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AbstractAbstractAbstractAbstract    

Most common pool resource (CPR) dilemmas share two features: they evolve over time 
and they are managed under environmental uncertainties. We propose a finite-horizon, 
stochastic, dynamic model that integrates these two dimensions. A distinguishing 
feature of our model is that the duration of the game is determined endogenously by the 
players’ collective decisions. In the proposed model, if the resource stock level below 
which the irreversible event occurs is known in advance, then the optimal resource use 
coincides with a unique symmetric equilibrium that guarantees survival of the resource. 
As the uncertainty about the threshold level increases, resource use increases if users 
adopt decision strategies that quickly deplete the resource stock; however, resource use 
decreases if they adopt path strategies guaranteeing that the unknown threshold level is 
never exceeded. Our experimental results show that CPR users frequently implement 
decision strategies that terminate the game immediately. When the uncertainty about the 
resource level is reduced, users maintain a positive resource level for a longer duration. 
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1. Introduction 

Most natural common pool resource (CPR) dilemmas share two features: they 
evolve over time and they are managed under environmental uncertainties. While each 
of these two features has been analyzed separately in the experimental literature, no 
attempt has been made to integrate them. In particular, the analysis of strategic behavior 
in the face of environmental uncertainty about the size of the CPR has been conducted 
under the assumption of single-period interaction, and the analysis of strategic behavior 
in time-dependent settings has ignored environmental uncertainties. 

The bulk of the experimental literature (e.g., Ostrom, Gardner, and Walker 
1994) has analyzed unrestricted resource-use decisions by placing subjects in the 
context of repeated time-independent CPR dilemmas characterized only by strategic 
uncertainty about the planned behavior of others. A major finding is aggregate behavior 
consistent with the theoretically predicted resource misallocations (Gordon 1954; 
Hardin 1968). It has been noted, however, that while the time-independent framework 
may be an adequate representation of CPRs characterized by flows, in which 
availability of the resource in the future is independent of current requests, it fails to 
capture the important temporal feature of stock resources, like groundwater systems, 
fisheries, forests, etc. (Brown 2001). In these instances, decisions concerning resource-
use are typically made in the “shadow of the future” in the sense that current requests 
from the resource pool compete with resource availability in the future. 

It is a priori unclear if the presence of such temporal factors would elicit 
behavior different from that observed in time-independent settings. Because current 
requests not only affect the future profits of other group members, but also their 
individual profits as well, CPR users may adopt precautionary strategies that lead them 
closer to Pareto optimal outcomes. For example, Reinganum and Stokey (1985) show 
that efficient resource-use decisions are to be expected in time-dependent settings when 
users can jointly commit to “path” strategies over the entire planning horizon. On the 
other hand, the consideration that current request decisions affect future request 
possibilities also raises a dynamic optimization problem that complicates the attainment 
of Pareto optimal outcomes even in single-agent contexts (Messick and McClelland 
1983; Hey, Neugebauer and Sadrieh 2009). Moreover, as shown by Dutta (1995), the 
standard intuition from infinitely repeated time-independent games, whereby Pareto 
optimal outcomes can be sustained in equilibrium through threat of credible punishment 
by patient players, does not necessarily carry over to time-dependent games with stock 
variables. In these games, players’ payoffs depend not only on current and previous 
periods’ decisions, but also on state variables that change from period to period. 
Theoretically, this renders tacit agreements on Pareto optimal paths much more difficult 
to attain than in purely repeated frameworks. 

Seminal experimental investigations placing subjects in time-dependent CPR 
contexts have been conducted by Herr, Gardner, and Walker (1997) and Mason and 
Philips (1997). Herr et al. (1997) considered the effect of increasing exploitation costs at 
a predetermined fixed rate from period to period in a 10-period supergame. They 
concluded that subjects did not internalize the future increased costs, and that behavior 
in the time-dependent setting intensified the race for resources relative to time-
independent settings. Although current decisions in this study affected future 
exploitation costs, an effect on the size of the resource stock was not considered. Mason 
and Philips (1997) considered an infinite time horizon supergame in which subjects 
were given an initial stock, and request strategies endogenously determined the stock 
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size (and exploitation costs) thereafter. They concluded that lack of cooperative 
behavior is exacerbated when time-dependency is included in CPR dilemmas. Osés-
Eraso, Udina, and Viladrich-Grau (2008) have modified this game by implementing a 
more realistic finite horizon supergame and allowing for early extinction of the stock as 
a function of cumulative group requests. Exogenously manipulating the initial stock size 
(scarce or abundant), they found that early extinction of the resource occurs irrespective 
of the initial scarcity condition and costs.  

Although Osés-Eraso et al. (2008), and one of the experimental conditions in 
Mason and Philips (1997), allowed for extinction of the resource stock as a function of 
the cumulative requests, they excluded the possibility for more complex resource 
dynamics involving threshold effects and sudden changes in the resource state. The only 
study that partially addressed this possibility experimentally was Gardner and Walker 
(1992). They implemented a 20-period supergame in which resource extinction (end of 
the game) could occur within a given period with an endogenously determined 
probability modeled as an increasing function of total group requests. In this model, the 
critical threshold stock level triggering the catastrophic event was known in advance, 
but subjects were unable to avoid the damage, and the resource was quickly destroyed 
with a median duration of six periods. However, the model does not capture the effects 
of the lack of precise information regarding the size and growth of natural resources, 
which characterizes most real-world commons. The conditions that trigger an 
irreversible event are often imperfectly known, or are affected by stochastic 
environmental conditions outside CPR users’ control, rendering the critical threshold 
stock level unknown a priori. 

Experimental assessments of the impacts of environmental uncertainty on group 
requests from a CPR have mainly been conducted by Rapoport and co-authors 
(Rapoport and Suleiman, 1992; Rapoport, Budescu, Suleiman, and Weg 1992; and 
Budescu, Rapoport, and Suleiman 1995) in the context of repeated single-trial 
experiments. In their experiments, subjects could request resources from pools whose 
parameters were randomly selected from a set of commonly known uniform probability 
distributions. Using mean-preserving spreads to capture increasing levels of uncertainty 
regarding the resource size, these experiments have demonstrated that increased 
uncertainty causes subjects to request more from the shared resource. Along with the 
observed uncertainty effect, Rapoport and co-authors have provided several 
explanations for its occurrence. One explanation posits that subjects perceive the central 
tendency of a probability distribution and its variability to be positively correlated. 
Thus, as the uncertainty increases, subjects’ estimates of the mean value of the resource 
size increases, prompting them to request more. Another explanation, in line with an 
“outcome desirability bias” (Gustafsson, Biel, and Garling 1999), posits that subjects 
overweight the most desired upper bound of the possible resource size. This, again, 
prompts subjects to request more of the resource as the uncertainty increases in mean-
preserving resource distributions. Despite the merits of these explanations, the literature 
seems to have overlooked that the observed relationship between environmental 
uncertainty and individual requests pertains to single-trial experiments. Under these 
circumstances, a significant restraint in individual requests by the group members that 
can be considered cooperative behavior may not yield the highest collective payoffs as 
it may constitute resource under-use from an economically efficient perspective. Indeed, 
increased requests as a response to an increase in environmental uncertainty levels in 
time-independent settings conforms to Pareto-efficient solutions, and not just Nash 
behavior. This observation, however, is unlikely to be true in time-dependent settings. A 
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number of theoretical articles on various resource management problems, including 
intrusion of saltwater in coastal aquifers (Tsur and Zemel 1995), forest fires (Yin and 
Newman 1996), and pollution-related events (Clarke and Reed 1994), have generally 
established that efficient solutions for the dynamic management of resources under 
uncertain critical threshold levels require more prudence and conservative behavior than 
those under conditions of certainty. Thus, whether or not the positive relationship 
between environmental uncertainty and request behavior from a shared resource is 
likely to be observed in a time-dependent laboratory setting, in which both 
considerations of individual future payoffs and efficient solutions require more 
conservative requests, is still an open empirical question. 

The present paper addresses this question by developing and experimentally 
testing a dynamic stochastic game-theoretic model integrating the effects of 
environmental uncertainty in time-dependent CPR dilemmas. The paper is organized as 
follows. Section 2 presents the model and solves it for general theoretical benchmarks. 
Section 3 outlines the experimental design and presents the theoretical predictions that 
are later used as benchmarks for the analysis of the experimental data. Section 4 reports 
the results of the experiment, and Section 5 concludes. 

 

 

2. Dynamic-stochastic CPR game 

We develop a dynamic-stochastic game-theoretic model of the appropriation of a 
CPR by non-cooperative players under conditions of environmental uncertainty. The 
game involves a fixed set of n players who play a stage game Γt in each period t, where 
an upper bound T to the length of the game is common knowledge, and earnings 
accumulate through the course of play. However, in contrast to purely dynamic time-
dependent games with no uncertainty in the evolution of the game environment (Dutta 
1995), the particular game to be faced by the players at time t in the present setup is 
randomly selected from a commonly known finite set of games, thereby falling in the 
category of stochastic games (Shapley 1953; Sobel 1971). In addition, in order to 
capture the effects of environmental uncertainty on the CPR dilemma, players do not 
know which game has been selected when the game at time t is to be played. 

Each of the stage games Γt that make up the dynamic game is drawn from 
Suleiman and Rapoport (1988). In each stage game Γt, a group of n players decide 
simultaneously and anonymously on how much to request from a shared resource (CPR) 
whose precise size is unknown. However, it is commonly known that the resource size, 
denoted by St, is uniformly distributed on the [α, β] closed interval. Each of the n 
individuals may request anything between 0 and β from the shared resource, and after 
the requests are made, the precise size of the resource is publicly announced, 
corresponding to the random realization st of St. Thus, the precise value of st 
corresponds to the particular stage game Γt randomly selected by “nature” at time t. 
Furthermore, if the sum of group requests is smaller than or equal to st, then each 
individual keeps his or her own requests. On the other hand, if the sum of group 
requests exceeds the size st of the resource, then each individual’s payoff is zero. 

Assuming linear utility functions for all players, and letting r jt stand for the 
request made by player j on trial t, the expected payoff to the player in stage game Γt is 
given by 
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��� � � ��� 																																																	�									 ∑ ������
 � ���� � �����∑ ������
 � ���						�			� � ∑ ������
 � �0																																																		�										 ∑ ������
 � �     (1) 

where ∑ ������
  is the sum of group requests in stage game Γt, and �����∑ ������
 ���� � �� � ∑ ������
 �/�� � ��. 
We introduce structural time dependence in this model through the definition of 

transition probabilities governing how the game proceeds from period t to period t+1, 
which we condition on the actual game Γt played in period t as randomly selected by 
“nature,” and on the actions chosen by the players in period t. Specifically, if the 
aggregate requests are smaller than or equal to the resource size at time t, then the game 
continues to period t+1. If the aggregate requests are infeasible, in the sense that they 
exceed the resource size at time t, then the game terminates. Formally, the continuation 
probability from period t to period t+1 is given by: 

�� �  !
" 1																				�									 ∑ ������
 � �$%∑ &'()'*+$%, 						�			� � ∑ ������
 � ��0																				�										 ∑ ������
 � ��       (2) 

In other words, if the group request is below a minimum pre-determined 
quantity α, the game continues to a subsequent period with certainty, implying an 
economically unchanged resource size between the periods. If the group request exceeds 
the randomly determined resource size, then the resource is degraded and the game is 
terminated. If the group request belongs to this interval of quantities, the game 
continues to a subsequent period with a positive probability corresponding to the ex-
ante probability that the group request does not exceed the resource size. Thus, while 
players may request resources over a predetermined and commonly known time 
horizon, a distinguishing feature of this model is that the precise duration of the game is 
determined endogenously by the players whose collective decisions determine the 
probability of an irreversible environmental event. In addition, the model captures those 
circumstances characterized by both pool-size uncertainty and regeneration-rate 
uncertainty, features that are present in many real-world commons (Hine and Gifford 
1996). In particular, when group requests exceed α but the resource is not depleted, the 
inter-temporal effect of group requests may be interpreted as captured by a stochastic 
regeneration rate gt applied to end of period remaining stock, �� � ∑ ������
 . The 
parameter gt determines the stock available in the subsequent period, ��-
 � ��� �∑ ������
 �.�, where gt is uniformly distributed with limits endogenously determined by 
group requests and the stochastic resource size, /�/��� � ∑ ������
 �, �/��� � ∑ ������
 �1. 

Because the CPR game is composed of interdependent stochastic dynamic 
programming problems, it may be solved by dynamic programming/Bellman’s equation 
method, and because it is symmetric we focus on symmetric outcomes as benchmarks 
for data analysis. In particular, we solve the game for three types of outcomes: the social 
optimum (joint payoff maximization) outcome, the subgame perfect outcome, and a 
conservative outcome guaranteeing survival of the resource over the entire time horizon.  

We first construct the symmetric subgame perfect Nash equilibrium outcome, in 
which players are assumed to adopt “decision rule strategies” (Reinganum and Stokey 
1985) since they cannot credibly commit to future requests. In this context, each player j 
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independently seeks to maximize the value of the resource at any time t by choice of 
request strategy, taking the decision rule strategies of all the other players exploiting the 
resource as given. Assuming no discounting of future payoffs, the value of the resource 
for player j at time t, 2�������, satisfies the Bellman equation: 2������� � ��� 3 �� � 2��-
����-
�,			4 � 1, 2, … , 7 � 1. (3) 

The transversality condition for this maximization problem is that the value of 
the resource after the final period T is zero (meaning that players leave behind no 
resources, or if they do those extra resources do not contribute anything to maximized 
value): 2�8-
���8-
� � 0. (4) 

The recursive equation defining player’s j value function at final time T is 
therefore: 2�8���8� � ��8. (5) 

Maximizing 2�8���8� in the quadratic region of (1) with respect to ��8, and 
invoking symmetry to write the sum of requests by all the n players excluding player j 
as ��\�8 � �: � 1���8, yields the subgame perfect request at time T: ��8∗ � �/�: 3 1�. (6) 

The value function at time T is then given by (using (6) in (5)): 2�8���8∗ � � /�/�: 3 1�1</�� � ��. (7) 

Similarly, the value function at time T-1 is given by: 2�8%
���8%
� � ��8%
 3 �8%
 � 2�8���8∗ �. (8) 

Maximizing 2�8%
���8%
� with respect to ��8%
, and assuming that ��\�8%
 � �: �1���8%
, yields the subgame perfect request at time T-1: ��8%
∗ � /�/�: 3 1�1/1 � �/�: 3 1�<�� � ��1. (9) 

The value function at time T-1 is then given by (using (9) and (7) in (8)): 2�8%
���8%
∗ � � /��/�: 3 1��</�� � ��1/1 3 :�/�: 3 1�<�� � ��1<. (10) 

Letting = � :�/�: 3 1�<�� � ��, the value function at time T-1 can be re-written as: 2�8%
���8%
∗ � � 	2�8���8∗ �/1 3 =1<, (11) 

and the subgame perfect request at time T-1 can be written as: ��8%
∗ � ��8∗ /1 � =/:1. (12) 

By mathematical induction, one can show that the equilibrium value function at any 
time t is given by: 2������∗� � 	2�8���8∗ �/1 3 =>�1< � /��/�: 3 1��</�� � ��1/1 3 =>��1<, (13) 

and the subgame perfect request at time t is given by ���∗ � ��8∗ /1 � �=/:�>�1 � /�/�: 3 1�1/1 � �=/:�>�1, (14) 

where the recursive factor >� is given by: 
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>� � �1 3 =>�-
�<. (15) 

One starts solving the recursion by noting that (7) can also be written as: /�/�: 3 1�1</�� � �� � ��8∗ /�/�: 3 1��� � ��1, (16) 

and that using (14) and (15), the equation above can also be written as: /�/�: 3 1�1</�� � �� � /�/�: 3 1�1/1 � �=/:��1 3 =>�-
�<1/�/�: 3 1��� � ��1. (17) 

Solving (17) with respect to >8-
 yields: >8-
 � �1/=. (18) 

The value of >8-
 in (18) can then be substituted into (15) to get >8, and working 
backward from there to the first period at time t=1. 

Note, however, that the solution in (14) does not constitute the subgame perfect 
equilibrium request in all cases. At any time t, if ��� 3 ��\�� � �, any vector of requests ?�∗ � ��
�, �<�, … , ����, whose elements satisfy the condition ∑ ���∗���
 � �, ��� @ 0, is 
also an equilibrium solution whereby the group ensures a continuation probability equal 
to one. Assuming a symmetrical solution, the result following this condition can be 
written as: ���∗ � �/:. (19) 

The subgame perfect request at any time t in all cases is then given by: ���∗ � max	��/:,	 /�/�: 3 1�1/1 � �=/:�>�1�. (20) 
 

Moving next from the equilibrium solution to joint payoff maximization, the 
social optimum path can be constructed by applying dynamic programming to (3) under 
the assumption that only a single agent is in charge of the resource. The social optimum 
request by player j at any time t in all cases is then given by: ���∗∗ � max	��/:,	 /�/�2:�1/1 � ���D�1�, (21) 
where � � �/4�� � ��, D� � �1 3 �D�-
�<, and D8-
 � �1/�. 
 

Comparison of equations (20) and (21) reveals that the subgame perfect path 
involves higher requests than the social optimum path as long as �� � �� � �/:, 
rendering the decision rule strategies Pareto deficient for levels of uncertainty beyond a 
relatively small threshold level. In turn, the social optimum path only guarantees the 
survival of the resource over the entire time horizon for moderate levels of uncertainty, 
that is, as long as � � 2�. Beyond this level of uncertainty, survival of the resource 
over the entire time horizon could only be attained by the adoption of “path” strategies 
requiring each player to commit to a “conservative” request equal to �/: at each stage 
of the game. 

 

3. Experimental design and theoretical predictions 

    

A. Procedures, parameters and treatments 

We designed a simple experiment operationalizing the game described by 
equations (1) and (2) with groups composed of six (n=6) subjects and a time horizon of 
ten periods (T=10). Each subject participated in thirty repetitions of the same dynamic 
game. Prior to the first game, each subject was randomly and anonymously assigned to 
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a fixed group for the duration of a session. We implemented two mean-preserving 
uncertainty conditions in a between-subject design. In one of the uncertainty conditions 
(hereinafter, “high” uncertainty condition), the commonly known resource size was 
uniformly distributed on the [150, 850] closed interval, for an uncertainty range of 700 
and an expected value of 500. Subjects were provided with written instructions 
informing them that they could, individually, request from 0 up to 850 tokens, and that 
the precise value of the resource (called “random draw”) in any period was to be 
randomly extracted (and announced) after all group members made their requests. They 
were also informed that if the sum of group requests were larger than the randomly 
determined resource size in any period, then their individual payoffs in that period 
would be zero, and the game would be terminated; otherwise, their individual payoffs in 
that period would equal their individual requests, and the game would continue to a 
subsequent period unless the game had reached the final period. Specifically, subjects 
were informed that the game would be terminated either if the sum of the group requests 
exceeded the value of the resource or after 10 periods, whichever came first. In addition 
to a $5 participation fee, at the end of the session subjects were paid for the tokens 
accumulated in four (randomly determined for each subject) out of the thirty repetitions, 
in which each token was worth 2 cents. This procedure was implemented to prevent 
wealth effects. The exact same procedures were used to implement a second uncertainty 
condition (hereinafter, “low” uncertainty condition) in which the commonly known 
resource size was uniformly distributed on the [270, 730] closed interval, for a smaller 
uncertainty range of 460 and the same expected value of 500. In each condition, the 
sessions lasted for about two hours. 

The experiment was implemented using the z-Tree (Fischbacher 2007) software. 
No communication between the subjects was allowed. All experimental sessions were 
conducted at the Behavioral Research Lab of the School of Business Administration at 
the University of California, Riverside, which is a standard computerized laboratory 
with subjects’ stations placed in separate “cubicles” ensuring privacy. Subjects were 
recruited from the pool of UCR students registered to participate in research studies 
through the web-based subject recruitment system available at UCR, ensuring that no 
subject had participated in a similar experiment before. A total of 114 subjects 
participated in this experiment, 60 of them in the high uncertainty condition (10 
different groups) and 54 of them in the low uncertainty condition (9 different groups). 

B. Theoretical predictions 

We present the theoretical predictions that are used as benchmarks for the analysis of 
the data from the two treatments. The top panel in Table 1 shows the dynamic 
programming paths for the high uncertainty condition. If players follow a conservative 
path (not shown in the Table), the symmetric individual request (r) is 25 tokens in each 
period of the game, for a total group request (R) of 150 each period of the game. The 
overall payoff across the 10 periods of the game (Π) for each player is, therefore, 
25×10=250 tokens. Next, consider the social optimum (SO) path displayed in Table 1 
(top panel). In the last period of the game, when only a single period remains to the end 
of the game, the optimal solution is an individual request of 71. The probability of 
receiving this request (p) is about 0.61, yielding an expected payoff of Π = 43 tokens. If 
only two periods remain, the optimal solution is an individual request of 49. The 
probability of receiving this request is about 0.79. The individual’s expected payoff 
across these two periods is, therefore, 49×0.79+0.79×43=73 tokens. Working 
backwards in this fashion, the individual’s expected payoff across the 10 periods of the 
game from following the social optimum path is equal to 274 tokens, the value of Π 
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shown in Table 1 when ten periods are remaining (i.e., at the beginning of the game). 
This corresponds to the maximum symmetric expected payoffs that subjects may 
achieve in this game. Comparing the expected payoffs from following a conservative 
path to the social optimum path yields an efficiency index of (250/274)×100=91% for 
the conservative path. This means that subjects are expected to achieve 91 percent of the 
maximum expected payoffs that may be achieved in this game if they follow a 
conservative path. The subgame perfect equilibrium (SPNE) path shown in Table 1 is 
constructed in the same manner, considering the predicted (symmetric) Nash 
equilibrium requests by each player. In this case, the individual’s expected payoff across 
the ten periods of the game from following this path is 31 tokens, yielding a meager 
efficiency index of only about 11%. 

The bottom panel in Table 1 shows the dynamic programming paths for the low-
uncertainty condition. If players follow a conservative path in this condition, the 
symmetric individual request is 45 tokens in each period of the game, for a total group 
request of 270 each period of the game. The overall payoff across the 10 periods of the 
game for each player is 45×10=450 tokens. The individual’s expected payoff across the 
10 periods of the game from following the social optimum path is 453 tokens, and is 44 
tokens from following the subgame perfect equilibrium path. In this case, the subgame 
perfect path yields an efficiency index of about 10 percent. 

Comparison of the upper and lower parts of Table 1 shows that, as might be 
expected, payoffs increase under all three benchmarks as the uncertainty about the size 
of the resource decreases. Table 1 shows that each of these two uncertainty conditions 
yields different predictions concerning players’ requests from the shared resource, with 
the social optimum path entailing substantially lower requests than the respective 
subgame perfect path. Therefore, the subgame perfect paths are Pareto deficient in both 
of the uncertainty conditions implemented in the laboratory. Importantly, the efficiency 
index of the subgame perfect path is maintained approximately equal in both uncertainty 
conditions, so that the incentives for any cooperative behavior do not differ much 
between the two conditions. Moreover, any increase in the requests that might be 
observed in response to an increase in the uncertainty levels cannot simultaneously 
make part of a competitive (subgame perfect) and a cooperative (conservative or social 
optimum) path. Indeed, as shown in Table 1, while the increased uncertainty in the high 
uncertainty condition elicits higher requests than in the low condition, if subjects follow 
the subgame perfect path, it overall elicits significantly lower requests than in the low-
uncertainty condition, if subjects follow a conservative path or the social optimum path. 

 

4. Experimental results 

Our analysis of the experimental data focuses on the effects of environmental 
uncertainty on resource-use decisions at the group level. We organize the analysis of 
group behavior by examining in order: (A) behavior in the high uncertainty condition, 
(B) behavior in the low uncertainty condition, and (C) comparison of the behavior 
across the two uncertainty conditions.1 In each case, the main results are presented in 
the form of summary observations. 

                                                           
1 Because subjects participated in 30 repetitions/series of the same dynamic game, we first investigated 
whether play of the games changed as subjects gained experience. The general finding in purely repeated 
CPR games is that behavior is consistent with efficient outcomes in the first rounds of play, and 
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A. High-uncertainty condition 

Tables 2 and 3 summarize the main results of the high-uncertainty condition. Table 2 
presents the length of the games played by each group. Pooling across all 10 groups, the 
median length of the games is one period, with three of the 10 groups registering a 
median length of two periods. Clearly, none of the groups adopted a conservative path, 
and depletion of the resource stock occurred rather quickly. 

Figure 1 depicts the probability of resource destruction as implied by the social 
optimum and equilibrium paths (broken lines) along with the observed proportions. 
Using the predictions in the top panel of Table 1, the probability of resource destruction 
prior to period eight is 0 percent at the social optimum path, increasing to 8 percent ((1-
0.92)×100) prior to period nine and to 27% ((1-0.92×0.79)×100) prior to period 10. In 
the context of dynamic games, theory tells us that we should observe an immediate 
depletion of the resource stock if groups are unable or unwilling to make commitments 
about future extraction rates (Reinganum and Stokey 1985), corresponding to the 
assumption that behavior is guided by decision rule strategies underlying the predicted 
SPNE path. In fact, as implied by the numbers in Table 1, the probability of resource 
destruction prior to period two is 79 percent ((1-0.21)×100) at the equilibrium path, 
increasing to 96 percent ((1-0.21×0.21)×100) prior to period three, and reaching about 
100 percent in subsequent periods. With such high destruction probabilities, the chance 
of observing games lasting for more than a single period in the data is quite small if 
subjects do not deviate from the predicted equilibrium path. As Figure 1 reveals, despite 
the variability of group behavior, the rates of resource destruction are quite above those 
predicted by the social optimum path, and closer to the equilibrium path. 

Table 3 shows that group requests terminating the game immediately, which 
accounted for about 55 percent of the data, average 688 tokens. This mean compares 
closely to the equilibrium prediction of 702 tokens. As expected, first-period requests 
are negatively associated with the length of the game. The average first-period group 
requests for games longer than one period, which account for 45 percent of the data, is 
487 tokens. These requests are in between the efficient and the equilibrium values. 

Using Wald tests while adjusting standard errors for clustering at the group 
level, the signed mean differences between the observed first-period group requests 
(RObs) and the equilibrium (RSPNE) and efficient (RSO) values were tested for statistical 
significance. The results are summarized in Table 4. They show that group requests in 
games terminated in the first period (Length=1) are not significantly different from the 
predicted equilibrium value. The mean estimated difference between RObs and RSPNE is 
about -14 tokens; it is not significantly different from zero at conventional significance 
levels using the Wald statistics. The mean differences between first-period group 
requests and predicted equilibrium and efficient values are both significantly different 
from zero for games lasting for more than one period (Length>1). Mean group requests 
are 214 tokens below the equilibrium value, and 337 tokens above the efficient value. In 
order to evaluate whether the observed deviations from equilibrium requests are larger 
or smaller than the observed deviations from efficient requests, the delta method 
                                                                                                                                                                          

approaches the equilibrium prediction in the last rounds. Under this pattern of behavior, we would expect 
to observe longer games in the first series of play, and shorter games as the series approach the end. The 
figure in the Appendix plots the maximum number of periods played by each group in each of the games, 
where the title in each of the panels identifies the uncertainty condition. In each case, the figure suggests 
that there is no systematic association between the length of the games and order of play. This impression 
was confirmed by several statistical analyses (available from the authors). Therefore, we pool the data 
across the games for the statistical analysis of the data in both uncertainty conditions. 



 

 

10 

 

(Oehlert 1992) was used to calculate the standard error and 95 percent confidence 
interval of the absolute value of the ratio of the estimated difference between observed 
requests and the respective equilibrium and efficient requests (∆). The confidence 
interval for the ratio is [0.4; 0.9]. It indicates that the observed deviations from 
equilibrium requests are smaller than the observed deviations from efficient requests. 

To complement the analysis of group behavior, we computed the per-period 
mean square deviation (MSD) of requests from predicted requests (either SPNE or SO) 
for each group in each of the 30 played games. For each group separately, Table 5 
indicates the number of games in which the MSD from the SPNE path is smaller than 
the MSD from the SO path. Also reported in the table are the binomial probabilities 
associated with the observed number of games under the null hypothesis that it is 
equally likely for either of the two predicted paths to result in the smaller MSD in any 
given game. The results show that the SPNE path is the best predictor of behavior for 
eight of the 10 groups, and that for two of the groups we cannot reject the hypothesis 
that both paths are equally likely at a significance level of 5 percent. Defining success as 
an observation in which the SPNE path is the best predictor of group behavior, the 
probability of observing 8 or more groups following the SPNE path is 0.003 under the 
null hypothesis that the three events (SPNE, SO, or both) are equally likely. For any 
one-tailed significance level lower than 5 percent, we reject the null hypothesis in favor 
of the alternative hypothesis that the SPNE path is the overall best predictor of behavior 
for the groups in this uncertainty condition. 

Taken together, these findings are summarized in the following observation. 

Observation 1. Groups in the high-uncertainty condition adopt decision 
strategies that quickly deplete the resource stock. Group requests are uniformly closer to 
the SPNE path than to the SO path. 

B. Low-uncertainty condition 

Tables 6 and 7 summarize the main results in the low-uncertainty condition. The median 
length of the games in the low-uncertainty treatment across all groups is two periods, 
with four of the nine groups (44 percent) registering a median length of one period. It is 
twice as large as the same median in the high-uncertainty condition. Again, none of the 
groups adopted a conservative path, with depletion of the resource stock occurring 
rather quickly. 

Figure 2 depicts the probability of resource destruction as implied by the SO and 
SPNE paths, along with the observed proportions. Although the destruction probability 
curves are more dispersed than in Figure 1, they are closer to the SPNE than the SO 
path. 

Table 7 shows that group requests terminating the game immediately, which 
accounted for about 46% of the data, average 569. This mean request compares closely 
to the equilibrium prediction of 588 tokens. The mean first-period group requests for 
games longer than one period is 412 tokens. These requests are in between the efficient 
and the equilibrium values. 

Table 8 addresses the issue of whether first-period requests are significantly 
different from the SPNE and SO paths. In games terminating in the first period, the 
mean difference between RObs and RSPNE is -19 tokens; the null hypothesis of zero 
difference could not be rejected by the Wald test at conventional significance levels. 
The mean differences between first-period group requests and predicted equilibrium and 
efficient values are both significantly different from zero for games lasting for more 
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than one period (Length>1). Mean group requests are 177 tokens below the equilibrium 
value, and 142 tokens above the efficient value. Although the absolute value of the ratio 
of these two differences is greater than 1, suggesting that the distance between observed 
requests and the SPNE prediction is larger than the distance between observed requests 
and the SO prediction, the computed confidence interval for the ratio is [0.7; 1.8]. Thus, 
at the 5 percent significance level, we cannot reject the hypothesis that the observed 
deviations from the SPNE path are equal to the observed deviations from the SO path. 

Table 9 addresses the issue of whether groups’ behavior is better described by 
the SPNE or the SO path. The results show that the SPNE path is the best predictor of 
behavior for four of the nine groups. The SO path is the best predictor of behavior for 
two other groups, and the results of the testing procedure are inconclusive for the 
remaining three groups. Defining success as an observation in which the SPNE path is 
the best predictor of group behavior, the probability of observing four or more groups 
following the SPNE path is 0.35 under the null hypothesis that the three events (SPNE, 
SO, or both) are equally likely. Therefore, we do not reject the null hypothesis at 
conventional significance levels. 

We summarize these findings in the following observation. 

Observation 2. Groups in the low-uncertainty condition tend to adopt decision 
strategies that quickly deplete the resource stock. However, the SPNE path is not 
uniformly the best predictor of group requests, with some groups adopting behavior 
closer to the SO path and other groups adopting behavior falling in between these two 
polar cases. 

C. Comparing uncertainty conditions 

We would expect higher uncertainty about the size of the resource to elicit higher group 
requests, if groups adopt decision strategies, but to elicit lower group requests, if groups 
adopt path strategies leading to perfectly efficient outcomes. As seen above (Tables 3 
and 7), and consistent with the adoption of decision strategies, group requests are higher 
in the high-uncertainty condition than in the low-uncertainty condition. Given that the 
same differences in requests generate different probabilities of resource destruction 
across different manipulations of uncertainty ranges, a general assessment of the effects 
of increased uncertainty is better accomplished by analyzing the implied differences in 
destruction probabilities rather than by analyzing the differences in requests observed 
across the different manipulations of uncertainty ranges. 

Panels A and B in Table 10 report the estimated effects of the higher-uncertainty 
level on the implied probabilities of resource destruction by first-period requests. For 
completeness, also reported in Table 10 (panel C) is the estimated effect implied by all 
non-first-period requests. Given that the dependent variable is naturally bounded 
between 0 and 1, the estimation of treatment effects uses the specification developed by 
Papke and Wooldridge (1996) for fractional-dependent variables. In addition, because 
the conditional expectation function in the specification used is nonlinear (so as to 
generate predictions naturally bounded between 0 and 1), the estimated parameter value 
associated with the treatment variable does not directly measure the treatment effect on 
the mean value of the dependent variable. Thus, to aid in interpretation, the coefficient 
estimates reported in Table 10 are the marginal effects of a discrete change in 
explanatory variable HIGH taking the unit value for the high-uncertainty condition and 
the zero value for the low-uncertainty condition. 
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Table 10 shows that the implied probabilities of destruction induced by the 
higher request in the high-uncertainty condition are significantly higher than the 
probabilities of destruction observed in the low-uncertainty condition. Considering only 
the subset of games terminated in the first period, the probabilities of destruction are, on 
average, 12 percentage points higher in the high than the low-uncertainty condition. 
Moreover, the width of the 95 percent confidence interval indicates that we cannot 
reject the hypothesis that the difference in destruction probabilities between the two 
treatments is 10 percentage points, corresponding to the predicted difference generated 
by the SPNE paths. This result is not particularly surprising, given that group requests 
in both treatments are consistent with the respective SPNE paths for this subset of the 
data. 

Considering only the first-period requests in the subset of games lasting for 
more than one period, the difference in destruction probabilities between the treatments 
is 17 percentage points, significantly higher than the predicted difference by the SPNE 
paths. Because first-period requests in games terminated after the first period are lower 
than the predicted SPNE values in both treatments, it could still be the case that the 
difference in the implied destruction probabilities remained at about the 10 percentage 
points, generated by the respective SPNE paths. Clearly, this is not the case, suggesting 
that reducing uncertainty levels positively impacts resource conservation beyond what 
would be predicted by common inability of the groups to commit to future extraction 
rates (i.e., by behavior consistent with the SPNE path). 

This observation is further corroborated by the results in Panel C, considering 
only the subset of all non-first requests in both treatments. Had groups approximated 
their requests to the SPNE paths after the first period of the game, the mean differences 
in destruction probabilities between the treatments would be 8.5 percentage points, 
since the difference declines systematically as the game evolves. Consistent with this 
pattern of behavior, we observe lower differences in destruction probabilities between 
the treatments in subsequent periods. However, as indicated by the 95 percent 
confidence interval, the difference is again significantly higher than would be predicted 
by groups approximating their respective SPNE paths. 

Coupled with those summarized in Observations 1 and 2 above, these findings 
indicate not only that treatment effects cannot solely be attributed to Nash behavior, but 
also that it is groups’ behavior in the low-uncertainty condition that explains the 
differential treatment effect with respect to equilibrium predictions. 

These findings are summarized in the following observation. 

Observation 3. Compared with the high-uncertainty condition, the low-
uncertainty condition elicits lower requests from the shared resource. Moreover, it also 
induces a qualitative change in groups’ behavior in the sense that it positively impacts 
resource conservation beyond what would be predicted by groups adopting decision rule 
strategies under both conditions. 

 

5. Conclusion 

The dynamic stochastic game-theoretic model proposed in this paper focuses on 
the effects of environmental uncertainty in time-dependent CPR dilemmas. While CPR 
users may extract resources over a predetermined and commonly known time horizon, a 
distinguishing feature of our model is that the duration of the game is determined 
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endogenously by the players whose collective decisions determine the probability of an 
irreversible environmental outcome. The abrupt intrusion of salt water in coastal 
aquifers once the groundwater table declines below an unknown threshold level is an 
example of such an event. In the present model, if the resource stock level below which 
the irreversible outcome occurs is known in advance, then the optimal resource use 
coincides with a unique symmetric equilibrium use guaranteeing survival of the 
resource over the finite horizon. As the uncertainty about an otherwise equally expected 
threshold level increases, resource use increases if users adopt decision strategies that 
quickly deplete the resource stock. Resource use decreases if users adopt path strategies 
guaranteeing that the unknown threshold level is never exceeded over the entire 
horizon. 

In an experiment that manipulates the common uncertainty about the threshold 
resource level, we find that CPR users implement decision strategies that terminate the 
game immediately. Notwithstanding, reducing the uncertainty about the resource level 
induces a qualitative change in behavior with users more frequently maintaining a 
positive resource level for a longer duration. If replicated and extended, these results 
have potentially important theoretical and policy implications. At the theoretical level, 
they suggest decision strategies that CPR users may use when they may not make 
credible commitments. At the policy level, these results provide evidence that the 
reduction of environmental uncertainty by creating and disseminating better scientific 
information may play a major role in long-range planning to elicit synergy between the 
economic and ecological systems that jointly govern the dynamic management of 
shared natural resources. Estimated as the difference between the high- and the low-
uncertainty outcomes, the value of this information is an indicator to the policy maker 
about how much to invest in acquiring and disseminating information to the user that 
reduces uncertainty about the CPR. 
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Table 1 – Dynamic programming paths for high- and low-uncertainty conditions 
Time 
Remaining 

Social optimum (SO) path  Subgame perfect (SPNE) path 
R r p Π  R r p Π 

A. High uncertainty condition: n=6, α=150, β=850, Expected Value=500, Range=700 
1 425 71 0.61 43  729 121 0.17 21 
2 296 49 0.79 73  711 118 0.20 28 
3 206 34 0.92 99  705 117 0.21 30 
4 150 25 1.00 124  703 117 0.21 31 
5 150 25 1.00 149  702 117 0.21 31 
6 150 25 1.00 174  702 117 0.21 31 
7 150 25 1.00 199  702 117 0.21 31 
8 150 25 1.00 224  702 117 0.21 31 
9 150 25 1.00 249  702 117 0.21 31 
10 150 25 1.00 274  702 117 0.21 31 
          

Efficiency 
Index (%) 

   100     11 

 
B. Low-uncertainty condition: n=6, α=270, β=730, Expected Value=500, Range=460 

1 365 61 0.79 48  626 104 0.23 24 
2 270 45 1.00 93  605 101 0.27 34 
3 270 45 1.00 138  597 99 0.29 39 
4 270 45 1.00 183  593 99 0.30 41 
5 270 45 1.00 228  591 98 0.30 42 
6 270 45 1.00 273  589 98 0.31 43 
7 270 45 1.00 318  589 98 0.31 43 
8 270 45 1.00 363  589 98 0.31 43 
9 270 45 1.00 408  588 98 0.31 44 
10 270 45 1.00 453  588 98 0.31 44 
          

Efficiency 
Index (%) 

   100     10 

Note: R is total group request; r is individual (symmetric) request; p is the probability of receiving the 
request and continuing the game; Π is individual expected payoff from conforming to the paths described. 
Adoption of a conservative strategy yields an efficiency index of 91% (25×10=250/274) in the high 
uncertainty condition, and an efficiency index of 99% (45×10=450/453) in the low-uncertainty condition. 
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Table 2 – Number of games played by group (Gi) and length of game: High-uncertainty 
condition 
Length G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Total 

1 11 20 19 19 12 10 20 20 16 17 164 
2 6 6 5 6 6 7 9 6 5 5 61 
3 5 3 4 2 7 6 1 3 5 4 40 
4 3 1 2 2 2 5 0 1 2 1 19 
5 1 0 0 0 0 0 0 0 0 0 1 
6 2 0 0 0 1 0 0 0 0 2 5 
7 0 0 0 0 1 0 0 0 2 1 4 
8 2 0 0 1 1 1 0 0 0 0 5 
9 0 0 0 0 0 0 0 0 0 0 0 
10 0 0 0 0 0 1 0 0 0 0 1 

Median 2 1 1 1 2 2 1 1 1 1 1 
Mean 3 2 2 2 2 3 1 2 2 2 2 
SD 2 1 1 1 2 2 1 1 2 2 2 

 
 

Table 3 – Per period mean group requests by period and length of game: High-
uncertainty condition 
Length 

of 
game 

Period within the game 
1 2 3 4 5 6 7 8 9 10 

1 688 
(219) 

         

2 549 
(139) 

589 
(174) 

     
 

  

3 435 
(103) 

442 
(75) 

495 
(160) 

    
 

  

4 459 
(102) 

468 
(76) 

421 
(89) 

432 
(77) 

    
  

5 375 
(0) 

375 
(0) 

400 
(0) 

325 
(0) 

325 
(0) 

   
  

6 427 
(53) 

398 
(73) 

366 
(46) 

387 
(76) 

357 
(52) 

564 
(362) 

  
  

7 454 
(58) 

417 
(83) 

349 
(66) 

378 
(33) 

384 
(54) 

366 
(29) 

395 
(23) 

 
  

8 393 
(81) 

369 
(107) 

353 
(74) 

369 
(46) 

403 
(82) 

398 
(84) 

410 
(68) 

458 
(132) 

  

10 395 
(0) 

385 
(0) 

320 
(0) 

337 
(0) 

335 
(0) 

309 
(0) 

343 
(0) 

282 
(0) 

335 
(0) 

277 
(0) 

Note: Standard deviation is in parentheses. Games of length 5 and 10 were only observed once. 
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Table 4 – Statistical analysis of differences between observed and predicted values 
Length 
Games 

Variable Coefficient Wald z 
Statistics 

p-value Lower 
95% CI 

Upper 
95% CI 

Le
ng

th
=

1 RObs-RSPNE -13.757 -0.39 0.699 -83.461 55.947 
RObs-RSO 537.854 15.12 0.000 468.150 607.558 

∆=
SOObs

SPNEObs

R-R
R-R

 0.026 0.38 0.706 -0.107 0.158 

Le
ng

th
>

1 RObs-RSPNE -214.397 -8.37 0.000 -264.601 -164.194 
RObs-RSO 337.213 13.16 0.000 287.010 387.417 

∆=
SOObs

SPNEObs

R-R
R-R

 0.636 5.12 0.000 0.392 0.879 

Table 5 – Number of games with smallest MSD from the SPNE path 
Group Nº Games Proportion Hypotheses p-value Decision 

1 17 0.567 
H0: p=0.5 
H1: p>0.5 

0.292 Do not Rej. H0 

2 29 0.967 
H0: p=0.5 
H1: p>0.5 

<0.001 Rej. H0 

3 27 0.900 
H0: p=0.5 
H1: p>0.5 

<0.001 Rej. H0 

4 28 0.933 
H0: p=0.5 
H1: p>0.5 

<0.001 Rej. H0 

5 27 0.900 
H0: p=0.5 
H1: p>0.5 

<0.001 Rej. H0 

6 17 0.567 
H0: p=0.5 
H1: p>0.5 

0.292 Do not Rej. H0 

7 30 1.000 
H0: p=0.5 
H1: p>0.5 

<0.001 Rej. H0 

8 29 0.967 
H0: p=0.5 
H1: p>0.5 

<0.001 Rej. H0 

9 20 0.667 
H0: p=0.5 
H1: p>0.5 

0.05 Rej. H0 

10 21 0.700 
H0: p=0.5 
H1: p>0.5 

0.02 Rej. H0 

Note: The per period mean square deviation (MSD) of requests from predicted requests for each group in 

each game k=1, …, 30, is computed as ∑ �F�G � F�G∗ �<HG�G�
 /IJ, where F�G is the observed group request in 

period t of game k, F�G∗  is the respective prediction (either at the SPNE or SO path), and IJ is the length of 
game k. For each group, we define a “success” as a game in which the MSD from the SPNE path is 
smaller than the MSD from the SO path. Let �K represent the number of successes for each group. Under 
the null hypothesis that it is equally likely for either of the two predicted paths to result in the smaller 
MSD in any given game (H0: p=0.5), the probability of observing at least �K successes (H1: p>0.5) in 30 

games is given by L
<MNO � ∑ �NOP �NOP�QR , and the probability of observing at most �K successes (H1: p<0.5) in 

30 games is given by L
<MNO � ∑ �NOP �QRP�O .  
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Table 6 – Number of games played by group (Gi) and length of games: Low-uncertainty 
condition 
Length G1 G2 G3 G4 G5 G6 G7 G8 G9 Total 

1 17 13 10 15 8 17 13 19 11 123 
2 4 7 8 6 8 8 8 6 5 60 
3 4 3 4 0 1 1 5 1 4 23 
4 3 1 1 0 2 0 3 1 2 13 
5 0 1 1 4 5 3 0 1 0 15 
6 1 2 1 1 1 1 1 0 2 10 
7 0 1 3 0 0 0 0 0 4 8 
8 0 0 0 0 1 0 0 0 0 1 
9 0 0 0 4 4 0 0 1 1 10 
10 1 2 2 0 0 0 0 1 1 7 

Median 1 2 2 2 2 1 2 1 2 2 
Mean 2 3 3 3 4 2 2 2 3 3 
SD 2 3 3 3 3 1 1 2 3 2 

 

Table 7 – Mean group requests by period and length of game: Low-uncertainty 
condition 
Length 

of 
game 

Period within the game 
1 2 3 4 5 6 7 8 9 10 

1 569 
(186) 

     
    

2 430 
(101) 

506 
(166) 

     
   

3 464 
(112) 

425 
(73) 

455 
(89) 

    
   

4 394 
(93) 

398 
(105) 

404 
(89) 

447 
(83) 

    
  

5 375 
(114) 

381 
(82) 

384 
(86) 

397 
(69) 

463 
(102) 

   
  

6 372 
(102) 

386 
(64) 

390 
(49) 

398 
(82) 

387 
(73) 

397 
(62) 

   
 

7 358 
(65) 

338 
(60) 

401 
(74) 

405 
(94) 

334 
(56) 

351 
(59) 

461 
(85) 

  
 

8 270 
(0) 

420 
(0) 

320 
(0) 

500 
(0) 

420 
(0) 

370 
(0) 

470 
(0) 

620 
(0) 

  

9 351 
(64) 

373 
(74) 

371 
(56) 

371 
(83) 

342 
(57) 

359 
(73) 

343 
(54) 

329 
(38) 

497 
(105) 

 

10 416 
(67) 

369 
(37) 

350 
(54) 

433 
(59) 

353 
(34) 

405 
(70) 

341 
(55) 

389 
(52) 

376 
(51) 

449 
(141) 

Note: Standard deviation is in parentheses. Games of length 5 and 10 were only observed once. 
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Table 8 – Statistical analysis of differences between observed and predicted values 
Length 
Games 

Variable Coefficient Wald z 
Statistics 

p-value Lower 
95% CI 

Upper 
95% CI 

Le
ng

th
=

1 RObs-RSPNE -18.977 -0.60 0.545 -80.464 42.510 
RObs-RSO 299.415 9.54 0.000 237.923 360.902 

∆=
SOObs

SPNEObs

R-R
R-R

 0.063 0.57 0.569 -0.155 0.282 

Le
ng

th
>

1 RObs-RSPNE -176.841 -9.50 0.000 -213.315 -140.367 
RObs-RSO 141.551 7.61 0.000 105.077 178.025 

∆=
SOObs

SPNEObs

R-R
R-R

 1.249 4.22 0.000 0.670 1.829 

Table 9 – Number of games with smallest MSD from the SPNE path 
Group Nº Games Proportion Hypotheses p-value Decision 

1 21 0.700 
H0: p=0.5 
H1: p>0.5 

0.02 Rej. H0 

2 17 0.567 
H0: p=0.5 
H1: p>0.5 

0.292 Do not Rej. H0 

3 11 0.367 
H0: p=0.5 
H1: p<0.5 

0.100 Do not Rej. H0 

4 8 0.267 
H0: p=0.5 
H1: p<0.5 

0.008 Rej. H0 

5 4 0.133 
H0: p=0.5 
H1: p<0.5 

<0.001 Rej. H0 

6 23 0.767 
H0: p=0.5 
H1: p>0.5 

0.003 Rej. H0 

7 30 1.000 
H0: p=0.5 
H1: p>0.5 

<0.001 Rej. H0 

8 27 0.900 
H0: p=0.5 
H1: p>0.5 

<0.001 Rej. H0 

9 15 0.500 
H0: p=0.5 
H1: p>0.5 

0.572 Do not Rej. H0 

Note: The per period mean square deviation (MSD) of requests from predicted requests for each group in 

each game k=1, …, 30, is computed as ∑ �F�G � F�G∗ �<HG�G�
 /IJ, where F�G is the observed group request in 

period t of game k, F�G∗  is the respective prediction (either at the SPNE or SO path), and IJ is the length of 
game k. For each group, we define a “success” as a game in which the MSD from the SPNE path is 
smaller than the MSD from the SO path. Let �K represent the number of successes for each group. Under 
the null hypothesis that it is equally likely for either of the two predicted paths to result in the smaller 
MSD in any given game (H0: p=0.5), the probability of observing at least �K successes (H1: p>0.5) in 30 

games is given by L
<MNO � ∑ �NOP �NOP�QR , and the probability of observing at most �K successes (H1: p<0.5) in 

30 games is given by L
<MNO � ∑ �NOP �QRP�O .  
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Table 10 – Maximum likelihood estimates of treatment effects on destruction 
probabilities 

Variable Coefficient Wald z Statistics p-value Lower 95% CI Upper 95% CI 
A. Length of Games=1 

HIGH 0.1232 4.39 0.000 0.0681 0.1782 
B. Length of Games>1 – First Period Requests 

HIGH 0.1713 6.88 0.000 0.1225 0.2201 
C. Length of Games>1 – Non-First Period Requests 

HIGH 0.1338 8.73 0.000 0.1038 0.1638 
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Figure 1 – Probability of destruction: Predicted (SO, SPNE) and observed values under 
high-uncertainty condition 

 

  

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

P
ro

ba
bi

lit
y 

of
 d

es
tr

uc
tio

n

1 2 3 4 5 6 7 8 9 10
Period

Group 1 Group 2 Group 3 Group 4 Group 5

Group 6 Group 7 Group 8 Group 9 Group 10

All Groups SPNE SO



 

 

23 

 

Figure 2 – Probability of destruction: Predicted (SO, SPNE) and observed values under 
low-uncertainty condition 
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Appendix - Length of games by each group in each uncertainty condition 

 

1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Group 1 Group 2 Group 3 Group 4 Group 5

Group 6 Group 7 Group 8 Group 9

Uncertainty Range = 460

1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Group 1 Group 2 Group 3 Group 4 Group 5

Group 6 Group 7 Group 8 Group 9 Group 10

Length of game

Uncertainty Range = 700

G
am

e
G

am
e


