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Extended Abstract

1 Introduction

The problem to be addressed in this paper has the general form:

min
x∈Ω

f(x) subject to g(x) ≤ 0 (1)

where f : Rn → R and g : Rn → Rp are nonlinear continuous functions and
Ω = {x ∈ Rn : −∞ < l ≤ x ≤ u < ∞}. Problems with equality constraints,
h(x) = 0, can be reformulated into the above form by converting into a couple of
inequality constraints h(x)− β ≤ 0 and −h(x)− β ≤ 0, where β is a small posi-
tive relaxation parameter. Since we do not assume that the objective function f is
convex, the problem may have multiple optimal solutions in the feasible region. A
global optimal solution is to be computed. For this class of optimization problems,
methods based on penalty functions are quite common in the literature. In this type
of methods, the constraint violation is combined with the objective function to de-
fine a penalty function, which aims at penalizing infeasible solutions by increasing
their fitness values proportionally to their level of constraint violation. We are in-
terested in a particular class of penalty functions known as augmented Lagrangian
functions to handle the equality and inequality constraints of the problem (1). An
augmented Lagrangian is a more sophisticated penalty function for which a finite
penalty parameter value is sufficient to yield convergence to the solution of the
constrained problem.

We aim at analyzing the theoretical and practical behavior of an augmented
Lagrangian algorithm that is constructed following the most common augmented
Lagrangian paradigm [1, 2, 4]. The penalty function basis of our proposal is the
exterior penalty function presented in [5], the so-called 2-parameter hyperbolic
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penalty function. This is a continuously differentiable function that depends on
two penalty parameters τ ≥ 0 and ρ ≥ 0, whose penalty term is:

P(x, τ, ρ) =

p∑
i=1

(
τgi(x) +

√
τ2 (gi(x))

2 + ρ2
)
. (2)

2 Hyperbolic Augmented Lagrangian methodology

An augmented Lagrangian technique solves a sequence of very simple subprob-
lems where the objective function penalizes all or some of the constraint violation.
Our implementation of the hyperbolic augmented Lagrangian framework aims to
penalize the inequality constraints of the nonlinear optimization problem (1). The
penalty term of the hyperbolic (2) is herein reformulated so that a new penalty pa-
rameter µ emerges as µ =

ρ

τ
and τ > 0. The simple bounds are not included

in the augmented Lagrangian although the solution method to solve the subprob-
lem (see (3) below) guarantees that they are satisfied. Thus, each subproblem of
the sequence that is solved for fixed values of the penalties τ and µ is a bound
constrained optimization problem of the form:

min
x∈Ω

ϕ(x, δ, τ, µ) ≡ f(x) +

p∑
i=1

δigi(x) + τ

p∑
i=1

(
gi(x) +

√
(gi(x))

2 + µ2

)
(3)

where δ = (δ1, . . . , δp)
T is the Lagrange multiplier vector associated with the in-

equality constraints. Another important issue in the augmented Lagrangian context
is concerned with the selection of the method to compute an approximate solution
to the subproblem (3), within a specified ‘optimal’ tolerance. Since a global solu-
tion of problem (1) is to be computed, a global optimization solution method for
the subproblem (3) is to be provided.

A formal description of the hyperbolic augmented Lagrangian algorithm for
solving problem (1) is presented in Algorithm 1.

We note that in the presented algorithm, the penalty parameter µ is reduced at
all iterations aiming to converge to 0. Although the penalty τ is to be increased
as k → ∞, to avoid an ill-conditioned subproblem, its value is not updated when-
ever complementarity, as well as feasibility, improve. Another important issue
addressed in this paper is the estimation of the multiplier vector. A safeguarded
first-order Lagrange multiplier formula is used, so that multiplier vector bounded-
ness is guaranteed.

2.1 Artificial Fish Swarm Algorithm

To solve subproblem (3) the artificial fish swarm (AFS) algorithm is used. This is
a stochastic population based method. At each iteration, a population of NP solu-
tions, herein denoted by xi, i = 1, . . . , NP , are used to generate a trial population

2



Algorithm 1 Hyperbolic augmented Lagrangian algorithm
1: Given initial values and parameters;
2: Set k = 0;
3: while feasibility and complementarity are not achieved do
4: Find an approximate global minimizer x(k) of subproblem (3), within an

‘optimal’ tolerance, using Algorithm 2;
5: Estimate the multiplier vector δ;
6: Reduce the penalty µ;
7: if feasibility and complementarity have been improved then
8: Maintain the value of penalty τ ;
9: else

10: Increase the value of penalty τ ;
11: end if
12: Reduce ‘optimal’ tolerance;
13: k = k + 1;
14: end while

yi, i = 1 . . . , NP . Initially, the population is randomly generated in the entire
search space Ω. Each fish/point movement is defined according to the number of
points inside its visual. The visual is the closed neighborhood centered at xi with
a radius v > 0. The three possible situations that may occur are:

i) the visual is empty;

ii) the visual is crowded;

iii) the visual is not crowded.

When the visual is empty, a random behavior is performed, in which the trial yi

is randomly generated inside the visual of xi. When the visual is crowded, and a
point randomly selected from the visual has a better fitness than xi, the searching
behavior is implemented, i.e., yi is randomly generated along the direction from
xi to that selected point. Otherwise, the random behavior is performed. When the
visual is not crowded, and the best point inside the visual has a better fitness than
xi, the chasing behavior is performed. This means that yi is randomly generated
along the direction from xi to that best point. However, if that best point is not
better than xi, the swarming behavior is tried instead. Here, the central point of
the visual is computed and if it has better fitness than xi, yi is computed randomly
along the direction from xi to the central; otherwise, the searching behavior is
implemented instead [3].

When selecting between the current xi and the trial yi, the solution with best
objective function value (fitness) wins. The pseudo code of this algorithm is shown
below in Algorithm 2.
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Algorithm 2 Artificial fish swarm algorithm
1: Generate a population of NP points: xi, i = 1, . . . , NP ;
2: while an approximate minimizer of subproblem (3) is not reached do
3: for all xi do
4: Compute visual;
5: Perform accordingly chasing, swarming, searching or random behavior to

find yi;
6: Select between yi and xi;
7: end for
8: end while

2.2 Convergence to Global Minimizers

The global convergence of the hyperbolic augmented Lagrangian algorithm has
been analyzed. The analysis has some similarities with that of the global aug-
mented Lagrangian method presented in [2] and relies on the fact that, at each
iteration k, an approximate global minimizer of the subproblem (3) is obtained,
x(k), within a certain ‘optimal’ tolerance. Based on the following assumptions

• a global minimizer z of the problem (1) exists;

• the sequence {x(k)} generated by the Algorithm 1 is well defined and there
exists a set of indices N ⊆ N so that limk∈N x(k) = x∗;

• The functions f : Rn → R and g : Rn → Rp are continuous in a neighbor-
hood of x∗;

• for all i = 1, . . . , p, the optimal multipliers δ∗i ∈ [0, δmax];

• the sequence of penalty parameters {τ (k)} tends to ∞;

• the sequence of penalty parameters {µ(k)} tends to zero;

we prove that every limit point x∗ of the sequence {x(k)} generated by the Al-
gorithm 1 is feasible and is an approximate global minimizer of the problem (1),
within a sufficiently small ‘optimal’ tolerance.

A stochastic algorithm for solving an optimization problem of the type (3) is
said to exhibit global convergence when the sequence of solutions generated by
the algorithm converges in some stochastic manner to the global optimum. Since
AFS algorithm generates random sequences of solutions, convergence here means
stochastic convergence that relies on a probability measure and is different from
the convergence concept of classical analysis. There are different types of stochas-
tic convergence for a sequence of random solutions. Convergence with probability
one (or almost sure convergence), convergence in probability, convergence in mean
square, and convergence in distribution are the most known. Until now, conver-
gence of the fish swarm iterative process in mean square has been guaranteed [4].
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3 Discussion of Preliminary Numerical Results

We consider the below example to analyze the behavior of the algorithm when
dealing with both equality and inequality constraints:

min f(x) ≡ sin3(2πx1) sin(2πx2)
x3
1(x1+x2)

subject to x21 − x2 + 2.272 ≤ 0
1− x1 + (x2 − 4)2 = 0
0 ≤ xi ≤ 10, i = 1, 2.

The global optimum is f∗ = −0.047764467932642 located at (1.1550767073652,
3.6062021998978), where both constraints are active. This example was solved 10
times by the presented algorithm with NP = 50, and the best obtained solution
(‘fbest point’) is −0.047762. During the best of the 10 runs, the hyperbolic aug-
mented Lagrangian algorithm completed 10 iterations, after 9 166 function eval-
uations (‘n.func.eval.’). Algorithm 2 was allowed to run for 20 iterations, at each
outer iteration. For the augmented Lagrangian shown in (3), the equality was trans-
formed into an inequality using β = 0.00001.
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Figure 1: Constraints behavior (left) and penalty parameters behavior (right).

From Figure 1 - plot on the left - we may observe that the feasible region is
reached within k = 7 outer iterations (equivalent to 140 AFS algorithm total iter-
ations), with a sum of violations (‘violation’) equal to 2.545298E-05. The plot on
the right shows the values of the penalty parameters τ and µ at every outer iteration.
Their convergence behavior is as expected. Figure 2 aims to depict the initial pop-
ulation at the beginning of the iterative process and the population after completing
six iterations. In this figure, we show the values of ‘n.func.eval.’, ‘fbest point’, ‘viola-
tion’, τ and µ attained at iterations k = 0 and k = 6. It is also shown that the initial
population is nicely spread over the set [0, 10]2 and the minimizer is attracting the
points of the population.
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Figure 2: Minimizer and population at k = 0 (left) and k = 6 (right).
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