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Abstract: For the problem of which Jordan forms are possible for
n-by-n complex matrices A, B and C, when A = BC, geometric mul-
tiplicity restrictions are given for the eigenvalues of the three matrices.
Together with the obvious determinantal condition on the eigenvalues,
these necessary conditions are shown to be sufficient for the problem
when n < 4, but not for n ≥ 4. Some basic observations about the
problem are given in the process.
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1 Introduction

Suppose that an invertible matrix A ∈ Mn(C) is given, so that we may
regard its Jordan canonical form (JCF) as known. Then, among all the
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ways of factoring A as A = BC, with B,C ∈ Mn(C), how arbitrary may the
JCF’s of A, B and C be taken to be? Equivalently, when A = BC, what
are all the possibilities for the triple of JCF’s of A,B, C? This is known to
be a very difficult problem, in general, but a number of prior works discuss
portions of it, some explicitly and some very theoretically [2], [6], [7], [8],
[9],[10]. Perhaps the first of these [1], shows that if the JCF aspect of the
problem is weakened to asking only what the 3 spectra can be, there is no
restriction, save the obvious condition that detA = detBdetC; in fact A
maybe taken arbitrarily (as long as it is not scalar) and the spectra of B
and C chosen freely, so long as the determinant condition is met. This has
been specialized by showing that, in addition, B and C may be chosen to
be nonderogatory [4], [6], so that a particular JCF is attainable in all cases.
At the other extreme, choosing with diagonalizability can be more difficult.
The 4-by-4 case has been sorted out in [5] and a theoretical approach has
been given in [5]. A result to be given here explains this somewhat.

The 1-by-1 and 2-by-2 cases of our problem are relatively straightfor-
ward. Here, we identify a more subtle necessary condition based upon geo-
metric multiplicity. This allows complete solution of the problem in the
3-by-3 case, but unfortunately, not in general. First, we make a few obser-
vations.

2 Observations

Because the determinant is the product of the eigenvalues, the most obvious
restriction on our problem, that

detA = detBdetC,

may be viewed as a numerical restriction on the eigenvalues in the JCF’s of
A,B and C. If those eigenvalues, including multiplicities are A : α1, α2, ..., αn;
B : β1, β2, ..., βn; and C : γ1, γ2, ..., γn, we have the determinant condition

Lemma 1 If A = BC, then
n∏

i=1

αi =
n∏

j=1

βjγj .

In case n = 1, the determinant condition is necessary and sufficient.
If n = 2, it is also necessary and sufficient, unless at least one of the three
matrices has two equal eigenvalues and is diagonalizable (and thus is a scalar
matrix). This situation is covered by our necessary condition of the next
section.
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Another useful observation is the fact that our problem is symmetric in
the three matrices A,B and C. Since all three matrices must be invertible,
we may also write, for example,

B = AC−1.

Since the JCF of C−1 is determined by that of C, and since AC−1 is
similar to C−1A, it is equivalent to take any of the three matrices as the left
hand side and the other two matrices in either order.

Finally, as the JCF is similarity invariant, and similarity may be passed
through the equation (e.g. S−1AS = S−1BSS−1CS), we may take, without
loss of generality, any one of the three matrices to actually be in JCF.

3 The Geometric Multiplicity Restriction

For A ∈ Mn(C), denote the geometric multiplicity of an eigenvalue λ of A
by gA(λ), i.e., gA(λ) = n− rank(A− λI). Of course gA(λ) = 0 means that
λ is not an eigenvalue of A. We then have the following general constraint
on our 3 - matrix JCF problem.

Theorem 1 If A,B, C ∈ Mn(C), A is nonsingular and A = BC, then

(i) gA(βγ) ≥ gB(β) + gC(γ)− n and

(ii) gB(α
γ ) ≥ gA(α) + gC(γ)− n.

Proof. Of course, by symmetry, (ii) is the same statement as (i), so that
it suffices to verify (i).

Let R = B − βI and S = C − γI, with R,S ∈ Mn(C). We then obtain
that B = R + βI and C = S + γI, and, thus,

BC = (R + βI)(S + γI) = RS + γR + βS + βγI

which gives
BC − βγI = R(S + γI) + βS.

Taking the rank of both sides, we get

rank(BC − βγI) ≤ rank(R) + rank(S).

Replace R and S by B − βI and C − γI, and we have

rank(BC − βγI) ≤ rank(B − βI) + rank(C − γI).
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Since gT (λ) = n− rank(T − λI), we have

gBC(βγ) ≥ gB(β) + gC(γ)− n,

which is (i). This completes the proof. �
We refer to the constraint placed upon our problem by Theorem 1 as

the geometric multiplicity restriction (GMR). It explains, in part, why the
nonderogatory refinement of Sourour’s result is natural and why the diago-
nalizable case of our problem can be more difficult. If two of the matrices
have sufficiently highly geometrically multiple eigenvalues, then the third
has to have a certain eigenvalue, i.e., a local version of the constraint given
by Lemma 1.

Now, the solution to our problem may be completed when n = 2. If
none of the matrices has a double eigenvalue and is diagonalizable, then the
determinant condition is necessary and sufficient. If at least one does, then
the GMR applies and at least one eigenvalue from each JCF must satisfy a
product equation. It is then easy to show that the determinant condition
and GMR are sufficient. This may also be verified by calculation without
explicitly observing the GMR.

4 The 3-by-3 Case

We may now go further by giving a complete solution to our problem in
the 3-by-3 case. We do this by considering all possible triples of JCF’s
that satisfy the determinant condition. The list that explicitly need be
considered is limited by the symmetry of the problem. Some are ruled out
by the GMR, and we show that the remaining ones may be constructed,
some by known results and others by construction here. This means that
the determinant condition and GMR are necessary and sufficient in the 3-
by-3 case. Unfortunately, this does not remain valid when n = 4, as shown
by examples resulting from the analysis of [5]. Most cases not ruled out by
[5] and the determinant condition and GMR are constructable for n = 4.

Now, let us look at the JCF of a 3-by-3 matrix. When one of the three
matrices is scalar, then the other two matrices must have the same Jordan
structure. Indeed, if A is scalar, then, C must be multiple of B−1, and if
B is scalar, then, A must be multiple of C. So, the nonscalar condition is
necessary. There are only 5 JCF’s a matrix can take such that are nonscalar
and nonsingular. Three of them are nonderogatory (labeled by N1, N2, N3)
and two are not (labeled by T1, T2). We assume that α, β and γ are all
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distinct and nonzero, and λ, µ are also distinct and nonzero. Then the
labels are as follows:

N1 =

 α 0 0
0 β 0
0 0 γ

 , N2 =

 α 1 0
0 α 0
0 0 β

 , N3 =

 α 1 0
0 α 1
0 0 α

 ,

T1 =

 λ 0 0
0 λ 0
0 0 µ

 , T2 =

 λ 1 0
0 λ 0
0 0 λ

 .

When two of the three matrices are nonderogatory, then the sufficiency
is implied by [4]. The cases N3T1T2 and T2T2T1 are excluded by the GMR
in combination with the determinant restriction. So, there are only eleven
triples we need to consider. They are: (1) N1T1T1, (2)N1T1T2, (3)N1T2T2,
(4)N2T1T1, (5)N2T1T2, (6)N2T2T2, (7) N3T1T1, (8)N3T2T2, (9) T1T1T1, (10) T2T1T1,
and (11) T2T2T2.

Theorem 2 Let n = 3 and suppose that the 3 JCF’s, with nonzero eigen-
values, J1, J2, J3 are given. Then, there exist matrices A,B, C ∈ M3(C)
such that JCF (A) = J1, JCF (B) = J2, and JCF (C) = J3, and A = BC,
if and only if the determinant condition and GMR are satisfied.

Proof. Because of the symmetry of the problem, we assume, without loss
of generality, that A is the only nonderogatory matrix, if any. The other
two matrices in all cases have an eigenvalue with geometric multiplicity two,
so an eigenvalue is forced by the GMR. Thus, we can assume without loss
of generality that an eigenvalue of C must be α

λ .
We first deal with the cases (7) and (8), i.e., the JCF(A) is N3. In fact,

a simple calculation may give us the desired Jordan form. For (7),

A ∼=

 α λ 0
0 α α

λ
0 0 α

 =

 λ 0 0
0 µ 1
0 0 λ

 α
λ 1 0
0 α

µ 0
0 0 α

λ

 = BC,

and for case (8),

A ∼=

 α α
λ 1

0 α λ
0 0 α

 =

 λ 1 0
0 λ 0
0 0 λ

 α
λ 0 0
0 α

λ 1
0 0 α

λ

 = BC.
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For the other cases, we first show that we can get matrices with required
Jordan structure by restricting to the following form:

A =

 α 0 0
0 a b
0 c d

 =

 λ 0 0
0 ∗ ∗
0 ∗ ∗

 α
λ 0 0
0 ∗ ∗
0 ∗ ∗

 = BC.

When JCF (A) = N1, or JCF (A) = N2 but the eigenvalue with alge-
braic multiplicity 1 is the forced eigenvalue, this is easy to see. Suppose
JCF (A) = N2 and the eigenvalue with algebraic multiplicity 2 is the forced
eigenvalue. Then, without loss of generality, we take σ(A) = {α, α, β},
σ(B) = {λ, λ, µ} and σ(C) = {γ, γ, δ}, with α 6= β, λ and µ not necessarily
distinct, and γ and δ not necessarily distinct. We assume α = λγ, by the
determinant restriction, we have that (λγ)2β = λ2µγ2δ and thus β = µδ.
So that, we can rewrite the required Jordan structure as

A =

 β 0 0
0 a b
0 c d

 =

 µ 0 0
0 ∗ ∗
0 ∗ ∗

 δ 0 0
0 ∗ ∗
0 ∗ ∗

 = BC.

In any case, we can reduce the 3-by-3 case to the 2-by-2 case. We denote
the lower-right 2-by-2 submatrices of A,B, C by A′, B′, C ′, respectively. By
having different values of a, b, c, and d, we can produce an A with JCF
N1, N2, T1 or T2. For a given A, we can choose the B′ and C ′ (nonscalar)
to get the desired eigenvalues to get the desired JCF of B and C. When
B′ and C ′ cannot be chosen nonscalar, it happens only in case (4), and in
N2 the eigenvalue with algebraic multiplicity 2 is the forced eigenvalue, we
rewrite the triples as

A =

 α 1 0
0 α 0
0 0 β

 ∼=

 α λ 0
0 β α

λ
0 0 α

 =

 λ 0 0
0 µ 1
0 0 λ

 α
λ 1 0
0 β

µ 0
0 0 α

λ

 = BC.

This completes the proof. �

Example Because of the results of [5], the following triple of JCF’s
is not realized by A,B, C ∈ M4(C), with A = BC, in spite of the fact
that both the determinant condition and GMR are vacuously satisfied. For
example

A = diag(2, 2, 3, 3), B = diag(i, i,−2,−2) and C = diag(−i,−i, 3, 3).

(Direct verification would be quite complicated.)
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[7] D. Carlson and E. Marques de Sá, Generalized minimax and interlacing
theorem, Linear and Multilinear Algebra 15 (1984), 77-103.

[8] F. C. Silva, Sums and products of matrices with prescribed similarity
classes, Linear and Multilinear Algebra 27 (1990), 317-323.

[9] F. C. Silva, The eigenvalues of the product of matrices with prescribed
similarity classes, Linear and Multilinear Algebra 34 (1993), 269-277.

[10] YuLin Zhang, On the number of invariant polynomials of the product
of matrices with prescribed similarity classes, Linear algebra and its
Application 277 (1998), 253-269.

7


	Introduction
	Observations
	The Geometric Multiplicity Restriction
	The 3-by-3 Case

