
2

, �
2

, �
2

)

([while (e) C]

l , s) + (s
2

, l · �
1

· �
2

, � · �
1

· �
2

)

if v , 0

(e, s) + e
(v, �)

([while (e) C]

l , s) + (s, l, �)

if v = 0

(C
1

, s) + (s
1

, �
1

, �
1

) (C
2

, s
1

) + (s
2

, �
2

, �
2

)

(C
1

; C
2

, s) + (s
2

, �
1

· �
2

, �
1

· �
2

)

Figure 5.2: Evaluation semantics

1. If (e, s
1

) + e
(v

1

, �
1

) and (e, s
2

) + e
(v

2

, �
2

), then projFst(�
1

) = projFst(�
2

).

2. If (C, s
1

) + (s0
1

, �, �
1

), (C, s
2

) + (s0
2

, �, �
2

), then projFst(�
1

) = projFst(�
2

).

Proof. (1) By structural induction on e. The only case that does not follow directly by
induction hypothesis is the access of an array element. But, since we are projecting
the first components of the memory access traces, the possibly distinct array indexes
accessed are irrelevant. (2) Observe that the assumption of distinct labels in C together
with the premise that both executions share the control-flow trace � force the shape

92 5 Verifying side-channel countermeasures

of both derivations to be equal (in particular, branching conditions are evaluated to
the same truth value). Then, a simple induction on the structure of C allows us to
conclude the argument (again, the only case that does not follow immediately from
induction hypothesis and (1) is array assignment, and again the first component is state
independent). ⇤

Another way of looking at the previous lemma is to state that the di�erences between
two memory traces �

1

, �
2

obtained through the same execution path concern only the
sequences of indexes accessed in one or more arrays. Denoting by projArra(�) the
function that returns the list of indexes accessed in an array a, we have:

Lemma 19. Let C be a program such that (C, s
1

) + (s0
1

, �, �
1

) and (C, s
2

) + (s0
2

, �, �
2

).
Then, �

1

= �
2

if and only if for all array variables a in C, projArra(�
1

) = projArra(�
2

).

Proof. The left-to-right implication is trivial. For the converse, observe that the common
execution trace in both final configurations implies, by Lemma 18, that projFst(�

1

) =

projFst(�
2

) (in particular, �
1

and �
2

have the same length). Now, assume that �
1

, �
2

and let �0 be the greatest common prefix of �
1

and �
2

. Since �
1

, �
2

, the length of �0

is strictly smaller than that of �
1

and �
2

. Consider that the first element where both
sequences diverge is now added to this prefix, i.e. �0

1

= �0 · (a, v
1

) and �0
2

= �0 · (a, v
2

)

(again, by Lemma 18 we know that the first components are equal). By construction,
v

1

, v
2

which implies that projArra(�
1

) , projArra(�
2

). ⇤

Control-flow traces are also severely constrained: there are specific points where
di�erent executions may diverge, which correspond exactly to the boolean conditions
tests performed by the program (if and while statements).

Lemma 20. Let C be a program such that (C, s
1

) + (s0
1

, �
1

, �
1

) and (C, s
2

) + (s0
2

, �, �
2

).
Then, �

1

= �
2

if and only if testsC
(�

1

) = testsC
(�

2

).

Function testsC
(·) extracts the outcomes of these tests from a given execution trace.

testsC
(✏) = ✏

5.3 Formalisation and verification of side-channel countermeasures 93

testsC
(l · �) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

testsC
(�) if stmtC(l) is not an if nor a while

1 · testsC
(�) if stmtC(l) = [if (e) {C

1

} else {C
2

}]l,

� = l0 · �00 and l0 = firstLabel(C
1

)

0 · testsC
(�) if stmtC(l) = [if (e) {C

1

} else {C
2

}]l,

� = l0 · �00 and l0 = firstLabel(C
2

)

1 · testsC
(�) if stmtC(l) = [while (e) C

1

]

l,

� = l0 · �0 and l0 = firstLabel(C
1

)

0 · testsC
(�) if stmtC(l) = [while (e) C

1

]

l

and either � = ✏, or � = l0 · �0 and l0 , firstLabel(C
1

)

Proof. The left-to-right implication is trivial. For the converse, assume �
1

, �
2

and let
�0 be the greatest common prefix of both traces. We firstly observe that �0 is nonempty
(its first element is necessarily firstLabel(C)), and that the last label of �0 must be the
label of an if or while statement (in any other case, the control flow is state-independent
and thus leads to a common follow-up on both executions). Summarising, we have
�

1

= �0 ·�0
1

, �
2

= �0 ·�0
2

, �0 = �00 · l0, l0 is a label of an if or while statement and the greatest
common prefix of �0

1

and �0
2

is ✏. Since �
1

, �
2

, it cannot be the case that both �0
1

and �0
2

are empty. Without loss of generality, assume �0
1

is nonempty with l0
1

as its first element.
Since �0

1

and �0
2

have ✏ as its greatest common prefix, l0
1

cannot be the first element of �0
2

,
and hence testsC

(l0 · �0
1

) , testsC
(l0 · �0

2

). It follows then that testsC
(�

1

) , testsC
(�

2

). ⇤

5.3.3 Formal security definition

The NaCl side-channel security policies (Figure 5.1) can now be expressed as a
non-interference-like property.

Definition 21. Let C be a program, VH high-security variables and VL = Vars \ VH.
We say that C is NaCl-secure if

(s
1

VL
= s

2

^ (C, s
1

) + (s0
1

, �
1

, �
1

)) =)
For some s0

2

, �
2

, and �
2

, (C, s
2

) + (s0
2

, �
2

, �
2

) ^ (�
1

= �
2

^ �
1

= �
2

).

A weaker termination-insensitive variant is also considered, namely

94 5 Verifying side-channel countermeasures

s
1

VL
= s

2

^ (C, s
1

) + (s0
1

, �
1

, �
1

) ^ (C, s
2

) + (s0
2

, �
2

, �
2

) =) (�
1

= �
2

^ �
1

= �
2

).

Analogously, an expression e is said to be NaCl-secure if

s
1

VL
= s

2

^ (e, s
1

) + e
(v

1

, �
1

) =)
For some v

2

and �
2

, (e, s
2

) + e
(v

2

, �
2

) ^ �
1

= �
2

^ v
1

= v
2

.

The following proposition captures a convenient compositional property of our
security notion.

Proposition 22 (Compositionality). Let C
1

and C
2

be NaCl-secure programs, and let
e

1

and e
2

be NaCl-secure expressions. Then,

1. e
1

op e
2

, and a[e
1

] are NaCl-secure expressions;

2. C
1

; C
2

, [while (e
1

) C
1

]

l and
⇥
if (e

1

) {C
1

} else {C
2

}⇤l are NaCl-secure programs;

Proof. By structural induction on expressions and programs. Perhaps the most di�cult
case is the array access, where for two distinct states we have to prove that (a, v

1

) · � =
(a, v

2

) ·� (v
1

and v
2

are the values of e
1

in the di�erent states and � the memory positions
accessed by e

1

). But the proof follows directly by induction hypothesis since it is
assumed that e

1

is secure, then v
1

= v
2

. ⇤

The above property has implications on both the scalability and modularity of our
techniques. We rely on it to conduct the formal verification exercise in a gradual way,
starting from leaf functions, and tackling each function independently. This allows us
to tame the complexity of each verification step and combine the results to obtain a
global security guarantee. Furthermore, the results one obtains for a verified component
(such as the NaCl library) are established once-and-for-all, and can be reused as an
intermediate result in subsequent verification exercises, e.g. verifying di�erent client
applications that may come to use the NaCl library.

5.3.4 Verification of security

Although Definition 21 nicely captures the NaCl side-channel security policies, it
is not a convenient formalization for our verification purposes: we aim to apply self-
composition, and so we require a specification that expresses security directly over the
program state. To this end, we now introduce a program transformation that internalises

5.3 Formalisation and verification of side-channel countermeasures 95

hni = hnili = hxi = hxli = ⇥skip⇤l

(l a fresh label)

ha[e]i = hei ; ⇥xla:= cons(e, xla
)

⇤l

(l a fresh label)
he

1

op e
2

i = he
1

i ; he
2

i
hcons(e, le)i = hei ; hlei
D⇥skip⇤l

E
=
⇥skip⇤l

D
[x:= e]

l
E
= hei ; [x:= e]

l

D
[xl:= le]

l
E
= hlei ; [xl:= le]

l

D
[a[e

1

]:= e
2

]

l
E
= he

1

i ; he
2

i ; ⇥xla:= cons(e
1

, xla
)

⇤l0
; [a[e

1

]:= e
2

]

l

(l0 a fresh label)
D
[if (e) {C

1

} else {C
2

}]l
E
= hei ; [control:= cons((e != false), control)]l0

;

[if (e) {hC
1

i} else {hC
2

i}]l

(l0 a fresh label)
D
[while (e) C]

l
E
= hei ; [control:= cons((e != false), control)]l0

;

h
while (e) hCi ; hei ; [control:= cons(e, control)]l0

1

il

(l0, l0
1

fresh labels)
hC

1

; C
2

i = hC
1

i ; hC
2

i

Figure 5.3: Transformation for internalising trace information

into the program state su�cient information from the instrumented semantics. The
transformed programs explicitly manipulate control-flow and memory access trace
information.

Figure 5.3 contains the definition of the transformation h·i for both expressions
and programs. The transformation makes use of fresh list variables control and xla

(for each array variable a). Informally, given an expression e and a command C, hei
is a program that stores the indexes of arrays accessed during the evaluation of e (in
the corresponding variables xla), and hCi is similar to C but also keeps track of all
conditional tests performed and of all array access indexes (in variables control and
xla). The following proposition relates in precise terms the final values of these variables
of the transformed program, and the memory and execution traces of the original.

Proposition 23. Let C be a program such that (C, s) + (s0, �0, �0). Consider moreover

96 5 Verifying side-channel countermeasures

that s0 is the state that assigns to variable control and xla (for every array variable a
in C) the empty sequence ✏. Then, (hCi , s] s0

) + s, where:

• s = s0] s0, with dom(s0

) = dom(s0),

• s0(control) = testsC
(�0),

• s0(xla
) = projArra(�0).

Proof. By structural induction on the derivation of (C, s) + (s0, �0, �0). It is clear from the
definition of the transformation that the inserted code only a�ects variables introduced
by it, hence the partition of the final state is immediate. Moreover, every conditional
test performed during the execution is explicitly stored in variable control (notice that,
for the case of while loops, the transformation inserts code before the loop and at the
end of the loop body). Finally, every evaluated expression of the original program is
preceded by the execution of the transformation of that same expression. ⇤

Theorem 24. Let C be a program, VH high-security variables, hVi the set of variables
introduced by transforming C to hCi, and hVLi = Vars(C) \ VH [hVi. The program C
is (termination-insensitive) secure with respect to Definition 21 if for states s

1

and s
2

,

(s
1

hVLi
= s

2

^ (hCi , s
1

) + s0
1

^ (hCi , s
2

) + s0
2

) =) s0
1

hVi
= s0

2

Proof. Follows directly from Proposition 23 and Lemmas 19 and 20.
By Proposition 23, s

1

= si
1

] s0

1

and s
2

= si
2

] s0

2

where (C, si
1

) + s f
1

and (C, si
2

) + s f
2

. So,
s0

1

= s f
1

] s0
1

and s0
2

= s f
2

] s0
2

, where

• s0
1

= s f
1

] s0
1

, with dom(s0

1

) = dom(s0
1

) and s0
2

= s f
2

] s0
2

, with dom(s0

2

) = dom(s0
2

),

• s0
1

(control) = testsC
(�

1

) and s0
2

(control) = testsC
(�

2

),

• s0
1

(xla
) = projArra(�

1

) and s0
2

(xla
) = projArra(�

2

).

for all array a in C. By Definition 21, C is secure only if �
1

= �
2

and �
1

= �
2

.
By Lemma 20 if testsC

(�
1

) = testsC
(�

2

) then �
1

= �
2

, and if so, by Lemma 19 if
projArra(�

1

) = projArra(�
2

) then �
1

= �
2

, for all a in C. Since s0
1

(control) = testsC
(�

1

)

and s0
2

(control) = testsC
(�

2

) and s0
1

(xla
) = projArra(�

1

) and s0
2

(xla
) = projArra(�

2

),
then to prove that the program is secure it is su�cient to prove that s0

1

(control) =

s0
2

(control) and that s0
1

(xla
) = s0

2

(xla
), for all array a in C, i.e., prove that s

1

hVLi
=

s
2

. So, the proof of this theorem implies that the program is secure according to
Definition 21. ⇤

5.4 Case study: NaCl cryptographic library 97

The formulation given by Theorem 24 can be readily verified by the self-composition
technique (see Chapter 4). A similar result could be derived for the termination-sensitive
variant of security, but that would not be directly usable with self-composition. In our
approach we separately handle the proof of termination, which together with the previous
result trivially yields the termination-sensitive variant.

5.4 Case study: NaCl cryptographic library

We now present examples of how the techniques presented in the previous sections
can be used in practice to formally verify compliance to these policies, using o�-the-
shelf verification tools. We selected two additional examples from the core of the NaCl
library, aiming to highlight various aspects of our contributions. We begin with a
simpler one, which we can describe in more detail to adequately illustrate the practical
implementations aspects of our work. We then move on to discuss a more complex
example to further justify our contributions. Overall, we have successfully applied these
techniques to the formal verification of all of the core functions in the NaCl library
(aprox. 560 loc). Nevertheless, and even though we argue that most of the annotation
work required to carry out the exercise can be automated, we have manually annotated
the programs. The discharge of the resulting verification conditions, with the exception
of the loop-related lemmata that we explicitly factor out in the self-composition proofs,
was fully handled by automatic provers.

5.4.1 A simple example

The selected function1 is called crypto_verify and is presented in Listing 5.1. It
may be surprising to know that the high-level specification for this function is that it
compares the contents of two 16-byte arrays x and y, whose contents are high-security
and must not be leaked. The introduced optimizations aim to ensure both control flow
and data memory access independence, as prescribed by the NaCl security policies. As
a side note, we remark that we have also verified that this function is functionally correct
with respect to a (readable) reference implementation, shown in Listing 5.2, using the
methodology introduced in the previous chapter. Appendix B contains the Frama-c
annotated code to prove the equivalence between the implementations of Listing 5.1

1The actual implementation in the NaCl library totally unfolds the while loop, but this would not be
as convenient for ilustrative purposes.

98 5 Verifying side-channel countermeasures

i n t c r y p t o _ v e r i f y (cons t unsigned char �x , cons t unsigned char �y)
{

i n t d i f f e r e n t b i t s = 0 , i = 0 ;

whi le (i < 16) { d i f f e r e n t b i t s | = x [i] ^ y [i] ; i ++; }
re turn (1 & ((d i f f e r e n t b i t s � 1) >> 8)) � 1 ;

}

Listing 5.1: NaCl implementation of crypto_verify function

i n t c r y p t o _ v e r i f y (cons t unsigned char �x , cons t unsigned char �y) {
i n t i = 0 ; i n t r e s = 0 ;
whi le (i < 16) { i f (x [i] != y [i]) { r e s = -1 ; } i ++; }
re turn r e s ;

}

Listing 5.2: Reference implementation of crypto_verify function

and Listing 5.2 (the proof only required two refactoring steps). As can be seen, the
more readable implementation of the crypto_verify function is not safe accordingly to
our definition of security (Definition 21), and obviously susceptible to side-channel
attacks. The control-flow of the program is influenced by the input values of x and y.
Any attacker capable of observing the positions of the instruction pointer during the
program execution, may find out the values stored in x and y.

As explained at the end of the previous section, we establish (termination-insensitive)
security by splitting our formal verification exercise in two independent steps. The first
step is to verify safety (and termination) for all valid inputs. The second step is to apply
the program reification and formal verification tasks that permit applying Theorem 24
and establishing that the program is indeed secure according to Definition 21.

Safety and termination verification This step can be easily achieved in Frama-c by
annotating the code with appropriate pre-conditions, imposing the validity of input
arrays in the proper range, and adding some simple lemmas that allow the tool to
recognize the correct output range of the bit-wise operations used. As in the proof of
safety of the RC4 algorithm in the previous chatper, these lemmas are required because a
su�ciently expressive axiomatic semantics for these operations is typically not included
in o�-the-shelf formal verification tools such as Frama-c, since such operations are
rarely used in general-purpose software. Listing 5.3 depicts the Frama-c annotated code
to prove the safety of crypto_verify. A variant to prove termination and an invariant to

5.4 Case study: NaCl cryptographic library 99

/�@ lemma bw_xor : \ f o r a l l unsigned char a , b ; 0 <= (a ^ b) < 256 ;
@
@ lemma bw_or : \ f o r a l l i n t a , b ; 0<=a <256 && 0<=b<256 ==> 0 <=(a | b) <256;
@
@ lemma bw_ext : \ f o r a l l i n t a ; 0 <= a < 256 ==> 0 <= (1 & ((a-1) > >8)) <= 1 ;
@� /

/�@ r equ i r e s \ v a l i d (x +(0 . . 1 5)) && \ v a l i d (y +(0 . . 1 5)) ;
@� /

i n t c r y p t o _ v e r i f y _ l o o p (cons t unsigned char �x , cons t unsigned char �y) {
i n t d i f f e r e n t b i t s = 0 ; i n t i =0 ;

/�@ loop i n v a r i a n t 0<= d i f f e r e n t b i t s <256;
@ loop var i an t 16- i ;
@� /

whi le (i <16) { d i f f e r e n t b i t s | = x [i] ^ y [i] ; i ++; }

re turn (1 & ((d i f f e r e n t b i t s - 1) >> 8)) - 1 ;
}

Listing 5.3: Proving the safety of crypto_verify function

force the provers to infer the range of the variable differentbits at each iteration, are also
required to discharge all the safety proof obligations. Note that, the unfolded version of
this algorithm does not require such annotations (without loops, termination is not an
issue and no new states are introduced).

Establishing (termination-insensitive) security To apply Theorem 24, we establish
security by first constructing a reified version of the program, and then performing a
self-composition proof that it displays the required non-interference properties. The
transformed program is created according to the rules described in Figure 5.3, and
outputs a set of lists containing the relevant traces collected during the program’s
execution.

Recall that the list type introduced in the instrumented semantics of Section 5.3 is
essentially an artifact to enable the application of our proof technique. They are not
dynamic data structures o�ered by the underlying programming language, but rather
constructions that may exist merely at the logical level. Furthermore, since the values of
the constructed lists cannot influence the semantics of operations over other data types,
they enable a more elegant formalisation and an easier justification of our theoretical
results. Luckily, we can take advantage of a feature of Frama-c that enables the direct
transposition of this logical data type onto code annotations: the ability to use ghost code
in annotations enables us to include all the extra code introduced by our transformation
as comments to the original program. Furthermore, using ghost code, we have the

100 5 Verifying side-channel countermeasures

guarantee that the semantics of the original program are preserved, and cannot be
a�ected by the values of said lists as required by our formalisation. This restriction is
imposed as a necessary condition by the deductive verification tool.

In short, the fact that we do not require a concrete implementation of the list type is
a central aspect to the practical side of our work. On one hand, it eliminates a potential
gap between our theoretical and practical approaches. On the other hand, as noted
in [87], if we could not adopt this strategy, the formal verification exercise would be
rendered considerably more complex, and probably, out of reach of our framework.

In Listing 5.4 we show the result of applying the transformation in Figure 5.3 to the
program in Listing 5.1. Note the declaration of C functions that allow the construction
of the lists within ghost code. The semantics of these functions is axiomatised to capture
the necessary list constructors. At the end of execution, the final state of the ghost list
variables is essentially a logical term evidencing a sequence of cons operations. Our
experience shows that this implementation is highly suitable for being passed down to
automatic provers. To complete the verification exercise, we must establish that this

/�@ ax iomat i c l i s t { type l i s t ;
@ l o g i c l i s t n u l l ;
@ l o g i c l i s t cons (i n t e g e r n , l i s t s) ; } � /

/�@ ghos t i n t mem_control , mem_x , mem_y ;
@ ax iomat i c lmem{ l o g i c l i s t lmem_con t ro l {L} r e a d s mem_control ;
@ l o g i c l i s t lmem_x{L} r e a d s mem_x ;
@ l o g i c l i s t lmem_y{L} r e a d s mem_y ; } � /

/�@ a s s i g n s mem_control ;
@ ensures lmem_con t ro l { Here } == cons (c o n d i t i o n , lmem_con t ro l { Pre }) ; � /

void a p p e n d _ c o n t r o l (i n t c o n d i t i o n) ;
/�@ a s s i g n s mem_x ;

@ ensures lmem_x{ Here } == cons (x , lmem_x{ Pre }) ; � /
void append_x (i n t x) ;
/�@ a s s i g n s mem_y ;

@ ensures lmem_y{ Here } == cons (y , lmem_y{ Pre }) ; � /
void append_y (i n t y) ;

void c r y p t o _ v e r i f y (cons t unsigned char �x , cons t unsigned char �y) {
i n t d i f f e r e n t b i t s = 0 , i = 0 ;

/ /@ ghos t a p p e n d _ c o n t r o l (i <16) ;
whi le (i < 16) {

d i f f e r e n t b i t s | = x [i] ^ y [i] ; / /@ ghos t append_x (i) ; ghos t append_y (i) ;
i ++;
/ /@ ghos t a p p e n d _ c o n t r o l (i <16) ;

}
re turn (1 & ((d i f f e r e n t b i t s � 1) >> 8)) � 1 ;

}

Listing 5.4: Transformed version of crypto_verify function

5.4 Case study: NaCl cryptographic library 101

reified program indeed displays the non-interference property specified in Theorem 24.
Here we directly apply, in a black-box way, the approach to performing proofs by self-
composition presented in Chapter 4. Therefore, to deal with the loop structures, we
annotate the programs with natural invariants and the associated lemmata. In particular,
in order to enable the automatic discharge of all proof obligations, the lemma shown in
Figure 5.5 needs to be included.

/�@ lemma eq_ loop_p r ed {L1 , L2 , L3 , L4 } :
@ \ f o r a l l i n t i1 , i2 , i3 , d i f f b i t s 1 , d i f f b i t s 2 , unsigned char �x , � y , � x1 , � y1 ;
@ \ f o r a l l l i s t l1_x , l2_x , l1_y , l2_y , l 1 _ c o n t r o l , l 2 _ c o n t r o l , l1_x1 , l2_x1 ;
@ \ f o r a l l l i s t l1_y1 , l2_y1 , l 1 _ c o n t r o l 1 , l 2 _ c o n t r o l 1 ;
@ l1_x == l1_x1 ==> l 1_y == l1_y1 ==> l 1 _ c o n t r o l == l 1 _ c o n t r o l 1 ==>
@ loop_p r ed {L1 , L2 } (i1 , i2 , x , y , 0 , d i f f b i t s 1 , l1_x , l2_x ,
@ l1_y , l2_y , l 1 _ c o n t r o l , l 2 _ c o n t r o l) ==>
@ loop_p r ed {L3 , L4 } (i1 , i3 , x1 , y1 , 0 , d i f f b i t s 2 , l1_x1 , l2_x1 ,
@ l1_y1 , l2_y1 , l 1 _ c o n t r o l 1 , l 2 _ c o n t r o l 1) ==>
@ i 2 == i 3 ==> l 2_x == l2_x1 && l2_y == l2_y1 &&
@ l 2 _ c o n t r o l == l 2 _ c o n t r o l 1 ;
@� /

Listing 5.5: Lemma of crypto_verify function

The rest of the Frama-c input can be found in Appendix B.2. Note that the pre-
conditions include only the necessary restrictions to complete the proof, and need not
refer to all the non-high parts of the initial state. As stated above, the discharging of the
proof obligations generated by this example, bar the lemma presented above, was handled
without assistance by the automatic provers targeted by Frama-c. Furthermore, although
we have manually added these annotations, we emphasise that all of the annotations
required for this verification exercise could have been generated automatically by a tool
implementing the specification described in the previous chapter.

The only caveat to the automation potential of this approach, which is highlighted
by this example, resides therefore in the justification of self-composition lemmas such
as that presented above. As explained in the previous chapter, the proofs of the lemmas
can be interactively done using some proof assistant such as Coq, or one can use the
Coq library [7] developed for that purpose.

5.4.2 A more challenging verification example

We now discuss how our techniques allow us to deal with a wider class of programs
than previous approaches along similar lines [87, 88]. In particular, we show how
we deal with programs with complex control structures, including nested loops, and

102 5 Verifying side-channel countermeasures

s t a t i c vo id mulmod (unsigned i n t h [1 7] , cons t unsigned i n t r [1 7]) {
unsigned i n t hr [1 7] ; unsigned i n t i ; unsigned i n t j ; unsigned i n t u ;
f o r (i = 0 ; i < 17;++ i) {

u = 0 ;
f o r (j = 0 ; j <= i ;++ j) u += h [j] � r [i � j] ;
f o r (j = i + 1 ; j < 17;++ j) u += 320 � h [j] � r [i + 17 � j] ;
h r [i] = u ;

}
f o r (i = 0 ; i < 17;++ i) h [i] = h r [i] ;
s queeze (h) ;

}

Listing 5.6: A snippet of the NaCl sources containing nested loops

also how we handle the verification of complete programs: self-contained components
involving higher-level functions calling lower-level ones.

Listing 5.6 contains another snippet from the NaCl library implementation. This
function carries out a specific modular multiplication operation. We have proved its
adherence to the NaCl side-channel countermeasures using exactly the same approach
as for the previous example. Intuitively, the natural invariant for the outer loop refers
to the predicates specifying the natural invariants for the inner loops, as explained in
the previous chapter. All loop invariants refer to the contents of the trace lists in a
simple way, which is made possible by our formalisation of these lists directly using the
ACSL logical types. The end result is that the proof obligations for this more elaborate
example are also discharged automatically by the Frama-c backend provers. As before,
the self-composition lemmas must be discharged interactively, with the assistance of
some proof assistant such as Coq. This stands in contrast with the work presented
in [87], in which nested loops are excluded.

Another important point in verifying the function in Listing 5.6 is that it is not a leaf
function: it calls auxiliary function squeeze, which in turn is a leaf function. To handle
function calls in NaCl , and because we have not explicitly captured these language
constructions in our formalisation, we slightly abuse the compositionality theorem for
our theoretical framework presented in Section 5.3. In particular, we rely on the fact that
the sequential composition of two secure programs is itself secure, and simply verify
that all functions, independently, comply with the NaCl security policies. We argue
that this is acceptable because of the following facts about the NaCl implementation
which allow us to conclude that function calls in NaCl cannot, in themselves, introduce
dependencies:

• It relies only on the char and int data types and arrays thereof, and uses no dynamic

5.5 Summary 103

memory allocation.

• The relative addresses of all called functions are fixed at compile time.

• Parameter passing in the NaCl library is extremely conservative: all parameters
are passed on a call-by-value basis with the exception of byte arrays.

• In NaCl , the base addresses of byte arrays passed by reference are all fully
determined at compile time, with constant o�sets relative to the start addresses of
the memory regions that the caller itself received.

An alternative approach, which we have also implemented, permits formally veri-
fying programs relying on a slightly more flexible parameter passing convention. In
particular, we could exclude programs that introduce dependencies when passing the
base address of a memory region to a callee function using an o�set that depends on a
sensitive value. This implies enhancing the reification of a caller function to incorporate
in its output traces the start addresses of all memory regions passed by reference to the
callees. However, we leave for future work the formalisation and a full description of
the implementation of our techniques for these more complex use cases.

5.5 Summary

In this chapter, we have shown how the techniques presented in the previous chapter
can be applied to verify compliance to security policies aiming to reduce exposure to
timing side-channel attacks. These properties are formulated in terms of non-interference
and formalised using the self-composition technique [17]. We address the problem at
the C source code level; our motivation is twofold:

• Our goal is to enable the formal verification of claims that were, until now, stated
and checked in an informal way. Our solution is designed to respond to the
concrete needs of cryptographers, by focusing on existing security policies and
source-code that are used in real-world applications. In Section 5.3.3 we provide
formal definitions of these security policies, so that their purpose and reach can be
better understood. We also use these definitions to precisely justify the guarantees
provided by our formal verification approach.

• Our solution is based once again on o�-the-shelf formal verification tools and
in the composition-based methodology introduced in the previous chapter. By

104 5 Verifying side-channel countermeasures

using existing tools, we are able to anchor the trust that may be deposited in our
approach on a well-established and standard class of tools and techniques. At
the same time, we demonstrate the applicability of existing technology to novel
application areas, namely the formal verification of countermeasures against wider
classes of side-channel attacks, and we demonstrate the potential for automating
the verification of cryptographic software by self-composition, showing that we
can tackle a wider class of programs than previous approaches in the same line.

Part II

CAOVerif : A deductive verification
tool for CAO

105

Chapter 6

A deductive verification tool for CAO

The results achieved in the first part of this thesis demonstrated the great potential
of the deductive verification techniques to verify security-relevant properties in crypto-
graphic software implementations written in C. However, the level of automation that
can be achieved using such implementations is not very high, partly because of the
intrinsic characteristics of the C language. The CAO language, due to its simplicity,
represents an opportunity to develop a domain-specific deductive verification tool, al-
lowing the for the same verification techniques and hopefully with a higher degree of
automation.

In this chapter we outline the implementation aspects of such deductive verification
tool, named CAOVerif, focusing on how we tackle the interesting challenges presented
by the CAO language. We introduce a formalisation in first-order logic of the rich
mathematical data types that are used in cryptography. We base our presentation on
real-world examples of CAO code, extracted from the open-source code of the NaCl
cryptography library. We show how we fine tuned our tool to enable the fully automatic
formal verification of simple properties (in particular safety properties), and also more
ambitious proof goals (arising in general proofs of functional correctness).

6.1 The CAO programming language

The CAO language [66] was developed in the CACE project and allows for the
practical description of cryptography-relevant programs. Unlike languages used in
mathematical packages such as Magma or Maple, which allow high-level mathematical
constructions to be described in their full generality, CAO is restricted to enabling the

107

108 6 A deductive verification tool for CAO

implementation of cryptography kernels (e.g. block ciphers and hash functions) and
sequences of finite field arithmetics (e.g. for elliptic curve cryptography). CAO has
been designed to allow the programmer to work over a syntax that is similar to that of
C, while focusing on the implementation aspects that are most critical for security and
e�ciency. Ideally, CAO should allow the implementation of low-level cryptographic
primitives in way which is close to the notation used in scientific papers and standards,
so that correctness should follow almost directly from transcription. Conversely, one
might expect that standards and scientific papers could specify cryptographic primitives
in a language such as CAO.

The memory model of CAO is extremely simple: there is no dynamic memory
allocation, evaluation of expressions produces no side e�ects, and the language has a call-
by-value semantics. Furthermore, CAO does not support any input/output constructions,
as it is targeted at implementing the core components in cryptographic libraries. On
the other hand, the native types and operators in the language are highly expressive
and tuned to the specific domain of cryptography. These features can be used by the
CAO compiler to provide domain-specific analysis and optimisation when generating
machine-level executable code.

A detailed specification of CAO can be found in [79, 10]. Next we will detail the
most important features of this language. In Appendix C we include source code written
in CAO, extracted from the NaCl cryptographic library.

6.1.1 CAO language overview

The syntax of CAO is detailed in [79, 10]. In a nutshell, as a C-like language,
CAO includes conditionals and loops, as well as global variable declarations, function
declarations and procedures. CAO expressions include among other things, integer
arithmetic and comparison, and bit-wise and boolean operations. Perhaps worth noticing
is the seq statement that permits expressing loop constructions where the number of
iterations can be statically determined. Here, the iterator is an integer variable, seen as
a read-only constant within the loop body. The syntax of expressions is also similar to
that of C, although the set of types and operations is significantly di�erent.

Type system The CAO type system includes a set of primitive types: int for arbitrary
precision integers, bits[n] for bitstrings of finite length, mod[n] for rings of residue
classes modulo an integer (intuitively, arithmetic modulo a composite integer, or a

6.1 The CAO programming language 109

finite field of order n if the modulus is prime), bool for boolean values and void to
represent the unit type. Derived types allow the programmer to define more complex
abstractions. These include the product construction struct, the generic one-dimensional
container vector[n] of ⌧, the algebraic notion of matrix, denoted matrix[i, j] of ⌧, and
the construction of an extension to a finite field ⌧ using a polynomial p(X), denoted
mod[⌧ <X> / p(X)] (intuitively, the finite field of order nd can be implemented using
arithmetic modulo an irreducible polynomial p(X) over polynomials with coe�cients
in ⌧, where ⌧ represents a finite field of order n and p(X) has degree d).

CAO also allows the programmer to define new identifiers for the existing types in
a similar way to the typedef construct in C. These new identifiers are known as type
synonyms and their general purpose is to make programs clear and easier to read. An
example of the definition of type synonyms is presented next.
t ypede f DES_KEY := unsigned b i t s [6 4] ;
def k : DES_KEY;

Observe that, afterwards one can declare a variable k using the new type name DES_KEY.
An implementation of a type-checker for CAO programs has been derived from the

CAO type system formalisation [10] and in this thesis we assume that the input CAO
programs that we are taking into account are type-safe (previously type-checked). We
remark that type information includes in particular the concrete sizes of all container
types, the moduli and polynomials in rings and finite fields, etc. Furthermore, the CAO
type checker is able to reject all programs where incompatible type parameters are
passed to an operator. For example, the size restrictions associated with matrix addition
and multiplication are enforced by the type system. The same happens for operations
involving bitstrings, rings and finite fields, where the type system checks that operator
inputs have matching lengths, moduli, etc.

Operations Algebraic operators are overloaded so that expressions can include integer,
ring/ finite-field and matrix operations. The ** operator represents the exponentiation
operation, where the basis can be an integer or a value in a modular type, and the
exponent must be a non-negative integer. The natural comparison operators, extended
bitwise operators, boolean operators and a well-defined set of type conversion (cast)
operators are also supported.

Bitstring, vector and matrix access operations are extended with the range selection
(..) operator (these are also known as slicing operations). This operator is also more

110 6 A deductive verification tool for CAO

general than the C array: we can specify ranges of values for each index. For example,
the following CAO code assigns the bits of x ranged between 0 and 3 to y.
def x : unsigned b i t s [8] ;
def y : unsigned b i t s [4] ;

y := x [0 . . 3] ;

CAO also introduces the concat operator @. Vectors and bitstrings can be concatenated
using the @ operator. The idea of @ is that it allows two operands to be "composed".
For example, the following construction y := x[0] @ x[1] @ x[2]; represents the
application of concat operator and has the same meaning of y := x[0..2];.

The soundness of the type system has recently been established with respect to the
semantics of CAO [9]. This result implies that a correctly typed CAO program can only
give rise to a well-defined set of trapped errors. This notion has a direct bearing on the
discussion of what safety means for CAO programs.

6.1.2 Safety in CAO

One of the requirements for CAOVerif is that safety verification should be feasi-
ble with minimum intervention from the end-user. Program safety in CAO has two
dimensions: memory safety and safety of arithmetic operations. A program is said to
be memory safe if it never fails at run-time by accessing an invalid memory address.
Memory safety verification is not in general a trivial problem in languages with pointers
and heap-based data structures, and indeed there exist dedicated verification tools for this
task. However, for correctly typed CAO programs, this problem is reduced to making
sure that all indices used in vector, bitstring and matrix index accesses are within the
proper range.

The safety of arithmetic operations is more interesting. In CAO we have four
algebraic types: arbitrary precision integers, rings of residue classes modulo a composite
number, finite fields, and matrices thereof. The semantics of operators over these types
is precisely given by the mathematical abstractions that they capture. This means
that the concept of arithmetic overflow does not make sense in this context, and it
leaves as candidate safety verification goals the possibility that such operators are not
defined for certain inputs, and that such pathological cases might not be caught during
type-checking.

6.2 Implementation 111

Assuming that CAO program correctly type-checks, then matrix addition and multi-
plication are intrinsically safe (observe that there is only matrix addition and multiplica-
tion). The safety of integer operations includes the classic division-by-zero condition.
Furthermore, the exponentiation operator over integers, rings and finite-fields is only
defined for non-negative exponents (for usability reasons, programmers are required to
denote multiplicative inverses explicitly through the division operator). Rings and finite
fields pose other specific interesting problems, as they are not syntactically distinct CAO
types. Take the following declarations1.

def a : mod [1 3] := [4] ; def b : mod [1 0] := [5] ;
def c : mod [1 3] := 1 / a ; def d : mod [1 0] := 1 / b ;

All of these operations are safe, except for the initialization of d. The reason for
this is that the multiplicative inverse modulo 10 is only defined for those integers in the
range 1 to 9 that are coprime with 10. This means that, whenever a division occurs in
the mod[n] type, one must also ensure that the divisor is coprime to the modulus.

When the modulus is a prime number, then the mod[n] type represents the finite
field of size n. In this case, the previous problem reduces again to the division-by-zero
case, as all non-zero elements have a multiplicative inverse. However, this observation
does not help, unless there is a way to verify that the modulus is indeed a prime number.
One way to do this, of course, is to allow the programmer to vouch for the primality of
the modulus. We will return to this issue further in this thesis (at Section 6.3.5). Finally,
a related problem arises when one considers the construction of extension fields. In this
case, not only must one ensure that the underlying base type represents a finite field
(which might not be the case for the mod[n] type) but also that the polynomial that is
provided is irreducible in the corresponding ring of polynomials.

6.2 Implementation

The goal of the deductive verification tool for CAO is to allow developers to verify
properties of CAO programs at the source code level. CAOVerif, follows the same
approach used in other scenarios for general-purpose languages such as Java [67] and C
[45]. In fact, part of the foreseen functionality for the tool is a direct adaptation of what
is done for other languages. This includes, not only features such as the ability to check a
program to be free of common programming errors and security vulnerabilities (such as

1Here the [·] syntax on literals distinguishes literals of modular types from integer literals.

112 6 A deductive verification tool for CAO

those arising from incorrect calculations or indexing out of bounds), but also, and more
generally, the power to reason about functional properties of programs expressed using
logic assertions such as post-conditions. An implication of designing such a generic
verification tool is that one must devise a way to enrich input programs with additional
information. Typically this information takes the form of special annotations inserted in
the source code as comments that follow a specific syntax.

CAO-SL CAO-SL, the annotation language that we envision being used in the CAO
verification tool is mostly inspired by the behavioural interface specification language
ACSL (already introduced in Chapter 3). One distinctive feature of this specification
languages is the fact that the syntax of expressions is the same as (or a superset of) that
used by the programming language, which makes the process of annotating a program
much more intuitive than it would otherwise be.

The annotations in CAO-SL are embedded in comments (and thus ignored by the
CAO compiler) using a special format recognised by the verification tool. The logical ex-
pressions used in annotations correspond to CAO expressions with additional constructs.
CAO-SL includes the definition of function contracts with pre- and postconditions,
statement annotations such as assertions and loop variants and invariants, and other
annotations commonly used in specification languages. CAO-SL also allows for the
declaration of new logic types and functions, as well as predicates and lemmas. A
complete description of CAO-SL can be found in [66]. We remark that CAO-SL is rich
enough to formalize arbitrary functional properties of CAO programs. More specifically,
it allows the formalisation of security-relevant properties. Appendix C contains relevant
examples of CAO programs annotated with CAO-SL specifications. Further in this
chapter (see Section 6.4) we present how we can verify some of the security policies
addressed in the previous chapters in cryptographic implementations written in CAO
(extracted from the NaCl library).

6.2.1 Tool architecture

We first present our view of CAOVerif from a user’s perspective. It is very important
to clarify that, although the goal is to include as much automation as possible, the fact
that we pursue a method which guarantees soundness with the highest level of assurance
will very likely preclude a full fledged deductive verification tool.

The tool architecture itself fundamentally relies on the Jessie plug-in, which itself

6.2 Implementation 113

Figure 6.1: Tool architecture

uses Why as a back-end and is one of the components integrated into the Frama-
c framework. This allow us to significantly reduce the tool development time and
e�ort. Jessie enables reasoning about typical imperative programs, and it is equipped
with a first-order logic mechanism, which facilitates the design of new models and
extensions. In particular, it is possible to use this feature to define in Jessie a model of
the domain-specific types and memory model of CAO. This means that an annotated
CAO program can be translated into an annotated Jessie program and, from this point
on, our verification tool can rely totally on the functionality of Jessie and Why. The
diagram in Figure 6.1 outlines the architecture of our tool. We remark that in the next
chapter (Chapter 7) we reason about the correctness of this approach.

• An annotated CAO program (which can be processed without change by the CAO
compiler, since annotations are included in the code as comments) is first checked
for syntactic errors and typing errors. After obtaining a well-typed Abstract Syntax
Tree (AST) we then translate it into Jessie input language, using the front-end

114 6 A deductive verification tool for CAO

component for CAO (Cao2Jessie).

• Most of the CAO types are not Jessie native types (e.g. extension fields, bitstrings,
etc), thus the translation includes the axiomatic model of the CAO type system in
first-order logic plus the translation of the CAO annotated program.

• The proof obligations are generated by running the Jessie plug-in, which uses
Why as a back-end, on the output of Cao2Jessie tool. The proof obligations can
then be checked by some existent automatic prover or proof assistant. Using this
implementation strategy, we inherit the advantages of separating the design of the
tool into modules.

One advantage of this modular architecture is that it allows the enrichment of the
annotation language without the necessity of changing the VCGen input language, and
vice-versa. Conversely, the VCGen mechanism can be changed without modifying the
specification language (in particular it can be interfaced with additional proof assistants
and proof tools).

6.2.2 Strategy

In order to better illustrate our approach to designing a VCGen for CAO taking
advantage of an existing generic VCGen, we introduce a very simple example. Consider
the definition of the VCGen introduced in Chapter 2 of the WhileC language, that
corresponds to an abstraction of the CAO language, and how one deals with safety. The
weakest precondition of the array assignment operation resembles the following

wp(a[e
1

] := e
2

,) = safe(a[e
1

]) ^ safe(e2) ^ [upd(a, e
1

, e
2

)/a]

where safe(a[e
1

]) = safe(e1)^ 0  e
1

< len(a) and, safe(e
1

) and safe(e
2

) impose that
the evaluation of e

1

and e
2

will not produce arithmetic errors.
Rather than implementing the VCGen from scratch, one alternative possibility is

to construct the VCGen for WhileC on top of the While⇤ VCGen2 (also introduced in
Chapter 2). Recall that While⇤ is an abstraction of the Jessie language where the
array type is introduced as a logical type, for which a model is given. Leaving safety

2WhileC annotated programs are translated into While⇤ input language, and the While⇤ VCGen is used
to generate the proof obligations.

6.2 Implementation 115

considerations aside for the moment, the array assignment command could be translated
as follows, where h·i denotes the translation of both program instructions and expressions:

ha[e
1

] := e
2

i ⌘ a = set(a, e
1

, e
2

)

In the concrete case of CAO and Jessie, one can rely on the Jessie VCGen to follow
this approach for the entire CAO language. There is an overlap between the CAO
language and the Jessie input language that enables a direct translation of many language
constructions. Furthermore, for each CAO type that is not supported by Jessie we are
able to declare a set of logical functions, and write a theory that creates a first-order
model of the type. Then this enables us to translate arbitrary annotated CAO programs
into suitable programs of the Jessie input language.

Let us now turn back to the example above, to see how we deal with safety conditions
using While⇤’s assert clause to force the generation of arbitrary proof obligations. Safety
conditions for arrays can be generated by translation the assignment instruction as
follows:

ha[e
1

] := e
2

i ⌘ assert 0  he
1

i < len(a) ^ �; a = set(a, he
1

i, he
2

i)

where � corresponds to the conjunction of the conditions necessary to guarantee the
safe evaluation of e

1

and e
2

. Of course, in CAO we have to deal with data types that are
considerably more sophisticated than arrays. Yet, the general pattern followed in the
implementation of our tool is the same. The introduction of each new type implies the
introduction of a new theory, including the definition of logical functions together with
axioms to model their behavior. Some lemmas and predicates may also be introduced
to facilitate the process of proving goals. The correctness of this approach will be
addressed in Chapter 7, where we discuss how one can establish the soundness of a
verification tool developed in such a way.

6.2.3 Emphasis on automation

The fact that Jessie relies on the Why VCGen, which is a multi-prover tool, means
that it is possible to export verification conditions to a large number of di�erent proof
tools, from SMT-solvers to the Coq interactive proof assistant. The typical workflow is
to first discharge “easy” VCs using an automatic prover, and then interactively handle the

116 6 A deductive verification tool for CAO

remaining conditions. Our translation enables varying degrees of automation, depending
on the complexity of the verification goals. As is the case with VCGens for other realistic
languages, one expects safety conditions to be proved with a high degree of automation,
whereas a lower degree is acceptable for other functional properties.

The degree of automation that we can achieve in verifying the safety of CAO
programs is quite high. We are able, for example, to carry out without user intervention
the safety verification of the entire CAO implementation of crypto_scalar_mult function
included in Appendix C, which includes heavy use of finite field, vector and matrix
operations, across several dependent functions. We are also able to automatically deal
with surprisingly intricate proofs of functional correctness with only minor intervention
from the user in interactively discharging proof obligations.

6.3 CAO to Jessie translation

In this section we will resort to snippets of CAO code to describe the most interesting
parts of the CAO to Jessie translation carried out by our verification tool, which
essentially correspond to the rich cryptography-specific data types that are available in
CAO. In other words, we will focus on the way in which we handle the parts of the CAO
language (including the extension to CAO-SL) that do not directly map to constructions
in the Jessie input language, leaving out the standard imperative constructions supported
by both languages, the CAO types that directly map to Jessie native types, and the
translation of annotations, which is also direct (in Appendix D we detail the remaining
translations). In the following, hxi denotes the translation of a part of the input CAO
program x into Jessie. Here x can denote any part of the input AST, e.g. a full program,
a type declaration, an expression, etc.

Figure 6.2 gives an overview of how CAO type declarations are translated into
Jessie type declarations. Some CAO primitive types are translated to Jessie primitive
types, namely int, bool and void. This means that, for these CAO data types, we directly
benefit from the models already provided by the Jessie plug-in for reasoning about the
target Jessie native types.

The remaining CAO types are mapped into newly declared Jessie logic types. Note
that, for parametrised data types such as mod[n], the target type in Jessie is named so as
to explicitly capture the type parameter. This also explains why we use the translation

6.3 CAO to Jessie translation 117

hinti = integer hbits[n]i = bits
hbooli = boolean hmatrix[n1,n2] of ⌧i = matrix_h⌧i
hvoidi = unit hmod[⌧ <X> / p(X)]i = field_h⌧i_hf(X)i

hmod[n]i = mod_n hvector[n1] of ⌧i = vector_h⌧i

Figure 6.2: Type translation.

operation recursively in Figure 6.2. In the following, we discuss how we enrich the
generated Jessie input file with logic models that partially capture the semantics of the
translated CAO types, in order to enable both automatic and interactive reasoning about
the input CAO program.

6.3.1 Container types

The container types in CAO include the vector[] of, matrix[] of and bits types. The
get and set operations on these types are modeled in Jessie using exactly the second
approach that we described in the example in the previous section. The only caveat
is that they are generalized to two dimensions in the case of matrices, and that we set
Jessie type bool as the content type in the case of bitstrings. For instance, the axiomatic
model of the vector[] of ⌧ type, includes the definition the following logical functions,
together with the axioms to model their behaviour.

vector_h⌧i_get : vector_h⌧i ! integer! h⌧i
vector_h⌧i_set : vector_h⌧i ! integer! h⌧i ! vector_h⌧i

8 vector_h⌧i v, integer i, ⌧ x. vector_h⌧i_get(vector_h⌧i_set(v, i, x), i) == x

8 vector_h⌧i v, integer i, j, ⌧ x. i ! = j =)
vector_h⌧i_get(vector_h⌧i_set(v, i, x), j) == vector_h⌧i_get(v, j)

Additionally, CAO includes elaborate operators to deal with these container types that
are fine-tuned to the implementation of cryptographic algorithms, namely symmetric
primitives such as block ciphers and hash functions. As an example, consider the next
snippet from a CAO implementation of the Advanced Encryption Standard (AES) [1]

118 6 A deductive verification tool for CAO

block cipher (the full implementation in CAO can be found in Appendix E).

def Shi f tRows (s : S) : S {
def r : S ;
seq i := 0 t o 3 { r [i , 0 . . 3] := (Row) (((RowV) s [i , 0 . . 3]) | > i) ; }
re turn r ; }

What we have here is a sequence of rotation (|>) operations applied to the ith row
of a 4 ⇥ 4 matrix s. The way in which this is expressed in CAO takes advantage of the
range selection operator (..) that returns a value of the corresponding container type,
with the same contents as the original one, but with appropriate dimensions. Here, this
operator is used to select an entire row in the matrix, which is cast into the correct vector
type (here the RowV type denotes a vector of size 4) in order to be rotated. The result is
then cast back to the correct matrix type that can be assigned to the original row slice in
matrix r.

Our first-order formalisation of container types deals with shift, rotate, range se-
lection, range assignment and concatenation (@) operators in container types using a
pattern that relies on two logic functions (shift and blit). We present the case of the vector
type. The model assumes that a vector has infinite length, i.e., it has a start position,
but it is represented as an unbounded memory block. The only exception to this rule is
the extensional equality operator (==), where translation explicitly refers to the range
of valid positions over which equality should hold. We emphasize that this part of the
model deals only with the functionality of these operators: safety is handled separately
by introducing appropriate assertions, as will be seen in Section 6.3.5.

Intuitively, the shift logic function takes as input a vector of arbitrary length, starting
in position 0, and produces the vector that starts at position i. The blit logic function
involves two vectors, source s and destination d, an index i and a length parameter l. It
produces the vector with the contents of d for indices 0 to i � 1, and from i + l onwards;
the l positions in between contain the region 0..l � 1 of s. The behaviour of these logic
functions is modeled by the declarations and axioms given in Figure 6.3.

Range selection Given a CAO variable µ of type vector[n] of ⌧, the CAO range
selection operation is modeled in Jessie as follows:

h µ[i..j] i ⌘ let x
1

= hii in (let x
2

= hji in

assert (0  x
1

< n) && (0  x
2

< n) && (x
1

 x
2

); shift(hµi, x
1

))

6.3 CAO to Jessie translation 119

blit_vector_h⌧i : vector_h⌧i ! vector_h⌧i ! integer! integer! vector_h⌧i
shift_vector_h⌧i : vector_h⌧i ! integer! vector_h⌧i

8v, ofs, i. get_vector_h⌧i(shift_vector_h⌧i(v, ofs), i) = get_vector_h⌧i(v, (ofs + i))

8src, dest, ofs, len, i. ofs  i < (ofs + len) =)
get_vector_h⌧i(blit_vector_h⌧i(src, dst, ofs, len), i) = get_vector_h⌧i(src, i � ofs)

8src, dest, ofs, len, i. i < ofs _ i � (ofs + len) =)
get_vector_h⌧i(blit_vector_h⌧i(src, dst, ofs, len), i) = get_vector_h⌧i(dst, i)

Figure 6.3: Declarations and axioms for vector types.

where i and j are integer expressions. We remark that although the translation disregards
the upper bound j in the call to shift, the type-checking phase has ensured that the range
selection operation µ[i.. j] with µ of type vector[n] of ⌧, returns type vector[j � i + 1] of
⌧, thus implicitly taking that upper bound into account. Furthermore, all future accesses
to the resulting vector will be checked for safety within the valid bounds prescribed by
the associated data type.

Range assignment Assigning to a region in a vector is modeled directly using the blit
function.

hµ1[i..j] := µ2i ⌘ hµ1i = let x
1

= hii in (let x
2

= hji in

assert (0  x
1

< n) && (0  x
2

< n) && (x
1

 x
2

);

blit(hµ2i, hµ1i, x1

, x
2

� x
1

+ 1))

Concatenation Consider the CAO variables µ
1

and µ
2

of types vector[n1] of ⌧ and
vector[n2] of ⌧ respectively. The concatenation of vectors µ

1

and µ
2

can also be captured
using the blit function.

hµ1 @ µ2 i ⌘ blit(hµ2i, hµ1i, n1

, n
2

)

The intuition behind this definition is that concatenation can be seen as a range assign-
ment operation, where µ

2

is assigned to the region of µ
1

that starts at position n
1

(recall
that in the model vectors are assumed to have infinite length).

120 6 A deductive verification tool for CAO

Initialisation Vectors initialisation is done using the function any_vector_h⌧i which
does not have any input values, but produces as output a value of type vector_h⌧i.

hdef v : vector[n] of ⌧i ⌘ var vector_h⌧i v = any_vector_h⌧i()

Matrices Our model of matrices is a direct generalization of the above strategy to the
2-dimensional case. However, our model of matrices must also account for the fact that
the matrix type in CAO is an algebraic type that supports addition and multiplication
operations (indeed this is why in CAO you can only define matrices whose contents are
themselves algebraic types).

The formalisation of matrices in first-order logic includes the matrix addition and
multiplication arithmetic operations as logic functions

matrix_h⌧i_add,matrix_h⌧i_mult : matrix_h⌧i ! matrix_h⌧i ! matrix_h⌧i

The functionality of the addition operator is modeled using the following axiom:

Axiom 1. Let A and B be matrices of dimensions m ⇥ n, and ai j and bi j the elements in
the ith row and jth column of A and B, respectively. Then, 8 j, i. (A + B)i j = ai j + bi j.

An equivalent axiom for matrix multiplication was not introduced because, for
each possible base type, we would need the (higher-order) logic formalization of the
mathematical (iterative) sequence summation operator ⌃.

The translation of expressions with arithmetic operations of type matrix[n
1

,n
2

] of ⌧
is therefore the following:

h µ1 + µ2 i = matrix_h⌧i_add(hµ1i, hµ2i)
h µ1 ⇤ µ2 i = matrix_h⌧i_mult(hµ1i, hµ2i).

Shift and rotate To present the shift and rotate operations in a more intuitive way,
we will turn to the bits type. Both operations are modeled using the blit function. The
rotate operations are commonly known as circular shifts. A downwards circular shift by
1 is defined as a permutation of the entries in a tuple where the last element becomes
the first element and all the other elements are down-shifted one position. Conversely,
in an upwards circular shift, the first element becomes the last element and all the others

6.3 CAO to Jessie translation 121

are shifted up. As an example, consider the bits literal: 0b1101001. The internal
representation of bits in our model stores the least significant bit (the right-most bit) in
the 0-th position. This means that an upwards (resp. downwards) rotate corresponds to
the intuitive interpretation of a left (resp. right) rotation. An example of a down rotate
is therefore

0b1101001 |> 3 = 0b0011101

and an example of an up rotate is

0b1101001 <| 3 = 0b1001110.

In our model, for a CAO expression e of type vector[n] of ⌧ or bits[n], we have:

he <| ii ⌘ he[n � i .. n � 1] @ e[0 .. n � i � 1]i ⌘ blit(shift(hei, 0), shift(hei, n � i), i, n � i)

he |> ii ⌘ he[i .. n � 1] @ e[0 .. i � 1]i ⌘ blit(shift(hei, 0), shift(hei, i), n � i, i)

where i is a constant of type int. The intuition is that rotations can be seen as con-
catenations of the appropriate sub-regions, which in turn are modeled using the blit
function.

Logical shifts are handled in a similar way, but resorting to bits_null_vector (a
logical variable representing the all-zeroes bits value) to fill in the positions left vacant
by the operation, i.e.,

he ⌧ ii ⌘ blit(shift(e, 0), bits_null_vector, i, n � i)

he � ii ⌘ blit(bits_null_vector, shift(hei, i), n � i, i)

To model the behaviour of the bits_null_vector logical variable we include the following
axiom in the bits type theory:

8 integer j. bits_get(bits_null_vector, j) == false;

We remark that our model of the operations over bitstrings is complete, and therefore
allows us to deduce the natural properties of bitstring operations. Furthermore, sur-
prisingly complex properties can be derived automatically. Consider, for example, the
bistring rotation operation and the property that rotating n times a bitstring of length n
in the same direction yields the original bitstring:

8i. 0  i < n =) he[i]i == h(e |> n)[i]i

122 6 A deductive verification tool for CAO

8i. 0  i < n =) he[i]i == h(e <| n)[i]i

Or, more generally, for a bitstring of length n
1

+ n
2

,

8i. 0  i < (n
1

+ n
2

) =) h(e <| n1)[i]i == h(e |> n2)[i]i

Our model enables proving these properties automatically using, e.g., Alt-Ergo.

Bits literal representation CAO bits representation specifies that the least significa-
tive bit is the right most bit, and the most significative is the left most bit. For instance,
the literal 0b1010 is represented as follows:

0b1011 ⌘ bits_set(bits_set(bits_set(bits_set(

bits_null_vector, 0, true), 1, true), 2, f alse), 3, true).

Equality and inequality To compare bitstrings and matrices we include in each model
a logical predicate together with the corresponding axiom. For instance, the predicate
bits_eq, used to compare two bitstrings of length l, is axiomatised as follows:

8 bits b
1

, b
2

. 8 integer l.

bits_eq(b
1

, b
2

, l) ⌘ (8 integer i. 0 <= i < l) bits_get(b
1

, i) == bits_get(b
2

, i)).

However, Jessie does not allow logical predicates to appear in the standard language
constructions (such as conditional branches and loops). For this reason, we also associate
to each predicate a Jessie function that is used in the translation of CAO constructions
(those that are not annotations) which include comparisons. Each function returns a
boolean value and indicates whether the logical predicate holds or not. For example,
the Jessie definition of the function used to compare two bitstrings is as follows:
boo l ean b i t s _ eq_pa r am (b i t s x , b i t s y , i n t e g e r l)
b e h a v i o r d e f a u l t :

ensures (i f \ r e s u l t t h en b i t s _ e q (x , y , l) e l s e (! b i t s _ e q (x , y , l))) ; ;

Bitwise operations We complete this section with a brief description of how bitwise
operations are handled in our model, as these are of critical importance in cryptographic
applications. Here we greatly benefit from the design of the CAO language, where the

6.3 CAO to Jessie translation 123

classic ambivalence between integers and their bit-level representations (that exists in
the C int type) is eliminated by introducing the bits type. Indeed, CAO programmers
can freely use bitstrings of any size, and convert these to and from the type int that
represents the mathematical type Z. A very simple model of bitstrings based on vectors
of bits (boolean values) can be used, although things get more complicated when we
need to deal with type conversions. The Jessie model of bitwise operations on bits is
based on the following logic functions, which are axiomatized in the obvious way:

bits_bitwise_xor : bits! bits! bits bits_bitwise_and : bits! bits! bits

bits_bitwise_or : bits! bits! bits bits_bitwise_neg : bits! bits

CAO bitwise operations are translated as:

he1 � e2i ⌘ bits_bitwise_h�i(he1i, he2i) h! ei ⌘ bits_bitwise_neg(hei)

where � 2 {|,&, ˆ} and µ
1

and µ
2

are expressions of type bits[n].

6.3.2 Rings, fields and extension fields

Residue classes modulo n The mod[n] type is an algebraic type. For n 2 N, it
corresponds to the algebraic ring Zn. Moreover if n is prime, then mod[n] permits
programmers to take full advantage of the fact that Zn is a field.

More in detail, the Jessie model for the mod[n] type is based on the congruence
relation defined by n over the integers. For a positive integer n, two integers a and b are
said to be congruent modulo n if a � b is an integer multiple of n, and this is denoted by
a ⌘ b (mod n).

For any integer a, the corresponding equivalence class modulo n is denoted by [a],
and it corresponds to the set a+nZ, where nZ is the set of multiples of n. For all integers
a, the unique value r satisfying a = nq + r ^ 0  r < n (for some integer q) is called
the least residue of a modulo n. The set {0, 1, ..., n � 1} is therefore called the set of
least residues modulo n. Each residue class modulo n is represented by a least residue
modulo n.

The model of mod[n] starts with the definition of the logic type mod_n, which
intuitively is inhabited by the residue classes modulo n. This type is equipped with logic
functions that convert to and from the Jessie integer type, as well as the mapping that

124 6 A deductive verification tool for CAO

results from their composition.

int_of_mod_n : mod_n! integer

mod_n_of_int : integer! mod_n

mod_n : integer! integer

The conversion to integers captures the homomorphism mapping a residue class into
the corresponding least residue, whereas the converse operation represents the homo-
morphism mapping an integer into its residue class. The mod_n function represents the
composition of the previous two, and associates to each a 2 Z the least residue r 2 Z of
[a]. The model includes a set of axioms for the following mathematical properties of
these functions:

8x. 0  int_of_mod_n(x)  n � 1

8x. 0  x  n � 1 =) mod_n(x) = x

8x. x � n =) mod_n(x) = mod_n(x � n)

8x. x < 0 =) mod_n(x) = mod_n(x + n)

8x. mod_n(int_of_mod_n(mod_n_of_int(x))) = mod_n(x)

Equipped with these functions we can base our entire model of integers modulo n on
the theory of integers included in Jessie, which permits taking advantage of built-in
arithmetic supported by many automatic provers.

The Jessie translation of arithmetic operations involving expressions of type mod[n]
is based on the homomorphisms declared above. First, int_of_mod_n is used to get the
least residues of the equivalence classes involved in the arithmetic operation, which is
then carried out over the integers. Finally, we apply mod_n_of_int to the result to recover
the equivalence class that represents the result. Hence, the translation of arithmetic
operations on type mod[n] is given as follows, for op 2 {+,�, ⇤}.

he1 op e2i ⌘ mod_n_of_int(int_of_mod_n(he1i) opinteger int_of_mod_n(he2i))
he1 ⇤⇤ e2i ⌘ let x = he2i in assert x � 0;

mod_n_of_int(int_of_mod_n(he1i)⇤⇤integer x)

he1 / e2i ⌘ let x = int_of_mod_n(he2i) in assert gcd(x, n) = 1;

mod_n_of_int(int_of_mod_n(he1i) ⇤integer inv_mod(x, n))

6.3 CAO to Jessie translation 125

Exponentiation is translated so as to ensure that verification guarantees that the exponent
is nonnegative, which would otherwise result in an error according to the semantics
of the language. Also note the special case of division. This is justified because
the semantics of division modulo n is not the same as integer division. Firstly, one
must express the correct semantics, which we do by introducing the logical function
inv_mod(x, n). Simple properties involving operations with this function, which are
used to automatically discharge some proof obligations, are axiomatized as:

8x. gcd(int_of_mod_n(x)), n) = 1 =)
mod_n(int_of_mod_n(x) ⇤integer inv_mod(int_of_mod_n(x), n)) = mod_n(1)

8x, y. mod_n(int_of_mod_n(x) ⇤integer y) = mod_n(1) =)
inv_mod(int_of_mod_n(x), n) = mod_n(y)

Secondly, in the division case, one must generate a proof obligation for the safety
condition that CAO programs should not perform undefined divisions. This property is
trivially true if the divisor is in the range 1 . . . n � 1 and the number n is prime. Hence
we add the following axiom to our model, to automatically handle these trivial cases.

8x, n. is_prime(n) ^ (0 < x < n) =) gcd(x, n) = 1

where is_prime : integer ! boolean is a predicate to check if an integer number is
prime, and gcd : integer ! integer ! integer is a logic function that calculates the
greatest common divisor of two integer numbers. Note that is_prime and gcd are neither
directly defined nor axiomatized, but the programmer can explicitly assert that some n

is prime through a CAO-SL annotation. This enables automatically discharging safety
assertions using gcd.

Extension fields Consider the following type declarations taken from the same AES
implementation referred above:

t ypede f GF2 := mod [2] ;
t ypede f GF2N := mod [GF2<X> / X��8+X��4+X��3+X+ 1] ;
t ypede f GF2C := mod [GF2N<Y> / Y��4+1] ;

Take the first field extension type GF2N. Types of this form are also algebraic types
that model the Galois field (finite field) of order nd where n is a prime number and
d is the degree of the irreducible polynomial p(X). We emphasize that in CAO each

126 6 A deductive verification tool for CAO

such type represents a specific construction of an extension field, whose representation
is fixed as elements of the polynomial ring Zn[X], and the semantics of operations is
defined based on polynomial arithmetics modulo p(X). Furthermore this type is only
valid when n is prime and p(X) is irreducible.

The theory of extension fields of this form begins with the definition of a logic type
ring_mod_n that represents the ring of polynomials over the base type mod[n] and logic
functions to construct the elements of the ring and the addition operation that permits
combining them.

ring_mod_n_monomial : mod_n! integer! ring_mod_n

ring_mod_n_add : ring_mod_n! ring_mod_n! ring_mod_n

Our model explicitly captures the fact that elements of this ring are polynomials, which in
turn can be defined as an addition of monomials. The reason for this is that the CAO literal
that corresponds to the irreducible polynomial field_mod_n_poly_ f (x)_generator used
to construct these types can then be represented in our logical model. A monomial can
be represented by its coe�cient (which is an element of mod[n]) and its degree (an
integer).

Arithmetic operations over the polynomial ring are not included in the model, as they
do not exist in CAO. Indeed our model is purposefully incomplete because we do not
intend to use automatic theorem provers on verification conditions involving arbitrary
extension field algebra. The goal is to use a specific interactive proof assistants, namely
Coq, to prove these kinds of properties, relying on existing libraries (e.g. SSReflect3)
that provide theories for abstract algebra (fields, polynomials, etc).

The model is completed with definitions for type field_mod_n_poly_ f (x) and the
corresponding arithmetic operations. The Jessie translation of the arithmetic operations
defined for type mod[mod[n] <X> / p(X)] is then a direct one:

he1 op e2i ⌘ he1i opfield_mod_n_poly_ f (x)

he2i
he1 ⇤⇤ e2i ⌘ let x = he2i in assert x � 0;

he1i ⇤⇤field_mod_n_poly_ f (X)

x

he1 / e2i ⌘ let x = he2i in assert x , 0field_mod_n_poly_ f (X)

;

he1i divfield_mod_n_poly_ f (X)

x

3http://www.msr-inria.inria.fr/Projects/math-components

http://www.msr-inria.inria.fr/Projects/math-components

6.3 CAO to Jessie translation 127

where op 2 {+,�, ⇤}. Note that there is also a special case for exponentiation and divi-
sion. This ensures that a safety proof obligation is generated that checks if the exponent
is nonnegative (an integer) and that the divisor is di�erent from zero, respectively.

A set of axioms that describe basic properties of these operators has been added
to the model in order to increase the degree of automation provided by our tool. The
goal here is that, given that there is no integrated support for this sort of mathematical
construction in the automatic provers interfaced with Jessie, some simple properties can
be captured in first-order logic that permit dealing with trivial steps, e.g. cancellation
rules. The following axioms are included in our model

8a, b. a , 0F ^ b , 0F =) a ⇥F b , 0F 8a, b. a , 0F =) a divF b , 0F

8a, b. a , b =) a �F b , 0F 8a, b. a , �b =) a +F b , 0F

8a, b. a , 0F =) a (⇤⇤)F b , 0F 8a. a , 0F =) �Fa , 0F

where F = field_mod_n_poly_ f (X). Literals of the extension field types are modeled in
Jessie as vectors of polynomial coe�cients. Therefore, logic functions to access and up-
date the coe�cient of a given power of some polynomial of type mod[mod[n] <X> / p(X)]

are also included in the model, together with the usual two axioms for the theory of
arrays.

field_mod_n_poly_ f (x)_get_coef : field_mod_n_poly_ f (x)! integer! mod_n

field_mod_n_poly_ f (x)_set_coef : field_mod_n_poly_ f (x)! integer! mod_n

! field_mod_n_poly_ f (x)

The null polynomial is represented by field_h⌧i_poly_ f (x)_zero logical variable. An
auxiliary axiom expresses that all of its coe�cients are the zero element in ⌧.

Returning to the example introduced above, it can be seen by examining the type
declaration of GF2C that the base type of an extension field can actually be an extension
field itself. However, our modeling approach is exactly the same for this case, taking into
consideration that the base type must be adjusted when defining the ring of polynomials
over the base field.

128 6 A deductive verification tool for CAO

bits[n]n) int
mod[n]! int

int! bits[n]n

⌧) mod[⌧ <X> / p(X)]

vector[n] of ⌧! mod[⌧ <X> / p(X)]

mod[⌧ <X> / p(X)]! vector[n] of ⌧
matrix[1,n] of ⌧ o f ⌧! vector[n] of ⌧

matrix[n,1] of ⌧! vector[n] of ⌧
vector[n] of ⌧! matrix[1,n] of ⌧
vector[n] of ⌧! matrix[n,1] of ⌧

Figure 6.4: Casts (!) and coercions ())

6.3.3 Structured types

As in C, CAO structured types aggregate a fixed number of fields, possibly of
di�erent types, into a single type. Typically, the struct type operations are access and
update to struct fields, hence the Jessie model for the CAO structs is very similar to
the vectors model. To access and update each field fieldi : ⌧i, the following two logic
functions are declared:

struct_h⌧i_get_fieldi : struct_h⌧i ! h⌧ii
struct_h⌧i_set_fieldi : struct_h⌧i ! h⌧ii ! struct_h⌧i

The behavior of these functions is axiomatized as expected, although it is slightly more
verbose in order to deal with the fact that our index into the structure is now an identifier
rather than an integer.

6.3.4 Casts and coercions

Type conversion operations in CAO can be explicit, in which case they are called
cast operations, or implicit, called coercion operations. Figure 6.4 presents the allowed
cast (!) and coercion ()) operations between CAO types. The translation of CAO
programs into Jessie handles these conversions in the natural way by using appropriate
logical functions. We present a few examples of the simpler conversions:

e :: mod[n] =) h(int) ei = int_of_mod_n(hei)
e :: int =) h(mod[n]) ei = mod_n_of_int(hei)
e :: int =) h(bits[n]n) ei = bits_of_int(hei)

e :: ⌧ =) h(mod[f(X) <X> / p(X)]) ei =
field_h⌧i_poly_ f (x)_set_coef(field_h⌧i_poly_ f (x)_zero, 0, hei)

6.3 CAO to Jessie translation 129

Conversions between matrices and column/row vectors are handled in the natural way
by using get and set operations. Finally, we present the conversion between extension
field types and vector types in more detail, since these are very useful CAO operators
that permit commuting between the abstract algebraic view of a finite field, and its
concrete representation in a cryptographic implementation. Indeed, one can construct
an extension field value from a vector representation that contains the coe�cients of the
corresponding polynomial over the base field. We model this as

h(mod[f(X) <X> / p(X)]) ei =
let x

1

= field_h⌧i_poly_ f (x)_zero in (let x
2

= hei in
let x

3

= field_h⌧i_poly_ f (x)_set_coef(x
2

, n � 1, vector_h⌧i_get(x
2

, n � 1)) in ...
let xn+2

= field_h⌧i_poly_ f (x)_set_coef(xn+1

, 0, vector_h⌧i_get(x
2

, 0)) in xn+2

)

The inverse conversion is also possible, and is modeled using a similar approach. This
translation further justifies our modeling of extension field literals presented in the
previous section.

6.3.5 Automatic safety proof obligations

Following the same approach adopted in tools such as Frama-c, the CAO to Jessie
translation in our tool ensures that all statements in the input program that could po-
tentially result in a safety violation originate the automatic generation of a verification
condition that, if proven, guarantees the safe execution of the verified code. In chapter 7
we address the soundness of this approach in more detail, by showing that the validity
of these safety conditions indeed implies that the program does not go wrong.

We have two classes of safety proof obligations: those related with memory safety,
and those related with algebraic operations. Some of the proof obligations are automati-
cally generated by the Jessie tool, while others are explicitly introduced in the generated
Jessie code as assertions, during the translation process. We have encountered examples
of these assertions in the models for exponentiation and division operations presented
above. Table 6.1 presents the proof obligations that are generated to ensure the safety of
memory access and algebraic operations. Proof obligations automatically generated by
the Jessie plug-in are signaled in the table, corresponding to those that originate from
the use of the Jessie integer type.

To support the automatic verification of safety proof obligations, our tool also

130 6 A deductive verification tool for CAO

Type Operation Proof Obligation Auto

int e
1

/e
2

e
2

, 0 ⇥
e

1

⇤ ⇤ e
2

e
2

� 0

mod[n]n e
1

/e
2

gcd(int_of_mod_n(e2), n) = 1 ^
int_of_mod_n(e2) , 0 ⇥

e
1

⇤ ⇤ e
2

e
2

� 0

mod[⌧ <X> / p(X)] e
1

/ e
2

e
2

, 0

vector[n] of ⌧ v[e] 0  hei < n
v |> i, v <| i 0  hii < n

v[i.. j] 0  hii < n ^ 0  hji < n ^
hii < hji

matrix[n
1

,n
2

] of ⌧ m[e
1

, e
2

] 0  he1i < n
1

^ 0  he2i < n
2

m[i.. j, k..l] 0  hii < n
1

^ 0  hji < n
1

^
0  hki < n

2

^ 0  hli < n
2

^
hii < hji ^ hki < hli

bits[n] b[e] 0  hei < n
b |> i, b<| i 0  hii < n

b � i, b ⌧ i 0  hii < n

Table 6.1: Safety proof obligations

enriches the translated Jessie code with lemmas that capture some number theoretic
assumptions that are implicit in the type checking procedure. We believe that this
approach is also useful in raising the programmer’s awareness as to the necessity to
ensure that these assumptions are true. Concretely, when an extension field is declared,
our tool automatically generates lemmas that capture the necessary conditions for
these declarations to be meaningful according to the CAO semantics. For extensions
mod[mod[n] <X> / p(X)], our tool generates lemmas for the following two predicates:

is_prime(n) ring_mod_n_is_irreducible(field_mod_n_poly_ f (x)_generator)

When the base type for the extension is already an extension field, only the irreducibility
lemma is generated.

Lemmas can be immediately used in proofs, so for instance the first lemma above can
be used as an hypothesis in all proof obligations related to division operations in mod[n],
requiring that the divisor is relative prime to the modulus. We emphasize, however,
that the presence of lemmas also originates new proof obligations corresponding to the
validation of the lemmas themselves.

6.4 Case studies 131

6.4 Case studies

We addressed the formal verification and validation of the central component of the
CAO implementation of the NaCl library: the crypto_box component. This component
provides the most fundamental operation in a cryptographically protected network
protocol, which is public-key authenticated encryption. In this section we present some
of the results achieved in the verification of this component using CAOVerif.

6.4.1 Elliptic-curve scalar multiplication in NaCl

In this section, we present a case study extracted from the CAO implementation of
the core component in the open-source NaCl cryptographic library. This component
is responsible for carrying out the high-speed elliptic-curve computations required to
perform a Di�e-Hellman secret key agreement protocol. At the high-level, given an
elliptic curve point (p in the code, and typically a public key) and a scalar (n in the code,
and typically a secret key), this component essentially calculates the result of repeatedly
adding the given point to itself, where the number of additions is given by the integer
value of the scalar. Here, addition should be understood as the group operation defined
over the set of points of the particular elliptic curve implemented in NaCl.

The CAO source code for this component is presented in Appendix C and corresponds
to a direct transcription of the NaCl specification. The functionality o�ered by this
source code can be summarized as follows.

The entry point into the component is the crypto_scalarmult function, which takes
as input two 32-byte arrays. This function then recovers the representation of the elliptic
curve point using the unpack function, and also the secret key as a bitstring using
the clampC function. Function curve25519 is then called to actually perform the
elliptic curve computations. This function implements an exponentiation algorithm
over a representation of the curve proposed by Montgomery [85]. The exponentiation
algorithm in function curve25519 uses as sub-routines the actual curve addition and
doubling (adding a point to itself) operations implemented by functions addMont and
doubleMont, respectively. These functions operate over a representation of curve points
that stores two coordinates x and z, which is captured by the structured type MontRep.

Before presenting our verification results for this case study we first present a small
example of the output of our translation into the Jessie input language. This corresponds
to function crypto_scalarmult.

132 6 A deductive verification tool for CAO

v e c t o r _ b i t s j c _ c r y p t o _ s c a l a r m u l t (v e c t o r _ b i t s j c _ n _ i n p u t ,
v e c t o r _ b i t s j c _ p _ i n p u t)

{
var v e c t o r _ b i t s j c _n = j c _ n _ i n p u t ;
var v e c t o r _ b i t s j c _p = j c _ p _ i n p u t ;
var mod_25519 jc_pm = mod_25519_o f_ in t ege r (

i n t e g e r _ o f _ b i t s (j c_unpack (j c _p))) ;
var b i t s j c _n c = jc_clampC (j c_n) ;
j c _ a2 = mod_25519_o f_ in t ege r (0) ;
re turn j c _pa ck (b i t s _ o f _ i n t e g e r (i n t ege r_o f_mod_25519 (

j c_cu rve25519 (j c_nc , jc_pm))))
}

Safety verification Passing the CAO code in the implementation of Appendix C to
the verification tool without any annotations gives rise to 309 automatically generated
safety proof obligations, most of them arising from accesses to vectors and bitstrings.
Of these, only 4 proof obligations are not automatically proven by Alt-Ergo, all of them
corresponding to function curve25519:

• One VC stating that index i in the bitstring access at line 49 is within bounds.

• Two VCs that aim to guarantee loop termination (these are inserted automatically
by the Jessie back-end).

• One VC stating that the division in line 63 is safe: the tool can determine that the
divisor is not zero because of the test condition in the if statement, but it cannot
establish that the divisor is coprime to the modulus 2

255 � 19.

The loop annotations in lines 46-47 and the lemma establishing as an hypothesis that
2

255 � 19 is a prime number4 in line 10 are enough to enable the tool to automatically
discharge all proof obligations.

Functional correctness verification To illustrate how our tool can be used to address
arbitrary verification goals we introduce a simple example aiming to establish the cor-
rectness of function clampC. This function is informally described in the NaCl specifica-
tion as follows. “ClampC maps (a

0

, a
1

, ..., a
30

, a
31

) to (a
0

� (a
0

mod 8), a
1

, ..., a
30

, 64 +

(a
31

mod 64)). In other words, ClampC clears bits (7, 0, . . . , 0, 0, 128) and sets bit
4Of course this lemma appears as a non-verified proof obligation at the end of the verification run and

one can only hope to verify it interactively.

6.4 Case studies 133

(0, 0 . . . , 0, 0, 64).” Here, the bits to be cleared and bits to be set are specified by the
one-bits when the provided values are seen as 8-bit words. The postcondition for clampC
in lines 79-83 captures this specification.

In order to verify that the clampC function indeed satisfies this specification, we
first needed to annotate function unpack with a postcondition (lines 66-68), as this is
used by clampC to compute its final result. We also added a set of assertions to guide
automatic provers into intermediate verification results that allow them to automatically
discharge parts of the postcondition for clampC.

With the annotations included in the code (available in Appendix C) the CAO
verification tool is able to discharge all but 1 proof obligation automatically (at least
within reasonable time): the postcondition for function unpack. This is essentially due
to the large number of nested logic function applications resulting from the translation
of the concatenation operations: concatenation is translated in Jessie as a blit operation,
hence for 31 concatenations we will have 31 nested blit operations. We conclude this
section with a short description of how we validated this proof obligation using the Coq
proof assistant.

The postcondition expresses that, for 0  i < 31 and 0  j < 7, the result of
accessing the j-th bit in the i-th bitstring in the input vector n is the same as that of
accessing the 8i + j-th position in the concatenated bitstring result returned by the
function. A simple proof strategy is to exhaustively traverse all the relevant values of i
and j and establishing that equality indeed holds. We adopted this strategy, but rather
than manually expanding all 256 proof iterations, we developed a simple Coq tactic that
implements it based on the following simple lemma.

8a, b. b  a _ P(a) ^ (8i. a + 1  i < b =) P(i)) =) (8i. a  i < b =) P(i))

Here, P is instantiated with the property we want to prove (in[i][j]=result[i*8+j]), param-
eterized by the values of i; and a and b are instantiated with the lower and upper bounds
of i, respectively. Note that the proof strategy adopted here is multi-tiered in the sense
that first we try to automatically discharge all the proof obligations and then use Coq to
prove the remaining verification conditions.

6.4.2 Minimizing exposure to side channel attacks in NaCl core

One of the features of the NaCl cryptographic library is that its implementation
enforces strict security policies (already introduced in Chapter 5) that aim to minimize

134 6 A deductive verification tool for CAO

exposure to known side channel attacks. Recall that in Chapter 5 we also presented a
case study related with the formal verification of these policies in the C implementation
of the NaCl library. In this section we show how CAOVerif can be used to formal
verify such policies in the CAO implementation of NaCl. To illustrate this point we
will use as an example the implementation of the cryptographic function crypto_verify
implemented in CAO, defined below.
def c r y p t o _ v e r i f y (x : v e c t o r [1 6] o f unsigned b i t s [8] ,

y : v e c t o r [1 6] o f unsigned b i t s [8]) : unsigned b i t s [3 2] {
def d i f f e r e n t b i t s : unsigned b i t s [3 2] ;
seq i := 0 t o 15 { d i f f e r e n t b i t s [0 . . 7] := d i f f e r e n t b i t s [0 . . 7] | (x [i] ^ y [i]) ; }

d i f f e r e n t b i t s := (unsigned b i t s [3 2]) (d i f f e r e n t b i t s � 1) >> 8 ;
re turn (unsigned b i t s [3 2]) (d i f f e r e n t b i t s [0] � 1) ;

}

The verification technique we adopt is a direct adaptation of the results presented
in Chapter 5 where we explored the use of the deductive verification functionality of
Frama-c to validate information flow properties of C programs.

The annotated CAO code that can be fed to CAOVerif in order to conduct this
proof is shown in Figure 6.1. Despite the considerable e�ort required to produce
adequate annotations, the verification itself is fully automatic for this simple example.
We highlight that the annotation process can be automated.

6.5 Summary

We have presented CAOVerif, a deductive verification tool for CAO. It relies on
the Jessie plug-in of the Frama-c framework as a back-end, and so we translate CAO
annotated programs into the Jessie input language. CAO has a mathematically rich
type system, designed to facilitate the implementation of cryptographic primitives, and
in turn, Jessie’s type system only includes booleans, arbitrary precision integers, reals
and the unit type. Therefore, the translation also includes a first-order logic model of
these mathematical objects that have specific interest for cryptography. Beyond that,
our tool automatically generates the verification conditions related with the safety of
CAO programs. We have illustrated the operation of our tool in real-world examples.

6.5 Summary 135

/�@ ax iomat i c l i s t {
l o g i c l i s t ;
l o g i c l i s t cons (n : i n t , s : l i s t) ;
} � /

/�@ ghos t def memory_x1 , memory_x2 : i n t ; � /
/�@ ghos t def memory_y1 , memory_y2 : i n t ; � /
/�@ ghos t def memory_db1 , memory_db2 : i n t ; � /
/�@ ax iomat i c logic_mem { l o g i c l i s t f (i : i n t) ; }

� /

/�@ ensures f (r e s u l t) == cons (o f f s e t , f (a t (i , Old))) � /
def append (i : i n t , o f f s e t : i n t) : i n t { re turn i ; }

/�@ r equ i r e s (memory_x1 == memory_x2) && (memory_y1 == memory_y2) &&
(memory_db1 == memory_db2)

� /
def c r y p t o _ v e r i f y _ s e l f c o m p (x1 , x2 : v e c t o r [1 6] o f unsigned b i t s [8] ,

y1 , y2 : v e c t o r [1 6] o f unsigned b i t s [8])
: unsigned b i t s [3 2] , unsigned b i t s [3 2]
{

def d i f f e r e n t b i t s 1 , d i f f e r e n t b i t s 2 : unsigned b i t s [3 2] ;

seq i := 0 t o 15 {
d i f f e r e n t b i t s 1 [0 . . 7] := d i f f e r e n t b i t s 1 [0 . . 7] | (x1 [i] ^ y1 [i]) ;
/� @ghost seq j := 0 t o 7 {

memory_db1 := append (memory_db1 , j) ;
}

memory_x1 := append (memory_x1 , i) ;
memory_y1 := append (memory_y1 , i) ;

� /
}
d i f f e r e n t b i t s 1 := (unsigned b i t s [3 2]) (d i f f e r e n t b i t s 1 1) >> 8 ;
d i f f e r e n t b i t s 1 := (unsigned b i t s [3 2]) (d i f f e r e n t b i t s 1 [0] 1) ;
/�@ ghos t memory_db1 := append (memory_db1 , 0) ; � /

seq i := 0 t o 15 {
d i f f e r e n t b i t s 2 [0 . . 7] := d i f f e r e n t b i t s 2 [0 . . 7] | (x2 [i] ^ y2 [i]) ;

/� @ghost seq j := 0 t o 7 {
memory_db2 := append (memory_db2 , j) ;
}
memory_x2 := append (memory_x2 , i) ;
memory_y2 := append (memory_y2 , i) ;

� /
}
d i f f e r e n t b i t s 2 := (unsigned b i t s [3 2]) (d i f f e r e n t b i t s 2 1) >> 8 ;
d i f f e r e n t b i t s 2 := (unsigned b i t s [3 2]) (d i f f e r e n t b i t s 2 [0] 1) ;
/�@ ghos t memory_db2 := append (memory_db2 , 0) ; � /

/�@ a s s e r t (f (memory_x1) == f (memory_x2)) &&
(f (memory_y1) == f (memory_y2)) &&
(f (memory_db1) == f (memory_db2)) � /

re turn d i f f e r e n t b i t s 1 , d i f f e r e n t b i t s 2 ;
}

Listing 6.1: Annotated CAO implementation of crypto_verify function

136 6 A deductive verification tool for CAO

Chapter 7

Establishing the soundness of
CAOVerif

In the previous chapter we introduced CAOVerif, a deductive verification tool for
CAO. This tool relies on the Jessie plug-in of the Frama-c framework. CAOVerif
translates each CAO annotated program into Jessie input language together with a rich
formalisation of the CAO type-system in first-order logic.

At this point, it makes sense to ask what properties the translation of CAO programs
into Jessie (and the accompanying models) should enjoy. One goal we discussed in the
previous chapter was to enable as many assertions as possible to be proved automatically;
more precisely, the verification conditions produced by Jessie, and exported to some
external theorem prover, should as much as possible be discharged automatically. For
this, the models must describe the operations of each data type as completely as possible,
in such a way that one can reason about the widest possible program properties, yet
striking a compromise so as not to overwhelm the back-end provers.

Soundness is of course an essential property: the Jessie translation should not allow
proving assertions about CAO programs that are not valid according to the language
semantics. CAOVerif relies on the Jessie plug-in which in turn relies itself on the Why
platform. Thus the soundness of CAOVerif depends of the soundness of the subsequent
tools of this chain. In this work we will assume the correctness of the VCGen for the
Jessie language to establish the soundness of CAOVerif. In other words that is, we will
assume that the validity of the proof obligations generated by the Why tool imply the
correctness of the original Jessie program. This assumption is supported by the work
that is being developed by the Frama-c developers in the certification of the chain of

137

138 7 Establishing the soundness of CAOVerif

the Jessie plug-in of the Frama-c framework [52, 53].
Another desirable property would be Completeness, i.e. showing that everything

correct program can be so proven using the Jessie model generated by CAOVerif.
However, hoping for a completeness proof would be too ambitious, as our approach
is based on a compromise between expressiveness and automation in which some of
the models we generate are not complete (e.g. extension fields and matrices). A less
ambitious goal would be to formalize and reason about a notion of adequacy of our
VCGen tool. Intuitively, this would state that the translation is useful in the sense that,
i.e. it does not map all programs into dummy Jessie programs that can never be proven
correct. To argue in this direction one could rely on the fact that our translation is total
and injective, i.e. we can translate all CAO programs into Jessie programs, and then
translate it back to CAO (ignoring the safety assertions).

In the remainder of this chapter we will formally reason about the validity of this
approach by formally proving that our strategy for constructing CAOVerif using the
Jessie plug-in as a back-end is sound.

7.1 Proof strategy

Literature contains various examples of soundness proofs for VCGens [55, 18, 92].
According to Homeier et. al [55], the soundness of the VCGen for WhileC (the language
introduced in Chapter 2) can be established by proving the following theorem.

Theorem 1. Let {|'|} C {| |} be a safety-sensitive Hoare triple in WhileC.

8s 2 State. [[VCGwhileC({|'|} C {| |})]]M(s) = true =) [[{|'|} C {| |}]]M(s) = true

A direct proof strategy would rely on the formal definition of the VCGen and the
axiomatic semantics of the language to show that validity of the generated verification
conditions implies correctness of the program. However, given our implementation
strategy, a more natural approach is to modularize the proof by assuming the soundness
of the Jessie VCGen, and arguing that our translation ensures that the soundness
CAOVerif as a VCGen is implied of the soundness of the Jessie VCGen.

We refrain from presenting our soundness proof for the full versions of CAO and
Jessie. Instead we give a proof of concept which highlights the most important aspects
of this proof by using the abstractions of these languages we introduced in Chapter 2.

7.1 Proof strategy 139

Figure 7.1: Proof strategy

To this end, we now present a formal definition of a translation from WhileC to While⇤,
that corresponds to an abstraction of the real translation that is done in CAOVerif.

Translation (WhileC to While⇤) In CAOVerif we translate CAO annotated programs to
Jessie annotated programs. So we define a translation from WhileC annotated programs
to While⇤ annotated programs given by h·i and inductively defined by the rules presented
in Figure 7.2. The predicate safe⇤ is responsible for generating the safety conditions
related with error-free WhileC expressions. This predicate abstracts what is done in
the translation from CAO to Jessie, where for each program construction that could
potentially result in a safety violation, the translation generates a similar assertion.

An important preliminary result is stated in Lemma 25. Intuitively, this establishes
that the validity of any assertion resulting from our translation into While⇤ implies the
validity of the original assumption under the semantics of WhileC.

Lemma 25. Let ' be an assertion in WhileC and h'i its translation in While⇤.

|= T h'i =) 8s 2 State. [[']]M(s) = true

Proof. Intuitively, one has to prove that all the sentences derivable in the theory T , the

140 7 Establishing the soundness of CAOVerif

h{|'|} C {| |}i = {h'i} hCi {h i}

hni =n hxi =x hei
1

op ei
2

i =hei
1

i op hei
2

i op 2 {+, -, *, <, >, /}
htruei =true hfalsei =false heb

1

op eb
1

i =heb
1

i op heb
2

i op 2 {!=, ==}
ha[e]i =acc(a, hei)

hskipi = skip
hx:= ei = assert safe⇤(e); x:= hei

ha[e
1

]:= e
2

i = assert safe⇤(a[e1]) ^ safe⇤(e2); a := set(a, he
1

i, he
2

i)
hif (e) {C

1

} else {C
2

}i = assert safe⇤(e); if (hei) {hC
1

i} else {hC
2

i}
hwhile {✓} (e) {C}i = while {h✓i ^ safe⇤(e)} (hei) {hCi}

hC
1

; C
2

i = hC
1

i; hC
2

i
hassert �i = assert h�i

hupd(a, e
1

, e
2

)i = set(a, he
1

i, he
2

i) he
1

op e
2

i = he
1

i op he
2

i op 2{==, ! =, <, >}
h ^ �i = h i ^ h�i h _ �i = h i _ h i h ! �i = h i ! h�i
h $ �i = h i $ h�i h8x. i = 8x.h i h9x. i(s) = 9x.h i

safe⇤(n) = true safe⇤(ei
1 opi ei

2) = safe⇤(ei
1) ^ safe⇤(ei

2) opi 2 {+, -, *, <, >}
safe⇤(x) = true safe⇤(eb

1 opb eb
1) = safe⇤(eb

1) ^ safe⇤(eb
2) opb 2 {!=, ==}

safe⇤(true) = true safe⇤(a[e]) = safe⇤(e) ^ 0  hei < len(a);

safe⇤(false) = true safe⇤(ei
1/e

i
2) = safe⇤(ei

1) ^ safe⇤(ei
2) ^ hei

2

i! = 0;

Figure 7.2: Translation from WhileC to While⇤

theory considered in While⇤, can be validated by the modelM that interprets expres-
sions/operations according to the semantics of WhileC. Observe that in both cases the
di�erence lies on the arrays data type whose operations are axiomatized in While⇤ and
defined in WhileC. When a theory is defined by a set of axioms, then a sentence is valid
in the theory only if it is derivable from the set of axioms.

By induction on the translation rules, one can deduce that any derivation tree that
establishes the validity of a translated While⇤ assertion from the axioms in the generated
theory, can be mapped onto an equally valid assertion in the WhileC world. Using the

7.1 Proof strategy 141

translation rules (depicted in Figure 7.2), we have that,

hupd(a, e
1

, e
2

)i = set(a, he
1

i, he
2

i)

so the axioms which constrain the array operations in While⇤ can be mapped back to
WhileC as:

hupd(a, e
1

, e
2

)[e
1

] = e
2

i ⌘ get(set(a, he
1

i, he
2

i), he
2

i) = he
2

i
e

1

, e
3

! upd(a, e
1

, e
2

)[e
3

] = a[e
3

] ⌘ he
1

i , he
3

i !
get(set(a, he

1

i, he
2

i), he
3

i) = get(a, he
3

i)

Therefore, to complete the proof, one simply needs to establish that these statements are
valid under the WhileC semantics. By definition,

[[upd(a, e
1

, e
2

)[e
1

] = e
2

]]M(s) = true ⌘ [[upd(a, e
1

, e
2

)[e
1

]]]M(s) = [[e
2

]]M(s) ⌘
upd(s(a), s(e

1

), s(e
2

))(s(e
1

)) = s(e
2

)

and

[[upd(a, e
1

, e
2

)[e
3

] = a[e
3

]]]M(s) = true ⌘ [[upd(a, e
1

, e
2

)[e
3

]]]M = [[a[e
3

]]]M ⌘
upd(s(a), s(e

1

), s(e
2

))(s(e
3

)) = s(a)(s(e
3

))

and using the definition of upd both equalities immediately hold.
⇤

Safety Safety assertions are introduced in the translation from WhileC to While⇤ throu-
gh the predicate safe⇤(·). This predicate is defined for WhileC expressions when the
evaluation of some of the underlying expressions results in an error value. So, a natural
result that is expected to hold is that the validity of safe⇤(e), for some WhileC expression,
implies that e does not evaluate to an error value. The result expressed by the following
lemma, together with the result of Lemma 2 (from Chapter 2), entails the latter one.

Lemma 26. Let e be an expression in WhileC.

|= T safe⇤(e) =) 8s 2 State. [[safe(e)]]M(s) = true

Proof. By induction on the structure of e and using Lemma 25. We remark that a

142 7 Establishing the soundness of CAOVerif

very important notion captured by this lemma is that for some expression e, we have
hsafe(e)i = safe⇤(e). The less intuitive cases are when e ⌘ a[e

1

] and e ⌘ e
1

/e
2

, and for
those cases the proof is presented next.

• For e ⌘ a[e
1

], we have that safe⇤(a[e1]) = safe⇤(e1) ^ 0  he
1

i < len(a).
By definition safe(a[e1]) = safe(e1) ^ 0  e

1

< len(a), so we need to prove
that [[safe(e1)]]M(s) = true and [[0  e

1

< len(a)]]M(s) = true, for all state s.
By induction hypothesis we can assume that |= T safe⇤(e1) and conclude that
[[safe(e1)]]M(s) = true, for all state s, and since 0  he

1

i < len(a) ⌘ h0  e
1

<

len(a)i, by Lemma 25 we conclude that [[0  e
1

< len(a)]]M(s) = true.

• For e ⌘ e
1

/e
2

, we have that safe⇤(e1/e2) = safe⇤(e1) ^ safe⇤(e2) ^ he
2

i , 0. By
definition, safe(e1/e2) = safe(e1) ^ safe(e2) ^ e

2

, 0.

By induction hypothesis we can assume that |= T safe⇤(e1) and |= T safe⇤(e2) and
conclude that [[safe(e1)]]M(s) = true and [[safe(e2)]]M(s) = true, for all state s.
Now, observing that he

2

i , 0 ⌘ he
2

, 0i, by Lemma 25 we can conclude that
[[e

2

, 0]]M(s) = true, for all state s.

⇤

Soundness We now use the previous result to prove that when a program is translated
according to the rules depicted in Figure 7.2, a derivation tree establishing the correctness
of the translated program under the While⇤ axiomatic semantics implies the existence
of a valid derivation tree establishing the correctness for the original program.

Lemma 27. Let {|'|} C {| |} be a safety-sensitive Hoare triple in WhileC and {h'i}hCi
{h i} its translation in While⇤. Let also `WhileC {|'|}C {| |} denote that {|'|}C {| |} is a Hoare
triple derivable using the axioms and rules from the inference system of Figure 2.3 from
Chapter 2. Then, we have

`T {h'i} hCi {h i} =) `WhileC {|'|} C {| |}

Proof. By induction on the structure of the WhileC programs. We just present the proof
for C ⌘ a[e

1

] := e
2

, C ⌘ if (e) {C
1

} else {C
2

} and C ⌘ while {✓} (e) {C}, since these are
the more interesting cases.

The proof strategy is as follows: assuming the existence of a single derivation tree
for each {h'i} hCi {h i}, where all of the side-conditions are valid, we need to prove that

7.1 Proof strategy 143

there is a derivation tree for the corresponding {|'|}C {| |}, where all of the side-conditions
are valid too. Using the axioms and rules of the axiomatic semantics of WhileC and
While⇤, one can derive the proof trees shown in Figure 7.31.

• {|'|} a[e
1

] := e
2

{| |}
The only thing that is left to prove in the derivation tree of {|'|} a[e

1

] := e
2

{| |}
is that its side-condition A

3

is valid. Since we have assumed that A
1

and A
2

are
valid, by transitivity of the implication follows that, |= T (h'i ! safe⇤(a[e1]) ^
safe⇤(e2))^(h'i ! h i[set(a, he

1

i, he
2

i)/a]). By Lemma 25, immediately follows
that [[('! safe(a[e1]))^ ('! safe(e2))^ ('! [upd(a, he

1

i, he
2

i)/a])]](s) =

true, for any state s.

• {|'|} while {✓} (e) {C} {| |}
As it is shown in Figure 7.3, to prove that `WhileC {|'|} while {✓} (e) {C} {| |}, we
need to prove that

1. `WhileC {|✓ ^ safe(e) ^ e|} C {|✓ ^ safe(e)|} and

2. [[('! ✓ ^ safe(e)) ^ (✓ ^ safe(e) ^ ¬e!)]]M(s) = true, for all state s.

By induction hypothesis and using Lemma 26 we can conclude (1), since we as-
sume the existence of a derivation tree in While⇤ for {h✓i^safe⇤(e)^hei} hCi {h✓i^
safe⇤(e)}.
Now using the fact that |= T h'i ! safe⇤(e)^h✓i and |= T (h✓i^safe⇤(e)^¬hei !
h i), by Lemmas 25 and 26 we can easily conclude (2).

• {|'|} if (e) {C
1

} else {C
2

} {| |}
To prove that `WhileC {|'|} if (e) {C

1

} else {C
2

} {| |} one needs to prove that,

1. `WhileC {|' ^ e|} C
1

{| |}
2. `WhileC {|' ^ ¬e|} C

2

{| |} and

3. '! safe(e).
By induction hypothesis

`T {⇢ ^ hei} hC1

i {h i} `T {⇢ ^ ¬hei} hC2

i {h i}
1Observe that these results are valid for any intermediate assertion ⇢, that may be considered in the

construction of the derivation tree of each translated Hoare triple.

144 7 Establishing the soundness of CAOVerif

and since |= T h'i ! ⇢ (by assertion A
1

), immediately follows that2

`T {h'i ^ hei} hC1

i {h i} `T {h'i ^ ¬hei} hC2

i {h i}

and we can easily conclude (1) and (2). Now using Lemma 25 and assertion
A

2

we can easily conclude (3).

⇤

Finally, using the previous results we can establish the soundness of the VCGen for
WhileC. Recall that we rely on the fact that the VCGen of Jessie/While⇤ is correct, so,
for each (translated) Hoare triple whose verification conditions are proved to be valid,
there exists a derivation tree where all the side-conditions are also valid.

Theorem 2. (VCGen soundness) Let {|'|}C {| |} be a Hoare triple in WhileC and {h'i}{hCi}
{h i} its translation in While⇤.

|= T VCGwhile⇤({h'i} hCi {h i}) =) 8s 2 State.[[{|'|} C {| |}]]M(s) = true

Proof. Using the Lemma 27 above defined and Lemma 3 and Proposition 5, from
Chapter 2. ⇤

7.2 Summary

We have presented a proof of concept of how one can prove the soundness of CAO-
Verif. Our work distinguishes itself from the other works such as [55, 18, 92, 52], since
the tool responsible for the generation of the verification conditions is not built in the
target language. The proof obligations are generated for a program that results from the
translation of the original program (CAO) to an intermediate language (Jessie). In fact,
we prove that the correctness of the translated program entails the correctness of the
original program. Of course our result would be ill-founded if we did not rely on the
correctness of the Jessie VCGen. However, as stated, this result is being independently
established by the Frama-c team [52].

A very important result achieved is that we can guarantee that the CAO programs
safely execute, if all the safety proof obligations (inserted during the translation) are
proved correct.

2Note that this proof can be easily done by simple induction on the structure of While⇤ programs.

7.2
Sum

m
ary

145

(���)
(������)

{h'i} assert safe⇤(a[e1]) ^ safe⇤(e2) {⇢}
A

1

(������)
{⇢} a = set(a, he

1

i, he
2

i) {h i}
A

2

{h'i} assert safe⇤(a[e1]) ^ safe⇤(e2); a = set(a, he
1

i, he
2

i) {h i}

(������)
{|'|} a[e

1

] := e
2

{| |}
A

3

where A
1

: h'i ! safe⇤(a[e1]) ^ safe⇤(e2) ^ ⇢, A
2

: ⇢! h i[set(a, he
1

i, he
2

i)/a] and
A

3

: '! safe(a[e1]) ^ '! safe(e2) ^ '! [upd(a, he
1

i, he
2

i)/a].

(�����)
{h✓i ^ safe⇤(e) ^ hei} hCi {h✓i ^ safe⇤(e)}
{h'i} while {h✓i ^ safe⇤(e)} (hei) {hCi} {h i}

A
1

(�����)
{|✓ ^ safe(e) ^ e|} C {|✓ ^ safe(e)|}
{|'|} while {✓} (e) {C} {| |}

A
2

where A
1

: (h'i ! h✓i ^ safe⇤(e)) ^ (h✓i ^ safe⇤(e) ^ ¬hei ! h i) and A
2

: ('! ✓ ^ safe(e)) ^ (✓ ^ safe(e) ^ ¬e!)

(���)
(������)

{h'i} assert safe⇤(e) {⇢}
A

1

(��-����)
{⇢ ^ hei} hC

1

i {h i} {⇢ ^ ¬hei} hC
2

i {h i}
{⇢} if (hei) {hC

1

i} else {hC
2

i} {h i}
{h'i} assert safe⇤(e); if (hei) {hC

1

i} else {hC
2

i} {h i}

(��-����)
{|e ^ '|} C

1

{| |} {|¬e ^ '|} C
2

{| |}
{|'|} if (e) {C

1

} else {C
2

} {| |}
A

2

where A
1

: h'i ! safe⇤(e) ^ ⇢ and A
2

: '! safe(e)

Figure 7.3: Derivation trees of While⇤ and WhileC of the proof of Lemma 27

146 7 Establishing the soundness of CAOVerif

Chapter 8

Conclusions

In this thesis we have studied how language-based techniques, namely the ones
based on deductive verification, can be used to provide assurance that the cryptographic
software implementations enforce the desired security policies. This chapter highlights
the main contribution of this thesis and points out relevant directions for future work.

8.1 Contributions

In the first part of this thesis, we have applied an o�-the-shelf verification platform,
Frama-c, to verify a specific set of security policies in cryptographic software implemen-
tations. Firstly we have shown how safety properties (such as the absence of numeric
errors and memory safety), absence of error propagation in stream ciphers and program
equivalence, can be verified in an implementation of the OpenSSL library.

The absence of error propagation is formalised as a noninterference property and the
self-composition technique is applied to prove it. To prove program equivalence we have
extended the concept of self-composition to a more comprehensive notion, equivalence
by composition, which allows the formalisation of program equivalence using deductive
verification techniques. We also have used the natural invariants technique to mechanise
these composition-based proofs.

Afterwards, we have addressed a set of high-level non-functional security policies,
adopted by the developers of the NaCl library, to enforce software countermeasures
against (timing and cache) side-channel attacks. We have formalised resistance to
such side-channels attacks as noninterference. The general approach we adopt con-

147

148 8 Conclusions

sists of reifying the target program to make explicit in its output state the execution
traces that may potentially leak information. We reduce this explicit information to a
minimum, proving that our approach is still sound, and then use noninterference and
self-composition to verify security.

In the second part of this thesis we have developed a deductive verification tool
for CAO, named CAOVerif. The design of this tool was initiated in collaboration with
the ProVal team1, at INRIA Saclay - Île-de-France research center and continued at
Universidade do Minho. The tool relies on the Jessie plug-in of the Frama-c framework
as a back-end and essentially translates CAO annotated programs to Jessie. Along
with the development of CAOVerif, we have presented a model in first-order logic of
certain mathematical objects (present in the CAO language) that have specific interest
for cryptography. We believe that the proposed model may be of independent interest
and can be of used in other areas, considering that it has been designed to maximise
the degree of automation that can be achieved when feeding proof obligations (related
to these mathematical abstractions) to general Satisfiability Modulo Theories (SMT)
solvers. We have concluded this work by providing a proof of concept of how one can
establish the soundness of our deductive verification tool.

8.2 Directions for future work

In addition to showing that deductive verification methods are increasingly more
amenable to practical use with reasonable degrees of automation, our work answers
some open questions raised by previous work, which seemed to indicate that proofs
by (self-)composition were not directly applicable in real-world situations [88]. Our
results are promising in that we have been able to achieve our goal using only o�-the-
shelf verification tools, such as Frama-c, and a technique with a high potential for
mechanisation.

However, we should also emphasize that, even though we believe our results show
that our approach outperforms previous solutions in the deployment of self-composition
proofs, there are still obvious limitations that should be highlighted. The first class of
limitations are those inherent to the deductive verification technology itself. For example,
for programs displaying high cyclomatic complexity 2, and despite the optimizations

1http://proval.lri.fr/
2Intuitively, programs o�ering a large number of possible independent execution control-flow paths.

http://proval.lri.fr/

8.2 Directions for future work 149

introduced by the existing tools, the number of generated proof obligations tends to
increase exponentially. This means that formal verification rapidly becomes impractical.
On the other hand, we should also highlight that NaCl code follows strict coding
policies that make it formal verification-friendly. In particular, it does not use many of
the features of the C language that typically complicate matters, including side-e�ects,
pointer casts, or dynamic memory allocation.

In the future we believe that it would be very useful to enhance our tools to al-
low automating the specification process of the properties like the ones presented in
Chapters 4 and 5. We believe that it is possible to automatically apply equivalence
by composition and natural invariant techniques, allowing the user to focus only in
the proof of a simple lemma. Moreover, it would be interesting to investigate how our
methodology can be adapted to prove security policies which are based on relaxed
notions of non-interference. These security policies tend to downgrade the security
level of a certain piece of information (in the program), and the goal is to prove that the
program does not release more information than the one it is allowed.

Another useful improvement would be to adapt the CAOVerif tool to directly generate
proof obligations to particular theorem provers, such as CryptoMiniSat23, in order to
automate the proofs that may involve, for example, extended fields or matrix multiplica-
tion. Although the extended fields theory proposed in CAOVerif (to model the extension
fields type) allow a reasonably automation in the proof of the verification conditions,
namely the ones related with safety, it can be much improved. The multi-tiered approach
followed in the development of CAOVerif enables the use of proof assistants to do
more complicated proofs. However, this may require more expertise and skills than it
is desirable. Ideally, we would like to build a tool where the user intervention could
be minimal, both at the annotations level, as well as, at the proof level, at least for
cryptographic implementations. Investigating how this can be achieved is undoubtedly
an interesting research question.

3http://www.msoos.org/cryptominisat2

http://www.msoos.org/cryptominisat2

150 8 Conclusions

Appendix A

Verifying openSSL implementation of
RC4

A.1 openSSL implementation of RC4
typede f s t r u c t r c 4 _ k e y _ s t { unsigned char x , y ; unsigned char d a t a [2 5 6] ; } RC4_KEY;

void RC4(RC4_KEY �key , cons t unsigned long l en , unsigned char � i n d a t a ,
unsigned char � o u t d a t a) {
r e g i s t e r unsigned char �d ; r e g i s t e r unsigned char x , y , tx , t y ; i n t i ;
x=key->x ; y=key->y ; d=key-> d a t a ;

d e f i n e LOOP(in , ou t) \
x = ((x+1)&0 x f f) ; \ tx =d [x] ; \ y = ((t x +y)&0 x f f) ; \ d [x]= t y =d [y] ; \ d [y]= t x ; \
(out) = d [((t x + t y)&0 x f f)] ^ (i n) ;

i =(i n t) (l en >>3L) ;
i f (i) {

whi le (1) {
RC4_LOOP(i n d a t a , o u t d a t a , 0) ; RC4_LOOP(i n d a t a , o u t d a t a , 1) ;
RC4_LOOP(i n d a t a , o u t d a t a , 2) ; RC4_LOOP(i n d a t a , o u t d a t a , 3) ;
RC4_LOOP(i n d a t a , o u t d a t a , 4) ; RC4_LOOP(i n d a t a , o u t d a t a , 5) ;
RC4_LOOP(i n d a t a , o u t d a t a , 6) ; RC4_LOOP(i n d a t a , o u t d a t a , 7) ;
i n d a t a +=8; o u t d a t a +=8; i f (-- i == 0) break ; }

}

i =(i n t) (l e n&0x07) ;
i f (i) {

whi le (1) {
RC4_LOOP(i n d a t a , o u t d a t a , 0) ; i f (-- i == 0) break ;
RC4_LOOP(i n d a t a , o u t d a t a , 1) ; i f (-- i == 0) break ;
RC4_LOOP(i n d a t a , o u t d a t a , 2) ; i f (-- i == 0) break ;
RC4_LOOP(i n d a t a , o u t d a t a , 3) ; i f (-- i == 0) break ;
RC4_LOOP(i n d a t a , o u t d a t a , 4) ; i f (-- i == 0) break ;

151

152 A Verifying openSSL implementation of RC4

RC4_LOOP(i n d a t a , o u t d a t a , 5) ; i f (-- i == 0) break ;
RC4_LOOP(i n d a t a , o u t d a t a , 6) ; i f (-- i == 0) break ;

}
}
key->x=x ; key->y=y ;

}

A.2 ACSL: openSSL RC4 implementation with safety
annotations

typede f s t r u c t r c 4 _ k e y _ s t { unsigned char x , y ; unsigned char d a t a [2 5 6] ; } RC4_KEY;

/�@ lemma v a l i d _ r a n g e _ a x 1 a : \ f o r a l l unsigned long k ; k>=0 ==> 0 <=(k >> 3L)<=k ;
@
@ lemma v a l i d _ r a n g e _ a x 1 b :
@ \ f o r a l l unsigned long k ; k>=0 ==> 0 <=((k >> 3L)�8) <= k ;
@
@ lemma v a l i d _ r a n g e _ a x 1 c : \ f o r a l l unsigned long k ; k>=0 ==> 0 <=(k & 0x07) <=7;
@
@ lemma v a l i d _ r a n g e _ a x 1 d : \ f o r a l l unsigned long k ; k>=0 ==> 0 <=(k & 0x07)<= k ;
@
@ lemma v a l i d _ r a n g e _ a x 1 e :
@ \ f o r a l l unsigned long k ; k>=0 ==> ((k >> 3L)�8 + (k & 0x07) == k) ;
@
@ lemma v a l i d _ r a n g e _ a x 1 f :
@ \ f o r a l l unsigned long k ; 0<= k < INT_MAX ==> 0 <=(k >> 3L) <(INT_MAX / 8) ;
@
@ lemma v a l i d _ r a n g e _ a x 1 g :
@ \ f o r a l l unsigned long k , unsigned long i ; 0<= k < INT_MAX &&
@ 0<= i <=(k>>3L) ==> 0 <=(((k >> 3L) - i) � 8) < INT_MAX;
@
@ lemma v a l i d _ r a n g e _ a x 2 a : \ f o r a l l unsigned char k ; 0 <= (k & 0 x f f) < 256 ;
@
@ lemma v a l i d _ r a n g e _ a x 2 b : \ f o r a l l unsigned char k ; 0 <= k < 256 ;
@
@ lemma v a l i d _ r a n g e _ a x 2 c : \ f o r a l l unsigned char k ; 0 <= ((k + 1) & 0 x f f) <256;
@
@ lemma v a l i d _ r a n g e _ a x 2 d :
@ \ f o r a l l unsigned char k , unsigned char l ; 0 <= ((k + l) & 0 x f f) < 256 ;
@
@ lemma v a l i d _ r a n g e _ a x 4 : \ f o r a l l unsigned char i np ; \ f o r a l l unsigned char k ;
@ 0 <= (k ^ inp) <256;
@� /

/�@ r equ i r e s l e n >= 0 && \ v a l i d (key) && \ v a l i d (key-> d a t a + (0 . . 255)) &&
@ \ v a l i d (i n d a t a + (0 . . (l e n - 1))) && \ v a l i d (o u t d a t a + (0 . . (l e n - 1))) ;
@� /

void RC4(RC4_KEY �key , cons t unsigned long l en , unsigned char � i n d a t a ,

A.2 ACSL: openSSL RC4 implementation with safety annotations 153

unsigned char � o u t d a t a) {
r e g i s t e r unsigned char �d ; r e g i s t e r unsigned char x , y , tx , t y ;
i n t i ;
x=key->x ; y=key->y ; d=key-> d a t a ;

d e f i n e LOOP(in , ou t) \
x = ((x+1)&0 x f f) ; \ tx =d [x] ; \ y = ((t x +y)&0 x f f) ; \ d [x]= t y =d [y] ; \ d [y]= t x ; \
(out) = d [((t x + t y)&0 x f f)] ^ (i n) ;

d e f i n e RC4_LOOP(a , b , i) LOOP(a [i] , b [i])

i =(i n t) (l en >>3L) ;
/�@ ghos t i n t o l d _ i = i ; � /
/�@ ghos t unsigned char � o l d _ i n d a t a = i n d a t a ; � /
/�@ ghos t unsigned char � o l d _ o u t d a t a = o u t d a t a ; � /

/ /@ ghos t goto L ;
/ /@ ghos t L :

i f (i) {
/�@ loop i n v a r i a n t (0 < i <= (len >>3L)) &&

@ i n d a t a == o l d _ i n d a t a + ((o l d _ i - i) � 8) &&
@ o u t d a t a == o l d _ o u t d a t a + ((o l d _ i - i) � 8) ;
@ loop var i an t i ;
@� /

whi le (1) {
RC4_LOOP(i n d a t a , o u t d a t a , 0) ; RC4_LOOP(i n d a t a , o u t d a t a , 1) ;
RC4_LOOP(i n d a t a , o u t d a t a , 2) ; RC4_LOOP(i n d a t a , o u t d a t a , 3) ;
RC4_LOOP(i n d a t a , o u t d a t a , 4) ; RC4_LOOP(i n d a t a , o u t d a t a , 5) ;
RC4_LOOP(i n d a t a , o u t d a t a , 6) ; RC4_LOOP(i n d a t a , o u t d a t a , 7) ;
i n d a t a +=8; o u t d a t a +=8; i f (-- i == 0) break ; }

}
/�@ a s s e r t i ==0 && i n d a t a == o l d _ i n d a t a + ((l e n >> 3L) � 8) &&

@ o u t d a t a == o l d _ o u t d a t a + ((l e n >> 3L) � 8) ;
@� /

i =(i n t) (l e n&0x07) ;

i f (i) {
/�@ loop i n v a r i a n t i <=(l e n&0x07) && i >0;

@ loop var i an t i ;
@� /

whi le (1) {
RC4_LOOP(i n d a t a , o u t d a t a , 0) ; i f (-- i == 0) break ; /�@ a s s e r t i > 0 ; � /
RC4_LOOP(i n d a t a , o u t d a t a , 1) ; i f (-- i == 0) break ; /�@ a s s e r t i > 0 ; � /
RC4_LOOP(i n d a t a , o u t d a t a , 2) ; i f (-- i == 0) break ; /�@ a s s e r t i > 0 ; � /
RC4_LOOP(i n d a t a , o u t d a t a , 3) ; i f (-- i == 0) break ; /�@ a s s e r t i > 0 ; � /
RC4_LOOP(i n d a t a , o u t d a t a , 4) ; i f (-- i == 0) break ; /�@ a s s e r t i > 0 ; � /
RC4_LOOP(i n d a t a , o u t d a t a , 5) ; i f (-- i == 0) break ; /�@ a s s e r t i > 0 ; � /
RC4_LOOP(i n d a t a , o u t d a t a , 6) ; i f (-- i == 0) break ; }

}
key->x=x ;
key->y=y ;

}

154 A Verifying openSSL implementation of RC4

Appendix B

NaCl implementation of crypto_verify

B.1 Equivalence by composition

Refactoring step 1

/�@ pred i c a t e body_loop1 {L1 , L2 } (unsigned char �x ,
@ unsigned char �y , i n t e g e r i1 , i n t e g e r i2 , i n t e g e r r e s1 , i n t e g e r r e s 2) =
@ i 2 == i 1 + 1 && ((\ at (x [i 1] , L1) != \ at (y [i 1] , L1) && r e s 2 == -1) | |
@ (\ at (x [i 1] , L1) == \ at (y [i 1] , L1) && r e s 2 == r e s 1)) ;
@� /

/�@ i n d u c t i v e l o op_p r ed {L1 , L2 } (i n t e g e r i1 , i n t e g e r i2 , unsigned char �x ,
@ unsigned char �y , i n t e g e r r e s1 , i n t e g e r r e s 2){
@ case ba s e_ c a s e {L } : \ f o r a l l unsigned char �x , � y ; \ f o r a l l i n t e g e r i , r e s ;
@ loop_p r ed {L , L} (i , i , x , y , r e s , r e s) ;
@ case i n d _ c a s e _ i f {L1 , L2 , L3 } :
@ \ f o r a l l unsigned char �x , � y ; \ f o r a l l i n t e g e r i1 , i2 , i3 , r e s1 , r e s2 , r e s 3 ;
@ loop_p r ed {L1 , L2 } (i1 , i2 , x , y , r e s1 , r e s 2) ==>
@ body_loop1 {L2 , L3 } (x , y , i2 , i3 , r e s2 , r e s 3) ==>
@ loop_p r ed {L1 , L3 } (i1 , i3 , x , y , r e s1 , r e s 3) ;
@ }
@� /

/�@ pred i c a t e body_loop3 {L1 , L2 } (unsigned char �x , unsigned char �y ,
@ i n t e g e r i1 , i n t e g e r i2 , i n t e g e r d i f f b i t s 1 , i n t e g e r d i f f b i t s 2) =
@ i 2 == i 1 +1 && d i f f b i t s 2 == (d i f f b i t s 1 | (\ at (x [i 1] , L1) ^ \ at (y [i 1] , L1))) ;
@� /

/�@ i n d u c t i v e l oop_p r ed3 {L1 , L2 } (i n t e g e r i1 , i n t e g e r i2 , unsigned char �x ,
@ unsigned char �y , i n t e g e r d i f f b i t s 1 , i n t e g e r d i f f b i t s 2) {
@ case ba s e_ c a s e {L } : \ f o r a l l unsigned char �x , � y ; \ f o r a l l i n t e g e r i , d i f f b i t s ;
@ loop_p r ed3 {L , L} (i , i , x , y , d i f f b i t s , d i f f b i t s) ;
@ case i n d _ c a s e {L1 , L2 , L3 } : \ f o r a l l unsigned char �x , � y ;
@ \ f o r a l l i n t e g e r i1 , i2 , i3 , d i f f b i t s 1 , d i f f b i t s 2 , d i f f b i t s 3 ;

155

156 B NaCl implementation of crypto_verify

@ loop_p r ed3 {L1 , L2 } (i1 , i2 , x , y , d i f f b i t s 1 , d i f f b i t s 2) ==>
@ body_loop3 {L1 , L2 } (x , y , i2 , i3 , d i f f b i t s 2 , d i f f b i t s 3) ==>
@ loop_p r ed3 {L1 , L3 } (i1 , i3 , x , y , d i f f b i t s 1 , d i f f b i t s 3) ;
@ }
@� /

/�@ lemma eq_ loop s {L1 , L2 , L3 , L4 } : \ f o r a l l i n t e g e r i ; \ f o r a l l i n t b i t s 1 , r e s ;
@ \ f o r a l l unsigned char �x , � y , �x1 , �y1 ;
@ \ f o r a l l i n t e g e r j ; \ at (x [j] , L1)== \ at (x1 [j] , L3) ==>
@ \ f o r a l l i n t e g e r j ; \ at (y [j] , L1)== \ at (y1 [j] , L3) ==>
@ loop_p r ed {L1 , L2 } (0 , i , x , y , 0 , r e s) ==> l oop_p r ed3 {L3 , L4 } (0 , i , x1 , y1 , 0 , b i t s 1) ==>
@ ((r e s ==0 && b i t s 1 ==0) | | (r e s ==-1 && b i t s 1 ! = 0)) ;
@� /

/�@ r equ i r e s (\ f o r a l l i n t e g e r j ; 0<= j <16 ==> x [j]== x1 [j]) &&
@ (\ f o r a l l i n t e g e r j ; 0<= j <16 ==> y [j]== y1 [j]) ;
@� /

void c r y p t o _ v e r i f y (cons t unsigned char �x , cons t unsigned char �y ,
cons t unsigned char �x1 , cons t unsigned char �y1 , i n t r e s , i n t r e s 1) {
i n t i , i 1 ; i n t d i f f e r e n t b i t s 1 = 0 ; i = 0 ; i 1 = 0 ; r e s = 0 ; r e s 1 = 0 ;

/ /@ ghos t goto L1 ;
/ /@ ghos t L1 :

/�@ loop i n v a r i a n t 0<= i <=16 && loop_p r ed {L1 , Here } (0 , i , x , y , 0 , r e s) ;
@ loop var i an t 16 i ;
@� /

whi le (i < 16) { i f (x [i] != y [i]) { r e s = - 1 ; } i ++;}

/ /@ ghos t goto L2 ;
/ /@ ghos t L2 :

/�@ loop i n v a r i a n t 0<= i1 <=16 &&
@ loop_p r ed3 {L2 , Here } (0 , i1 , x1 , y1 , 0 , d i f f e r e n t b i t s 1) ;
@ loop var i an t 16- i 1 ;
@� /

whi le (i 1 < 16) { d i f f e r e n t b i t s 1 | = x1 [i 1] ^ y1 [i 1] ; i 1 ++;}
i f (d i f f e r e n t b i t s 1 != 0) r e s 1 = - 1 ; / /@ a s s e r t r e s == r e s 1 ;

}
%\end{ ccode }

Refactoring step 2

/�@ pred i c a t e body_loop3 {L1 , L2 } (unsigned char �x , unsigned char �y ,
@ i n t e g e r i1 , i n t e g e r i2 , i n t e g e r d i f f b i t s 1 , i n t e g e r d i f f b i t s 2) = i 2 == i 1 +1 &&
@ d i f f b i t s 2 == (d i f f b i t s 1 | (\ at (x [i 1] , L1) ^ \ at (y [i 1] , L1))) ;
@� /

/�@ i n d u c t i v e l oop_p r ed3 {L1 , L2 } (i n t e g e r i1 , i n t e g e r i2 , unsigned char �x ,
@ unsigned char �y , i n t e g e r d i f f b i t s 1 , i n t e g e r d i f f b i t s 2) {

B.1 Equivalence by composition 157

@ case ba s e_ c a s e {L } : \ f o r a l l unsigned char �x , � y ;
@ \ f o r a l l i n t e g e r i , d i f f b i t s ; l oop_p r ed3 {L , L} (i , i , x , y , d i f f b i t s , d i f f b i t s) ;
@ case i n d _ c a s e {L1 , L2 , L3 } : \ f o r a l l unsigned char �x , � y ;
@ \ f o r a l l i n t e g e r i1 , i2 , i3 , d i f f b i t s 1 , d i f f b i t s 2 , d i f f b i t s 3 ;
@ loop_p r ed3 {L1 , L2 } (i1 , i2 , x , y , d i f f b i t s 1 , d i f f b i t s 2) ==>
@ body_loop3 {L1 , L2 } (x , y , i2 , i3 , d i f f b i t s 2 , d i f f b i t s 3) ==>
@ loop_p r ed3 {L1 , L3 } (i1 , i3 , x , y , d i f f b i t s 1 , d i f f b i t s 3) ;
@ }
@� /

/�@ lemma eq_ loop s {L1 , L2 , L3 , L4 } :
@ \ f o r a l l i n t e g e r i ; \ f o r a l l i n t b i t s 1 , b i t s 2 ;
@ \ f o r a l l unsigned char �x , � y , �x1 , �y1 ;
@ \ f o r a l l i n t e g e r j ; \ at (x [j] , L1)== \ at (x1 [j] , L3) ==>
@ \ f o r a l l i n t e g e r j ; \ at (y [j] , L1)== \ at (y1 [j] , L3) ==>
@ loop_p r ed3 {L1 , L2 } (0 , i , x , y , 0 , b i t s 1) ==> l oop_p r ed3 {L3 , L4 } (0 , i , x1 , y1 , 0 , b i t s 2) ==>
@ \ at (b i t s 1 , L2) == \ at (b i t s 2 , L4) ;
@� /

/�@ lemma d i f f b i t s _ e q _ z e r o :
@ \ f o r a l l i n t b i t s ; b i t s ==0 ==> (1&((b i t s -1) > >8)) -1==0;
@� /

/�@ lemma d i f f b i t s _ n e q _ z e r o :
@ \ f o r a l l i n t b i t s ; b i t s !=0 ==> (1&((b i t s -1) > >8)) -1==- 1 ;
@� /

/�@ r equ i r e s (\ f o r a l l i n t e g e r j ; 0<= j <16 ==> x [j]== x1 [j]) &&
@ (\ f o r a l l i n t e g e r j ; 0<= j <16 ==> y [j]== y1 [j]) ;
@� /

void c r y p t o _ v e r i f y (cons t unsigned char �x , cons t unsigned char �y ,
cons t unsigned char �x1 , cons t unsigned char �y1 , i n t r e s , i n t r e s 1) {

i n t i , i 1 ; i n t d i f f e r e n t b i t s = 0 ; i n t d i f f e r e n t b i t s 1 = 0 ;
i = 0 ; i 1 = 0 ; r e s = 0 ; r e s 1 = 0 ;

/ /@ ghos t goto L1 ;
/ /@ ghos t L1 :

/�@ loop i n v a r i a n t 0<= i <=16 &&
@ loop_p r ed3 {L1 , Here } (0 , i , x , y , 0 , d i f f e r e n t b i t s) ;

@ loop var i an t 16- i ;
@� /

whi le (i < 16) { d i f f e r e n t b i t s | = x [i] ^ y [i] ; i ++; }
i f (d i f f e r e n t b i t s != 0) r e s = - 1 ;
/ /@ ghos t goto L2 ;
/ /@ ghos t L2 :

/�@ loop i n v a r i a n t 0<= i1 <=16 &&
@ loop_p r ed3 {L2 , Here } (0 , i1 , x1 , y1 , 0 , d i f f e r e n t b i t s 1) ;

@ loop var i an t 16- i 1 ;
@� /

158 B NaCl implementation of crypto_verify

whi le (i 1 < 16) { d i f f e r e n t b i t s 1 | = x1 [i 1] ^ y1 [i 1] ; i 1 ++; }
r e s 1 = (1& ((d i f f e r e n t b i t s 1 -1) > >8)) - 1 ;
/ /@ a s s e r t r e s == r e s 1 ;

}

Specification of the refactoring step 3

/�@ pred i c a t e body_loop3 {L1 , L2 } (unsigned char �x , unsigned char �y ,
@ i n t e g e r i1 , i n t e g e r i2 , i n t e g e r d i f f b i t s 1 , i n t e g e r d i f f b i t s 2)= i 2 == i 1 +1 &&
@ d i f f b i t s 2 == (d i f f b i t s 1 | (\ at (x [i 1] , L1) ^ \ at (y [i 1] , L1))) ;
@� /

/�@ i n d u c t i v e l oop_p r ed3 {L1 , L2 } (i n t e g e r i1 , i n t e g e r i2 , unsigned char �x ,
@ unsigned char �y , i n t e g e r d i f f b i t s 1 , i n t e g e r d i f f b i t s 2) {
@ case ba s e_ c a s e {L } : \ f o r a l l unsigned char �x , � y ;
@ \ f o r a l l i n t e g e r i , d i f f b i t s ; l oop_p r ed3 {L , L} (i , i , x , y , d i f f b i t s , d i f f b i t s) ;
@ case i n d _ c a s e {L1 , L2 , L3 } :
@ \ f o r a l l unsigned char �x , � y ;
@ \ f o r a l l i n t e g e r i1 , i2 , i3 , d i f f b i t s 1 , d i f f b i t s 2 , d i f f b i t s 3 ;
@ loop_p r ed3 {L1 , L2 } (i1 , i2 , x , y , d i f f b i t s 1 , d i f f b i t s 2) ==>
@ body_loop3 {L1 , L2 } (x , y , i2 , i3 , d i f f b i t s 2 , d i f f b i t s 3) ==>
@ loop_p r ed3 {L1 , L3 } (i1 , i3 , x , y , d i f f b i t s 1 , d i f f b i t s 3) ;
@ }
@� /

/�@ lemma e q _ l o o p _ p r e d _ f a l s e {L1 , L2 , L3 , L4 } :
@ \ f o r a l l i n t e g e r i ; \ f o r a l l i n t b i t s , b i t s 1 ; \ f o r a l l unsigned char �x , � y ;
@ \ f o r a l l unsigned char �x1 , � y1 ;
@ \ f o r a l l i n t e g e r j ; \ at (x [j] , L1)== \ at (x1 [j] , L3) ==>
@ \ f o r a l l i n t e g e r j ; \ at (y [j] , L1)== \ at (y1 [j] , L3) ==>
@ loop_p r ed3 {L1 , L2 } (0 , i , x , y , 0 , b i t s) ==> l oop_p r ed3 {L3 , L4 } (0 , i , x1 , y1 , 0 , b i t s 1) ==>
@ \ at (b i t s , L2) == \ at (b i t s 1 , L4) ;
@� /

%\end{ ccode }

B.2 Annotated self-composed crypto_verify function

/�@ pred i c a t e body{L1 , L2 } (unsigned char �x , unsigned char �y ,
@ i n t e g e r d i f f b i t s 1 , i n t e g e r d i f f b i t s 2 , l i s t l1x , l i s t l2x , l i s t l1y , l i s t l2y ,
@ l i s t l 1 c t r l , l i s t l 2 c t r l , i n t e g e r i1 , i n t e g e r i 2) =
@ i 2 == i 1 +1 && (d i f f b i t s 2 ==(d i f f b i t s 1 | (\ at (x [i 1] , L1) ^ \ at (y [i 1] , L1)))) &&
@ l 2 c t r l ==cons (i2 <16?1 :0 , l 1 c t r l) && l2x ==cons (i1 , l 1x) && l2y ==cons (i1 , l 1y) ;@� /

/�@ i n d u c t i v e l o op_p r ed {L1 , L2 } (i n t e g e r i1 , i n t e g e r i2 , unsigned char �x ,
@ unsigned char �y , i n t e g e r d i f f b i t s 1 , i n t e g e r d i f f b i t s 2 , l i s t l1_x , l i s t l2_x ,
@ l i s t l1_y , l i s t l2_y , l i s t l 1 _ c o n t r o l , l i s t l 2 _ c o n t r o l) {
@ case ba s e_ c a s e {L } :

B.2 Annotated self-composed crypto_verify function 159

@ \ f o r a l l l i s t lx , ly , l c o n t r o l , i n t e g e r i , d i f f b i t s , unsigned char �x , � y ;
@ loop_p r ed {L , L} (i , i , x , y , d i f f b i t s , d i f f b i t s , lx , lx , ly , ly , l c o n t r o l , l c o n t r o l) ;
@ case i n d _ c a s e {L1 , L2 , L3 } :
@ \ f o r a l l unsigned char �x , � y , l i s t l1_x , l2_x , l3_x , l1_y , l2_y , l 3_y ;
@ l i s t l 1 _ c o n t r o l , l 2 _ c o n t r o l , l 3 _ c o n t r o l , i n t e g e r i1 , i2 , i 3 ;
@ i n t e g e r d i f f b i t s 1 , d i f f b i t s 2 , d i f f b i t s 3 ;
@ loop_p r ed {L1 , L2 } (i1 , i2 , x , y , d i f f b i t s 1 , d i f f b i t s 2 , l1_x , l2_x ,
@ l1_y , l2_y , l 1 _ c o n t r o l , l 2 _ c o n t r o l) ==>
@ body{L2 , L3 } (x , y , d i f f b i t s 2 , d i f f b i t s 3 , l2_x , l3_x ,
@ l2_y , l3_y , l 2 _ c o n t r o l , l 3 _ c o n t r o l , i2 , i 3) ==>
@ loop_p r ed {L1 , L3 } (i1 , i3 , x , y , d i f f b i t s 1 , d i f f b i t s 3 , l1_x , l3_x ,
@ l1_y , l3_y , l 1 _ c o n t r o l , l 3 _ c o n t r o l) ; } @� /

/�@ r equ i r e s lmem_con t ro l == lmem_con t ro l1
@ && lmem_x == lmem_x1 && lmem_y == lmem_y1 ;
@ ensures lmem_con t ro l == lmem_con t ro l1
@ && lmem_x == lmem_x1 && lmem_y == lmem_y1 ; @� /

void c r y p t o _ v e r i f y (cons t unsigned char �x , cons t unsigned char �y ,
cons t unsigned char �x1 , cons t unsigned char �y1 , i n t r e s u l t , i n t r e s u l t 1) {

i n t d i f f e r e n t b i t s = 0 , d i f f e r e n t b i t s 1 = 0 , i = 0 , i 1 = 0 ;

/�@ ghos t a p p e n d _ c o n t r o l (i <16) ;
@ ghos t L1 :
@ loop i n v a r i a n t 0<= i <=16 &&
@ loop_p r ed {L1 , Here } (0 , i , x , y , 0 , d i f f e r e n t b i t s , lmem_x{L1 } , lmem_x ,
@ lmem_y{L1 } , lmem_y , lmem_con t ro l {L1 } , lmem_con t ro l) ; @� /

whi le (i < 16) { F (i) / /@ ghos t append_x (i) ; ghos t append_y (i) ;
i ++; / /@ ghos t a p p e n d _ c o n t r o l (i <16) ; }

r e s u l t = (1 & ((d i f f e r e n t b i t s - 1) >> 8)) - 1 ;
/�@ ghos t a p p e n d _ c o n t r o l 1 (i1 <16) ;

@ ghos t L2 :
@ loop i n v a r i a n t 0<= i1 <=16 &&
@ loop_p r ed {L2 , Here } (0 , i1 , x1 , y1 , 0 , d i f f e r e n t b i t s 1 , lmem_x1{L2 } , lmem_x1 ,
@ lmem_y1{L2 } , lmem_y1 , lmem_con t ro l1 {L2 } , lmem_con t ro l1) ;@� /

whi le (i 1 < 16) { F1 (i 1) / /@ ghos t append_x1 (i 1) ; ghos t append_y1 (i 1) ;
i 1 ++; / /@ ghos t a p p e n d _ c o n t r o l 1 (i1 <16) ; }

r e s u l t 1 = (1 & ((d i f f e r e n t b i t s 1 - 1) >> 8)) - 1 ;
}

160 B NaCl implementation of crypto_verify

Appendix C

CAO implementation of
crypto_scalar_mult

1 t ypede f by t e := unsigned b i t s [8] ;
2 t ypede f unpacked := unsigned b i t s [2 5 6] ;
3 t ypede f packed := v e c t o r [3 2] o f unsigned b i t s [8] ;
4 t ypede f skey := unsigned b i t s [2 5 5] ;
5 t ypede f Fp := mod[2��255- 1 9] ;
6
7 /� Curve p o i n t s i n Montgomery r e p r e s e n t a t i o n � /
8 t ypede f MontRep := s t r u c t [def x : Fp ; def z : Fp ;] ;
9

10 /�@ lemma i s _p r ime_Fp : i s _ p r i m e (2��255- 1 9) ; � /
11
12 /� Cons t an t g l o b a l cu rve parame te r � /
13 def a2 : Fp := [4 8 6 6 6 2] ;
14 /�@ g l o b a l i n v a r i a n t c o n s t a n t _ a 2 : a2 ==[486662] � /
15
16 /� Curve p o i n t a d d i t i o n � /
17 def addMont (Q, Qpr , QmQpr : MontRep) : MontRep {
18 def Q3 : MontRep ;
19
20 Q3 . x := [4] � (Q. x � Qpr . x - Q. z�Qpr . z)��2 � QmQpr . z ;
21 Q3 . z := [4] � (Q. x � Qpr . z - Q. z�Qpr . x)��2 � QmQpr . x ;
22
23 re turn Q3 ;
24 }
25
26 /� Curve p o i n t a d d i t i o n � /
27 def doubleMont (Q : MontRep) : MontRep {
28 def Q2 : MontRep ;
29
30 Q2 . x := (Q. x��2 - Q. z ��2)��2 ;
31 Q2 . z := [4] �Q. x�Q. z � (Q. x��2+ a2�Q. x�Q. z+Q. z � � 2) ;
32

161

162 C CAO implementation of crypto_scalar_mult

33 re turn Q2 ;
34 }
35
36 /� Curve p o i n t s c a l a r m u l t i p l i c a t i o n � /
37 def curve25519 (n : skey , ba se : Fp) : Fp {
38 def i : i n t := 253 ;
39 def mth , mp1th , one : MontRep ;
40
41 one . x := base ;
42 one . z := [1] ;
43 mth := one ;
44 mp1th := doubleMont (one) ;
45
46 /�@ i n v a r i a n t -1<= i <=253
47 var i an t i � /
48 whi le (i >=0) {
49 i f (n [i] == 1) {
50 mth := addMont (mth , mp1th , one) ;
51 mp1th := doubleMont (mp1th) ;
52 }
53 e l s e {
54 mp1th := addMont (mth , mp1th , one) ;
55 mth := doubleMont (mth) ;
56 }
57 i := i - 1 ;
58 }
59 i f (mth . z == [0]) {
60 re turn [0] ;
61 }
62 e l s e {
63 re turn (mth . x / mth . z) ;
64 }
65 }
66 /� Unpacking a b y t e a r ray � /
67 /�@ ensures (f o r a l l i , j , k : i n t ;
68 (0 <= i <32 && 0<= j <8 && k== i �8+ j) ==> i n [i] [j]== r e s u l t [k]) � /
69 def unpack (i n : packed) : unpacked {
70 re turn (i n [0] @ i n [1] @ i n [2] @ i n [3] @ i n [4] @ i n [5] @
71 i n [6] @ in [7] @ in [8] @ i n [9] @ i n [1 0] @ i n [1 1] @
72 i n [1 2] @ in [1 3] @ in [1 4] @ i n [1 5] @ i n [1 6] @ i n [1 7] @
73 i n [1 8] @ in [1 9] @ in [2 0] @ i n [2 1] @ i n [2 2] @ i n [2 3] @
74 i n [2 4] @ in [2 5] @ in [2 6] @ i n [2 7] @ i n [2 8] @ i n [2 9] @
75 i n [3 0] @ in [3 1]) ;
76 }
77
78 /� R e c o n s t r u c t i n g t h e s e c r e t key � /
79 /�@ ensures r e s u l t [0]== 0b0 && r e s u l t [1]==0 b0 &&
80 r e s u l t [2]== 0b0 && r e s u l t [2 54] == 0b1
81 ensures (f o r a l l i , j : i n t ;
82 0<= i <32 && 0<= j <8 && 2< i �8+ j <254 ==>
83 n [i] [j]== r e s u l t [i �8+ j])
84 � /

163

85 def clampC (n : packed) : skey {
86 def key : skey ;
87 def pack : unpacked ;
88
89 pack := unpack (n) ;
90
91 pack [0 . . 2] := 0b000 ;
92 /�@ a s s e r t pack [0]==0 b0 � /
93 /�@ a s s e r t pack [1]==0 b0 � /
94 /�@ a s s e r t pack [2]==0 b0 � /
95
96 pack [254 . . 255] := 0b01 ;
97 /�@ a s s e r t pack [254]==0 b1 � /
98 /�@ a s s e r t pack [255]==0 b0 � /
99

100 /�@ a s s e r t (f o r a l l i , j : i n t ;
101 0<= i <32 && 0<= j <8 && 2< i �8+ j <254 ==> n [i] [j] == pack [i �8+ j]) � /
102
103 key := pack [0 . . 2 5 4] ;
104 /�@ a s s e r t (f o r a l l k : i n t ; 0<=k<=254 ==> key [k] == pack [k]) � /
105 /�@ a s s e r t (f o r a l l i , j : i n t ;
106 0<= i <32 && 0<= j <8 && 2< i �8+ j <254 ==> n [i] [j] == key [i �8+ j]) � /
107 re turn key ;
108 }
109
110 /� Pack ing a b y t e a r ray � /
111 def pack (i n : unpacked) : packed {
112 def ou t : packed ;
113
114 seq i := 0 t o 31 {
115 ou t [i] : = i n [8� i . . 8� i + 7] ;
116 }
117
118 re turn ou t ;
119 }
120
121 /� En t r y p o i n t � /
122 def c r y p t o _ s c a l a r m u l t (n , p : packed) : packed {
123 def pm : Fp := (Fp) unpack (p) ;
124 def nc : skey := clampC (n) ;
125
126 re turn (pack ((unpacked) (i n t) curve25519 (nc , pm))) ;
127 }

164 C CAO implementation of crypto_scalar_mult

Appendix D

Cao to Jessie translation

The translation of CAO to Jessie is denoted by hxi, where x can be any part of the
input program, e.g. a full CAO program, an expression, an annotation, etc.

D.1 Expressions

Literals

htruei = true h0b1i = bits_set(bits_null_vector, 0, true) h[i]i = mod_h⌧i_o f _int(i)

hfalsei = false h0b0i = bits_set(bits_null_vector, 0, f alse) hii = i

h{e
1

, ..., en}i = let v
1

= vector_h⌧i_set(vector_h⌧i_any, 0, he
1

i)
in let v

2

= vector_h⌧i_set(v
1

, 0, he
2

i) in vector_h⌧i_set(vn�1

, n, heni)
Integer and boolean expressions

hxi = x h�ei = � hei hi
1

op i
2

i = hi
1

i op hi
2

i
h!bi = !hbi h f

1

op f
2

i = int_o f _mod_h⌧i(h f
1

i op h f
2

i)

Vectors and matrices expressions

hv[i]i = let x = hii in assert 0  x < n vector_h⌧i_get(hvi, x)

165

166 D Cao to Jessie translation

hv[i
1

..i
2

]i = let x
1

= hi
1

i in let x
2

= hi
2

i in assert 0  x
1

< n ^ 0  x
2

< n

vector_h⌧i_shi f t(hvi, x
)

hm[i
1

, i
2

]i = let x
1

= hi
1

i in let x
2

= hi
2

i in assert 0  x
1

< n
1

^ 0  x
2

< n
2

matrix_h⌧i_get(hmi, x
1

, x
2

)

hm[i
1

..i
2

, i
3

..i
4

]i = let x
1

= hi
1

i in let x
2

= hi
2

i in let x
3

= hi
3

i in let x
4

= hi
4

i in

assert 0  x
1

< n
1

^ 0  x
2

< n
1

^ 0  x
3

< n
2

^ 0  x
4

< n
2

matrix_h⌧i_shi f t(hmi, x
1

, x
3

)

Unsigned bits expressions

hu[i]i = let x = hii in assert 0  x < n; bits_get(hui, x)

hu[i
1

..i
2

]i = let x
1

= hi
1

i in let x
2

= hi
2

i in assert 0  x
1

< n ^ 0  x
2

< n

bits_shi f t(hui, x
1

)

h⇠ ui = bits_bitwise_neg(hui) hu
1

ˆ u
2

i = bits_bitwise_xor(hu
1

i, hu
2

i)
hu

1

& u
2

i = bits_bitwise_and(hu
1

i, hu
2

i) hu
1

| u
2

i = bits_bitwise_or(hu
1

i, hu
2

i)

hu >> ii = bits_blit(bits_null_vector, bits_shi f t(hui, hii), len � hii, hii)
hu << ii = bits_blit(bits_shi f t(hui, 0), bits_null_vector, hii, len � hii)
hu | > ii = bits_blit(bits_shi f t(hui, 0), bits_shi f t(hui, hii), (len � hii), hii)
hu < | ii = bits_blit(bits_shi f t(hui, 0), bits_shi f t(hui, len � hii), hii, len � hii)

General expressions

hxi = x , x 2 Var⌧ h f (e
1

, . . . , en)i = h f i(he
1

i, . . . , heni)

D.2 Statements 167

D.2 Statements
Variable assignment

hx := ei = x = hei
hl[i] := ei = l = let x = hii in assert 0  x < n vector_h⌧i_set(l, x, hei)

hl[i
1

..i
2

] := ei = let x
1

= hi
1

i in let x
2

= hi
2

i in assert 0  x
1

< n ^ 0  x
2

< n

l = vector_h⌧i_blit(hei, hl[i
1

..i
2

]i, x
1

, succ(x
2

� x
1

))

hl[i
1

, i
2

] := ei = let x
1

= hi
1

i in let x
2

= hi
2

i in assert 0  x
1

< n
1

^ 0  x
2

< n
2

l = matrix_h⌧i_set(l, x
1

, x
2

, hei)

Multiple assignment

he
1

, e
2

, ..., en := e0
1

, e0
2

, ..., e0ni = var ⌧
1

y1 = he0
1

i; var ⌧
2

y2 = he0
2

i; ... var ⌧n yn = he0ni;
he

1

:= y
1

; e
2

:= y
2

; ... en := yn; i

for e
1

: ⌧
1

, . . . , en : ⌧n and y
1

, . . . , yn (new) fresh variables.

Assigning to a function that returns more than one value

he
1

, e
2

, ..., en := f (e
1

, ..., en)i =
let struct_⌧ y = h f (x

1

, ..., xn)i in {he
1

i = struct_⌧_get_ f ield
1

(y);

he
2

i = struct_⌧_get_ f ield
2

(y); ... heni = struct_⌧_get_ f ieldn(y); }

For f (e
1

, .., en) : struct_⌧.

Definitions and initialisations

hdef a : vector[n] o f ⌧i = var hvector[n] o f ⌧i a = hvector[n] o f ⌧i_any()

hdef a : bits[n]i = var bits a = bits_any()

hdef a : matrix[n
1

, n
2

] o f ⌧i = var hmatrix[n
1

, n
2

] o f ⌧i a = hmatrix[n
1

, n
2

] o f ⌧i_any()

hdef x : ⌧i = var h⌧i x

for ⌧ < {vector[n] of ⌧, bits[n],matrix[n1, n2] of ⌧}
hdef x : ⌧ := ei = var h⌧i x = hei

hdef x : ⌧ := {e
1

, ..., en}i = var h⌧i x = h⌧i_any(); x = h⌧i_set(x, 0, he
1

i); ...
x = h⌧i_set(x, n, heni);

168 D Cao to Jessie translation

Function and procedure arguments

hxi = x_input for type(x) 2 {vector[n] [bits[n] [matrix[n
1

, n
2

]} and x 2 Var⌧

hxi = x for type(x) < {vector[n] [bits[n] [matrix[n
1

, n
2

]} and x 2 Var⌧

Commands

hif (b) {c}i = if hbi then hci hif (b) {c
1

} else {c
2

}i = if hbi then hc
1

i else hc
2

i
hwhile (b) {c}i = loop while hbi hci h f (e

1

, . . . , en)i = h f i(he
1

i, . . . , heni)
h{C

1

; . . . ; Cn; }i = {hC
1

i; . . . ; hCni; } hreturn ei = return hei

hseq x := e
1

to e
2

{C
1

; ...Cn; }i = let y
1

= he
1

i in {hC
1

i[y
1

/x]; . . . hCni[y1

/x]; }
let y

2

= he
1

i + 1 in {hC
1

i[y
2

/x]; . . . hCni[y2

/x]; }
...

let yn = he2

i in {hC
1

i[yn/x]; ...hCni[yn/x]; }
hreturn e

1

, ..., eni = var struct_⌧ x; x = struct_⌧_set_field
1

(x, he
1

i);
x = struct_⌧_set_field

2

(x, he
2

i); . . .
x = struct_⌧_set_fieldn(x, heni);
return x;

And struct_⌧ is struct that represents the return type of the function.

D.3 Annotations

Annotations

hinvariant �i = loop invariant h�i hvariant �i = loop variant h�i
hassert �i = assert h�i hlabel Li = label hLi

D.3 Annotations 169

Assertions

htruei = true hfalsei = false

h� ^ i = h�i ^ h i he
1

== e
2

i = he
1

i ==h⌧i he2

i for e
1

, e
2

: ⌧

h� _ i = h�i _ h i h� ! i = h�i ! h i
h�$ i = h�i $ h i hp(e

1

, . . . , en)i = hpi(he
1

i, . . . , heni)
h9 x : ⌧. �i = 9 x : h⌧i. h�i h8 x : ⌧. �i = 8 x : h⌧i. h�i
hresulti = \result hat(e, L)i = \at(hei, L)

hold(e)i = \old(hei)
hp{L

1

, ..., Ln}(x
1

, ..., xn)i =hpi{hL
1

i, . . . , hLni}(hx1

i, ..., hxni)

where p is a predicate identifier.

Inductive predicates

hinductive p{L
1

, ..., Ln}(x
1

, ..., xn) {case c
1

{L
1

, ..., Ln} : �
1

... case cn{L1

, ..., Ln} : �n}i =
logic p{L

1

, ..., Ln}(hx1

i, ..., hxni){case c
1

{L
1

, ..., Ln} : h�
1

i ... case cn{L1

, ..., Ln} : h�ni}
hlemma f {L

1

, ..., Ln} : �i = lemma f {L
1

, ..., Ln} : h�i

Logic predicates and logic functions

hpredicate p{L
1

, ..., Ln}(x
1

, ..., xn) = �i = logic p{L
1

, ..., Ln}(hx1

i, ..., hxni) = h�i
hlogic ⌧ p{L

1

, ..., Ln}(x
1

, ..., xn) = ei = logic h⌧i p{L
1

, ..., Ln}(hx1

i, ..., hxni) = hei

Logic variables and types

hlogic ⌧ ti = logic type h⌧i t hlogic def v : ⌧i = logic h⌧i v

Axiomatic definition

haxiomatic a {A
1

; ...An; }i = axiomatic a{hA
1

i...hAni}

170 D Cao to Jessie translation

D.4 Global declarations
Function/Procedure declaration When the function only returns one type, it is trans-

lated as follows:

hdef f (x
1

: ⌧
1

, . . . , xn : ⌧n) : ⌧{C}i = h⌧i f (hx
1

i : h⌧
1

i, . . . , hxni : h⌧in) {hCi; }

and the functions/procedure inputs are translated as:

hx : ⌧i ⌘ input_x : h⌧i
⌧ 2 {bits[n], vector[n],matrix[n

1

, n
2

],mod[n][X]/ f (X), struct ⇢}
hx : ⌧i ⌘ x : h⌧i

⌧ < {bits[n], vector[n],matrix[n
1

, n
2

],mod[n][X]/ f (X), struct ⇢}

When it is the case that the input variables are translated as input_x, then are
added to the function’s body initializations of the form var h⌧i x = input_x; for
⌧ 2 {bits[n], vector[n],matrix[n

1

, n
2

],mod[n][X]/ f (X)}, and of the form

var h⌧i[0] x = new h⌧i[1]; h⌧i_copy(input_x, x);

for ⌧ 2 {struct ⇢}. For functions declaration whose return type is a tuple of
elements we have:

hdef f (x
1

: ⌧
1

, ..., xn : ⌧n) : �
1

, ...,�n {C}i = f (x
1

: ⌧
1

, ..., xn : ⌧n) {hCi; }

where � = declare_struct(�
1

, ...,�n). This means that for each function whose
the return type is a tuple of elements is created a struct where each field has the
same type of each element present in the tuple and with the same order.

Global variable declaration

hdef x : ⌧i ⌘ h⌧i x hdef x : ⌧ := ei ⌘ h⌧i x; unit global_var_init_x(){hx := ei}

Function contracts and Ghost code

hrequires �i = requires h�i hensures �i = ensures h�i hghost pi =ghost hpi

Appendix E

CAO implementation of AES

1 t ypede f GF2 := mod [2] ;
2 t ypede f GF2N := mod [GF2<X> / X��8 + X��4 + X��3 + X + 1] ;
3 t ypede f GF2V := v e c t o r [8] o f GF2 ;
4
5 t ypede f S := m a t r i x [4 , 4] o f GF2N ;
6 t ypede f K := m a t r i x [4 , 4] o f GF2N ;
7
8 t ypede f Row := m a t r i x [1 , 4] o f GF2N ;
9 t ypede f RowV := v e c t o r [4] o f GF2N ;

10 t ypede f Col := m a t r i x [4 , 1] o f GF2N ;
11 t ypede f ColV := v e c t o r [4] o f GF2N ;
12
13 t ypede f Byte := unsigned b i t s [8] ;
14 t ypede f B i t := unsigned b i t s [1] ;
15
16 def M : m a t r i x [8 , 8] o f GF2 := { [1] , [0] , [0] , [0] , [1] , [1] , [1] , [1] ,
17 [1] , [1] , [0] , [0] , [0] , [1] , [1] , [1] ,
18 [1] , [1] , [1] , [0] , [0] , [0] , [1] , [1] ,
19 [1] , [1] , [1] , [1] , [0] , [0] , [0] , [1] ,
20 [1] , [1] , [1] , [1] , [1] , [0] , [0] , [0] ,
21 [0] , [1] , [1] , [1] , [1] , [1] , [0] , [0] ,
22 [0] , [0] , [1] , [1] , [1] , [1] , [1] , [0] ,
23 [0] , [0] , [0] , [1] , [1] , [1] , [1] , [1] } ;
24
25 def C : v e c t o r [8] o f GF2 := { [1] , [1] , [0] , [0] , [0] , [1] , [1] , [0] } ;
26
27 def SBox (e : GF2N) : GF2N {
28 def x : GF2N ;
29 i f (e == [0]) { x := [0] ; }
30 e l s e { x := [1] / e ; }
31 def A : m a t r i x [8 , 1] o f GF2 := (m a t r i x [8 , 1] o f GF2) ((GF2V) x) ;
32 def B : GF2V := (GF2V) (M�A) ;
33 re turn ((GF2N)B) + ((GF2N)C) ;
34 }
35

171

172 E CAO implementation of AES

36 def SubBytes (s : S) : S {
37 def r : S ;
38 seq i := 0 t o 3 { seq j := 0 t o 3 { r [i , j] := SBox (s [i , j]) ; } }
39 re turn r ;
40 }
41
42 def SubWord (w : v e c t o r [4] o f GF2N) : v e c t o r [4] o f GF2N {
43 def r : v e c t o r [4] o f GF2N ;
44 seq i := 0 t o 3 { r [i] := SBox (w[i]) ; }
45 re turn r ;
46 }
47
48 def Shi f tRows (s : S) : S {
49 def r : S ;
50 seq i := 0 t o 3 { r [i , 0 . . 3] := (Row) (((RowV) s [i , 0 . . 3]) | > i) ; }
51 re turn r ;
52 }
53
54 def mix : m a t r i x [4 , 4] o f GF2N := {
55 [X] , [X+1] , [1] , [1] ,
56 [1] , [X] , [X+1] , [1] ,
57 [1] , [1] , [X] , [X+1] ,
58 [X+1] , [1] , [1] , [X]
59 } ;
60
61 def MixColumns (s : S) : S {
62 def r : S ;
63 seq i := 0 t o 3 { r [0 . . 3 , i] := mix � s [0 . . 3 , i] ; }
64 re turn r ;
65 }
66
67 def AddRoundKey (s : S , k : K) : S {
68 def r : S ;
69 seq i := 0 t o 3 { seq j := 0 t o 3 { r [i , j] := s [i , j] + k [i , j] ; } }
70 re turn r ;
71 }
72
73 def Ful lRound (s : S , k : K) : S {
74 re turn MixColumns (Sh i f tRows (SubBytes (s))) + k ;
75 }
76
77 def makeRCon () : v e c t o r [1 1] o f v e c t o r [4] o f GF2N {
78 def Rcon : v e c t o r [1 1] o f v e c t o r [4] o f GF2N ;
79 def l sw : v e c t o r [3] o f GF2N := { [0] , [0] , [0] } ;
80
81 seq i := 1 t o 10 { def t : v e c t o r [1] o f GF2N := { [X] } ;
82 t [0] : = t [0] � � (i 1) ; Rcon [i] := t @ lsw ; }
83 re turn Rcon ;
84 }
85
86 def ExpandKey (k : K) : v e c t o r [1 1] o f K {
87 def r : v e c t o r [1 1] o f K;

173

88 def Rcon : v e c t o r [1 1] o f v e c t o r [4] o f GF2N ;
89 Rcon := makeRCon () ;
90 def l sw : v e c t o r [3] o f GF2N := { [0] , [0] , [0] } ;
91
92 r [0] := k ;
93 seq i := 1 t o 10 { def o l d r : K := r [i 1] ;
94 def c u r r : K;
95 c u r r [0 . . 3 , 0] := ((Col) SubWord (((ColV) o l d r [0 . . 3 , 3]) | > 1)) +
96 ((Col) Rcon [i]) + o l d r [0 . . 3 , 0] ;
97 seq j := 1 t o 3 { c u r r [0 . . 3 , j] := c u r r [0 . . 3 , j 1] + o l d r [0 . . 3 , j] ; }
98 r [i] := c u r r ;
99 }

100 re turn r ;
101 }
102
103 def Aes (s : S , k : K) : S {
104 def r : S := s+k ;
105 def keys : v e c t o r [1 1] o f K;
106 keys := ExpandKey (k) ;
107 seq i := 1 t o 9 { r := Ful lRound (r , keys [i]) ; }
108
109 re turn Shi f tRows (SubBytes (r)) + keys [1 0] ;
110 }
111
112 def encodeByte (x : Byte) : GF2N {
113 def t : v e c t o r [8] o f GF2 := { (GF2) x [0] , (GF2) x [1] , (GF2) x [2] , (GF2) x [3] ,
114 (GF2) x [4] , (GF2) x [5] , (GF2) x [6] , (GF2) x [7] } ;
115 re turn (GF2N) t ;
116 }
117
118 def encodeRow (x : v e c t o r [4] o f Byte) : v e c t o r [4] o f GF2N {
119 def t : v e c t o r [4] o f GF2N ;
120 seq i := 0 t o 3 { t [i] := encodeByte (x [i]) ; }
121 re turn t ;
122 }
123
124 def encodeKey (i np : v e c t o r [1 6] o f Byte) : K {
125 def r : K;
126 seq i := 0 t o 3 { seq j := 0 t o 3 { r [i , j] := encodeByte (i np [i +4� j]) ; } }
127 re turn r ;
128 }
129
130 def decodeByte (x : GF2N) : Byte {
131 def t : v e c t o r [8] o f GF2 ;
132 t := (v e c t o r [8] o f GF2) x ;
133 def r : Byte := ((B i t) (i n t) t [0]) @ ((B i t) (i n t) t [1]) @
134 ((B i t) (i n t) t [2]) @ ((B i t) (i n t) t [3]) @
135 ((B i t) (i n t) t [4]) @ ((B i t) (i n t) t [5]) @
136 ((B i t) (i n t) t [6]) @ ((B i t) (i n t) t [7]) ;
137 re turn r ;
138 }
139

174 E CAO implementation of AES

140 def decodeRow (x : m a t r i x [1 , 4] o f GF2N) : v e c t o r [4] o f Byte {
141 def r : v e c t o r [4] o f Byte ;
142 seq i := 0 t o 3 { r [i] := decodeByte (x [0 , i]) ; }
143 re turn r ;
144 }
145
146 def decodeKey (x : K) : v e c t o r [1 6] o f Byte {
147 def r : v e c t o r [1 6] o f Byte ;
148 seq i := 0 t o 3 { seq j := 0 t o 3 { r [i �4+ j] := decodeByte (x [j , i]) ; } }
149 re turn r ;
150 }
151
152 def f i p s t e s t K : v e c t o r [1 6] o f Byte := {
153 (Byte)0 x2b , (Byte)0 x7e , (Byte)0 x15 , (Byte)0 x16 ,
154 (Byte)0 x28 , (Byte)0 xae , (Byte)0 xd2 , (Byte)0 xa6 ,
155 (Byte)0 xab , (Byte)0 xf7 , (Byte)0 x15 , (Byte)0 x88 ,
156 (Byte)0 x09 , (Byte)0 xcf , (Byte)0 x4f , (Byte)0 x3c
157 } ;
158
159 def f i p s t e s t S : v e c t o r [1 6] o f Byte := {
160 (Byte)0 x32 , (Byte)0 x43 , (Byte)0 xf6 , (Byte)0 xa8 ,
161 (Byte)0 x88 , (Byte)0 x5a , (Byte)0 x30 , (Byte)0 x8d ,
162 (Byte)0 x31 , (Byte)0 x31 , (Byte)0 x98 , (Byte)0 xa2 ,
163 (Byte)0 xe0 , (Byte)0 x37 , (Byte)0 x07 , (Byte)0 x34
164 } ;
165
166 def f i p sK : K := encodeKey (f i p s t e s t K) ;
167 def f i p s S : S := encodeKey (f i p s t e s t S) ;

Bibliography

[1] Specification for the advanced encryption standard (aes), 2001. [cited at p. 43, 117]

[2] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the power of simple
branch prediction analysis. In ACM symposium on Information, computer and
communications security, ASIACCS ’07, pages 312–320. ACM, 2007. [cited at p. 87]

[3] Elvira Albert, Germán Puebla, and Manuel V. Hermenegildo. Abstraction-
carrying code: a model for mobile code safety. New Generation Comput.,
26(2):171–204, 2008. [cited at p. 41]

[4] J. Bacelar Almeida, Manuel Barbosa, Jorge S. Pinto, and Bárbara Vieira. Deduc-
tive verification of cryptographic software. In Ewen Denny, editor, Proceedings
of the Second NASA Formal Methods Symposium (NFM 2009), Langley Research
Center, Hampton VA 23681-2199, USA, April 2009. NASA. [cited at p. 6, 8]

[5] J. Bacelar Almeida, Manuel Barbosa, Jorge S. Pinto, and Bárbara Vieira. Formal
verification of side-channel countermeasures using self-composition. Science of
Computer Programming, 2011. [cited at p. 6, 8]

[6] José Bacelar Almeida, Manuel Barbosa, Jorge Sousa Pinto, and Bárbara Vieira.
Verifying cryptographic software correctness with respect to reference imple-
mentations. In FMICS’09, volume 5825 of LNCS, pages 37–52, 2009. [cited at p. 6,

8]

[7] José Bacelar Almeida, Manuel Barbosa, Jorge Sousa Pinto, and Bárbara Vieira.
Deductive verification of cryptographic software. Innov. Syst. Softw. Eng., 6:203–
218, September 2010. [cited at p. 6, 8, 61, 69, 72, 101]

175

176 Bibliography

[8] José Bacelar Almeida, Mario João. Frade, Jorge Sousa Pinto, and Simão Melo de
Sousa. Rigorous software development. An introduction to program verification.
London: Springer, 2011. [cited at p. 32]

[9] Manuel Barbosa, Andrew Moss, Dan Page, Nuno F. Rodrigues, and Paulo F.
Silva. Type checking cryptography implementations, 2011. [cited at p. 110]

[10] Manuel Barbosa, Andrew Moss, Dan Page, Nuno F. Rodrigues, and Paulo F.
Silva. Type checking cryptography implementations (full version). Technical
Report DI-CCTC-11-01, CCTC, Univ. Minho, 2011. [cited at p. 108, 109]

[11] Manuel Barbosa, Jorge Sousa Pinto, Jean-Christophe Filliâtre, and Bárbara Vieira.
A deductive verification platform for cryptographic software. ECEASST, 33, 2010.
[cited at p. 7, 8]

[12] John Barnes. High Integrity Software: The SPARK Approach to Safety and
Security. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2003. [cited at p. 43]

[13] Mike Barnett, B. Evan Chang, Robert Deline, Bart Jacobs, and K. Rustan M.
Leino. Boogie: A modular reusable verifier for object-oriented programs. In
Formal Methods for Components and Objects (FMCO 2005), volume 4111 of
LNCS, pages 364–387. Springer-Verlag, 2006. [cited at p. 37]

[14] Mike Barnett, Peter Müller, Manuel Fähndrich, Wolfram Schulte, K. Rustan,
M. Leino, and Herman Venter. Specification and verification: The spec # experi-
ence, 2009. [cited at p. 4, 32, 37]

[15] Mike Barnett, K. Rustan, M. Leino, and Wolfram Schulte. The Spec# pro-
gramming system: An overview. In CASSIS’04, pages 49–69. Springer, 2004.
[cited at p. 40]

[16] Gilles Barthe, Lilian Burdy, Julien Charles, Benjamin Grégoire, Marieke Huis-
man, Jean-Louis Lanet, Mariela Pavlova, and Antoine Requet. Jack - a tool for
validation of security and behaviour of java applications. In Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever, editors, FMCO,
volume 4709 of Lecture Notes in Computer Science, pages 152–174. Springer,
2006. [cited at p. 4, 38]

Bibliography 177

[17] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow
by self-composition. In CSFW, pages 100–114. IEEE Computer Society, 2004.
[cited at p. 6, 26, 28, 30, 39, 56, 83, 103]

[18] Gilles Barthe and César Kunz. An introduction to certificate translation. In
Alessandro Aldini, Gilles Barthe, and Roberto Gorrieri, editors, FOSAD, vol-
ume 5705 of Lecture Notes in Computer Science, pages 51–95. Springer, 2008.
[cited at p. 138, 144]

[19] Gilles Barthe and Tamara Rezk. A certified lightweight non-interference java
bytecode verifier. In European Symposium on Programming, Lecture Notes in
Computer Science. Springer, 2007. [cited at p. 30, 39]

[20] Gilles Barthe, Tamara Rezk, and Amitabh Basu. Security types preserving
compilation. Comput. Lang. Syst. Struct., 33(2):35–59, 2007. [cited at p. 30, 39]

[21] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate,
Yannick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specfication Language.
CEA LIST and INRIA, 2010. Version 1.5 (2009-2010). [cited at p. 4, 5, 32, 33]

[22] L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In In
Foundations of Computer Security, Copenhagen, Denmark, July 2002. [cited at p. 30]

[23] Lennart Beringer and Martin Hofmann. Secure information flow and program
logics. In CSF, pages 233–248. IEEE Computer Society, 2007. [cited at p. 30, 41]

[24] Kenneth J. Biba. Integrity considerations for secure computer systems. In USAF
Electronic Systems Division, Air Force Systems Command, April 1977. [cited at p. 38]

[25] Sascha Böhme, Micha≥Moskal, Wolfram Schulte, and Burkhart Wol�. Hol-
boogie – an interactive prover-backend for the verifying c compiler. J. Autom.
Reason., 44(1-2):111–144, 2010. [cited at p. 4, 37]

[26] Dumitru Ceara, Laurent Mounier, and Marie-Laure Potet. Taint dependency
sequences: A characterization of insecure execution paths based on input-sensitive
cause sequences. In ICSTW ’10, pages 371–380. IEEE, 2010. [cited at p. 45]

[27] Richard Chang, Guofei Jiang, Franjo Ivancic, Sriram Sankaranarayanan, and
Vitaly Shmatikov. Inputs of coma: Static detection of denial-of-service vulnera-
bilities. In CSF’09, pages 186–199. IEEE, 2009. [cited at p. 45]

178 Bibliography

[28] Stephen Chong and Andrew C. Myers. Decentralized robustness. In CSFW
’06: Proceedings of the 19th IEEE workshop on Computer Security Foundations,
pages 242–256, Washington, DC, USA, 2006. IEEE Computer Society. [cited at p. 42]

[29] Lori A. Clarke. A system to generate test data and symbolically execute programs.
IEEE Trans. Software Eng., 2(3):215–222, 1976. [cited at p. 31]

[30] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal
Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. Vcc: A practical
system for verifying concurrent c. In Stefan Berghofer, Tobias Nipkow, Christian
Urban, and Makarius Wenzel, editors, TPHOLs, volume 5674 of Lecture Notes
in Computer Science, pages 23–42. Springer, 2009. [cited at p. 4, 37]

[31] Common Criteria. Common criteria for information technol-
ogy security evaluation, part 1: Introduction and general model.
http://www.commoncriteriaportal.org/, September 2006. [cited at p. 4]

[32] Common Criteria. Common criteria for information technol-
ogy security evaluation, part 2: Security functional requirements.
http://www.commoncriteriaportal.org/, September 2006. [cited at p. 4]

[33] Common Criteria. Common criteria for information technol-
ogy security evaluation, part 3: Security assurance requirements.
http://www.commoncriteriaportal.org/, September 2006. [cited at p. 4]

[34] Sylvain Conchon, Evelyne Contejean, and Johannes Kanig. Ergo : a theorem
prover for polymorphic first-order logic modulo theories, 2006. [cited at p. 5]

[35] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In POPL, pages 238–252, 1977. [cited at p. 31]

[36] Ádám Darvas, Reiner Hähnle, and David Sands. A theorem proving approach
to analysis of secure information flow. In Dieter Hutter and Markus Ullmann,
editors, SPC, volume 3450 of Lecture Notes in Computer Science, pages 193–209.
Springer, 2005. [cited at p. 30]

Bibliography 179

[37] Leonardo de Moura and Nikolaj Bjørner. Z3: An E�cient SMT Solver, volume
4963/2008 of Lecture Notes in Computer Science, pages 337–340. Springer
Berlin, April 2008. [cited at p. 37]

[38] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure
information flow. Commun. ACM, 20(7):504–513, 1977. [cited at p. 25, 38]

[39] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for
program checking. J. ACM, 52(3):365–473, 2005. [cited at p. 5, 37]

[40] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Inc., October
1976. [cited at p. 20, 35, 37]

[41] Edsger W. Dijkstra and Carel S. Scholten. Predicate calculus and program
semantics. Texts and monographs in computer science. Springer, 1990. [cited at p. 40]

[42] Guillaume Dufay, Amy Felty, and Stan Matwin. Privacy-sensitive information
flow with jml. In Automated Deduction CADE-20, pages 116–130. Springer
Berlin / Heidelberg, August 2005. [cited at p. 30, 41]

[43] E. Allen Emerson and Edmund M. Clarke. Characterizing correctness properties
of parallel programs using fixpoints. In J. W. de Bakker and Jan van Leeuwen,
editors, ICALP, volume 85 of Lecture Notes in Computer Science, pages 169–181.
Springer, 1980. [cited at p. 31]

[44] Jean-Christophe Filliâtre and Claude Marché. Multi-prover verification of c
programs. In Jim Davies, Wolfram Schulte, and Michael Barnett, editors, ICFEM,
volume 3308 of Lecture Notes in Computer Science, pages 15–29. Springer, 2004.
[cited at p. 4, 33, 36, 37]

[45] Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus plat-
form for deductive program verification. In Werner Damm and Holger Hermanns,
editors, CAV, volume 4590 of Lecture Notes in Computer Science, pages 173–177.
Springer, 2007. [cited at p. 5, 34, 35, 111]

[46] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended static checking for java. In ACM SIGPLAN
Conference on Programming language design and implementation (PLDI’02),
pages 234–245. ACM, 2002. [cited at p. 4, 33, 37]

180 Bibliography

[47] Robert W. Floyd. Assigning meanings to programs. In Proc. Sympos. Appl. Math.,
Vol. XIX, pages 19–32. Amer. Math. Soc., Providence, R.I., 1967. [cited at p. 4, 31, 39]

[48] Maria João Frade and Jorge Sousa Pinto. Verification conditions for source-level
imperative programs. Computer Science Review, 5(3):252–277, 2011. [cited at p. 17,

23]

[49] Roberto Giacobazzi and Isabella Mastroeni. Abstract non-interference: parameter-
izing non-interference by abstract interpretation. SIGPLAN Not., 39(1):186–197,
2004. [cited at p. 41, 42]

[50] J.A. Goguen and J. Meseguer. Security policies and security models. In Proc.
IEEE Symp. on Security and Privacy, pages 11–20, 1982. [cited at p. 25]

[51] Gurvan Le Guernic, Anindya Banerjee, Thomas Jensen, and David A. Automata-
based confidentiality monitoring. In In Proceedings of 11th Annual Asian Com-
puting Science Conference (ASIAN 2006), 2006. [cited at p. 30]

[52] Paolo Herms. Certification of a chain for deductive program verification. In Yves
Bertot, editor, 2nd Coq Workshop, satellite of ITP’10, Edinburgh, Royaume-Uni,
2010. [cited at p. 138, 144]

[53] Paolo Herms, Claude Marché, and Benjamin Monate. A Certified Multi-prover
Verification Condition Generator. Research Report RR-7793, INRIA, 2011.
[cited at p. 138]

[54] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969. [cited at p. 4, 14, 31, 39]

[55] Peter Homeier and David Martin. Trustworthy tools for trustworthy programs:
A verified verification condition generator. In Thomas Melham and Juanito
Camilleri, editors, Higher Order Logic Theorem Proving and Its Applications,
volume 859 of Lecture Notes in Computer Science, pages 269–284. Springer
Berlin / Heidelberg, 1994. [cited at p. 138, 144]

[56] B. P. F. Jacobs, J. R. Kiniry, M. E. Warnier, Bart Jacobs, Joseph Kiniry, and
Martijn Warnier. Java program verification challenges. In FMCO’02, volume
2852 of LNCS, pages 202–219. Springer, 2003. [cited at p. 40]

Bibliography 181

[57] Rajeev Joshi and K. Rustan M. Leino. A semantic approach to secure information
flow. Sci. Comput. Program., 37:113–138, May 2000. [cited at p. 30, 39]

[58] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant aes-gcm. In
Christophe Clavier and Kris Gaj, editors, CHES, volume 5747 of Lecture Notes
in Computer Science, pages 1–17. Springer, 2009. [cited at p. 87]

[59] Dexter Kozen. Language-based security. In Miroslaw Kutylowski, Leszek
Pacholski, and Tomasz Wierzbicki, editors, MFCS, volume 1672 of Lecture Notes
in Computer Science, pages 284–298. Springer, 1999. [cited at p. 29, 30]

[60] Len Lapadula, Leonard J. Lapadula, and D. Elliott Bell. Secure computer systems:
Mathematical foundations, 1973. [cited at p. 38]

[61] Gurvan Le Guernic. Precise Dynamic Verification of Noninterference. Technical
report, INRIA-MSR, 2008. [cited at p. 30]

[62] Gary T. Leavens, Clyde Ruby, K. Rustan, M. Leino, Erik Poll, and Bart Jacobs.
Jml (poster session): notations and tools supporting detailed design in java. In
OOPSLA ’00: Addendum to the 2000 proceedings of the conference on Object-
oriented programming, systems, languages, and applications (Addendum), pages
105–106, New York, NY, USA, 2000. ACM. [cited at p. 32, 33, 37, 40]

[63] Peng Li and Steve Zdancewic. Downgrading policies and relaxed noninterference.
In Jens Palsberg and Martín Abadi, editors, POPL, pages 158–170. ACM, 2005.
[cited at p. 40, 42]

[64] Heiko Mantel and David Sands. Controlled declassification based on intransitive
noninterference. In Programming Languages and Systems, volume Volume
3302/2004, pages 129–145. Springer Berlin / Heidelberg, 2004. [cited at p. 41, 42]

[65] Manuel Barbosa (editor). CACE Deliverable 5.1: Security Policies for Crypto-
graphic Software, January 2009. [cited at p. 5]

[66] Manuel Barbosa (editor). CACE Deliverable 5.2: Machine assisted verification
and certification tools, June 2010. [cited at p. 107, 112]

[67] C. Marché, C. Paulin-mohring, and X. Urbain. The krakatoa tool for certication
of java/javacard programs annotated in jml, 2004. [cited at p. 36, 41, 111]

182 Bibliography

[68] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The program
counter security model: Automatic detection and removal of control-flow side
channel attacks. In Proceedings of ICISC’05, volume 3935 of LNCS, pages
156–168. Springer, 2006. [cited at p. 44, 87]

[69] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system f to
typed assembly language. ACM Trans. Program. Lang. Syst., 21(3):527–568,
1999. [cited at p. 30]

[70] Yannick Moy. Automatic Modular Static Safety Checking for C Programs. PhD
thesis, Université Paris-Sud, January 2009. [cited at p. 36]

[71] Andrew C. Myers. Jflow: Practical mostly-static information flow control. In In
Proc. 26th ACM Symp. on Principles of Programming Languages (POPL, pages
228–241, 1999. [cited at p. 42]

[72] Andrew C. Myers and Barbara Liskov. A decentralized model for information
flow control. In Symposium on Operating Systems Principles, pages 129–142,
1997. [cited at p. 30, 41, 42]

[73] Andrew C. Myers and Barbara Liskov. Complete, safe information flow with
decentralized labels. In In Proc. IEEE Symposium on Security and Privacy, pages
186–197, 1998. [cited at p. 30, 41, 42]

[74] Andrew C. Myers, Barbara Liskov, and Name Barbara Liskov. Protecting privacy
using the decentralized label model. ACM Transactions on Software Engineering
and Methodology, 9:2000, 2000. [cited at p. 30, 41, 42]

[75] Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing robust de-
classification and qualified robustness. Journal of Computer Security, 2006:2006,
2006. [cited at p. 41, 42]

[76] David A. Naumann. From coupling relations to mated invariants for checking
information flow. In Dieter Gollmann, Jan Meier, and Andrei Sabelfeld, editors,
ESORICS, volume 4189 of Lecture Notes in Computer Science, pages 279–296.
Springer, 2006. [cited at p. 30, 40]

Bibliography 183

[77] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-
sures: the case of aes. In Topics in Cryptology - CT-RSA 2006, The Cryptogra-
phers’ Track at the RSA Conference 2006, pages 1–20. Springer-Verlag, 2005.
[cited at p. 87]

[78] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification system.
In Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,
Saratoga, NY, jun 1992. Springer-Verlag. [cited at p. 43]

[79] Dan Page. Detailed cao and qhasm language specifications. Technical Report
Deliverable D1.1, CACE Project, 2009. [cited at p. 108]

[80] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1), 2003. [cited at p. 39]

[81] Andrei Sabelfeld and David Sands. Declassification: Dimensions and principles.
J. Computer Security, 2007. [cited at p. 41, 42]

[82] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur.,
3(1):30–50, 2000. [cited at p. 30]

[83] Fred B. Schneider, J. Gregory Morrisett, and Robert Harper. A language-based
approach to security. In Reinhard Wilhelm, editor, Informatics, volume 2000 of
Lecture Notes in Computer Science, pages 86–101. Springer, 2001. [cited at p. 29, 30]

[84] Bruce Schneier. Applied cryptography: protocols, algorithms, and source code
in C. Wiley, New York, 2nd edition, 1996. [cited at p. 51]

[85] Martijn Stam. On montgomery-like representationsfor elliptic curves over gf(2k).
In Yvo Desmedt, editor, Public Key Cryptography, volume 2567 of Lecture Notes
in Computer Science, pages 240–253. Springer, 2003. [cited at p. 131]

[86] Elisabeth A. Strunk, Xiang Yin, and John C. Knight. Echo: a practical approach
to formal verification. In Proceedings of the 10th international workshop on
Formal methods for industrial critical systems, FMICS ’05, pages 44–53, New
York, NY, USA, 2005. ACM. [cited at p. 43]

184 Bibliography

[87] Josef Svenningsson and David Sands. Specification and verification of side
channel declassification. In FAST’09, volume 5983 of LNCS, pages 111–125.
Springer, 2009. [cited at p. 44, 45, 87, 88, 100, 101, 102]

[88] Tachio Terauchi and Alexander Aiken. Secure information flow as a safety
problem. In Chris Hankin and Igor Siveroni, editors, SAS, volume 3672 of
Lecture Notes in Computer Science, pages 352–367. Springer, 2005. [cited at p. 30, 40,

41, 56, 88, 101, 148]

[89] The Coq Development Team. The Coq Proof Assistant Reference Manual –
Version V8.2, 2008. [cited at p. 5]

[90] Stephen Tse and Steve Zdancewic. A design for a security-typed language with
certificate-based declassification. In In Proc. European Symp. on Programming,
volume 3444 of LNCS, pages 279–294. Springer-Verlag, 2005. [cited at p. 42]

[91] Je�rey A. Vaughan and Steve Zdancewic. A cryptographic decentralized label
model. In SP ’07: Proceedings of the 2007 IEEE Symposium on Security and
Privacy, pages 192–206, Washington, DC, USA, 2007. IEEE Computer Society.
[cited at p. 41, 42]

[92] Frédéric Vogels, Bart Jacobs, and Frank Piessens. A machine-checked soundness
proof for an e�cient verification condition generator. In Proceedings of the 2010
ACM Symposium on Applied Computing, SAC ’10, pages 2517–2522, New York,
NY, USA, 2010. ACM. [cited at p. 138, 144]

[93] Dennis M. Volpano, Cynthia E. Irvine, and Geo�rey Smith. A sound type system
for secure flow analysis. Journal of Computer Security, 4(2/3):167–188, 1996.
[cited at p. 30, 38]

[94] Dennis M. Volpano and Geo�rey Smith. Eliminating covert flows with minimum
typings. In CSFW, pages 156–169. IEEE Computer Society, 1997. [cited at p. 30, 44]

[95] Martijn Warnier and Martijn Oostdijk. Non-interference in JML. Technical Report
ICIS-R05034, Nijmegen Institute for Computing and Information Sciences, 2005.
[cited at p. 30, 40]

Bibliography 185

[96] Xiang Yin, J. Knight, and W. Weimer. Exploiting refactoring in formal verifica-
tion. In Dependable Systems Networks, 2009. DSN ’09. IEEE/IFIP International
Conference on, pages 53 –62, 29 2009-july 2 2009. [cited at p. 43]

[97] Xiang Yin, John C. Knight, Elisabeth A. Nguyen, and Westley Weimer. Formal
verification by reverse synthesis. In Proceedings of the 27th international con-
ference on Computer Safety, Reliability, and Security, SAFECOMP ’08, pages
305–319, Berlin, Heidelberg, 2008. Springer-Verlag. [cited at p. 43]

[98] Dachuan Yu and Islam Nayeem. A typed assembly language for confidentiality.
Lecture notes in computer science, 3924:162–179, 2006. [cited at p. 30, 39]

[99] Steve Zdancewic. A type system for robust declassification, 2004. [cited at p. 42]

[100] Steve Zdancewic and Andrew C. Myers. Robust declassification. In in Proc.
IEEE Computer Security Foundations Workshop, pages 15–23. IEEE Computer
Society Press, 2001. [cited at p. 42]

[101] Lantian Zheng and Andrew C. Myers. End-to-end availability policies and
noninterference. In CSFW ’05: Proceedings of the 18th IEEE workshop on
Computer Security Foundations, pages 272–286, Washington, DC, USA, 2005.
IEEE Computer Society. [cited at p. 42]

[102] Lantian Zheng and Andrew C. Myers. Dynamic security labels and static infor-
mation flow control. Int. J. Inf. Secur., 6(2):67–84, 2007. [cited at p. 42]

186 Bibliography

	Página 1
	Página 2
	Página 3
	Página 4
	thesis-capa.pdf
	Introduction
	Context
	The CAO language
	Deductive program verification
	Main results
	Thesis organization

	Preliminaries
	WhileC language
	While* language
	Security properties
	Safety properties
	Information flow
	Functional correctness properties

	Related work
	Language-based security
	Deductive verification
	Frama-C
	ACSL
	Jessie plug-in
	Why platform
	Jessie input language
	Other deductive verification platforms

	Information flow
	Functional correctness
	Side-channel countermeasures

	I Verifying security properties in cryptographic software
	Verifying functional correctness and information flow properties
	Verifying safety properties using Frama-c
	Proofs by composition and self-composition
	Natural invariants
	Self-composition lemmas
	Equivalence by composition lemmas
	Verification infrastructure

	Verifying absence of error propagation
	Verifying correctness with respect to reference implementations
	Defining natural invariants for loops in general
	Summary

	Verifying side-channel countermeasures
	Side-channel attacks
	A formal verification-based approach
	Formalisation and verification of side-channel countermeasures
	Security policy as a semantic property
	Instrumented semantics
	Formal security definition
	Verification of security

	Case study: NaCl cryptographic library
	A simple example
	A more challenging verification example

	Summary

	II CAOVerif : A deductive verification tool for CAO
	A deductive verification tool for CAO
	The CAO programming language
	CAO language overview
	Safety in CAO

	Implementation
	Tool architecture
	Strategy
	Emphasis on automation

	CAO to Jessie translation
	Container types
	Rings, fields and extension fields
	Structured types
	Casts and coercions
	Automatic safety proof obligations

	Case studies
	Elliptic-curve scalar multiplication in NaCl
	Minimizing exposure to side channel attacks in NaCl core

	Summary

	Establishing the soundness of CAOVerif
	Proof strategy
	Summary

	Conclusions
	Contributions
	Directions for future work

	Verifying openSSL implementation of RC4
	openSSL implementation of RC4
	ACSL: openSSL RC4 implementation with safety annotations

	NaCl implementation of crypto_verify
	Equivalence by composition
	Annotated self-composed crypto_verify function

	CAO implementation of crypto_scalar_mult
	Cao to Jessie translation
	Expressions
	Statements
	Annotations
	Global declarations

	CAO implementation of AES
	Bibliography

