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Abstract
Most common pool resource (CPR) dilemmas shardéatures: they evolve over time
and they are managed under environmental unceesiw/e propose a finite-horizon,
stochastic, dynamic model that integrates these dimoensions. A distinguishing
feature of our model is that the duration of thengas determineéndogenouslypy the
players’ collective decisions. In the proposed nhodléhe resource stock level below
which the irreversible event occurs is known inatbe, then the optimal resource use
coincides with a unique symmetric equilibrium tgairantees survival of the resource.
As the uncertainty about the threshold level ineesaresource use increases if users
adopt decision strategies that quickly depleteréseurce stock; however, resource use
decreases if they adopt path strategies guaragtéein the unknown threshold level is
never exceeded. Our experimental results show@R&R users frequently implement
decision strategies that terminate the game imrntadgiaVhen the uncertainty about the
resource level is reduced, users maintain a pesiéisource level for a longer duration.
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1. Introduction

Most natural common pool resource (CPR) dilemmaseshwo features: they
evolve over time and they are managed under enwieotal uncertainties. While each
of these two features has been analyzed sepaiatehe experimental literature, no
attempt has been made to integrate them. In pktjdhe analysis of strategic behavior
in the face of environmental uncertainty aboutgize of the CPR has been conducted
under the assumption of single-period interactaong the analysis of strategic behavior
in time-dependent settings has ignored environnhentzertainties.

The bulk of the experimental literature (e.g., Osty Gardner, and Walker
1994) has analyzed unrestricted resource-use desidby placing subjects in the
context of repeated time-independent CPR dilemniasacterized only by strategic
uncertainty about the planned behavior of othermdor finding is aggregate behavior
consistent with the theoretically predicted reseurisallocations (Gordon 1954;
Hardin 1968). It has been noted, however, thatewvtiie time-independent framework
may be an adequate representation of CPRs charadieby flows, in which
availability of the resource in the future is indagdent of current requests, it fails to
capture the important temporal feature of stocloueses, like groundwater systems,
fisheries, forests, etc. (Brown 2001). In theseaneses, decisions concerning resource-
use are typically made in the “shadow of the futumethe sense that current requests
from the resource pool compete with resource awdithain the future.

It is a priori unclear if the presence of such temap factors would elicit
behavior different from that observed in time-inéiegent settings. Because current
requests not only affect the future profits of otlggoup members, but also their
individual profits as well, CPR users may adoptcptgionary strategies that lead them
closer to Pareto optimal outcomes. For examplendReium and Stokey (1985) show
that efficient resource-use decisions are to beeg in time-dependent settings when
users can jointly commit to “path” strategies otteg entire planning horizon. On the
other hand, the consideration that current requiestisions affect future request
possibilities also raises a dynamic optimizatioolgbem that complicates the attainment
of Pareto optimal outcomes even in single-agentests (Messick and McClelland
1983; Hey,Neugebauer and Sadrieh 200R)oreover, as shown by Dutta (1995), the
standard intuition from infinitely repeated timedependent games, whereby Pareto
optimal outcomes can be sustained in equilibriuraugh threat of credible punishment
by patient players, does not necessarily carry twéime-dependent games with stock
variables. In these games, players’ payoffs dep®idonly on current and previous
periods’ decisions, but also on state variables tienge from period to period.
Theoretically, this renders tacit agreements omrt@awptimal paths much more difficult
to attain than in purely repeated frameworks.

Seminal experimental investigations placing sulsjant time-dependent CPR
contexts have been conducted by Herr, Gardner,Vdaller (1997) and Mason and
Philips (1997). Herr et al. (1997) considered ttieat of increasing exploitation costs at
a predetermined fixed rate from period to periodainlO-period supergame. They
concluded that subjects did not internalize theriincreased costs, and that behavior
in the time-dependent setting intensified the ré&oe resources relative to time-
independent settings. Although current decisions this study affected future
exploitation costs, an effect on the size of tleouece stock was not considered. Mason
and Philips (1997) considered an infinite time hon supergame in which subjects
were given an initial stock, and request strategiedogenously determined the stock
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size (and exploitation costs) thereafter. They tatex that lack of cooperative

behavior is exacerbated when time-dependency isdaed in CPR dilemmas. Osés-
Eraso, Udina, and Viladrich-Grau (2008) have medifthis game by implementing a
more realistic finite horizon supergame and allapior early extinction of the stock as

a function of cumulative group requests. Exogenposnipulating the initial stock size

(scarce or abundant), they found that early extinabf the resource occurs irrespective
of the initial scarcity condition and costs.

Although Osés-Eraso et al. (2008), and one of tpe@mental conditions in
Mason and Philips (1997), allowed for extinctiontloé resource stock as a function of
the cumulative requests, they excluded the poggikibr more complex resource
dynamics involving threshold effects and suddemgka in the resource state. The only
study that partially addressed this possibility erkpentally was Gardner and Walker
(1992). They implemented a 20-period supergamehiciwresource extinction (end of
the game) could occur within a given period with andogenously determined
probability modeled as an increasing function ¢&ltgroup requests. In this model, the
critical threshold stock level triggering the cataphic event was known in advance,
but subjects were unable to avoid the damage, landesource was quickly destroyed
with a median duration of six periods. However, thedel does not capture the effects
of the lack of precise information regarding theesand growth of natural resources,
which characterizes most real-world commons. Theditmns that trigger an
irreversible event are often imperfectly known, are affected by stochastic
environmental conditions outside CPR users’ contrahdering the critical threshold
stock level unknown a priori.

Experimental assessments of the impacts of envienitsth uncertainty on group
requests from a CPR have mainly been conducted &yoport and co-authors
(Rapoport and Suleiman, 1992; Rapoport, BudescigirBan, and Weg 1992; and
Budescu, Rapoport, and Suleiman 1995) in the contéxrepeated single-trial
experiments. In their experiments, subjects coalflest resources from pools whose
parameters were randomly selected from a set ofrcmmty known uniform probability
distributions. Using mean-preserving spreads tdutapncreasing levels of uncertainty
regarding the resource size, these experiments ki@amonstrated that increased
uncertainty causes subjects to request more frarshiared resource. Along with the
observed uncertainty effect, Rapoport and co-agthbave provided several
explanations for its occurrence. One explanatiaitpdhat subjects perceive the central
tendency of a probability distribution and its admiity to be positively correlated.
Thus, as the uncertainty increases, subjects’ atsof the mean value of the resource
size increases, prompting them to request moreth@ncexplanation, in line with an
“outcome desirability bias” (Gustafsson, Biel, a@drling 1999), posits that subjects
overweight the most desired upper bound of the iblessesource size. This, again,
prompts subjects to request more of the resourd¢heaancertainty increases in mean-
preserving resource distributions. Despite the ts@fi these explanations, the literature
seems to have overlooked that the observed resdtipnbetween environmental
uncertainty and individual requests pertains talsHtrial experiments. Under these
circumstances, a significant restraint in individtequests by the group members that
can be considered cooperative behavior may nod yied highest collective payoffs as
it may constitute resource under-use from an ecacaiy efficient perspective. Indeed,
increased requests as a response to an increaswimnmental uncertainty levels in
time-independent settings conforms to Pareto-efficisolutions, and not just Nash
behavior. This observation, however, is unlikely#otrue in time-dependent settings. A



number of theoretical articles on various resoura@agement problems, including
intrusion of saltwater in coastal aquifers (Tsud afemel 1995), forest fires (Yin and
Newman 1996), and pollution-related events (Claakd Reed 1994), have generally
established that efficient solutions for the dymanmmanagement of resources under
uncertain critical threshold levels require moredance and conservative behavior than
those under conditions of certainty. Thus, whetbemot the positive relationship
between environmental uncertainty and request behdsom a shared resource is
likely to be observed in a time-dependent laboyatsetting, in which both
considerations of individual future payoffs and i@ént solutions require more
conservative requests, is still an open empiricalstjon.

The present paper addresses this question by g¢avgl@and experimentally
testing a dynamic stochastic game-theoretic moddegrating the effects of
environmental uncertainty in time-dependent CPRmdihas. The paper is organized as
follows. Section 2 presents the model and solvésriggeneral theoretical benchmarks.
Section 3 outlines the experimental design andeptsesthe theoretical predictions that
are later used as benchmarks for the analysiseoéxperimental data. Section 4 reports
the results of the experiment, and Section 5 caledu

2. Dynamic-stochastic CPR game

We develop a dynamic-stochastic game-theoretic hraidbe appropriation of a
CPR by non-cooperative players under conditiongrofironmental uncertainty. The
game involves a fixed set ofplayers who play a stage gamigin each period, where
an upper bound to the length of the game is common knowledge, eachings
accumulate through the course of play. Howevegantrast to purely dynamic time-
dependent games with no uncertainty in the evalubibthe game environment (Dutta
1995), the particular game to be faced by the psage timet in the present setup is
randomly selected from a commonly known finite gegames, thereby falling in the
category of stochastic games (Shapley 1953; So08él)l In addition, in order to
capture the effects of environmental uncertaintytteen CPR dilemma, players do not
know which game has been selected when the gatimeedtis to be played.

Each of the stage gamd&$ that make up the dynamic game is drawn from
Suleiman and Rapoport (1988). In each stage gBma group ofn players decide
simultaneously and anonymously on how much to reiguem a shared resource (CPR)
whose precise size is unknown. However, it is comgnknown that the resource size,
denoted bys, is uniformly distributed on theaf A closed interval. Each of the
individuals may request anything betwdgand 5 from the shared resource, aaiter
the requests are made, the precise size of theuroesas publicly announced,
corresponding to the random realizatisn of S. Thus, the precise value
corresponds to the particular stage gdmeandomly selected by “nature” at timte
Furthermore, if the sum of group requests is smalan or equal te, then each
individual keeps his or her own requests. On thHeerohand, if the sum of group
requests exceeds the sgef the resource, then each individual's payoffaso.

Assuming linear utility functions for all playerand lettingrj stand for the
request made by playgon trialt, the expected payoff to the player in stage ghms
given by



Tje if  Yiame<a
M =< 15e X Prob(Xj_ 1 < s0)  if a <Y 7 <P (1)

0 if Yi-1tie > B
where Y7, 7, is the sum of group requests in stage gdmeand Prob(X}-; 7 <
st) = (B =~ Zjamn) /(B — @),

We introduce structural time dependence in thisehtittough the definition of
transition probabilities governing how the gameceexds from period to periodt+1,
which we condition on the actual gameplayed in period as randomly selected by
“nature,” and on the actions chosen by the playerperiodt. Specifically, if the
aggregate requests are smaller than or equal t@sloairce size at timtethen the game
continues to periott1. If the aggregate requests are infeasible, instrese that they
exceed the resource size at titnthen the game terminates. Formally, the contionat
probability from period to periodt+1 is given by:

( 1 lf Z?:l 7,‘]'tf <a
B-Siaric .
Pe = i’f;{” if @ <XjoiTie <S¢ (2)
0 if 2i=1Tjt > St

In other words, if the group request is below a imum pre-determined
quantity a, the game continues to a subsequent period wittaicg, implying an
economically unchanged resource size between tiedgelf the group request exceeds
the randomly determined resource size, then theures is degraded and the game is
terminated. If the group request belongs to thierval of quantities, the game
continues to a subsequent period with a positivbatility corresponding to thex-
ante probability that the group request does not exdbedresource size. Thus, while
players may request resources over a predetermameld commonly known time
horizon, a distinguishing feature of this modetiat the precise duration of the game is
determinedendogenoushby the players whose collective decisions deteentime
probability of an irreversible environmental eventaddition, the model captures those
circumstances characterized by both pool-size tmiogy and regeneration-rate
uncertainty, features that are present in manyweald commons (Hine and Gifford
1996). In particular, when group requests exaeduit the resource is not depleted, the
inter-temporal effect of group requests may berpreted as captured by a stochastic
regeneration ratey applied to end of period remaining stock,— Y7 ;7;,. The
parameterg; determines the stock available in the subsequenbd s;,; = (s; —
Yi=17jt)ge, Whereg is uniformly distributed with limits endogenousiigtermined by

group requests and the stochastic resource([sizes, — X7-1 7j¢), /(s — Xj=17je)]-

Because the CPR game is composed of interdepersfiecthastic dynamic
programming problems, it may be solved by dynamigmmming/Bellman’s equation
method, and because it is symmetric we focus ommatnic outcomes as benchmarks
for data analysis. In particular, we solve the géonehree types of outcomes: the social
optimum (joint payoff maximization) outcome, thebgame perfect outcome, and a
conservative outcome guaranteeing survival of éseurce over the entire time horizon.

We first construct the symmetric subgame perfechNaquilibrium outcome, in
which players are assumed to adopt “decision rubdegies” (Reinganum and Stokey
1985) since they cannot credibly commit to futlequests. In this context, each player



independently seeks to maximize the value of tiseurce at any time by choice of
request strategy, taking the decision rule strategf all the other players exploiting the
resource as given. Assuming no discounting of &upayoffs, the value of the resource
for playerj at timet, V;.(7;,), satisfies the Bellman equation:

Vjt(rjt) = Tje + pr X Vjt+1(rjt+1): t=12.,T-1 3)

The transversality condition for this maximizatiproblem is that the value of
the resource after the final periddis zero (meaning that players leave behind no
resources, or if they do those extra resourcesod@antribute anything to maximized
value):

VjT+1(TjT+1) = 0. (4)

The recursive equation defining player'svalue function at final timeT is
therefore:

Vir (1) = mir- ©)
Maximizing Vj;(r;r) in the quadratic region of (1) with respectp, and

invoking symmetry to write the sum of requests bytree n players excluding playgr
asry jr = (n — Drjr, yields the subgame perfect request at fime

rr =B/(n+1). (6)
The value function at timé€ is then given by (using (6) in (5)):

Vir(r7) = [B/(n + DI?/(B — ). (7)
Similarly, the value function at time-1is given by:

Vir—1(Tjr-1) = Tjr_1 + pr_q X V}T(Tﬁ‘) (8)

Maximizing Vir_4(rjr—1) with respect tor;_;, and assuming thaty jr—; = (n —
1Drjr_1, yields the subgame perfect request at flade

r-1 = [/ + D1 - /(n+ 1*(B —a)l. )
The value function at tim&-1is then given by (using (9) and (7) in (8)):

Vir-1(1jr-1) = [(B/(n + 1D)?/(B = )11 +nB/(n+ D*(B — )]*. (10)
Lettinga = nB/(n + 1)?(B — a), the value function at timé-1 can be re-written as:
VjT—1(7”j*T—1) = VjT(Tj*T)[l +al?, (11)
and the subgame perfect request at fiadecan be written as:

Tir—1 = Tjr[1 —a/n]. (12)

By mathematical induction, one can show that theilgium value function at any
timet is given by:

Vjt(rj*t) ]T( T)[l +ay? = [(B/(n+ 1))*/(B — )][1 + ay)]?, (13)
and the subgame perfect request at timsegiven by
1ie = 1jr[1 = (a/m)ye] = [B/(n + DI[1 = (a/m)y:], (14)

where the recursive factgy is given by:



Ye = (14 ayeaq)?. (15)
One starts solving the recursion by noting that@f) also be written as:

[B/(n+ DI?/(B —a) =77[B/(n+ D)(B — )], (16)
and that using (14) and (15), the equation aboxeatso be written as:

[B/(n+DI?/(B—a) =[B/(n+ DI[1 - (a/m)(A + ayer)?1IB/(n+ (B — )] (17)
Solving (17) with respect tp;,, yields:

Yr+1 = —1/a. (18)

The value ofy;,; in (18) can then be substituted into (15) to get and working
backward from there to the first period at titaé.

Note, however, that the solution in (14) does mtstitute the subgame perfect
equilibrium request in all cases. At any timeéf 7;; + r,, j; < @, any vector of requests
i = ("1p To -, Tne), Whose elements satisfy the conditipfi, 7, = a, 75, = 0, is
also an equilibrium solution whereby the group eeswa continuation probability equal

to one. Assuming a symmetrical solution, the refallowing this condition can be
written as:

Ty = a/n. (19
The subgame perfect request at any tinmeall cases is then given by:
re = max(a/n, [B/(n+ DI[1 - (a/n)y.D. (20)

Moving next from the equilibrium solution to joipayoff maximization, the
social optimum path can be constructed by applgiyrtgamic programming to (3) under
the assumption that only a single agent is in ahafghe resource. The social optimum
request by playgrat any time in all cases is then given by:
ry = max(a/n, [B/(2n)][1 - (b)A:]), (21)
whereb = B/4(B — a), Ay = (1 + bA,,,)?%, andA;,; = —1/b.

Comparison of equations (20) and (21) reveals tiatsubgame perfect path
involves higher requests than the social optimurth @s long a8 — a) > a/n,
rendering the decision rule strategies Pareto iéatidor levels of uncertainty beyond a
relatively small threshold level. In turn, the sdocoptimum path only guarantees the
survival of the resource over the entire time hmwifor moderate levels of uncertainty,
that is, as long ag < 2a. Beyond this level of uncertainty, survival of thesource
over the entire time horizon could only be attaibgdhe adoption of “path” strategies
requiring each player to commit to a “conservativejuest equal ta/n at each stage
of the game.

3. Experimental design and theoretical predictions

A. Procedures, parameters and treatments

We designed a simple experiment operationalizing ¢fame described by
equations (1) and (2) with groups composed of 1s86) subjects and a time horizon of
ten periods T=10). Each subject participated in thirty repetiscof the same dynamic
game. Prior to the first game, each subject wadaiaty and anonymously assigned to
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a fixed group for the duration of a session. We lenm@nted two mean-preserving
uncertainty conditions in a between-subject dedigrone of the uncertainty conditions
(hereinafter, “high” uncertainty condition), the namonly known resource size was
uniformly distributed on the [150, 850] closed v, for an uncertainty range of 700
and an expected value of 500. Subjects were prdviggh written instructions
informing them that they could, individually, recidrom O up to 850 tokens, and that
the precise value of the resource (called “randoaw®d in any period was to be
randomly extracted (and announced) after all groembers made their requests. They
were also informed that if the sum of group regeiegére larger than the randomly
determined resource size in any period, then timgiividual payoffs in that period
would be zero, and the game would be terminatdarafise, their individual payoffs in
that period would equal their individual requested the game would continue to a
subsequent period unless the game had reachethéheériod. Specifically, subjects
were informed that the game would be terminatdtkeif the sum of the group requests
exceeded the value of the resource or after 1@g®riwvhichever came first. In addition
to a $5 participation fee, at the end of the sessigbjects were paid for the tokens
accumulated in four (randomly determined for eadbject) out of the thirty repetitions,
in which each token was worth 2 cents. This proceduas implemented to prevent
wealth effects. The exact same procedures weretasatplement a second uncertainty
condition (hereinafter, “low” uncertainty conditiprin which the commonly known
resource size was uniformly distributed on the [Z780] closed interval, for a smaller
uncertainty range of 460 and the same expectece \@lb00. In each condition, the
sessions lasted for about two hours.

The experiment was implemented using zhEree(Fischbacher 2007) software.
No communication between the subjects was allowdidexperimental sessions were
conducted at the Behavioral Research Lab of th@@adf Business Administration at
the University of California, Riverside, which isstandard computerized laboratory
with subjects’ stations placed in separate “culickensuring privacy. Subjects were
recruited from the pool of UCR students registet@garticipate in research studies
through the web-based subject recruitment systesiladne at UCR, ensuring that no
subject had participated in a similar experimenfotee A total of 114 subjects
participated in this experiment, 60 of them in thigh uncertainty condition (10
different groups) and 54 of them in the low undetiacondition (9 different groups).

B. Theoretical predictions

We present the theoretical predictions that arel @asebenchmarks for the analysis of
the data from the two treatments. The top panellable 1 shows the dynamic
programming paths for the high uncertainty conditith players follow a conservative
path (not shown in the Table), the symmetric irdlinal requestr] is 25 tokens in each
period of the game, for a total group requédtdf 150 each period of the game. The
overall payoff across the 10 periods of the ga® for each player is, therefore,
25x10=250 tokens. Next, consider the social optinf@@) path displayed in Table 1
(top panel). In the last period of the game, whely a single period remains to the end
of the game, the optimal solution is an individuvaduest of 71. The probability of
receiving this requesp) is about 0.61, yielding an expected payoffbf 43 tokens. If
only two periods remain, the optimal solution is iadividual request of 49. The
probability of receiving this request is about 0.7%e individual's expected payoff
across these two periods is, therefore, 49x0.79+@3=73 tokens. Working
backwards in this fashion, the individual's expdgpayoff across the 10 periods of the
game from following the social optimum path is dqua274 tokens, the value @¥
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shown in Table 1 when ten periods are remainire, (at the beginning of the game).
This corresponds to the maximum symmetric expegtagoffs that subjects may
achieve in this game. Comparing the expected psyodim following a conservative
path to the social optimum path yields an efficieimaex of (250/274)x100=91% for
the conservative path. This means that subjectexgrected to achieve 91 percent of the
maximum expected payoffs that may be achieved ia game if they follow a
conservative path. The subgame perfect equilibif®NE) path shown in Table 1 is
constructed in the same manner, considering thaligieel (symmetric) Nash
equilibrium requests by each player. In this cH#sejndividual’'s expected payoff across
the ten periods of the game from following thishpat 31 tokens, yielding a meager
efficiency index of only about 11%.

The bottom panel in Table 1 shows the dynamic @nogning paths for the low-
uncertainty condition. If players follow a consdiva path in this condition, the
symmetric individual request is 45 tokens in eaehiqul of the game, for a total group
request of 270 each period of the game. The ovpagibff across the 10 periods of the
game for each player is 45x10=450 tokens. The iddal's expected payoff across the
10 periods of the game from following the socialimpm path is 453 tokens, and is 44
tokens from following the subgame perfect equilibri path. In this case, the subgame
perfect path yields an efficiency index of aboutpEdcent.

Comparison of the upper and lower parts of Tabkhdws that, as might be
expected, payoffs increase under all three bendtevas the uncertainty about the size
of the resource decreases. Table 1 shows thatafdblese two uncertainty conditions
yields different predictions concerning playergjuests from the shared resource, with
the social optimum path entailing substantially éowequests than the respective
subgame perfect path. Therefore, the subgame p@déts are Pareto deficient in both
of the uncertainty conditions implemented in theolatory. Importantly, the efficiency
index of the subgame perfect path is maintainedcqapately equal in both uncertainty
conditions, so that the incentives for any coopegabehavior do not differ much
between the two conditions. Moreover, any incremséhe requests that might be
observed in response to an increase in the unertievels cannot simultaneously
make part of a competitive (subgame perfect) andoperative (conservative or social
optimum) path. Indeed, as shown in Table 1, whigihcreased uncertainty in the high
uncertainty condition elicits higher requests tirathe low condition, if subjects follow
the subgame perfect path, it overall elicits sigatifitly lower requests than in the low-
uncertainty condition, if subjects follow a cons#ive path or the social optimum path.

4. Experimental results

Our analysis of the experimental data focuses eneffects of environmental
uncertainty on resource-use decisions at the ghengl. We organize the analysis of
group behavior by examining in order: (A) behavioithe high uncertainty condition,
(B) behavior in the low uncertainty condition, a(@) comparison of the behavior
across the two uncertainty conditions each case, the main results are presented in
the form of summary observations.

! Because subjects participated in 30 repetitiories®f the same dynamic game, we first investifjate
whether play of the games changed as subjectsdjaiperience. The general finding in purely repdate
CPR games is that behavior is consistent with iefiic outcomes in the first rounds of play, and
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A. High-uncertainty condition

Tables 2 and 3 summarize the main results of thb-tancertainty condition. Table 2
presents the length of the games played by eaalpgRooling across all 10 groups, the
median length of the games is one period, withettobBthe 10 groups registering a
median length of two periods. Clearly, none of gneups adopted a conservative path,
and depletion of the resource stock occurred rajhiekly.

Figure 1 depicts the probability of resource dedtom as implied by the social
optimum and equilibrium paths (broken lines) alomgh the observed proportions.
Using the predictions in the top panel of Tabléhg, probability of resource destruction
prior to period eight is O percent at the socidlmpm path, increasing to 8 percent ((1-
0.92)x100) prior to period nine and to 27% ((1-&@2Z9)x100) prior to period 10. In
the context of dynamic games, theory tells us thatshould observe an immediate
depletion of the resource stock if groups are umablunwilling to make commitments
about future extraction rates (Reinganum and Stak@§5), corresponding to the
assumption that behavior is guided by decision stiategies underlying the predicted
SPNE path. In fact, as implied by the numbers ibl@4d, the probability of resource
destruction prior to period two is 79 percent ((240x100) at the equilibrium path,
increasing to 96 percent ((1-0.21x0.21)x100) prooperiod three, and reaching about
100 percent in subsequent periods. With such hagtrdction probabilities, the chance
of observing games lasting for more than a singleog in the data is quite small if
subjects do not deviate from the predicted equuifbrpath. As Figure 1 reveals, despite
the variability of group behavior, the rates ofo@se destruction are quite above those
predicted by the social optimum path, and closén¢oequilibrium path.

Table 3 shows that group requests terminating #maegimmediately, which
accounted for about 55 percent of the data, ave&§etokens. This mean compares
closely to the equilibrium prediction of 702 tokerds expected, first-period requests
are negatively associated with the length of themeyaThe average first-period group
requests for games longer than one period, whicbhuat for 45 percent of the data, is
487 tokens. These requests are in between théeetfiand the equilibrium values.

Using Wald tests while adjusting standard errons dioistering at the group
level, the signed mean differences between thereddefirst-period group requests
(R°™) and the equilibrium (B"S and efficient (R°) values were tested for statistical
significance. The results are summarized in Tabl€h#y show that group requests in
games terminated in the first period (Length=1) ot significantly different from the
predicted equilibrium value. The mean estimatetedihce between ® and R™\Eis
about -14 tokens; it is not significantly differendm zero at conventional significance
levels using the Wald statistics. The mean diffeesnbetween first-period group
requests and predicted equilibrium and efficiedtues are both significantly different
from zero for games lasting for more than one pef(leength>1). Mean group requests
are 214 tokens below the equilibrium value, and t88@éns above the efficient value. In
order to evaluate whether the observed deviatimra equilibrium requests are larger
or smaller than the observed deviations from effitirequests, the delta method

approaches the equilibrium prediction in the lasinds. Under this pattern of behavior, we wouldeexp

to observe longer games in the first series of,pdayl shorter games as the series approach th&'lead.
figure in the Appendix plots the maximum numbepefiods played by each group in each of the games,
where the title in each of the panels identifies timcertainty condition. In each case, the figuiggests
that there is no systematic association betweetfetigth of the games and order of play. This imgioes
was confirmed by several statistical analyses lalvig from the authors). Therefore, we pool theadat
across the games for the statistical analysisefittta in both uncertainty conditions.
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(Oehlert 1992) was used to calculate the standemat end 95 percent confidence
interval of the absolute value of the ratio of g#stimated difference between observed
requests and the respective equilibrium and efftciequests A). The confidence
interval for the ratio is [0.4; 0.9]. It indicatebat the observed deviations from
equilibrium requests are smaller than the obsedexthtions from efficient requests.

To complement the analysis of group behavior, wenputed the per-period
mean square deviation (MSD) of requests from ptedicequests (either SPNE or SO)
for each group in each of the 30 played games.eaoh group separately, Table 5
indicates the number of games in which the MSD ftbe SPNE path is smaller than
the MSD from the SO path. Also reported in the dadste the binomial probabilities
associated with the observed number of games uh@enull hypothesis that it is
equally likely for either of the two predicted patto result in the smaller MSD in any
given game. The results show that the SPNE patineidest predictor of behavior for
eight of the 10 groups, and that for two of theup®we cannot reject the hypothesis
that both paths are equally likely at a significauhevel of 5 percent. Defining success as
an observation in which the SPNE path is the besdigtor of group behavior, the
probability of observing 8 or more groups followittge SPNE path is 0.003 under the
null hypothesis that the three events (SPNE, S(hotin) are equally likely. For any
one-tailed significance level lower than 5 percerd,reject the null hypothesis in favor
of the alternative hypothesis that the SPNE pathdsoverall best predictor of behavior
for the groups in this uncertainty condition.

Taken together, these findings are summarizedariatowing observation.

Observation 1. Groups in the high-uncertainty condition adopt isiea
strategies that quickly deplete the resource st@ctup requests are uniformly closer to
the SPNE path than to the SO path.

B. Low-uncertainty condition

Tables 6 and 7 summarize the main results in tweulocertainty condition. The median
length of the games in the low-uncertainty treatihvaaross all groups is two periods,
with four of the nine groups (44 percent) registgra median length of one period. It is
twice as large as the same median in the high-taogr condition. Again, none of the
groups adopted a conservative path, with depletibhe resource stock occurring
rather quickly.

Figure 2 depicts the probability of resource dedtom as implied by the SO and
SPNE paths, along with the observed proportionthodigh the destruction probability
curves are more dispersed than in Figure 1, theyckser to the SPNE than the SO
path.

Table 7 shows that group requests terminating #maegimmediately, which
accounted for about 46% of the data, average 56@. Mean request compares closely
to the equilibrium prediction of 588 tokens. Theamdirst-period group requests for
games longer than one period is 412 tokens. Trezpeests are in between the efficient
and the equilibrium values.

Table 8 addresses the issue of whether first-pemgogiests are significantly
different from the SPNE and SO paths. In gamesitating in the first period, the
mean difference between®R and R™"Eis -19 tokens; the null hypothesis of zero
difference could not be rejected by the Wald téstamventional significance levels.
The mean differences between first-period groupests and predicted equilibrium and
efficient values are both significantly differembi zero for games lasting for more
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than one period (Length>1). Mean group requestd @retokens below the equilibrium
value, and 142 tokens above the efficient valuéhdlgh the absolute value of the ratio
of these two differences is greater than 1, suggethat the distance between observed
requests and the SPNE prediction is larger thamligtance between observed requests
and the SO prediction, the computed confidencevatdor the ratio is [0.7; 1.8]. Thus,
at the 5 percent significance level, we cannotcteje hypothesis that the observed
deviations from the SPNE path are equal to thergbdealeviations from the SO path.

Table 9 addresses the issue of whether groups'vimehia better described by
the SPNE or the SO path. The results show thaBBMNE path is the best predictor of
behavior for four of the nine groups. The SO patlthe best predictor of behavior for
two other groups, and the results of the testingcguiure are inconclusive for the
remaining three groups. Defining success as annadtsen in which the SPNE path is
the best predictor of group behavior, the probgbdf observing four or more groups
following the SPNE path is 0.35 under the null yesis that the three events (SPNE,
SO, or both) are equally likely. Therefore, we dmt mneject the null hypothesis at
conventional significance levels.

We summarize these findings in the following obaéon.

Observation 2. Groups in the low-uncertainty condition tend t@piddecision
strategies that quickly deplete the resource stbtwvever, the SPNE path is not
uniformly the best predictor of group requests,hwsbme groups adopting behavior
closer to the SO path and other groups adoptingwehfalling in between these two
polar cases.

C. Comparing uncertainty conditions

We would expect higher uncertainty about the sizh® resource to elichigher group
requests, if groups adopt decision strategiestdoelicit lower group requests, if groups
adopt path strategies leading to perfectly efficiemtcomes. As seen above (Tables 3
and 7), and consistent with the adoption of denisipategies, group requests haigher

in the high-uncertainty condition than in the loweertainty condition. Given that the
same differences in requests generate differenbgtibties of resource destruction
across different manipulations of uncertainty rangegeneral assessment of the effects
of increased uncertainty is better accomplishe@rmglyzing the implied differences in
destruction probabilities rather than by analyzihg differences in requests observed
across the different manipulations of uncertaiatyges.

Panels A and B in Table 10 report the estimategcesfof the higher-uncertainty
level on the implied probabilities of resource destion by first-period requests. For
completeness, also reported in Table 10 (pane$ @)a estimated effect implied by all
non-first-period requests. Given that the dependemtable is naturally bounded
between 0 and 1, the estimation of treatment effesés the specification developed by
Papke and Wooldridge (1996) for fractional-dependemiables. In addition, because
the conditional expectation function in the speeafion used is nonlinear (so as to
generate predictions naturally bounded betweerdQlanthe estimated parameter value
associated with the treatment variable does nectyr measure the treatment effect on
the mean value of the dependent variable. Thuaidtan interpretation, the coefficient
estimates reported in Table 10 are the marginatctff of a discrete change in
explanatory variable HIGH taking the unit value fbe high-uncertainty condition and
the zero value for the low-uncertainty condition.
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Table 10 shows that the implied probabilities oktdection induced by the
higher request in the high-uncertainty conditiore aignificantly higher than the
probabilities of destruction observed in the lowcentainty condition. Considering only
the subset of games terminated in the first petioel probabilities of destruction are, on
average, 12 percentage points higher in the high the low-uncertainty condition.
Moreover, the width of the 95 percent confidenceerival indicates that we cannot
reject the hypothesis that the difference in desitva probabilities between the two
treatments is 10 percentage points, correspondiniget predicted difference generated
by the SPNE paths. This result is not particulatyprising, given that group requests
in both treatments are consistent with the respe@PNE paths for this subset of the
data.

Considering only the first-period requests in thbset of games lasting for
more than one period, the difference in destrugbibabilities between the treatments
is 17 percentage points, significantly higher thiaa predicted difference by the SPNE
paths. Because first-period requests in games rtieted after the first period are lower
than the predicted SPNE valueshath treatments, it could still be the case that the
difference in the implied destruction probabilitiesnained at about the 10 percentage
points, generated by the respective SPNE pathsarig|ehis is not the case, suggesting
that reducing uncertainty levels positively impaatsource conservation beyond what
would be predicted by common inability of the greup commit to future extraction
rates (i.e., by behavior consistent with the SPEtB)

This observation is further corroborated by theultesin Panel C, considering
only the subset of all non-first requests in baotatments. Had groups approximated
their requests to the SPNE paths after the firabdeof the game, the mean differences
in destruction probabilities between the treatmemtaild be 8.5 percentage points,
since the difference declines systematically asgdmme evolves. Consistent with this
pattern of behavior, we observe lower differengesl@struction probabilities between
the treatments in subsequent periods. However, ndgated by the 95 percent
confidence interval, the difference is again sigaifitly higher than would be predicted
by groups approximating their respective SPNE paths

Coupled with those summarized in Observations 1zathove, these findings
indicate not only that treatment effects cannoglydbe attributed to Nash behavior, but
also that it is groups’ behavior in the low-uncerya condition that explains the
differential treatment effect with respect to eduilm predictions.

These findings are summarized in the following obston.

Observation 3. Compared with the high-uncertainty condition, thev-
uncertainty condition elicits lower requests frame shared resource. Moreover, it also
induces a qualitative change in groups’ behaviaha sense that it positively impacts
resource conservation beyond what would be preatlizyegroups adopting decision rule
strategies under both conditions.

5. Conclusion

The dynamic stochastic game-theoretic model prapos¢his paper focuses on
the effects of environmental uncertainty in timg@eledent CPR dilemmas. While CPR
users may extract resources over a predetermircedanmonly known time horizon, a
distinguishing feature of our model is that the afion of the game is determined

12



endogenously by the players whose collective daetssdetermine the probability of an
irreversible environmental outcome. The abruptusitbn of salt water in coastal
aquifers once the groundwater table declines belownknown threshold level is an
example of such an event. In the present modt#igitesource stock level below which
the irreversible outcome occurs is known in advartcen the optimal resource use
coincides with a unique symmetric equilibrium useamnteeing survival of the
resource over the finite horizon. As the uncertaatiout an otherwise equally expected
threshold level increases, resource use increfsesklis adopt decision strategies that
quickly deplete the resource stock. Resource useedses if users adopt path strategies
guaranteeing that the unknown threshold level iseneexceeded over the entire
horizon.

In an experiment that manipulates the common uaiceyt about the threshold
resource level, we find that CPR users implemenisden strategies that terminate the
game immediately. Notwithstanding, reducing theeutainty about the resource level
induces aqualitative change in behavior with users more frequently tammg a
positive resource level for a longer duration. dplicated and extended, these results
have potentially important theoretical and poliaypiications. At the theoretical level,
they suggest decision strategies that CPR usersus@aywhen they may not make
credible commitments. At the policy level, thessules provide evidence that the
reduction of environmental uncertainty by creatamgl disseminating better scientific
information may play a major role in long-rangenuiag to elicit synergy between the
economic and ecological systems that jointly govdra dynamic management of
shared natural resources. Estimated as the differeetween the high- and the low-
uncertainty outcomes, the value of this informati®man indicator to the policy maker
about how much to invest in acquiring and dissetmgainformation to the user that
reduces uncertainty about the CPR.
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Table 1 — Dynamic programming paths for high- aaw-uncertainty conditions

Time Social optimum (SO) path Subgame perfect (SPNH) pa
Remaining R r p M R r p M
A. High uncertainty condition: n=63=150, /=850, Expected Value=500, Range=700
1 425 71 0.61 43 729 121 0.17 21
2 296 49 0.79 73 711 118 0.20 28
3 206 34 0.92 99 705 117 0.21 30
4 150 25 1.00 124 703 117 0.21 31
5 150 25 1.00 149 702 117 0.21 31
6 150 25 1.00 174 702 117 0.21 31
7 150 25 1.00 199 702 117 0.21 31
8 150 25 1.00 224 702 117 0.21 31
9 150 25 1.00 249 702 117 0.21 31
10 150 25 1.00 274 702 117 0.21 31
Efficiency 100 11
Index (%)
B. Low-uncertainty condition: n=6=270, =730, Expected Value=500, Range=460
1 365 61 0.79 48 626 104 0.23 24
2 270 45 1.00 93 605 101 0.27 34
3 270 45 1.00 138 597 99 0.29 39
4 270 45 1.00 183 593 99 0.30 41
5 270 45 1.00 228 591 98 0.30 42
6 270 45 1.00 273 589 98 0.31 43
7 270 45 1.00 318 589 98 0.31 43
8 270 45 1.00 363 589 98 0.31 43
9 270 45 1.00 408 588 98 0.31 44
10 270 45 1.00 453 588 98 0.31 44
Efficiency 100 10
Index (%)

Note: R is total group request;is individual (symmetric) requesp; is the probability of receiving the
request and continuing the gam@js individual expected payoff from conforming teetpaths described.
Adoption of a conservative strategy yields an @fficy index of 91% (25x10=250/274) in the high
uncertainty condition, and an efficiency index 888 (45x10=450/453) in the low-uncertainty condition
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Table 2 — Number of games played by group (Gi)landth of game: High-uncertainty
condition

length G1 G2 G3 G4 G5 G6 G7 G8 GY9 G100 Total

1 11 20 19 19 12 10 20 20 16 17 164
2 6 6 5 6 6 7 9 6 5 5 61
3 5 3 4 2 7 6 1 3 5 4 40
4 3 1 2 2 2 5 0 1 2 1 19
5 1 0 0 0 0 0 0 0 0 0 1
6 2 0 0 0 1 0 0 0 0 2 5
7 0 0 0 0 1 0 0 0 2 1 4
8 2 0 0 1 1 1 0 0 0 0 5
9 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 1 0 0 0 0 1
Median 2 1 1 1 2 2 1 1 1 1 1
Mean 3 2 2 2 2 3 1 2 2 2 2
SD 2 1 1 1 2 2 1 1 2 2 2

Table 3 — Per period mean group requests by paiadl length of game: High-
uncertainty condition

Length Period within the game
of 1 2 3 4 5 6 7 8 9 10
game
1 688
(219)

2 549 589
(139) (174)
3 435 442 495
(103) (75) (160)
4 459 468 421 432
(102) (76) (89) (77)
5 375 375 400 325 325
0) 0) 0) © (©
6 427 398 366 387 357 564
(53) (73) (46) (76) (52) (362)
7 454 417 349 378 384 366 395
(58) (83) (66) (33) (54) (29) (23)
8 393 369 353 369 403 398 410 458
(81) (107) (74) (46) (82) (84) (68) (132)
10 395 385 320 337 335 309 343 282 335 277

© © (@©@ (@©@ @© @© © © © (©

Note: Standard deviation is in parentheses. Garength 5 and 10 were only observed once.
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Table 4 — Statistical analysis of differences betwebserved and predicted values

Length Variable Coefficient Wald z p-value Lower Upper
Games Statistics 95% CI 95% CI

o ROPLRSPNE -13.757 -0.39 0.699  -83.461 55.947
a RO RC 537.854 15.12 0.000  468.150 607.558
IS) Obs SPNE

o A= R™-R 0.026 0.38 0.706 -0.107 0.158
1 RObS _ RSO . . ' ' .

- ROPR°PNE -214.397 -8.37 0.000 -264.601 -164.194
A RO RC 337.213 13.16 0.000 287.010 387.417
a Obs SPNE

3 A= R™-R 0.636 5.12 0.000 0.392 0.879
- RObs _ RSO . . ' . .

Table 5 — Number of games with smallest MSD from $#°NE path

Group | N° Games Proportiop Hypotheses p-value D@cisi

1 17 0.567 ES Eig:g 0.292 Do not Rej. HO

2 29 0.967 Eg Big:g <0.001 Rej. HO

3 27 0.900 ES Eig:g <0.001 Rej. HO

4 28 0.933 Eg Big:g <0.001 Rej. HO

5 27 0.900 ES Eig:g <0.001 Rej. HO

6 17 0567 | I Big:g 0.292 Do not Rej. HO

7 30 1.000 ES Eig:g <0.001 Rej. HO

8 29 0.967 Eg Big:g <0.001 Rej. HO

9 20 0.667 ES Eig:g 0.05 Rej. HO

10 21 o700 | A% Big:g 0.02 Rej. HO
Note: The per period mean square deviation (MSDEqtiests from predicted requests for each group in
each gamé=1, ..., 30, is computed @lt’;:l(Rtk - R;‘k)2 /U, whereR,, is the observed group request in

periodt of gamek, Ry, is the respective prediction (either at the SPNE® path), and, is the length of
gamek. For each group, we define a “success” as a ganwhich the MSD from the SPNE path is
smaller than the MSD from the SO path. kgtrepresent the number of successes for each gunger
the null hypothesis that it is equally likely foitteer of the two predicted paths to result in tiheaBer
MSD in any given game (HO: p=0.5), the probabitifyobserving at leas{, successes (H1: p>0.5) in 30

30
games is given b@) X Z?ﬁsg(3i°), and the probability of observing at megtsuccesses (H1: p<0.5) in
30
30 games is given b@) X Zfﬂo(z‘i").
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Table 6 — Number of games played by group (Gi)landth of games: Low-uncertainty
condition

Length G1 G2 G3 G4 G5 G6 G7 G8 G9 Total

1 17 13 10 15 8 17 13 19 11 123

2 4 7 8 6 8 8 8 6 5 60

3 4 3 4 0 1 1 5 1 4 23

4 3 1 1 0 2 0 3 1 2 13

5 0 1 1 4 5 3 0 1 0 15

6 1 2 1 1 1 1 1 0 2 10

7 0 1 3 0 0 0 0 0 4 8

8 0 0 0 0 1 0 0 0 0 1

9 0 0 0 4 4 0 0 1 1 10
10 1 2 2 0 0 0 0 1 1 7
Median 1 2 2 2 2 1 2 1 2 2
Mean 2 3 3 3 4 2 2 2 3 3
SD 2 3 3 3 3 1 1 2 3 2

Table 7 — Mean group requests by period and lemdtlgame: Low-uncertainty
condition

Length Period within the game
of 1 2 3 4 5 6 7 8 9 10
game
1 569
(186)

2 430 506
(101) (166)
3 464 425 455
(112) (73) (89)
4 394 308 404 447
(93) (105) (89) (83)
5 375 381 384 397 463
(114) (82) (86) (69) (102)
6 372 386 390 398 387 397
(102) (64) (49) (82) (73) (62)
7 358 338 401 405 334 351 461
(65) (60) (74) (94) (56) (59) (85)
8 270 420 320 500 420 370 470 620
(0) 0) © (© 0) © (© (O
9 351 373 371 371 342 359 343 329 497
(64) (74) (56) (83) (57) (73) (54) (38) (105)
10 416 369 350 433 353 405 341 389 376 449
(67) (37) (54) (59) (34) (70) (55) (52) (51) (141)

Note: Standard deviation is in parentheses. Garength 5 and 10 were only observed once.
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Table 8 — Statistical analysis of differences betwebserved and predicted values

Length Variable Coefficient Wald z p-value Lower Upper
Games Statistics 95% CI 95% CI

o ROPLRSPNE -18.977 -0.60 0.545  -80.464 42.510
a RO RC 299.415 9.54 0.000 237.923  360.902
IS) Obs SPNE

o A= R™-R 0.063 0.57 0.569 -0.155 0.282
1 RObS _ RSO . . ' ' .

- ROPR°PNE -176.841 -9.50 0.000 -213.315 -140.367
A RO RC 141.551 7.61 0.000  105.077 178.025
a Obs SPNE

3 A= R™-R 1.249 4.22 0.000 0.670 1.829
- RObs _ RSO . . ' . .

Table 9 — Number of games with smallest MSD from $#PNE path

Group | N° Games Proportion Hypotheses p-value D@cisi

1 21 0.700 :2 gig:g 0.02 Rej. HO

2 17 0.567 :2 gig:g 0.292 Do not Rej. HO

3 11 0.367 Eg g:g:g 0.100 Do not Rej. HO

4 8 0.267 :2 g:g:g 0.008 Rej. HO

5 4 0.133 :2 g:g:g <0.001 Rej. HO

6 23 0.767 :2 g:g:g 0.003 Rej. HO

7 30 1.000 :2 gig:g <0.001 Rej. HO

8 27 0.900 :2 gig:g <0.001 Rej. HO

9 15 0.500 :2 gig:g 0.572 Do not Rej. HO
Note: The per period mean square deviation (MSDeqgtiests from predicted requests for each group in
each gamé=1, ..., 30, is computed @lt’;:l(Rtk - R;‘k)2 /U, whereR,, is the observed group request in

periodt of gamek, Ry, is the respective prediction (either at the SPNE® path), and, is the length of
gamek. For each group, we define a “success” as a ganwhich the MSD from the SPNE path is
smaller than the MSD from the SO path. kgtrepresent the number of successes for each gunger
the null hypothesis that it is equally likely foitteer of the two predicted paths to result in tiheaBer
MSD in any given game (HO: p=0.5), the probabitifyobserving at leasy, successes (H1: p>0.5) in 30

30
games is given b@) X 2?259(31'0)- and the probability of observing at megtsuccesses (H1: p<0.5) in
30
30 games is given b@) x 32 C9).
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Table 10 — Maximum likelihood estimates of treattnexffects on destruction

probabilities
Variable Coefficient Wald z Statistics  p-value  Lower 95% ClI  Upper 95% CI

A. Length of Games=1

HIGH 0.1232 4.39 0.000 0.0681 0.1782
B. Length of Games>1 — First Period Requests

HIGH 0.1713 6.88 0.000 0.1225 0.2201
C. Length of Games>1 — Non-First Period Requests

HIGH 0.1338 8.73 0.000 0.1038 0.1638
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Figure 1 — Probability of destruction: Predicte@(SPNE) and observed values under
high-uncertainty condition

Probability of destruction

Period
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Figure 2 — Probability of destruction: Predicte@®(SPNE) and observed values under
low-uncertainty condition
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Appendix - Length of games by each group in each uncertaomgition
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Length of game
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