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Extended Abstract

1 Introduction

The 0–1 Quadratic Knapsack Problem (QKP) consists in maximizing a quadratic
objective function subject to a linear capacity constraint. This problem hasbeen
introduced by Gallo et al. [2] and may be expressed as follows:

maximizef(x) ≡
n
∑

i=1

pixi +

n−1
∑

i=1

n
∑

j=i+1

pijxixj

subject to
n
∑

i=1

aixi ≤ b

xi ∈ {0, 1}, i = 1, 2, . . . , n,

(1)

where the coefficientspi, ai(i = 1, 2, . . . , n) andpij(i = 1, 2, . . . , n − 1, j =
i + 1, . . . , n) are positive integers andb is an integer such thatmax{ai : i =
1, 2, . . . , n} ≤ b <

∑n
i=1 ai. Herepi is a profit achieved if itemi is selected and

pij is a profit achieved if both itemsi andj (j > i) are selected. The goal is to find
a subset ofn items that yields maximum profitf without exceeding capacityb.

The QKP arises in a variety of real world applications including finance, VLSI
design, compiler construction, telecommunication, flexible manufacturing systems,
locations, hydrological studies. Classical graph and hypergraph partitioning prob-
lems can also be formulated as the QKP. Several deterministic [1, 2] as well as
stochastic solution methods [4, 8] have been proposed to solve (1).

Recently, a population-based artificial fish swarm algorithm that simulates the
behavior of the fish swarm inside water was proposed [3, 6]. Applying to the opti-
mization problem, generally a ‘fish’ represents an individual point in a population.
Fishes desire to stay close to the swarm, to protect themselves from predators and
to look for food, and to avoid collisions within the group. In this paper, we propose
a binary version of the artificial fish swarm algorithm for solving (1).
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2 A Binary Artificial Fish Swarm Algorithm

Here we will present the proposed binary version of the artificial fish swarm algo-
rithm for solving (1) and simply denote it by bAFSA.

Initialization
The binary artificial fish swarm algorithm uses a population ofN individual points
(the fish swarm)xi, i = 1, 2, . . . , N to identify promising regions looking for a
optimal solution. In bAFSA,N individual points represented by binary 0/1 string
of lengthn are randomly initialized. An example is shown in Figure 1.

x
i,1 = 1 0 0 0 1 1 0 1 0 1 1 0 1 1 0

Figure 1: Individual representation in bAFSA

However, the randomly initialized pointxi may not be feasible since the prob-
lem (1) has a constraint. The widely used approach to deal with constrained opti-
mization problem is based on penalty functions. The performance of penalty-type
method is not always satisfactory due to the choice of an appropriate penalty pa-
rameter, hence alternative techniques have been proposed. In bAFSA, the decoding
algorithm proposed by Sakawa and Kato [7] is used in order to makex

i feasible.

The visual
After initializing N feasible individual points, the crucial issue of bAFSA is the
visual of each individual pointxi that helps us to create a corresponding trial point
y
i. This represents a closed neighborhood ofx

i with a radius equal to a positive
quantityν. A point is to be considered inside the visual ofx

i if the distance of
that point toxi is within ν. The Hamming distance between two points is used to
define the visual. Here we takeν = δ × n, whereδ ∈ (0, 1) andn (items) can be
the maximum Hamming distance between two points.

Let npi be the number of points inside the visual of pointx
i. Depending on

the relative positions of the points in the population, three possible scenariosmay
occur: (i) the visual is empty ifnpi = 0; (ii) the visual is not crowded ifnpi/N ≤
θ; and (iii) the visual is crowded, otherwise. Hereθ ∈ (0, 1) is the crowding
parameter.

Fish Behavior
Depending on the crowding scenario of the visual, the pointx

i performs differ-
ent behavior. In bAFSA, the fish (point) behavior that create the trial points are
outlined as follows.
Chasing behavior: If the visual is not crowded, the pointxi performs the chasing
behavior. This behavior is related with a movement towards the pointx

best inside
the visual that has the best objective function value. The pointx

i performs the
chasing behavior iff(xbest) > f(xi). In chasing, the uniform crossover between
x
i andxbest is performed to create the trial pointyi.

Swarming behavior: This behavior of the pointxi is related with a movement
towards the central pointxc inside the visual if it is not crowded andf(xbest) ≤
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f(xi). In bAFSA, an individual point is represented by binary string of 0/1 bits,
so the central pointxc inside the visual is calculated according to [5]. Then if
f(xc) > f(xi), the pointxi performs the swarming behavior. In swarming, the
uniform crossover betweenxi andxc is performed to create the trial pointyi.
Searching behavior: When the visual is crowded, or it is not crowded but the
pointxi did not perform the chasing or the swarming behavior, the point performs
the searching behavior. Here, a pointx

rand inside the visual is randomly selected
and the pointxi moves towards it if the conditionf(xrand) > f(xi) holds. In
searching, the uniform crossover betweenx

i andxrand is also performed to create
the trial pointyi.
Random behavior: When the visual is empty, or the other fish behavior are not
performed, the pointxi performs the random behavior. This behavior is related
with a random movement for a better region, and the trial pointy

i is created by
randomly setting binary 0/1 bits of lengthn.

Selection
After creating theN trial pointsyi,t+1, i = 1, 2, . . . , N , the decoding algorithm
is performed to make them feasible. In order to decide whether or not they should
become members of the population in the next iterationt+ 1, the trial pointyi,t+1

is compared to the current pointxi,t using the following greedy criterion:

x
i,t+1 =

{

y
i,t+1 if f(yi,t+1) ≥ f(xi,t)

x
i,t otherwise

, i = 1, 2, . . . , N. (2)

Termination Condition
Let Tmax be the maximum number of iterations. Iffmax is the maximum objective
function value attained att and if fopt is the known optimal value, then bAFSA
terminates if(t > Tmax or (|fmax − fopt|) ≤ ǫ), for a small positive numberǫ.

The bAFSA
The algorithm of the herein proposed binary version of the artificial fish swarm
algorithm for solving (1) is outlined.

Step 1: Set parameter values.
Step 2: Sett = 1. Randomly initializexi,1, i = 1, 2, . . . , N .
Step 3: Perform decoding and evaluatef . Identifyxmax andfmax.
Step 4: If termination condition is met, stop.
Step 5: For allxi,t,

Define visual and identify crowding scenario;
Perform fish behavior to create trial pointy

i,t+1;
Perform decoding to make the trial point feasible.

Step 6: Perform selection according to (2) to create new current points.
Step 7: Evaluatef and identifyxmax andfmax.
Step 8: Sett = t+ 1 and go to Step 4.
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3 Preliminary Results

We code bAFSA in C and compile with Microsoft Visual Studio 9.0 compiler in a
PC having 2.5 GHz Intel Core 2 Duo processor and 4 GB RAM. We setN = 100,
δ = 0.5, θ = 0.8 andǫ = 10−4. We also setTmax = 1000 for n ≤ 50, otherwise
Tmax = 2000. Firstly,11 QKP are considered to test the performance criteria of the
proposed bAFSA. The data were generated randomly according to [1].The profit
coefficients of objective function were generated with density,d = 1.00. The den-
sity means the percentage of non-zeros in the profit coefficients. We solved these
problems using MINLP1 and compared the results with our solutions. The results
obtained by MINLP and bAFSA are shown in Table 1. Thirty independent runs

Table 1: Results of 11 test problems obtained by MINLP and bAFSA

Prob. n

MINLP bAFSA
solver successful runs among 30 runs

fopt FE fmax AITsr AFEsr ATsr Nsr favg AIT AFE AT
1 5 282 82 282 1 100 0.00 30 282.00 1 100 0.00
2 10 1224 162 1224 1 114 0.00 30 1224.00 1 114 0.00
3 20 5272 5793 5272 32 3212 0.07 30 5272.00 32 3212 0.07
4 30 1629 46 1629 6 577 0.02 30 1629.00 6 577 0.02
5 40 31083 3759 31083 47 4688 0.23 29 31082.00 79 7865 0.35
6 50 58588 2319 58588 40 4004 0.24 30 58588.00 40 4004 0.24
7 60 66286 8964 66286 550 54997 4.08 11 65706.40 1468 146852 10.74
8 70 91144 3184 91144 36 3554 0.34 26 91035.73 297 29750 2.69
9 80 85783 1408 85783 67 6661 0.80 20 85730.77 711 71116 7.97
10 90 183475 20298 183475 102 10218 1.16 24 183419.93 482 48179 5.10
11 100 99759 258400 99759 149 14902 2.05 11 99406.20 1321 132143 15.96

were carried out for each problem using bAFSA. In a run if the algorithmfinds the
optimal solution (or near optimal with a tolerance) of a test problem, then the run
is considered to be a successful run. In the table,‘fopt’ and ‘FE’, the number of
function evaluations are obtained with MINLP solver. The performance criteria of
bAFSA are: (i) for the successful runs – ‘fmax’; the average number of iterations,
‘AITsr’; the average number of function evaluations, ‘AFEsr’; the average com-
putational time (in seconds), ‘ATsr’ and the number of successful runs, ‘Nsr’; (ii)
among the 30 runs – the average of best objective function values obtained, favg;
‘AIT’, ‘AFE’ and ‘AT’ bear the same previously defined meanings but among the30
runs. We remark that ‘AFE’ was computed based on the entire population.

Secondly,20 benchmark QKP test problems2 are considered. The results ob-
tained by MINLP and bAFSA are shown in Table 2.

We may conclude from the results in Tables 1 and 2, that the herein proposed
bAFSA is capable of solving 0–1 quadratic knapsack problems although some im-
provement in efficiency is still required.

1available at http://neos-server.org/neos/
2available at http://cedric.cnam.fr/∼soutif/QKP/

4



Table 2: Results of 20 test problems obtained by MINLP and bAFSA

Prob.
MINLP bAFSA

n solver successful runs among 30 runs
(d) fopt FE fmax AITsr AFEsr ATsr Nsr favg AIT AFE AT

1 100 18558 8364 18558 142 14183 2.51 6 18485.60 1628 162852 27.41
2 (0.25) 56525 706 56525 111 11062 1.47 18 56407.63 866 86645 10.14
3 3752 1713 3752 101 10050 1.30 6 3688.43 1620 162025 18.96
4 50382 61 50382 183 18301 2.47 12 50153.10 1273 127332 15.09
5 61494 5130 61494 39 3912 0.57 26 61466.40 301 30059 4.54
6 100 83742 7062 83742 137 13716 1.90 22 83643.43 634 63397 7.73
7 (0.50) 104856 10071 104856 139 13851 1.88 2 104604.03 1876 187608 22.23
8 34006 17786 34006 146 14564 2.05 11 33942.83 1320 132018 15.74
9 105996 157 105996 59 5937 0.91 27 105859.50 253 25345 3.86
10 56464 7478 56464 78 7815 1.35 15 56447.57 1039 103918 16.37
11 100 189137 7 189137 5 490 0.07 30 189137.00 5 490 0.07
12 (0.75) 95074 173495 95074 206 20643 2.81 5 94984.87 1701 170124 20.26
13 62098 3447 62098 84 8432 1.56 19 62042.80 787 78681 12.93
14 72245 301913 72245 104 10426 1.85 8 72116.53 1494 149461 24.30
15 27616 14023 27616 103 10288 1.39 16 27456.83 988 98829 11.88
16 100 81978 38198 81978 124 12391 1.75 11 81835.10 1312 131221 15.82
17 (1.00) 190424 37144 190424 121 12133 1.90 6 188728.63 1624162442 24.81
18 225434 1590 225434 210 20968 2.66 6 223298.73 1642 164209 19.40
19 230076 1370 230076 247 24659 3.10 19 229244.37 890 88958 10.74
20 74358 13569 74358 143 14255 2.01 22 74256.80 638 63791 7.71

4 Conclusion

In this paper, a binary version of the artificial fish swarm algorithm for solving 0–1
quadratic knapsack problem has been presented. In this method a point isrepre-
sented by a binary string of 0/1 bits. The visual of a point is defined using the
Hamming distance. Depending on the number of points inside the visual, a point
can perform either chasing, swarming, searching or random behavior. Crossover
and mutation are implemented to create trial points. In order to make points feasi-
ble a decoding algorithm is also implemented. A greedy selection criterion is used
to decide whether or not the trial points should be included in the population ofthe
next iteration.

A set of 0–1 QKP were considered to test the performance of bAFSA. Ithas
been shown that the proposed method is capable of solving those problems.Future
development will focus on improving the algorithm efficiency and the comparison
of the proposed method with the other solution methods available in literature.
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