
The geometric mean algorithm

Rui Ralha

Centro de Matemática
Universidade do Minho

4710-057 Braga, Portugal
email: r ralha@math.uminho.pt

Abstract

Bisection (of a real interval) is a well known algorithm to compute eigenvalues of
symmetric matrices. Given an initial interval [a, b], convergence to an eigenvalue
which has size much smaller than a or b may be made considerably faster if one
replaces the usual arithmetic mean (of the end points of the current interval) with
the geometric mean. Exploring this idea, we have implemented geometric bisection
in a Matlab code. We illustrate the effectiveness of our algorithm in the context of
the computation of the eigenvalues of a symmetric tridiagonal matrix which has a
very large condition number.

Key words: Eigenvalues, symmetric matrices, geometric bisection.

1 Introduction

The numerical computation of eigenvalues of large symmetric matrices is a
problem of major importance in many scientific and engineering applications.
See, for instance, [15], chapter X, for an account of the origins of matrix
eigenvalue problems. Depending upon the application, one may want the full
spectrum or just a few eigenvalues (and possibly also the corresponding eigen-
vectors).

In many cases, matrices exhibit eigenvalues which have different orders of
magnitude, that is, with λ1 and λn the eigenvalues of larger and smaller mag-
nitude, respectively, the condition number cond(A) = |λ1|/|λn| is very large.
The computation of λn, which is certainly necessary in finding cond(A), is also
required, for instance, in signal processing and estimation. Given the covari-
ance sequence of observed data, it has been proposed in [13] to determine the
sinusoidal frequencies from the eigenvector associated to the smallest eigen-
value of the covariance matrix, a symmetric positive definite Toeplitz matrix.

Preprint submitted to Elsevier 16 July 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55620954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

For general symmetric matrices, there is a well known method for slicing the
spectrum (see, for instance, [12] p.46). With K and M symmetric, let us write
the triangular factorization

K − σM = Lσ∆σL
T
σ (1)

where ∆σ is diagonal and M is positive definite. Then the number of negative
eigenvalues of K − σM is equal to the number of negative diagonal entries
of ∆σ. So, for each chosen value σ, the decomposition (1) gives the number
of eigenvalues which are to the left of σ and we will denote this number by
count(σ). For general matrices of order n, this computation is a O(n3) process.
The most popular use of count(σ) is for the standard symmetric tridiagonal
eigenvalue problem (that is, K is symmetric tridiagonal and M is the identity
matrix). This is so because the computation of count(σ) requires O(n) float-
ing point operations for tridiagonal matrices and these arise in a similarity
transformation (usually with Householder reflections or Givens rotations) or
in the context of the Lanczos algorithm.

In the LAPACK routines SSTEBZ and DSTEBZ [2] (for single and double
precision, respectively) count(σ) is the essential tool to compute some or all
of the eigenvalues of a symmetric tridiagonal matrix, with user prescribed
accuracy.

For full matrices for which the computation of count(σ) is a O(n2) process, the
reduction to tridiagonal form may be avoided. This is the case of symmetric
positive definite Toeplitz matrices. For the computation of the smallest eigen-
value of such matrices, Cybenko and Van Loan [3] presented an algorithm
which is a combination of bisection and Newton’s method for the secular
equation. Others have replaced the Newton’s method by different acceleration
techniques (see [10] and references therein). In [17] and [11], bisection has
also been used to locate not only the smallest eigenvalue but the complete
spectrum. In all the proposed methods, the most expensive part is the com-
putation of a region in which the algorithms monotonically converge to the
desired eigenvalue. This is where our proposal plays a role.

Pascal matrices, which have important applications (see [20] and references
there), are another kind of structured matrices for which fast algorithms do
exist. The Choleski decomposition of such matrices may be computed with
only O(nlog(n)) flops [19], therefore count(σ) is rather inexpensive in this
case.

The central issue of this paper is to show the virtues of choosing the geometric
mean σ = (a ·b)1/2 rather than the arithmetic mean σ = (a+b)/2 in sectioning
the interval [a, b] which is known to contain the target eigenvalue(s). An initial
interval [a, b] containing all eigenvalues is usually computed from the union of
the Gerschgorin ”discs” (see, for instance, Theorem 2.9 in [7]). For matrices

2

with large condition numbers, this interval will contain eigenvalue(s) of much
smaller size than max{|a|, |b|}.

The use of the geometric mean has been considered in [5], pp. 9-10, in the
context of computing the SVD of a dense matrix A with low relative error, in
time growing like a low order polynomial in log2(log2(cond(A)). We stress out
that, as compared to what has been done in [5] for geometric bisection, we
do present a much more detailed analysis and original material. Of particular
interest is the fact that geometric bisection (which can be much better) is
never much worst than usual bisection. This is a strong argument in favor
of using the geometric mean in codes where the arithmetic mean has been
traditionally implemented.

2 The geometric mean

Suppose that 0 < a0 < b0, with a0 and b0 of very different orders of magnitude.
If we are looking for an eigenvalue λ that lies between a0 and b0 but is much
closer to a0, instead of the usual arithmetic mean (AM)

mj =
aj−1 + bj−1

2
, j = 1, 2, · · · (2)

it is much better, in each iteration, to use the geometric mean (GM)

m′
j = (aj−1 · bj−1)

1/2 , j = 1, 2, · · · (3)

until the endpoints aj and bj have the same size. For instance, if [a0, b0] = [2−22,
220], then (2) and (3) produce m1 = 219 +2−23 and m′

1 = 2−1, respectively, i.e.,
one single step of (3) produces an interval of much smaller size, speeding up
convergence if λ < 2−1. In fact, 21 iterations with (2) are needed to produce
an interval with right hand side close to m′

1 = 2−1.

To see that the geometric mean does correspond to the arithmetic mean of
the exponents of the endpoints aj−1 and bj−1 (considering such exponents as
floating point numbers), write

E(aj−1) = log2 (aj−1) , E(bj−1) = log2 (bj−1)

and get

m′
j = (aj−1 · bj−1)

1/2 = 2
E(aj−1)+E(bj−1)

2 .

3

3 Getting bounds of the same magnitude

It is clear that it is more efficient to use the geometric mean rather than the
arithmetic mean when the endpoints have different sizes and the target λ is
much closer to the left endpoint. At first glance, one may fear that the use
of (3) is a bet whose benefit when our guess λ < m′

j proves to be correct
is completely shaded by the increase in the number of the necessary steps,
relatively to the use of (2), when λ is much closer to the right endpoint. The
beauty of GM is that this is not so, i.e., the gain in the best case is much
bigger than the loss in the worst case. We have the following

Proposition 1 Let λ ∈ [a0, b0] with 0 < 2a0 < b0 and k = dlog2 log2 (b0/a0)e.
Then, independently of the location of λ in [a0, b0], after k steps with (3) we
get [ak, bk] such that

bk

ak

< 2. (4)

PROOF. For each j ≥ 1, it is either [aj, bj] = [aj−1, (aj−1 · bj−1)
1/2] or

[aj, bj] = [(aj−1 · bj−1)
1/2 , bj−1], depending upon the location of λ. In any case,

we have
bj

aj

=

(
bj−1

aj−1

)1/2

. (5)

Therefore, the condition (4) may be written as

(
b0

a0

)1/2k

< 2 (6)

which is equivalent to
k > log2 log2 (b0/a0)

so that for
k′ = dlog2 log2 (b0/a0)e (7)

the condition (4) is true.

More generally, to compute the smallest integer k for which the following
condition holds

bk − ak

ak

< ε (8)

we write
bk

ak

< 1 + ε (9)

and (
b0

a0

)1/2k

< 1 + ε (10)

4

to get

k > log2 log2 (b0/a0)− log2 log2 (1 + ε) (11)

which shows that the number of iterations required to satisfy a relative error
bound is independent of the location of the eigenvalue within the bounds a0

and b0.

The same is not true for arithmetic bisection. To satisfy (4), one single step
may be enough, that is when λ is in the right half of [a0, b0]; on the other
hand, if the left half of the interval is always chosen in each iteration, then the
number of steps necessary for (4) to hold is

k =

⌈
log2

(
b0 − a0

a0

)⌉
(12)

which we take to be

k =

⌈
log2

(
b0

a0

)⌉
(13)

since this exceeds the true value by one unit only when

b0

a0

− 1 ≤ 2k−1 <
b0

a0

(14)

holds. Therefore, we may say that the average number of AM steps to satisfy
condition (4) is k/2, with k given in (13), and we may write, with k′ given in
(7),

k = 2k′−1.

This simple relation expresses the average gain of using GM, as compared to
AM, for endpoints of different sizes.

4 When bounds are of the same magnitude

Having produced an interval [ak, bk] that satisfies (4), one may switch from
GM to AM since further iterations to accomplish the condition (8) are almost
the same, independently of the choice of GM or AM. A first approach to this
is to write 1

(aj · bj)
1/2 =

aj + bj

2
− (bj − aj)

2

8aj

+ · · ·
from where it is clear that the two means tend to the same value as bj − aj

approaches zero, but we will analyze this in further detail. First note that, in

1 This follows from (aj · bj)
1/2 = aj

(
1 + bj−aj

aj

)1/2
and the expansion (1 + δ)1/2 =

1 + 1
2δ − 1

8δ2 + · · ·

5

the pursuit of (4), there are two extreme cases for AM: the best case corre-
sponds to the situation in which the right hand half of the interval is always
chosen: from [aj, bj] to [aj+1, bj+1], with bj+1 = bj and aj+1 = mj, the ratio

bj − aj

aj

decreases to less that half, since we have

bj+1 − aj+1

aj+1

=
bj − aj

aj + bj

<
bj − aj

2aj

.

The worst case for AM does correspond to the situation in which the left hand
half of the interval is always chosen since with aj+1 = aj and bj+1 = mj we
get

bj+1 − aj+1

aj+1

=
bj − aj

2aj

.

In each one of these extreme cases, the GM iterates follow closely the AM
iterates according to an ”interlacing property”. We have the following

Proposition 2 Let ak and bk be such that 0 < ak < bk < 2ak and, for j ≥ 1,
ak+j = ak and bk+j = mk+j. Then, for each j = 1, 2, · · · , we have

mk+j+1 < m′
k+j < mk+j. (15)

PROOF. The condition we wish to prove is

ak +
bk − ak

2j+1
< ak

(
bk

ak

)1/2j

< ak +
bk − ak

2j
. (16)

With

x =
bk − ak

ak

=
bk

ak

− 1 < 1

we have

(
bk

ak

)1/2j

= (1 + x)1/2j

= 1 +
1

2j
x− 2j − 1

22j+1
x2 + O(x3)

and, taking into account that akx = bk − ak, we get

m′
k+j = ak +

bk − ak

2j
− 2j − 1

22j+1
akx

2 + ak ·O(x3)

= mk+j −R.

Since the series is alternate (x is positive), we may write

0 < R <
2j − 1

22j+1
akx

2 (17)

6

and conclude immediately that m′
k+j < mk+j. It is easy to verify that for

mk+j+1 < mk+j −R to hold, it must be

R <
bk − ak

2j+1
(18)

and we now have the following equivalencies

2j − 1

22j+1
akx

2 <
bk − ak

2j+1

2j − 1

22j+1
x2 <

bk − ak

2j+1ak

2j − 1

2j
x2 < x,

the last condition being clearly true since 0 < x < 1.

For the other extreme case we have the following

Proposition 3 Let ak and bk be such that 0 < ak < bk < 2ak and, for j ≥ 1,
ak+j = mk+j and bk+j = bk. Then, for each j = 1, 2, · · · , we have

mk+j−1 < m′
k+j < mk+j. (19)

PROOF. Since, in this case, it is

mk+j = bk − bk − ak

2j
, (20)

m′
k+j = bk (ak/bk)

1/2j

, (21)

we need to prove the following

bk − bk − ak

2j−1
< bk

(
ak

bk

)1/2j

< bk − bk − ak

2j
. (22)

With

x = 1− ak

bk

<
1

2
we have (

ak

bk

)1/2j

= (1− x)1/2j

= 1− 1

2j
x− 2j − 1

22j+1
x2 + · · · (23)

and

bk

(
ak

bk

)1/2j

= bk − bk − ak

2j
− 2j − 1

22j+1
bkx

2 − · · · (24)

= mk+j −R. (25)

7

This time, R is the sum of a series of positive terms and can not be bounded in
the same way as before. Straightforward calculations show that, with f(x) =

(1− x)1/2j

, we have

f (i+1)(0)

f (i)(0)
= i− 2−j

for each i ≥ 2. Therefore,

R =
2j − 1

22j+1
bkx

2 + .. · · ·+ f (i)(0)

i!
bkx

i +

(
f (i)(0)

i!
bkx

i

)
i− 2−j

i + 1
x + · · ·

is bounded by the sum of a geometric series of ratio x, i.e., we have

R <
2j−1
22j+1 bkx

2

1− x
.

It is easy to verify that for mk+j−1 < mk+j −R to hold, it must be

R <
bk − ak

2j
(26)

and we now have the following equivalencies

2j−1
22j+1 bkx

2

1− x
<

bk − ak

2j

2j−1
2j+1 x2

1− x
<

bk − ak

bk

2j − 1

2j+1
x < 1− x

the last condition being true since 0 < x < 1
2
.

We now use the previous results to prove the following

Proposition 4 Let ak and bk be such that 0 < ak < bk < 2ak and λ ∈ [ak, bk].
For any ε ∈]0, 1[, the number of AM steps and the number of GM steps
required to locate λ in an interval [ak+j, bk+j] such that

bk+j − ak+j

ak+j

< ε

can not differ by more than one.

PROOF. The number of GM steps is independent of the location of λ. For
the cases considered in Proposition 2 and Proposition 3, the conclusion follows

8

0 5 10 15 20 25 30
0

10

20

30

40

50

60

k

ite
ra

tio
ns

AM GM (worst case) GM (best case)

Fig. 1. Iterations of AM and GM to get bk − ak < 2−k.

from the respective ”interlacing property”. Since these are extreme cases for
AM, the result is true independently of the location of λ.

Of course, we do not need to aim at high relative accuracy to ripe the benefits
of using the geometric mean. To illustrate this point, in Fig. 1 we plot the
number of iterations required to satisfy the stopping criteria bk− ak < ε, with
ε = 2−k for k = 1, · · · , 30 and [a0, b0] = [2−22, 220]. The straight line for

AM does correspond to the number
⌈
log2

(
b0−a0

ε

)⌉
= k + dlog2 (b0 − a0)e; as

compared to this, in the worst case, GM takes an extra
⌈
log2 log2

(
220

2−22

)⌉
= 6

iterations. In the best case, the gain of GM over AM increases as ε = 2−k

decreases until ε is of the size of a0 = 2−22. For k > 22 (i.e., for ε < a0), the
logarithmic curve gives place to another straight line, parallel to the other two
lines.

5 The harmonic mean

So far, we have considered only two of the three Pythagorean means. We now
consider also the harmonic mean H(a, b) of two positive numbers a and b,

9

which is

H(a, b) =
2

1
a

+ 1
b

. (27)

It is natural to ask whether the harmonic mean has some interest in the context
of our problem which is that of locating λ inside [a0, b0] with the endpoints
of different size. The answer is quite simple: if λ is very close to a0 then the
harmonic mean is better than the other two means. In fact, we have

H(a0, b0) =
2a0b0

a0 + b0

< 2a0

and see that if λ < H(a0, b0) then one single step is enough to produce an
interval [a1, b1] such that b1

a1
< 2. In comparison, as seen before, GM and AM

take a number of steps which is equal to dlog2 log2 (b0/a0)e and dlog2 (b0/a0)e,
respectively, to produce intervals whose endpoints satisfy the same condition.

From (27) we see that the use of the harmonic mean with [aj, bj] to find λ
is equivalent to use the arithmetic mean with [αj, βj] = [1/bj, 1/aj] to find
1/λ. From section 3, we know that the number of AM steps required to satisfy
βk

αk
< 2 varies between 1 and

k =

⌈
log2

(
β0

α0

)⌉
=

⌈
log2

(
1/a0

1/b0

)⌉
=

⌈
log2

(
b0

a0

)⌉
(28)

and so the same is true for the harmonic mean. From this we conclude that of
the three Pythagorean means, the geometric mean is the winner in minimizing
the average number of steps necessary to locate λ.

6 Implementation of the geometric mean

So far, we have restricted our analysis to the case of a0 and b0 being positive.
When they are both negative, we simply take

m′
j = − (aj−1bj−1)

1/2

and our previous analysis on the number of iterations required does apply to
this situation. If a0 6= 0 and b0 6= 0 have different signs, then we take m′

1 = 0. If
a0 = 0, we replace it with realmin, the smallest normalized number, which is
equal to 2−1022 in the IEEE double precision format (this ensures high relative
accuracy for the eigenvalues which are well defined by the matrix entries and
larger than realmin). If a1 = 0 (note that when a0b0 < 0 it is either a1 = 0 or
b1 = 0) we also replace it realmin. When b0 = 0 or b1 = 0 we replace it with

10

−realmin. We summarize this in the following table.

CASE ITERATE

0 < a0 < b0 m′
1 = G(a0, b0)

a0 < b0 < 0 m′
1 = −G(a0, b0)

a0 < 0 < b0 m′
1 = 0

aj = 0 (j = 0 or j = 1) m′
j+1 = G(realmin, bj)

bj = 0 (j = 0 or j = 1) m′
j+1 = −G(aj,−realmin)

Next, we illustrate the use of the algorithm.

Example 5 The matrix

T =

1 0.15 · 10−16 0

0.15 · 10−16 10−32 0.15 · 10−16

0 0.15 · 10−16 1

has eigenvalues λ1 = 0.955 · 10−32 and λ2 = λ3 = 1, to 16 decimal digits of
accuracy (see [4] and [14]). The Gerschgorin ”discs” for T are

D1 = D3 =
[
1− 0.15 · 10−16, 1 + 0.15 · 10−16

]
(29)

and

D2 =
[
10−32 − 0.3 · 10−16, 10−32 + 0.3 · 10−16

]
. (30)

Since D2 does not intersect the other intervals, we immediately conclude that
it contains the smallest eigenvalue and also that λ2 = λ3 = 1 to 16 digits.
However, our code does not see this and takes the initial interval to be [a0, b0] =
[10−32 − 0.3 · 10−16, 1 + 0.15 · 10−16]. This is a good example to compare GM
with AM since the eigenvalues are close to both ends of [a0, b0]. The algorithm
proceeds with m′

1 = 0 and produces a1 = 0 by finding that all the pivots for T
are positive, that is, count(0) = 0. For the next iterate, a1 will be replaced by
2−1022, that is

m′
2 =

(
2−1022 · b0

)1/2

and then takes 10 more iterations to produce an interval [a11, b11] that contains
λ1 and satisfies b11 < 2a11. Compared to this, the usual bisection algorithm
takes 107 steps to satisfy the same criterion. For λ2, AM is only a little faster:
the right half of [a0, b0] satisfies the condition (4), so no further bisection step
is required to this end; GM takes an extra 6 iterations for this. From this point,
both AM and GM pay one step for each bit of accuracy. In the following table
we display the number of iterates necessary to satisfy the condition (8), for

11

some relative tolerances ε (since the eigenvalues are well defined by the matrix
entries, the accuracy increases as we diminish ε):

ε AM(λ1, λ2) GM(λ1, λ2)

1 (107,0) (11,6)

2−10 (117,10) (21,16)

2−50 (157,50) (61,56)

We see that the number of steps to locate all the eigenvalues of the matrix is
significantly smaller in GM than it is in AM.

7 Geometric multi-section

The parallel computation of eigenvalues continues to be an active area of re-
search. See, for instance, [1] and references therein. The bisection algorithm is
adequate for parallel processing since independent tasks are created as soon
as one gets several intervals containing different eigenvalues of a given matrix.
For parallel processing, care must be taken to ensure the correctness of the re-
sults. The logic of the bisection algorithm depends on count(σ) being a mono-
tonic increasing function of σ. However, depending upon the features of the
arithmetic, monotonicity can fail and incorrect eigenvalues may be computed,
because of rounding or as a result of using networks of heterogeneous parallel
processors (see [6]). A different source of parallelism is the use of multi-section
(see [8], [9] and [16]). Multi-section consists upon inspecting simultaneously
the p− 1 points

a + k · b− a

p
, for k = 1, · · · , p− 1. (31)

Multi-section of [a, b] can be an effective way for producing several intervals
containing eigenvalues. However, it is not an efficient algorithm if [a, b] contains
only a single eigenvalue. This is because the simultaneous calculation at p− 1
points reduces the number of bisection steps by a factor equal to dlog2 pe as
it follows from

b0 − a0

pk
< ε.

So, the speedup of a parallel multi-section code is bounded by dlog2 pe and for
the efficiency E we have

E ≤ dlog2 pe
p− 1

which tends rapidly to zero. Nevertheless, if many processors are readily avail-
able, then, in despite of our theoretical considerations, they may be used to

12

produce non-negligible speedup. See [18] for results of an implementation of
multi-section on GPUs (Graphics Processing Units).

Again, for end points a and b of very different sizes, the use of geometric multi-
section plays a role. With 0 < a < b, it consists upon dividing the interval
[a, b] in p sections through the points

M ′
k = a

(
b

a

)k/p

for k = 1, · · · , p− 1. (32)

Again, with E(a) = log2 a and E(b) = log2 b, we get

M ′
k = 2E(a)

(
2E(b)

2E(a)

)k/p

(33)

= 2
E(a)+k·E(b)−E(a)

p , for k = 1, · · · , p− 1 (34)

which shows that formula (32) does multi-section of the interval of the expo-
nents E(a) and E(b). As it is the case with bisection, the number of arithmetic
multi-section steps may be significantly reduced if geometric multi-section is
used instead.

8 Conclusions

Usual bisection codes use the arithmetic mean of the end points of an interval
which is known to contain a target eigenvalue λ. We have shown that there
are cases for which it is much better to use the geometric mean instead, as
this may reduce significantly the number of required steps. This will be the
case when the interval [a, b] is such that 0 < a ¿ b and λ is much closer to
a than it is to b (similarly, when a ¿ b < 0 and λ is much closer to b). The
interesting point about geometric bisection is that, although it can be much
better than usual bisection, depending upon the location of λ, it is never
much worst. This fact is a strong argument in favor of using the geometric
mean in codes where the arithmetic mean is traditionally implemented. We
have illustrated the advantages of geometric bisection with the computation
of the eigenvalues of a tridiagonal matrix. However, its use may be even more
interesting for matrices where the cost of one iteration is more expensive than
it is in the tridiagonal case. This is the case of symmetric positive definite
Toeplitz matrices, for which the computation of the smallest eigenvalue has
important applications. For parallel processing, geometric multi-section may
also be a useful alternative to usual multi-section.

13

Acknowledgements

This research was financed by FEDER Funds through ”Programa Operacional
Factores de Competitividade - COMPETE” and by Portuguese Funds through
FCT - ”Fundação para a Ciência e a Tecnologia”, within the Project PEst-
C/MAT/UI0013/2011.

References

[1] J. Aliaga, P. Bientinesi, D. Dadidović, E. Di Napoli, F. Igual, E. Quintana-Orti,
Solving dense generalized eignproblems on multi-threaded architectures, Appl.
Math. Comput., 218(2012), pp.11279-11289.

[2] E. Anderson et al, LAPACK Users’ Guide, SIAM, 1999.

[3] G. Cybenko and C. F. Van Loan, Computing the minimum eigenvalue of a
symmetric positive definite Toeplitz matrix, SIAM J. Sci. Stat. Comput. 7
(1986), 123-131.

[4] J. Demmel, The inherent inaccuracy of implicit tridiagonal QR, LAPACK
Working Note 15, 1992.

[5] J. Demmel and P. Koev, Necessary and Sufficient Conditions for Accurate and
Efficient Singular Value Decompositions of Structured Matrices, in Computer
Science and Engineering, Vol. II, Amer. Math. Soc. 2001, pp.117-145.

[6] J. Demmel, I. Dhillon and H. Ren, On the correctness of some bisection-like
parallel eigenvalue algorithms in floating point arithmetic, Electronic Trans. on
Numerical Analysis, 3(1995), pp.116-149.

[7] J. Demmel, Applied Numerical Linear Algebra, SIAM 1997.

[8] T. Katagiri, C. Vomel and J. Demmel, Automatic performance tuning for the
multi-section with multiple eigenvalues method for the symmetric eigenproblem,
in PARA’06, Umea, Sweden, 2006.

[9] S. Lo, B. Philippe and A. Sameh, A multiprocessor algorithm for the symmetric
tridiagonal eigenvalue problem, SIAM J. Sci. Stat. Comp., vol. 8, 2 (1987), pp.
s155-s165.

[10] N. Mastronardi, M. Van Barel and R. Vandebril, A Schur-based algorithm for
computing bounds to the smallest eigenvalue of a symmetric positive definite
Toeplitz matrix, Linear Algebra and its Applications 428 (2008), pp.479-491.

[11] F. Noor and S. Morgera, Recursive and itrative algorithms for computing
eigenvalues of Hermitian Toeplitz matrices, IEEE Trans. Signal Processing 41
(1993), pp.1271-1280.

14

[12] B. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, 1980.

[13] V. Pisarenko, The retrieval of harmonics from a covariance function,
Geophysical J. Royal Astronomical Soc., 33 (1973), pp. 347-366.

[14] R. Ralha, Perturbation splitting for more accurate eigenvalues, SIAM J. Matrix
Anal. Appl., 31(2009), pp. 75-91.

[15] Y. Saad, Numerical Methods for Large Eigenvalue Problems, 2nd ed., SIAM,
2011.

[16] H. Simon, Bisection is not optimal on vector processors, SIAM J. Sci. Stat.
Comp., vol.10, 1(1989), pp. 205-209.

[17] W. F. Trench, Numerical solution of the eigenvalue problem for Hermitian
Toeplitz matrices, SIAM J. Matrix Anal. Appl., 10(1989), pp. 135-146.

[18] V. Volkov and J. Demmel, Using GPUs to accelerate the bisection algorithm
for finding eigenvalues of symmetric tridiagonal matrices, LAPACK Working
Note 197, 2008.

[19] X. Wang and Z. Jituan, A fast eigenvalue algorithm for Pascal matrices, Appl.
Math. Comput., 183(2006), pp.711-716.

[20] X. Wang and L. Lu, A fast algorithm for solving linear systems of the Pascal
type, Appl. Math. Comput., 175(2006), pp.441-451.

15

