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Abstract

We study the existence of solutions of stationary variational and qua-
sivariational inequalities with curl constraint, Neumann type boundary
condition and a p-curl type operator. These problems are studied in
bounded, not necessarily simply connected domains, with a special ge-
ometry, and the functional framework is the space of divergence-free
functions with curl in Lp and null tangential or normal traces.
The analogous variational or quasivariational inequalities with a gradi-
ent constraint are also studied, considering Neumann or Dirichlet non-
homogeneous boundary conditions. The existence of a generalized so-
lution for a Lagrange multiplier problem with homogeneous Dirichlet
boundary condition and the equivalence with the variational inequality
is proved in the linear case, for an arbitrary gradient constraint.

1 Introduction

The study of variational inequalities had its beginning around 1960. A model problem is the well-known
obstacle problem, that we briefly formulate here: to find u ∈ Kψ such that∫

Ω

∇u · ∇(v − u) ≥
∫

Ω

f(v − u), ∀v ∈ Kψ, (1)

where f is a given function defined in a bounded open subset Ω of RN and, for an obstacle ψ, Kψ = {v : v ≥ ψ}.
Under appropriate assumptions the variational inequality (1) is equivalent to the complementary problem

min{−∆u− f, u− ψ} = 0 a.e. in Ω.

The set ∂I ∩ Ω = ∂Λ ∩ Ω, where I = {x ∈ Ω : u(x) = ψ(x)} and Λ = {x ∈ Ω : u(x) > ψ(x)}, is called the
free boundary for the obstacle problem.

Problems where an a priori unknown subset of Ω is part of the problem are, in general, called free boundary
problems. In the last fifty years many problems arising from other sciences were modeled as free boundary
problems. Many of these models can be reduced to variational or quasivariational inequalities, a quasivariational
inequality being an implicit problem where the definition of the convex set depends on the solution itself.

Problems with gradient or curl constraint, which we address here, model many different situations, such as
the elastoplastic torsion problem ([26], [6] or [7]), sand piles and river networks ([20] or [22]) or electromagnetic
problems ([21], [4], [17] or [18]). We remark that, if we consider a longitudinal geometry in electromagnetic
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2 Variational and quasivariational inequalities with first order constraints

problems, i.e., when the magnetic field is of the form (0, 0, h), the curl constraint is reduced to a gradient
constraint (see [23]). We consider the following particular situation: to find u ∈ K∇

ϕ such that∫
Ω

∇u · ∇(v − u) ≥
∫

Ω

f(v − u), ∀v ∈ K∇
ϕ , (2)

where K∇
ϕ = {v : |∇v| ≤ ϕ}, f and ϕ being given functions defined in Ω. Decomposing Ω in the sets

Λ = {x ∈ Ω : |∇u(x)| < ϕ(x)} and I = {x ∈ Ω : |∇u(x)| = ϕ(x)}, we also have −∆u = f in Λ, but here
we do not have a sign for −∆u− f . This is a difference between the obstacle-type problems and the gradient
constraint problems. In fact, the second ones are more difficult to handle, although the constraint in the first
derivatives of the solutions has a regularizing effect. The existence of a solution for stationary variational
inequalities is immediate, by a theorem due to Lions and Stampacchia (see, for instance, [12]). If we want to
study additional regularity, the natural way is to consider a family of penalized equations that approximates
the variational inequality. There exists a general way of penalizing any elliptic variational inequality (see [14],
p. 370) but, in order to obtain additional regularity of the solutions, we need an explicit definition of the
penalization which we can manage to obtain a priori estimates for the approximated solutions. And here
we point out a difference in the treatment of obstacle problems (zero order constraints) or problems with
constraints in the first derivatives. The supposedly natural penalization 1

ε (|∇u
ε|2−ϕ2−ε)+ does not penalize

the variational inequality (2). In fact, it penalizes a different problem, max{−∆u− f, |∇u| − ϕ} = 0. It was
shown by one of the authors that, in the evolutive case, the two problems are not, in general, equivalent (see
[24]).

Another possible formulation for the variational inequality (2) consists in finding a pair (u, λ) of functions
defined in Ω such that

−∇ ·
(
λ∇u) = f in Ω, (3a)

|∇u| ≤ ϕ in Ω, (3b)

λ ≥ 1, in Ω, (3c)

(λ− 1)(|∇u| − ϕ) = 0 in Ω. (3d)

This means that, in the set Λ, the equation −∆u = f is satisfied and, in the set I, the Lagrange multiplier λ
may take any value greater than or equal to 1, i.e., λ belongs to the maximal monotone graph k(|∇u| − ϕ),
where k(s) = 1 if s < 0 and k(0) = [1,∞[. It is easy to show that if (u, λ) solves (3) then u solves (2).
Indeed, given v ∈ K∇

ϕ , multiplying (3a) by v − u and integrating, we get∫
Ω

λ∇u · ∇(v − u) =
∫

Ω

f(v − u).

But, as ∫
Ω

(λ− 1)∇u · ∇(v − u) ≤
∫

Ω

(λ− 1)|∇u|
(
|∇v| − |∇u|

)
=
∫
I

(λ− 1)ϕ
(
|∇v| − ϕ

)
≤ 0,

we immediately obtain (2).
A very ingenious (although natural) penalization and regularization of problem (2) was introduced by

Gerhardt in [11]. He approximated the maximal monotone graph k by a family of smooth monotone convex
functions kε such that kε(s) = 1 if s ≤ 0 and kε(s) = e

ms
ε if s ≥ ε (m chosen a posteriori). This approach

gives us the correct penalization for the variational and quasivariational inequalities with gradient or curl
constraint, which is also very useful in the treatment of the evolutive problems, not considered in this paper.
Nevertheless, this idea is used here to prove the existence of a solution of problem (3) for strictly positive
smooth gradient constraint ϕ, the main result of this work.

Problems with curl constraint for operators of p-curl type were studied by two of the authors in [17]
assuming Ω to be simply connected, p > 6

5 and null normal trace for the test functions. Later advances
(see [25] and [2]) allow us to extend our results to a more general case where p > 1, Ω is simply or multiply
connected with a special geometry and the test functions have null tangential or normal traces. For the sake of
completeness, in Section 2 we present these generalizations in the framework of variational or quasivariational
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inequalities. We prove a continuous dependence result for solutions of the variational inequality with different
data and we use this result to prove the existence of a solution for quasivariational inequalities.

In Section 3 we study the case of a gradient constraint. In Subsection 3.1 we consider variational inequalities
with non-homogeneous Neumann type boundary condition, for operators of type −∇· (|∇u|p−2∇u)+ |u|p−2u
and we follow the steps of Section 2. In Subsection 3.2 we consider variational inequalities with non-
homogeneous Dirichlet boundary condition, for p-laplacian type operators. We remark that the existence
of a solution for the variational inequality is only possible if there exists a compatibility condition between
the traces of functions in the convex sets and the constraint on their gradients. It is not easy to obtain the
existence of a solution for the quasivariational inequality since we need to guarantee the compatibility condition
for all possible solutions. Based on a previous work of two of the authors (see [3]) we were able to prove
the existence of a solution for the quasivariational inequality when the boundary data satisfies a compatibility
condition that depends on the minimum of the constraint.

In Section 4, we prove the existence of a solution for problem (3) in a weak sense. We approximate
the variational inequality using the penalization of Gerhardt and, although the a priori estimates for the
approximated solutions are not enough to pass to the limit, using the monotonicity of the penalization, we
can interpret (3a,3c,3d) in a generalized sense.

The existence of a Lagrange multiplier for the elastoplastic torsion problem (gradient constraint one) with
homogeneous Dirichlet boundary conditions was proved by Brezis in [5]. This result was later extended by
the third author in [24], in the evolutive case, for nonconstant gradient constraint ϕ satisfying ∆ϕ2 ≤ 0. As
this last case is equivalent to a double-obstacle problem, it is easier than the one considered in this paper.
Further generalizations of the result of Brezis, considering also the gradient constraint one, have been done,
for example, in [8] and [9].

The existence of a Lagrange multiplier remains, to the best of our knowledge, an open problem for p 6= 2
in the case of a gradient constraint and for any p > 1 in the case of a curl constraint.

2 The problem with curl constraint

In this section we study variational and quasivariational inequalities with curl constraint, assuming two different
types of boundary conditions: the perfectly conductive boundary and the perfectly permeable boundary.

Spaces of vector-functions will be denoted by boldface symbols, following the standard notations for vector-
functions.

Let Ω be an open bounded connected subset of R3 with a C 1,1 boundary Γ. The boundary is not necessarily
connected and we denote by Γi, i = 0, . . . , I, the connected components of Γ, being Γ0 the boundary of the
only unbounded connected component of R3 \ Ω̄.

Following [10], [1] and [2] we assume that the set Ω can be made simply connected by a finite number
of regular disjoint cuts, Σ1, . . . ,ΣJ . More precisely, each surface Σj is an open subset of a smooth manifold,

the boundary of Σj is contained in Γ, Σ̄i ∩ Σ̄j 6= ∅ for i 6= j and Ω0 = Ω \
⋃J
j=1 Σj is simply connected and

pseudo-C 1,1.
We denote by n the exterior normal unitary vector to Γ and we consider two types of boundary conditions

h · n = 0 on Γ, 〈h · n, 1〉Σj
= 0, j = 1, . . . , J (4)

and
h× n = 0 on Γ, 〈h · n, 1〉Γi

= 0, i = 1, . . . , I. (5)

The meaning of the notation 〈 · , · 〉Σj
and 〈 · , · 〉Γi

will be precised later.

Given 1 < p <∞, we introduce the functional framework necessary to formulate and solve the variational
and quasivariational inequalities with curl constraint. For details see [17], [25] and [18]. We consider

W p(∇·,Ω) =
{
v ∈ Lp(Ω) : ∇ · v ∈ Lp(Ω)

}
,

endowed with the norm ‖v‖W p(∇·,Ω) = ‖v‖Lp(Ω) + ‖∇ · v‖Lp(Ω).

Given v ∈ DDD(Ω̄) and ϕ ∈W 1,p′(Ω), we have the following formula of integration by parts∫
Ω

∇ · v ϕ+
∫

Ω

v · ∇ϕ =
∫

Γ

v · nϕ,
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that can be extended, by density, to∫
Ω

∇ · v ϕ+
∫

Ω

v · ∇ϕ = 〈γn(v), ϕ〉
W
− 1

p
,p

(Γ)×W
1
p

,p′
(Γ)
, ∀v ∈ W p(∇·,Ω), ∀ϕ ∈W 1,p′(Ω),

where 〈·, ·〉
W
− 1

p
,p

(Γ)× W
1
p

,p′
(Γ)

is the duality bracket between W− 1
p ,p(Γ) and W

1
p ,p

′
(Γ) and γn(v) is the trace

of v, which will be, from now on, denoted by v · n|Γ . We represent the kernel of γn by W p
0(∇·,Ω).

Defining
W p(∇×,Ω) =

{
v ∈ Lp(Ω) : ∇× v ∈ Lp(Ω)

}
,

with the norm ‖v‖W p(∇×,Ω) = ‖v‖Lp(Ω) + ‖∇ × v‖Lp(Ω), we have, for v ∈ DDD(Ω̄) and ϕ ∈ W 1,p′(Ω),∫
Ω

v · ∇ ×ϕ−
∫

Ω

∇× v ·ϕ =
∫

Γ

v × n ·ϕ,

which we extend, by density, to∫
Ω

∇× v ·ϕ−
∫

Ω

v · ∇ ×ϕ = 〈γτ (v),ϕ〉
W

− 1
p

,p
(Γ)×W

1
p

,p′
(Γ)
, ∀v ∈ W p(∇×,Ω), ∀ϕ ∈ W 1,p′(Ω),

where γτ (v) is the trace of v, denoted, from now on, by v×n|Γ . We represent the kernel of γτ by W p
0(∇×,Ω).

We denote

W p
T (Ω) =

{
v ∈ W p(∇×,Ω) : ∇ · v = 0 in Ω,v · n|Γ = 0, 〈v · n, 1〉Σj

= 0, j = 1, . . . , J
}
,

where the brackets 〈·, ·〉Σj
represent the duality pairing between W− 1

p ,p(Σj) and W
1
p ,p

′
(Σj), and

W p
N (Ω) =

{
v ∈ W p(∇×,Ω) : ∇ · v = 0 in Ω, v × n|Γ = 0, 〈v · n, 1〉Γi

= 0, i = 1, . . . , I
}
,

where, 〈·, ·〉Γi
represents the duality pairing between W− 1

p ,p(Γi) and W
1
p ,p

′
(Γi). These spaces are subspaces

of W 1,p(Ω) and the semi-norm ‖∇× · ‖Lp(Ω) induces on them a norm equivalent to their natural norms and

to the one induced from the W 1,p-norm (see [2] and [25]). The spaces W p
T (Ω) and W p

N (Ω) are closed
in W 1,p(Ω) and so they are reflexive and separable. In addition, for v ∈ W p

T (Ω) ∪ W p
N (Ω), the following

Sobolev type inequality is verified
‖v‖Lq(Ω) ≤ Cq ‖∇ × v‖Lp(Ω), (6)

where Cq is a positive constant and

q =
3p

3− p
if 1 < p < 3, q <∞ if p = 3, q = ∞ if p > 3 (7)

and also the trace result ∥∥v|Γ∥∥Lr(Γ)
≤ Cr ‖∇×v‖Lp(Ω) , (8)

holds with

r =
2p

3− p
if 1 < p < 3, r <∞ if p = 3, r = ∞ if p > 3. (9)

From now on we denote by W p(Ω) either the space W p
T (Ω) or W p

N (Ω).
Let a : Ω× R3 −→ R3 be a Carathéodory function satisfying the structural conditions (10a), (10b) and

(10c) or (10c’)

a(x,u) · u ≥ a∗|u|p, (10a)

|a(x,u)| ≤ a∗|u|p−1, (10b)(
a(x,u)− a(x,v)

)
· (u− v

)
> 0, if u 6= v, (10c)(

a(x,u)− a(x,v)
)
· (u− v

)
≥

{
a∗|u− v|p if p ≥ 2,
a∗
(
|u|+ |v|

)p−2|u− v|2 if p < 2,
(10c’)
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for given constants 0 < a∗ < a∗, for all u, v ∈ R3 and a.e. x ∈ Ω.
Given ϕ ∈ L∞(Ω), ϕ ≥ 0, let

Kϕ = {v ∈ W p(Ω) :
∣∣∇× v

∣∣ ≤ ϕ a.e. in Ω}.

For q and r defined by (7) and (9), respectively, let

f ∈ Lq′(Ω) and g ∈ Lr′(Γ) (11)

and consider the following problem: to find h ∈ Kϕ such that∫
Ω

a(x,∇× h) · ∇ × (v − h) ≥
∫

Ω

f · (v − h) +
∫

Γ

g · (v − h), ∀v ∈ Kϕ. (12)

Note that according to whether W p(Ω) is W p
T (Ω) or W p

N (Ω), the boundary condition is (4) or (5),
respectively.

Proposition 2.1 Let ϕ ∈ L∞(Ω), ϕ ≥ 0, f and g verifying (11). If a satisfies assumptions (10a,10b,10c),
problem (12) has a unique solution.

Proof The operator A : W p(Ω) −→ W p(Ω)′ defined by

〈Ah,v〉 =
∫

Ω

a(x,∇× h) · ∇ × v,

is bounded, hemicontinuous, monotone and coercive, since ‖∇ × · ‖Lp(Ω) is a norm, equivalent to the norm
of W p(Ω).

The linear form L : W p(Ω) −→ R defined by

L(v) =
∫

Ω

f · v +
∫

Γ

g · v

is continuous. So the variational inequality (12) has a unique solution (see Theorem 8.2, p247 of [14]). �

The proofs presented from now on follow the steps of [17], where these questions were considered only in
the framework W p

T (Ω), for simply connected domains and p > 6
5 .

Proposition 2.2 For i = 1, 2, given data f i, gi verifying (11), ϕi ∈ L∞(Ω) with a positive lower bound and
a verifying assumptions (10a,10b,10c’), the solutions hi of problem (12) satisfy

‖h1 − h2‖p∨2
W p(Ω) ≤ C

(
‖f1 − f2‖

p′∧2

Lq′ (Ω)
+ ‖g1 − g2‖

p′∧2

Lr′ (Γ)
+ ‖ϕ1 − ϕ2‖L∞(Ω)

)
,

where C is a positive constant, α ∨ β denotes max{α, β} and α ∧ β denotes min{α, β}.

Proof Let ϕ∗ be a positive lower bound of ϕ1 and ϕ2 and denote µ = ‖ϕ1 − ϕ2‖L∞(Ω). For i, j = 1, 2 and
j 6= i, given vi ∈ Kϕi

the function v̂j = ϕ∗
ϕ∗+µ

vi belongs to Kϕj
and

‖vi − v̂j‖pW p(Ω) =
µp

(ϕ∗ + µ)p

∫
Ω

∣∣∇× vi
∣∣p ≤ C1µ

p, (13)

where C1 =
(
‖vi‖W p(Ω)

ϕ∗

)p
.

Also note that, choosing v = 0 as a test function in (12) and using (6) and (8), we get

‖hi‖Lq(Ω) ≤ Cq ‖∇ × hi‖Lp(Ω) ≤ a
− p′

p
∗

(
Cq‖f i‖Lq′ (Ω) + Cr‖gi‖Lr′ (Γ)

) p′
p

. (14)

Using ĥi as a test function in problem (12) with data f i, gi and ϕi, we have∫
Ω

a(x,∇× hi) · ∇ ×
(
ĥi − hi

)
≥
∫

Ω

f i ·
(
ĥi − hi

)
+
∫

Γ

gi ·
(
ĥi − hi

)
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and so∫
Ω

a(x,∇× hi) · ∇ ×
(
hj − hi

)
≥
∫

Ω

f i ·
(
hj − hi

)
+
∫

Γ

gi ·
(
hj − hi

)
+
∫

Ω

a(x,∇× hi) · ∇ ×
(
hj − ĥi

)
+
∫

Ω

f i ·
(
ĥi − hj

)
+
∫

Γ

gi ·
(
ĥi − hj

)
.

Then∫
Ω

(
a(x,∇× h1)− a(x,∇× h2)

)
· ∇ ×

(
h1 − h2

)
≤
∫

Ω

(
f1 − f2

)
·
(
h1 − h2

)
+
∫

Γ

(
g1 − g2

)
·
(
h1 − h2

)
+ Θ, (15)

where

Θ = a∗
∫

Ω

|∇ × h1|p−1|∇×(ĥ1 − h2)|+
∫

Ω

f1 · (h2 − ĥ1) +
∫

Γ

g1 · (h2 − ĥ1)

+ a∗
∫

Ω

|∇ × h2|p−1|∇×(ĥ2 − h1)|+
∫

Ω

f2 · (h1 − ĥ2) +
∫

Γ

g2 · (h1 − ĥ2).

Notice that, using the Hölder inequality, (6) and (8), as well as (14) and (13),

Θ ≤
(
a∗‖∇ × h1‖p−1

Lp(Ω) + Cq‖f1‖Lq′ (Ω) + Cr‖g1‖Lr′ (Γ)

)
‖∇ × (ĥ1 − h2)‖Lp(Ω)

+
(
a∗‖∇ × h2‖p−1

Lp(Ω) + Cq‖f2‖Lq′ (Ω) + Cr‖g2‖Lr′ (Γ)

)
‖∇ × (ĥ2 − h1)‖Lp(Ω)

≤ D ‖ϕ1 − ϕ2‖L∞(Ω)

and∫
Ω

(
f1 − f2

)
·
(
h1 − h2

)
+
∫

Γ

(
g1 − g2

)
·
(
h1 − h2

)
≤
(
Cq‖f1 − f2‖Lq′ (Ω) + Cr‖g1 − g2‖Lr′ (Γ)

)
‖∇ × (h1 − h2)‖Lp(Ω).

Going back to (15), applying (10c’) and the previous inequalities, we can find, in the case p ≥ 2, a positive
constant D1 such that∫

Ω

∣∣∇×
(
h1 − h2

)
|p ≤ D1

(
‖f1 − f2‖

p′

Lq′ (Ω)
+ ‖g1 − g2‖

p′

Lr′ (Γ)
+ ‖ϕ1 − ϕ2‖L∞(Ω)

)
and, in the case 1 < p < 2,

a∗

∫
Ω

(
|∇ × h1

∣∣p−2 + |∇ × h2

∣∣p−2)∣∣∇×
(
h1 − h2

)
|2

≤
(
Cq‖f1 − f2‖Lq′ (Ω) + Cr‖g1 − g2‖Lr′ (Γ)

)
‖∇ × (h1 − h2)‖Lp(Ω) +D ‖ϕ1 − ϕ2‖L∞(Ω).

Applying, in the last case, the reverse Hölder inequality with s = p
2 and s′ = p

p−2 , we obtain∫
Ω

(
|∇×h1|+ |∇×h2|

)p−2∣∣∇×(h1 − h2)
∣∣2 ≥ (∫

Ω

(
|∇×h1|+ |∇×h2|

)p) p−2
p ‖∇×(h1 − h2)‖2

Lp(Ω) .

By inequality (14)(∫
Ω

(
|∇×h1|+ |∇×h2|

)p) 2−p
p ≤ D2

(
‖∇×h1‖pLp(Ω) + ‖∇×h2‖pLp(Ω)

) 2−p
p ≤ D3,
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where D2 and D3 are positive constants. Finally we get

‖∇×(h1 − h2)‖2
Lp(Ω) ≤ D4

(
‖f1 − f2‖2

Lq′ (Ω)
+ ‖g1 − g2‖2

Lr′ (Γ)
+ ‖ϕ1 − ϕ2‖L∞(Ω)

)
,

for a positive constant D4. �

Consider a function F : R −→ R+ and define the quasivariational inequality: to find h ∈ KF (|h|) such
that ∫

Ω

a(x,∇× h) · ∇ × (v − h) ≥
∫

Ω

f · (v − h) +
∫

Γ

g · (v − h), ∀v ∈ KF (|h|). (16)

Theorem 2.3 Let f and g verify (11) and assume that F is continuous and a satisfies (10a,10b,10c’).
Suppose, in addition, that if 1 < p ≤ 3, there exist positive constants c0 and c1 such that

F (s) ≤ c0 + c1|s|α, ∀ s ∈ R, (17)

where α ≥ 0 if p = 3 and 0 ≤ α < p
3−p if 1 < p < 3.

Then the quasivariational inequality (16) has a solution.

Proof The proof of this theorem follows ideas of [13]. Consider first the case p > 3. Given ϕ ∈ C (Ω̄) we
denote by hϕ the solution of the variational inequality (12) with KF (ϕ) replacing Kϕ. As the space W p(Ω)
is a closed subspace of W 1,p(Ω), by the Sobolev embedding theorem, the inclusion i : W p(Ω) −→ CCC (Ω̄) is
continuous and compact. The continuity of the operator T : C (Ω̄) −→ W p(Ω), such that T (ϕ) = hϕ, is a
consequence of the previous proposition. So, the operator S : C (Ω̄) −→ C (Ω̄) defined by S(ϕ) = |i(T (ϕ))|
is continuous and compact.

From (14) we have, for 1 < p <∞,

‖hϕ‖W p(Ω) ≤ a∗
− 2

p
(
‖f‖Lq′ (Ω) + ‖g‖Lr′ (Ω)

) p′
p . (18)

On the other hand, there exists C1 > 0 such that, for any v ∈ W p(Ω), ‖ |v| ‖C (Ω̄) ≤ C1‖v‖W p(Ω), and
then

‖ |hϕ| ‖C (Ω̄) ≤ C1 a∗
− 2

p
(
‖f‖Lq′ (Ω) + ‖g‖Lr′ (Ω)

) p′
p = R.

Denoting the disc with center in the origin and radius R, in C (Ω̄), by DR(0), we have S(DR(0)) ⊆ DR(0)
and we may apply the Schauder fixed point theorem concluding the existence of a fixed point for S. The
image by T of this fixed point solves the quasivariational inequality (16).

Consider now the case 1 < p ≤ 3. To prove that T is continuous let ϕ ∈ C (Ω̄) and M > 0 be such that
‖F ◦ ψ‖C (Ω̄) ≤ ‖F ◦ ϕ‖C (Ω̄) + 1 if ‖ϕ− ψ‖C (Ω̄) ≤M . For those ψ and s > 3 we have,

‖hϕ − hψ‖sW s(Ω) =
∫

Ω

|∇×(hϕ − hψ)|s−p|∇×(hϕ − hψ)|p

≤
∫

Ω

(
F (ϕ) + F (ψ)

)s−p|∇×(hϕ − hψ)|p ≤
(
2 ‖F ◦ ϕ‖C (Ω̄) + 1

)s−p‖hϕ − hψ‖pW p(Ω)

which, by Proposition 2.2, proves the continuity of T .
The function S = i ◦ T with the codomain of T replaced by W s(Ω) is continuous, by Proposition 2.2,

and compact.
After showing that A =

{
ϕ ∈ C (Ω̄) : ϕ = λT (ϕ) for some λ ∈ [0, 1]

}
is bounded, the Leray-Schauder

fixed point theorem gives us the desired result.
For ϕ ∈ A, there exists λ ∈ [0, 1] such that ϕ = λT (ϕ) = λ|hϕ|. Using assumption (17),

‖ϕ‖sC (Ω̄) = λs‖ |hϕ| ‖sC (Ω̄) ≤ c ‖hϕ‖sW s(Ω) = c

∫
Ω

|∇×hϕ|s

≤ c

∫
Ω

|F (ϕ)|s ≤ c

∫
Ω

(
c0 + c1ϕ

α
)s = c̃0 + c̃1λ

sα

∫
Ω

|hϕ|sα ≤ c̃0 + c2‖hϕ‖sαW p(Ω),

by the Sobolev inclusion W 1,p(Ω) ⊂ Lsα(Ω), choosing any s > 3 if p = 3 and s = 3p
3−p

1
α if p < 3. The

boundedness of the set A follows then directly from the inequality (18). �
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3 The problem with gradient constraint

Let Ω be a bounded open subset of RN with Lipschitz boundary Γ. In this section we study variational and
quasivariational inequalities, defined by an operator a = a(x,∇u) : Ω × RN −→ RN , satisfying structural
assumptions of p-laplacian type, defined in (10), with 3 replaced by N , in a convex set of functions with a
variable gradient constraint. Non-homogeneous Neumann or Dirichlet boundary condition will be considered.

Given v ∈W 1,p(Ω), we consider the following well-known Sobolev inequality

‖v‖Lq(Ω) ≤ Cq‖v‖W 1,p(Ω),

where Cq is a positive constant and

q =
Np

N − p
if 1 < p < N, q <∞ if p = N, q = ∞ if p > N (19)

and also the trace result

‖v|Γ‖Lr(Γ) ≤ Cr ‖v‖W 1,p(Ω) ,

r =
(N − 1)p
N − p

if 1 < p < N, r <∞ if p = N, r = ∞ for p > N. (20)

3.1 The Neumann boundary condition case

For q and r defined in (19) and (20) respectively, let

f ∈ Lq
′
(Ω), g ∈ Lr

′
(Γ) and c ∈ L∞(Ω), c ≥ c∗ > 0. (21)

Given ϕ ∈ L∞(Ω), ϕ ≥ 0, we define the closed convex subset of W 1,p(Ω),

Kϕ =
{
v ∈W 1,p(Ω) : |∇v| ≤ ϕ a.e. in Ω

}
and we consider the variational inequality: to find u ∈ Kϕ such that∫

Ω

a(x,∇u) · ∇(v − u) +
∫

Ω

c |u|p−2u(v − u) ≥
∫

Ω

f(v − u) +
∫

Γ

g(v − u), ∀v ∈ Kϕ. (22)

Proposition 3.1 Let ϕ ∈ L∞(Ω), ϕ ≥ 0 and assume that f , g and c verify (21). If a satisfies assumptions
(10a,10b,10c) then problem (22) has a unique solution.

Proof We remark that the operator A : W 1,p(Ω) −→W 1,p(Ω)′ defined by

〈Au, v〉 =
∫

Ω

a(x,∇u) · ∇v +
∫

Ω

c |u|p−2uv,

is bounded, monotone, hemicontinuous and coercive. Thus the result is a direct consequence of Theorem 8.2,
p247 of [14]. �

We present now a continuous dependence result.

Proposition 3.2 For i = 1, 2, given data fi, gi, ci and ϕi satisfying the assumptions of Proposition 3.1, ϕi
with positive lower bound and a verifying (10a,10b,10c’), the solutions ui of problem (22) satisfy

‖u1 − u2‖p∨2
W 1,p(Ω) ≤ C

(
‖f1 − f2‖p

′∧2

Lq′ (Ω)
+ ‖g1 − g2‖p

′∧2

Lr′ (Γ)
+ ‖c1 − c2‖L∞(Ω) + ‖ϕ1 − ϕ2‖L∞(Ω)

)
,

where C is a positive constant.
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Proof Defining ûi as in the proof of Proposition 2.2 and using it as a test function in problem (22) with data
fi, gi, ci and ϕi, by simple calculations we have∫

Ω

(
a(x,∇u1)− a(x,∇u2)

)
· ∇
(
u1 − u2

)
+
∫

Ω

c1
(
|u1|p−2u1 − |u2|p−2u2

)
(u1 − u2)

≤
∫

Ω

(
f1 − f2

)(
u1 − u2

)
+
∫

Γ

(
g1 − g2

)(
u1 − u2

)
+
∫

Ω

(c2 − c1)|u2|p−2u2(u1 − u2) + Θ,

where

Θ ≤ a∗
∫

Ω

|∇u1|p−1|∇(û1 − u2)|+
∫

Ω

f1(u2 − û1) +
∫

Γ

g1(u2 − û1) + ‖c1‖L∞(Ω)

∫
Ω

|u1|p−1 |û1 − u2|

+ a∗
∫

Ω

|∇u2|p−1|∇(û2 − u1)|+
∫

Ω

f2(u1 − û2) +
∫

Γ

g2(u1 − û2) + ‖c2‖L∞(Ω)

∫
Ω

|u2|p−1 |û2 − u1| .

Using the Hölder inequality, we have∫
Ω

(c1 − c2)|u2|p−2u2(u1 − u2) ≤ ‖c1 − c2‖L∞(Ω)‖u2‖p−1
Lp(Ω)‖u1 − u2‖Lp(Ω).

For a positive lower bound c∗ of ci, using v = 0 as a test function in (22) we obtain

(a∗ ∧ c∗)‖ui‖p−1
W 1,p(Ω) ≤ Cq‖fi‖Lq′ (Ω) + Cr‖gi‖Lr′ (Γ). (23)

The operator b(u) = |u|p−2u satisfies the structural condition (10c’) with a∗ replaced by b∗ > 0.
For p ≥ 2,∫
Ω

(
a(x,∇u1)− a(x,∇u2)

)
· ∇(u1 − u2) +

∫
Ω

c1
(
|u1|p−2u1 − |u2|p−2u2

)
(u1 − u2)

≥ (a∗ ∧ b∗)‖u1 − u2‖pW 1,p(Ω)

and, if 1 < p < 2,∫
Ω

(
a(x,∇u1)− a(x,∇u2)

)
· ∇(u1 − u2) +

∫
Ω

c1
(
|u1|p−2u1 − |u2|p−2u2

)
(u1 − u2)

≥ a∗

∫
Ω

(|∇u1|+ |∇u2|)p−2|∇(u1 − u2)|2 + b∗

∫
Ω

(|u1|+ |u2|)p−2|u1 − u2|2

Applying the reverse Hölder inequality to both terms of the right-hand side we obtain∫
Ω

(
|∇u1|+ |∇u2|

)p−2|∇(u1 − u2)|2 ≥
(∫

Ω

(
|∇u1|+ |∇u2|

)p) p−2
p
(∫

Ω

|∇(u1 − u2)|p
) 2

p

and ∫
Ω

(
|u1|+ |u2|

)p−2|u1 − u2|2 ≥
(∫

Ω

(
|u1|+ |u2|

)p) p−2
p
(∫

Ω

|u1 − u2|p
) 2

p

.

From the inequality (23), there exists a positive constant D1 such that(∫
Ω

(
|∇u1|+ |∇u2|

)p) 2−p
p

≤ D1 and

(∫
Ω

(
|u1|+ |u2|

)p) 2−p
p

≤ D1.

So∫
Ω

(
a(x,∇u1)− a(x,∇u2)

)
· ∇(u1 − u2) +

∫
Ω

c1
(
|u1|p−2u1 − |u2|p−2u2

)
(u1 − u2)

≥ a∗ ∧ b∗
D1

((∫
Ω

|∇(u1 − u2)|p
) 2

p

+
(∫

Ω

|u1 − u2|p
) 2

p

)
≥ D2‖u1 − u2‖2

W 1,p(Ω)
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and the conclusion follows as in Proposition 2.2. �

Consider a function F : R → R+ and the quasivariational inequality: to find u ∈ KF (u) such that∫
Ω

a(x,∇u) · ∇(v − u) +
∫

Ω

c |u|p−2u(v − u) ≥
∫

Ω

f(v − u) +
∫

Γ

g(v − u), ∀v ∈ KF (u). (24)

Theorem 3.3 Assume that f , g, c verify (21), F is continuous and a satisfies assumptions (10a,10b,10c’).
If p ≤ N suppose, in addition, that there exist positive constants c0 and c1 such that

F (s) ≤ c0 + c1|s|α, ∀s ∈ R, (25)

being α ≥ 0 if p = N and 0 ≤ α < p
N−p if p < N .

Then the quasivariational inequality (24) has a solution.

Proof The case p > N is treated as in the proof of Theorem 2.3, with 3 replaced by N .
If p ≤ N , let k ∈ N be such that N

k+1 < p ≤ N
k and consider (pm)0≤m≤k, iterations of the critical Sobolev

exponent, as follows

p0 = p, N < pk <∞ if p =
N

k
, pm =

Npm−1

N − pm−1
otherwise.

For convenience, if p = N and α > 1 we choose p1 = αN .
Note that pm = Np

N−mp if m < k or if m = k and p < N
k . In particular pm > N if and only if m = k.

Applying repeatedly the Sobolev inequality we have,

∃C > 0 ∀m ≤ k ∀u ∈W 1,pm(Ω) ‖u‖W 1,pm (Ω) ≤ C
(
‖u‖Lp(Ω) + ‖∇u‖Lpm (Ω)

)
. (26)

Let s = pk if α ≤ 1 and s = pk

α if α > 1 and note thatN < s < pk and αs ≤ pk. Observe that, if ϕ ∈ C (Ω̄)
and u ∈ KF (ϕ) then u ∈W 1,s(Ω), as ∇u ∈ L∞(Ω). In particular, the operator T : C (Ω̄) −→W 1,s(Ω) such
that T (ϕ) = uϕ, where uϕ is the solution of problem (22) with KF (ϕ) replacing Kϕ, is well-defined.

To prove that T is continuous consider, as in the proof of Theorem 2.3, ϕ ∈ C (Ω̄) and M > 0 such that
‖F ◦ ψ‖C (Ω̄) ≤ ‖F ◦ ϕ‖C (Ω̄) + 1 if ‖ϕ− ψ‖C (Ω̄) ≤M . For those ψ we have,

‖uϕ − uψ‖W 1,s(Ω) ≤ C‖uϕ − uψ‖W 1,pk (Ω) ≤ C1

(
‖uϕ − uψ‖Lp(Ω) + ‖∇uϕ −∇uψ‖Lpk (Ω)

)
≤ C2

(
‖uϕ − uψ‖Lp(Ω) +

(
2‖F ◦ ϕ‖C (Ω̄) + 1

) pk−p

pk ‖∇uϕ −∇uψ‖
p

pk

Lp(Ω)

)
≤ C2

(
‖uϕ − uψ‖W 1,p(Ω) +

(
2‖F ◦ ϕ‖C (Ω̄) + 1

) pk−p

pk ‖uϕ − uψ‖
p

pk

W 1,p(Ω)

)
and then, using the previous proposition, T is continuous.

In order to apply the Leray-Schauder fixed point theorem we consider S = i ◦ T : C (Ω̄) −→ C (Ω̄),
where i is the compact inclusion of W 1,s(Ω) in C (Ω̄), and we are going to prove the boundedness of the set
A =

{
ϕ ∈ C (Ω̄) : ϕ = λS(ϕ) for some λ ∈ [0, 1]

}
. As i is compact it is enough to prove that A is bounded

in W 1,s(Ω). Note that, as in Theorem 2.3, we can obtain an inequality similar to (18), proving that A is
bounded in W 1,p(Ω).

As, for ϕ ∈ C (Ω̄), |∇uϕ| ≤ F (ϕ) ≤ c0 + c1|ϕ|α = c0 + c1λ
α|uϕ|α then, for r > p, there exist Ar, Br > 0

such that
‖∇uϕ‖Lr(Ω) ≤ Ar +Br‖uϕ‖αLαr(Ω). (27)

If α > 1, then p
N−p > 1 and therefore k = 1. We apply (27) with r = s, the inclusions Lp1(Ω) ⊆ Ls(Ω)

and W 1,p(Ω) ⊆ Lp1(Ω) to prove that there exists A,B > 0 such that

‖uϕ‖W 1,s(Ω) ≤ A+B‖uϕ‖W 1,p(Ω),

showing the boundedness of A in W 1,s(Ω).
If α ≤ 1, using (26), (27) for r = pm, the inclusions Lpm(Ω) ⊆ Lαpm(Ω) and W 1,pm−1(Ω) ⊆ Lpm(Ω) for

1 ≤ m ≤ k, there exists Ã, B̃ > 0 such that

‖uϕ‖W 1,pm (Ω) ≤ C
(
‖u‖W 1,p(Ω) + Ã+ B̃‖uϕ‖αW 1,pm−1 (Ω)

)
,

which shows that A is bounded in W 1,pm(Ω) if it is bounded in W 1,pm−1(Ω). So, by an iterative process, the
conclusion follows. �
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3.2 The Dirichlet boundary condition case

We define, for ϕ ∈ L∞(Ω), ϕ ≥ 0, and g ∈W
1
p′ ,p(Γ), the closed convex subset of W 1,p(Ω),

Kϕ =
{
v ∈W 1,p(Ω) : |∇v| ≤ ϕ a.e. in Ω, v|Γ = g

}
.

To define a variational inequality in the convex set Kϕ, we need to guarantee that this set is not empty,
imposing a compatibility condition between ϕ and g (see [15], p116). In fact, if for x, y ∈ Ω̄, we denote

Lϕ(x, y) = inf
{∫ T

0

ϕ
(
ξ(s)

)
ds : T > 0, ξ : [0, T ] −→ Ω smooth, ξ(0) = x, ξ(T ) = y, |ξ′| ≤ 1

}
,

a function g defined on Γ is admissible as trace of a function belonging to Kϕ as long as

|g(x)− g(y)| ≤ Lϕ(x, y) for x, y ∈ Γ. (28)

This implies, in particular, that g admits an extension to Ω̄, belonging to W 1,∞(Ω), which is a solution of the
Hamilton-Jacobi equation

|∇v| = ϕ in Ω, (29a)

v = g on Γ. (29b)

Given f ∈ Lq′(Ω), q as in (19), we define the variational inequality that consists on finding u ∈ Kϕ such
that ∫

Ω

a(x,∇u) · ∇(v − u) ≥
∫

Ω

f(v − u), ∀ v ∈ Kϕ. (30)

Proposition 3.4 Let ϕ ∈ L∞(Ω), ϕ ≥ 0, q as in (19), f ∈ Lq
′
(Ω), g defined on Γ verifying (28). If a

satisfies assumptions (10a,10b,10c) then problem (30) has a unique solution.

Proof This result is an immediate consequence of Theorem 8.2, p247 of [14]. �

Given a function F : R → R+ we define the quasivariational inequality: to find u ∈ KF (u) such that∫
Ω

a(x,∇u) · ∇(v − u) ≥
∫

Ω

f(v − u), ∀ v ∈ KF (u). (31)

In order to guarantee that the convex set KF (u) is nonempty, the inequality (28) needs to be satisfied for
ϕ = F (u). With this goal we assume that F has a positive lower bound F∗ and

∃ 0 < k < 1 : |g(x)− g(y)| ≤ k LF∗(x, y) for x, y ∈ Γ. (32)

Theorem 3.5 Let f ∈ Lq
′
(Ω), q as in (19), g defined on Γ verifying (32). Suppose that F is a continuous

function such that F∗ = inf F > 0 and a satisfies assumptions (10a,10b,10c’).
If p ≤ N assume, in addition, that there exist positive constants c0 and c1 such that

F (s) ≤ c0 + c1|s|α, ∀s ∈ R,

being α ≥ 0 if p = N and 0 ≤ α ≤ p
N−p if p < N .

Then the quasivariational inequality (31) has a solution.

Proof The proof follows the steps of the proof of Theorem 2.3, using N instead of 3. The main difference
consists in the proof of the continuity of the operator T : C (Ω̄) −→ W 1,p(Ω), where T (ϕ) is the solution
of problem (30), with F (ϕ) in the place of ϕ. Let ϕ ∈ C (Ω̄) and (ϕn)n a sequence converging in C (Ω̄) to
ϕ. The convergence of (T (ϕn))n to T (ϕ) is an immediate consequence of a result of [19], if we prove the
Mosco convergence of the family of convex sets KF (ϕn) to KF (ϕ). So, we only need to prove the following
two conditions:

∀v ∈ KF (ϕ) ∀n ∈ N ∃ vn ∈ KF (ϕn) : vn −→
n

v in W 1,p(Ω), (33a)

if, for all n ∈ N, vn ∈ KF (ϕn) and vn −⇀
n

v in W 1,p(Ω), then v ∈ KF (ϕ). (33b)
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To prove (33a) consider, for given v ∈ KF (ϕ) and n ∈ N, Gn = F (ϕn) ∧ F (ϕ) and vn = bn(v − g) + g,
where

bn = min
x∈Ω̄

Gn(x)− kF∗
F (ϕ(x))− kF∗

.

We observe that, for all n ∈ N, 0 < bn ≤ 1 and also (Gn − kF∗)n converges to F (ϕ) − kF∗ in C (Ω̄).

Then, as F (ϕ)−kF∗ ≥ (1−k)F∗ > 0, we conclude that
(
Gn−kF∗
F (ϕ)−kF∗

)
n

converges to 1 in C (Ω̄) which implies

that bn −→
n

1.

Using (32) we can define an extension of g, still denoted by g, such that |∇g| = k F∗ (see (29a)). Note
that vn ∈ KF (ϕn) as vn|Γ = g and

|∇vn(x)| = |bn∇v(x) + (1− bn)∇g(x)|
≤ bnF (ϕ(x)) + (1− bn)kF∗
≤ Gn(x),

because bn ≤ Gn(x)−kF∗
F (ϕ(x))−kF∗ .

On the other hand ∫
Ω

|∇(vn − v)|p = (1− bn)p
∫

Ω

|∇(g − v)|p −→
n

0.

To prove (33b), let (vn)n be a sequence in KF (ϕn), converging weakly in W 1,p(Ω) to v. As vn|Γ = g then
v|Γ = g. Given any measurable set ω ⊂ Ω,∫

ω

|∇v| ≤ lim inf
n

∫
ω

|∇vn| ≤ lim inf
n

∫
ω

F (ϕn) =
∫
ω

F (ϕ),

so |∇v| ≤ F (ϕ) a.e. in Ω, which means v ∈ KF (ϕ). This concludes the proof of the continuity of T .

In order to follow the steps of the proof of Theorem 2.3, we are going to obtain an a priori estimate for
uϕ = T (ϕ), similar to the estimates (18), obtained for hϕ.

We choose g as a test function in (30). Then∫
Ω

a(x,∇uϕ) · ∇uϕ ≤
∫

Ω

a(x,∇uϕ) · ∇g +
∫

Ω

fuϕ −
∫

Ω

fg

and, for ε > 0,

a∗‖∇uϕ‖pLp(Ω) ≤ a∗
(εp′
p′
‖∇uϕ‖pLp(Ω) +

1
εpp

‖∇g‖pLp(Ω)

)
+

1
εp′p′

‖f‖p
′

Lp′ (Ω)
+
εp

p
C
(
‖∇uϕ‖pLp(Ω) + ‖g‖pLp(Γ)

)
+

1
p′
‖f‖p

′

Lp′ (Ω)
+

1
p
‖g‖pLp(Ω),

where C is the Poincaré constant.

Choosing ε conveniently and using the continuity of the trace operator in W 1,p(Ω) there exists a positive
constant C1 such that

‖∇uϕ‖pLp(Ω) ≤ C1

(
‖f‖p

′

Lp′ (Ω)
+ ‖g‖pW 1,p(Ω)

)
.

Applying again the Poincaré inequality,

‖uϕ‖pW 1,p(Ω) ≤ C2

(
‖f‖p

′

Lp′ (Ω)
+ ‖g‖pW 1,p(Ω)

)
,

with C2 > 0. �
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4 Existence of a Lagrange multiplier in the case of gradient con-
straint and p = 2

Let Ω be a bounded open subset of RN with Lipschitz boundary Γ. In this section we consider the variational
inequality with gradient constraint and homogeneous Dirichlet boundary condition in the special case p = 2
and a(x,∇u) = ∇u. We prove the equivalence of this problem with a Lagrange multiplier problem, for general
source term and for any smooth strictly positive gradient constraint ϕ.

Given f and ϕ in appropriate spaces, we consider the problem of finding λ and u such that

−∇ ·
(
λ∇u) = f in D ′(Ω), (34a)

u = 0 on Γ, (34b)

|∇u| ≤ ϕ in Ω, (34c)

λ ≥ 1 in L∞(Ω)′, (34d)

(λ− 1)(|∇u| − ϕ) = 0 in L∞(Ω)′. (34e)

Concerning equality (34a) we will prove the following slightly stronger weak formulation

〈λ,∇u · ∇v〉L∞(Ω)′×L∞(Ω) =
∫

Ω

fv, ∀v ∈W 1,∞
0 (Ω).

We intend to show that problem (34) is equivalent to the following variational inequality: to find u ∈ Kϕ
such that ∫

Ω

∇u · ∇(v − u) ≥
∫

Ω

f(v − u), ∀v ∈ Kϕ, (35)

where Kϕ = {v ∈ H1
0 (Ω) : |∇v| ≤ ϕ a.e. in Ω}.

The main difficulty of the proof of this result consists on the lack of regularity of the Lagrange multiplier λ.
We will prove that λ ∈ L∞(Ω)′ and ∇u ∈ L∞(Ω), but the approach used, which consists on the approximation
of problem (34) by a family of problems using the penalization proposed in [11], already mentioned in the
Introduction, does not allow the direct identification of the limit. The identification of the limit ∇ · (λ∇u) in
D ′(Ω) is the main step to prove (34).

Theorem 4.1 Given f ∈ L2(Ω) and ϕ ∈W 2,∞(Ω) with a positive lower bound, problem (34) has a solution
(u, λ) ∈W 1,∞(Ω)× L∞(Ω)′. In addition, if (u, λ) solves (34), then u solves the variational inequality (35).

To prove this theorem we start by considering a family of approximated problems. Given the data f and
ϕ as above and 0 < ε < 1, let us consider the problem of finding uε such that

−∇ ·
(
kε(|∇uε|2 − ϕ2)∇uε

)
= fε in Ω, (36a)

uε = 0 on Γ, (36b)

where kε : R −→ R is a C 2 nondecreasing convex function such that

kε(s) =

{
1 if s ≤ 0
e

s
ε if s ≥ ε

and fε = f ∗ ρε, being ρε a mollifier.

Proposition 4.2 For f ∈ L2(Ω) and ϕ ∈ L∞(Ω), with ϕ > 0, problem (36) has a unique solution, uε ∈
C 2,α(Ω) ∩ C (Ω̄).

Proof Let Kε(s) =
∫ s

0

kε(τ) dτ . By the assumptions on kε, the functional Fε(v) =
∫

Ω

(
1
2Kε(|∇v|2−ϕ2)−

fv
)

has a minimizer in H1
0 (Ω), so problem (36) has a solution belonging to H1

0 (Ω).
The regularity of uε is a consequence of a result of Marcellini [16].
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To prove the uniqueness, let u1 and u2 be two solutions of problem (36). Then∫
Ω

kε(|∇u1|2 − ϕ2)∇u1 · ∇(u2 − u1) =
∫

Ω

kε(|∇u2|2 − ϕ2)∇u2 · ∇(u2 − u1) (37)

and so ∫
Ω

(
kε(|∇u1|2 − ϕ2)|∇u1| − kε(|∇u2|2 − ϕ2)|∇u2|

)
(|∇u1| − |∇u2|) ≤ 0.

As the function Φ(x, t) = kε(t2−ϕ2(x))t is strictly increasing in the variable t, we conclude that |∇u1| = |∇u2|
a.e. in Ω. Finally, going back to (37), we get∫

Ω

(
kε(|∇u1|2 − ϕ2)|∇(u1 − u2)|2 = 0

and so u1 = u2 a.e. in Ω. �

The following lemma gives us some useful estimates.

Lemma 4.3 For f ∈ L2(Ω) and ϕ ∈ L∞(Ω) with a positive lower bound and 1 ≤ q <∞, there exist positive
constants C and Cq such that, for 0 < ε < 1, the solution uε of the approximated problem (36) verifies

‖kε(|∇uε|2 − ϕ2)|∇uε|2‖L1(Ω) ≤ C, (38)

‖kε(|∇uε|2 − ϕ2)‖L1(Ω) ≤ C, (39)

‖kε(|∇uε|2 − ϕ2)∇uε‖L∞(Ω)′ ≤ C, (40)

‖∇uε‖Lq(Ω) ≤ Cq. (41)

Proof Multiplying equation (36a) by uε, integrating in Ω and applying Young and Poincaré inequalities, we
obtain ∫

Ω

kε(|∇uε|2 − ϕ2)|∇uε|2 =
∫

Ω

fεu
ε ≤ C1

∫
Ω

|fε|2 + 1
2

∫
Ω

|∇uε|2

and so ∫
Ω

kε(|∇uε|2 − ϕ2)|∇uε|2 ≤ 2C1

∫
Ω

f2
ε ,

proving (38). Observing that, if ϕ∗ is a positive lower bound of ϕ,

ϕ2
∗

∫
Ω

kε(|∇uε|2 − ϕ2) = ϕ2
∗

∫
{|∇uε|<ϕ}

kε(|∇uε|2 − ϕ2) + ϕ2
∗

∫
{|∇uε|≥ϕ}

kε(|∇uε|2 − ϕ2)

≤ ϕ2
∗

∫
{|∇uε|<ϕ}

1 +
∫
{|∇uε|≥ϕ}

kε(|∇uε|2 − ϕ2)|∇uε|2

≤ ϕ2
∗|Ω|+

∫
Ω

kε(|∇uε|2 − ϕ2)|∇uε|2

≤ ϕ2
∗|Ω|+ 2C1‖fε‖2

L2(Ω),

obtaining (39) and

‖kε(|∇uε|2 − ϕ2)∇uε‖L∞(Ω)′ = sup
‖v‖L∞(Ω)≤1

∫
Ω

kε(|∇uε|2 − ϕ2)∇uε · v

≤ sup
‖v‖L∞(Ω)≤1

‖kε(|∇uε|2 − ϕ2)|∇uε|2‖
1
2
L1(Ω)‖kε(|∇u

ε|2 − ϕ2)‖
1
2
L1(Ω)‖v‖L∞(Ω) ≤ C,

which proves (40).
Let us now consider the set Aε = {x ∈ Ω : |∇uε(x)|2 > ϕ2(x)+ ε} and let q be an even integer. Splitting

the integral ∫
Ω

|∇uε|q =
∫

Ω\Aε

|∇uε|q +
∫
Aε

|∇uε|q,
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we have ∫
Ω\Aε

|∇uε|q ≤
∫

Ω

(ϕ2 + 1)
q
2 ≤ |Ω|(‖ϕ‖2

L∞(Ω) + 1)
q
2

and ∫
Aε

|∇uε|q =
∫
Aε

(|∇uε|2 − ϕ2 + ϕ2)
q
2 ≤ 2

q−2
2

(∫
Aε

(|∇uε|2 − ϕ2)
q
2 +

∫
Aε

ϕq
)
.

When s ≥ ε we have

kε(s) = e
s
ε ≥

( sε )
q
2

( q2 )!

and so
s

q
2 ≤ ε

q
2 ( q2 )! kε(s).

Taking into account the previous inequality and the definition of Aε we obtain∫
Aε

|∇uε|q ≤ 2
q−2
2

(
ε

q
2 ( q2 )!

∫
Ω

kε(|∇uε|2 − ϕ2) +
∫

Ω

ϕq
)

and, using (39), we obtain (41). �

Proposition 4.4 For f ∈ L2(Ω) and ϕ ∈ L∞(Ω) with a positive lower bound, the family (uε)ε of solutions of
the approximated problems (36) converges weakly in H1

0 (Ω) to the solution of the variational inequality (35).

Proof As (uε)ε is bounded in H1
0 (Ω) by (41), there exists u ∈ H1

0 (Ω) such that, at least for a subsequence,
uε −⇀

ε→0
u in H1

0 (Ω). We start by proving that u belongs to the convex set Kϕ.

For 0 < ε < 1 let us consider the set

Aε =
{
x ∈ Ω : |∇uε(x)|2 > ϕ2(x) +

√
ε
}
.

The measure of Aε tends to zero with ε. Indeed, recalling that kε is a non decreasing function and taking
into account the estimate (39) we have

|Aε| =
∫
Aε

1 ≤
∫
Aε

kε(|∇uε|2 − ϕ2)

e
1√
ε

≤
∫

Ω

kε(|∇uε|2 − ϕ2)

e
1√
ε

≤ Ce
− 1√

ε

and so |Aε| −−−→
ε→0

0.

Observing that ∫
Ω

(|∇u|2 − ϕ2)+ ≤ lim inf
ε→0

∫
Ω

(|∇uε|2 − ϕ2 −
√
ε)+

= lim inf
ε→0

∫
Aε

(|∇uε|2 − ϕ2 −
√
ε)

≤ lim
ε→0

(∫
Ω

(|∇uε|2 − ϕ2 −
√
ε)2
) 1

2 |Aε|
1
2

= 0 by (41),

the conclusion follows.
Let us now prove that u solves the variational inequality (35). Multiplying (36a) by v − uε, with v ∈ Kϕ

and integrating in Ω, we obtain∫
Ω

(kε(|∇uε|2 − ϕ2)∇uε · ∇(v − uε) =
∫

Ω

fε(v − uε).

Observing that v ∈ Kϕ and taking into account the definition and the monotonicity of kε we have

kε(|∇uε|2 − ϕ2)∇uε · ∇(v − uε)

=
(
kε(|∇uε|2 − ϕ2)∇uε − kε(|∇v|2 − ϕ2)∇v

)
· ∇(v − uε) + kε(|∇v|2 − ϕ2)∇v) · ∇(v − uε)

≤ ∇v · ∇(v − uε),
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so ∫
Ω

∇v · ∇(v − uε) ≥
∫

Ω

fε(v − uε)

and, letting ε→ 0, ∫
Ω

∇v · ∇(v − u) ≥
∫

Ω

f(v − u).

For w ∈ Kϕ, let v = u+ ξ(w − u), 0 ≤ ξ ≤ 1. Then∫
Ω

∇
(
u+ ξ(w − u)

)
· ∇(w − u) ≥

∫
Ω

f(w − u)

and, letting ξ → 0, ∫
Ω

∇u · ∇(w − u) ≥
∫

Ω

f(w − u).

We observe that, as u is the unique solution of the variational inequality (35), the family (uε)ε converges
weakly to u in H1

0 (Ω). �

Theorem 4.5 If f ∈ L2(Ω) and ϕ ∈W 2,∞(Ω) with a positive lower bound, then the solution of the variational
inequality (35) belongs to H2

loc(Ω).

Proof Let uε be the solution of the approximated problem (36). We will prove the uniform boundedness of
(uε)ε in H2

loc(Ω).
Given Ω′ ⊂⊂ Ω, let η ∈ D(Ω) be nonnegative and η|Ω′ = 1.
In this proof we omit, for simplicity, the subscripts and superscripts ε, we denote by uxi

the partial derivative
of u with respect to xi and we adopt the summation convention for repeated indices.

Multiplying equation (36a) by uxkxk
η2, for a fixed k ∈ {1, . . . , N} and integrating in Ω, we obtain∫

Ω

(
k(|∇u|2 − ϕ2)uxi

)
xi
uxkxk

η2 = −
∫

Ω

fuxkxk
η2. (42)

Integrating by parts we obtain∫
Ω

(
k(|∇u|2 − ϕ2)uxi

)
xi
uxkxk

η2 = −
∫

Ω

k(|∇u|2 − ϕ2)uxiuxkxkxiη
2 −

∫
Ω

k(|∇u|2 − ϕ2)uxiuxkxk
(η2)xi

=
∫

Ω

(
k(|∇u|2 − ϕ2)uxiη

2
)
xk
uxkxi −

∫
Ω

k(|∇u|2 − ϕ2)uxiuxkxk
(η2)xi

=
∫

Ω

(
k(|∇u|2 − ϕ2)

)
xk
uxiuxkxiη

2 +
∫

Ω

k(|∇u|2 − ϕ2)u2
xixk

η2

+
∫

Ω

k(|∇u|2 − ϕ2)uxiuxkxi(η
2)xk

−
∫

Ω

k(|∇u|2 − ϕ2)uxiuxkxk
(η2)xi .

Returning to (42) we get∫
Ω

k(|∇u|2 − ϕ2)u2
xixk

η2 = −
∫

Ω

fuxkxk
η2 − 1

2

∫
Ω

(
k(|∇u|2 − ϕ2)

)
xk

(|∇u|2)xk
η2

− 2
∫

Ω

(k(|∇u|2 − ϕ2)uxiuxkxiηηxk
+ 2

∫
Ω

k(|∇u|2 − ϕ2)uxiuxkxk
ηηxi .

Applying the Young inequality we obtain, for δ > 0,∫
Ω

k(|∇u|2 − ϕ2)u2
xixk

η2 ≤ 1
2δ

∫
Ω

f2η2 +
δ

2

∫
Ω

u2
xkxk

η2

− 1
2

∫
Ω

(
k(|∇u|2 − ϕ2)

)
xk

(|∇u|2 − ϕ2)xk
η2 − 1

2

∫
Ω

(
k(|∇u|2 − ϕ2)

)
xk

(ϕ2)xk
η2

+
1
δ

∫
Ω

k(|∇u|2 − ϕ2)u2
xi
η2
xk

+ δ

∫
Ω

k(|∇u|2 − ϕ2)u2
xkxi

η2

+
1
δ

∫
Ω

k(|∇u|2 − ϕ2)u2
xi
η2
xi

+ δ

∫
Ω

k(|∇u|2 − ϕ2)u2
xkxk

η2. (43)
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Observing that (
k(|∇u|2 − ϕ2)

)
xk

(|∇u|2 − ϕ2)xk
= k′(|∇u|2 − ϕ2)(|∇u|2 − ϕ2)2xk

≥ 0

and choosing δ = 1
3 , from the inequality (43) we have

1
3

∫
Ω

k(|∇u|2 − ϕ2)u2
xixk

η2 ≤ 3
2

∫
Ω

f2η2 +
1
6

∫
Ω

u2
xkxk

η2

+
1
2

∫
Ω

k(|∇u|2 − ϕ2)
(
(ϕ2)xk

η2
)
xk

+ 6
∫

Ω

k(|∇u|2 − ϕ2)|∇u|2|∇η|2.

As k(s) ≥ 1, we obtain

1
6

∫
Ω

u2
xixk

η2 ≤ 3
2

∫
Ω

f2η2 +
1
2

∫
Ω

k(|∇u|2 − ϕ2)
(
(ϕ2)xk

η2
)
xk

+ 6
∫

Ω

k(|∇u|2 − ϕ2)|∇u|2|∇η|2,

and so (uε)ε is bounded in H2
loc(Ω) by (38) and (39). Passing to the weak limit in ε the conclusion holds for

the solution of the variational inequality. �

Remark 4.6 If Γ ∈ C 2 and ϕ ∈ C 2(Ω̄), Williams proved in [27] that u ∈ H2(Ω). In addition, if f ∈ Lp(Ω),
p > 2, then u ∈W 2,p(Ω).

Proposition 4.7 If f ∈ L2(Ω), ϕ ∈W 2,∞(Ω) with a positive lower bound, uε is the solution of the approxi-
mated problem (36) and u is the solution of the variational inequality (35), then

uε −−−→
ε→0

u in W 1,p
0 (Ω), 1 ≤ p <∞

and also in C 0,α(Ω̄), for 0 ≤ α < 1.

Proof By Proposition 4.4, uε −⇀
ε→0

u in H1
0 (Ω).

For Ω′ open, Ω′ ⊂⊂ Ω, as ‖uε‖H2(Ω′) ≤ C, uε −⇀
ε→0

u in H2(Ω′) and so, by compactness, uε −−−→
ε→0

u in

H1(Ω′).
In order to prove that uε −−−→

ε→0
u in H1(Ω) we fix n ∈ N and choose an open subset Ωn of Ω such that

Ωn ⊂⊂ Ω and |Ω \ Ωn| ≤ 1
n .

Observing that∫
Ω\Ωn

|∇(uε − u)|2 =
∫

Ω

|∇(uε − u)|2χΩ\Ωn
≤ ‖∇(uε − u)‖2

L4(Ω)|Ω \ Ωn|
1
2 ≤ C√

n
,

where C is independent of ε and n, we obtain∫
Ω

|∇(uε − u)|2 =
∫

Ωn

|∇(uε − u)|2 +
∫

Ω\Ωn

|∇(uε − u)|2 ≤
∫

Ωn

|∇(uε − u)|2 + C√
n

and so, since uε converges to u in H1(Ωn),

lim
ε→0

∫
Ω

|∇(uε − u)|2 ≤ C√
n
.

Noting that the last inequality is valid for any n ∈ N, we conclude that

lim
ε→0

∫
Ω

|∇(uε − u)|2 = 0.

For p > 2 we have, applying the Hölder inequality and the inequality (41),∫
Ω

|∇(uε − u)|p ≤ ‖∇(uε − u)‖p−1
L2p−2(Ω)‖∇(uε − u)‖L2(Ω) ≤ C‖∇(uε − u)‖L2(Ω)
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and so we have
uε −−−→

ε→0
u in W 1,p(Ω), 1 ≤ p <∞.

To conclude it suffices to recall that for 0 ≤ α < 1 there exists p large enough such that W 1,p(Ω) ⊂ C 0,α(Ω̄).
�

We are now able to prove Theorem 4.1.

Proof of Theorem 4.1 From the estimates obtained in Lemma 4.3 and the Banach-Alaoglu-Bourbaki theorem
we have

kε(|∇uε|2 − ϕ2)∇uε −⇀
ε→0

Υ weak-∗ in L∞(Ω)′

and
kε(|∇uε|2 − ϕ2) −⇀

ε→0
λ weak-∗ in L∞(Ω)′,

at least for a subsequence.
From now on, in order to simplify the notations,

〈α, β〉 will represent 〈α, β〉L∞(Ω)′×L∞(Ω)

and

〈〈〈α,β〉〉〉 will represent
N∑
i=1

〈αi, βi〉.

Recall that, from the previous propositions, ∇uε −−−→
ε→0

∇u in L2(Ω) and |∇u| ≤ ϕ a.e. in Ω.

Multiplying (36a) by v ∈W 1,∞
0 (Ω) we get∫

Ω

kε(|∇uε|2 − ϕ2)∇uε · ∇v =
∫

Ω

fεv (44)

and so, passing to the limit in ε,

〈〈〈Υ,∇v〉〉〉 =
∫

Ω

fv.

Replacing v by uε in (44), we have∫
Ω

kε(|∇uε|2 − ϕ2)|∇uε|2 =
∫

Ω

fεu
ε −−−→
ε→0

∫
Ω

fu = 〈〈〈Υ,∇u〉〉〉.

Observing that
(kε(|∇uε|2 − ϕ2)− 1)(|∇uε|2 − ϕ2) ≥ 0,

integrating in Ω, ∫
Ω

kε(|∇uε|2 − ϕ2)|∇uε|2 −
∫

Ω

kε(|∇uε|2 − ϕ2)ϕ2 ≥
∫

Ω

(|∇uε|2 − ϕ2)

and, letting ε→ 0,

〈〈〈Υ,∇u〉〉〉 − 〈λ, ϕ2〉 ≥
∫

Ω

|∇u|2 −
∫

Ω

ϕ2.

Hence

〈〈〈Υ,∇u〉〉〉 ≥ 〈λ− 1, ϕ2〉+
∫

Ω

|∇u|2 = 〈λ− 1, ϕ2 − |∇u|2〉+ 〈λ, |∇u2|〉.

Taking into account that

〈λ− 1, ϕ2 − |∇u|2〉 = lim
ε→0

∫
Ω

(
kε(|∇uε|2 − ϕ2)− 1

)
(ϕ2 − |∇u|2) ≥ 0, (45)

we conclude
〈〈〈Υ,∇u〉〉〉 ≥ 〈λ, |∇u|2〉. (46)
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As

∫
Ω

kε(|∇uε|2 − ϕ2)|∇(uε − u)|2 ≥ 0, then

∫
Ω

kε(|∇uε|2 − ϕ2)|∇uε|2 − 2
∫

Ω

kε(|∇uε|2 − ϕ2)∇uε · ∇u+
∫

Ω

kε(|∇uε|2 − ϕ2)|∇u|2 ≥ 0

and so,
〈〈〈Υ,∇u〉〉〉 − 2〈〈〈Υ,∇u〉〉〉+ 〈λ, |∇u|2〉 ≥ 0,

thus
〈λ, |∇u|2〉 ≥ 〈〈〈Υ,∇u〉〉〉. (47)

From (46) and (47) we obtain
〈〈〈Υ,∇u〉〉〉 = 〈λ, |∇u|2〉.

Using (44) we obtain∫
Ω

kε(|∇uε|2 − ϕ2)∇(uε − u) · ∇v +
∫

Ω

kε(|∇uε|2 − ϕ2)∇u · ∇v =
∫

Ω

fεv ∀v ∈W 1,∞
0 (Ω). (48)

Applying the Hölder inequality we get∣∣∣∣∫
Ω

kε(|∇uε|2 − ϕ2)∇(uε − u) · ∇v
∣∣∣∣ ≤ (∫

Ω

kε(|∇uε|2 − ϕ2)|∇(uε − u)|2
) 1

2
(∫

Ω

kε(|∇uε|2 − ϕ2)|∇v|2
) 1

2

.

Consequently∫
Ω

kε(|∇uε|2 − ϕ2)|∇(uε − u)|2 =
∫

Ω

kε(|∇uε|2 − ϕ2)|∇uε|2

− 2
∫

Ω

kε(|∇uε|2 − ϕ2)|∇uε · ∇u+
∫

Ω

kε(|∇uε|2 − ϕ2)|∇u|2

−−−→
ε→0

〈〈〈Υ,∇u〉〉〉 − 2〈〈〈Υ,∇u〉〉〉+ 〈λ, |∇u|2〉 = 0

and so we conclude that ∫
Ω

kε(|∇uε|2 − ϕ2)∇(uε − u) · ∇v −−−→
ε→0

0.

Passing to the limit in ε in (48) we have

〈λ,∇u · ∇v〉 =
∫

Ω

fv, ∀v ∈W 1,∞
0 (Ω)

and so (34a) is satisfied.
As ∫

Ω

(
kε(|∇uε|2 − ϕ2)− 1

)
v ≥ 0, ∀v ∈ L∞(Ω), v ≥ 0,

we obtain (34d) letting ε→ 0.
By construction we have (

kε(|∇uε|2 − ϕ2)− 1
)(
ϕ2 − |∇uε|2

)+ = 0,

and so,

0 =
∫

Ω

(
kε(|∇uε|2 − ϕ2)− 1

)(
ϕ2 − |∇uε|2

)+
v+ ≥

∫
Ω

(
kε(|∇uε|2 − ϕ2)− 1

)(
ϕ2 − |∇uε|2

)
v+

=
∫

Ω

kε(|∇uε|2 − ϕ2)ϕ2v+ −
∫

Ω

kε(|∇uε|2 − ϕ2)|∇uε|2v+ −
∫

Ω

(ϕ2 − |∇uε|2)v+, ∀v ∈ L∞(Ω).
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But∫
Ω

kε(|∇uε|2 − ϕ2)|∇uε|2v+ =
∫

Ω

kε(|∇uε|2 − ϕ2)|∇(uε − u)|2v+

+ 2
∫

Ω

kε(|∇uε|2 − ϕ2)∇(uε − u) · ∇u v+ +
∫

Ω

kε(|∇uε|2 − ϕ2)|∇u|2v+

−−−→
ε→0

〈λ, |∇u|2v+〉

since ∫
Ω

kε(|∇uε|2 − ϕ2)|∇(uε − u)|2v+ ≤ ‖v+‖L∞(Ω)

∫
Ω

kε(|∇uε|2 − ϕ2)|∇(uε − u)|2 −−−→
ε→0

0

and∣∣∣∣∫
Ω

kε(|∇uε|2 − ϕ2)∇(uε − u) · ∇u v+

∣∣∣∣
≤ ‖v+‖L∞(Ω)

(∫
Ω

kε(|∇uε|2 − ϕ2)|∇(uε − u)|2
) 1

2
(∫

Ω

kε(|∇uε|2 − ϕ2)|∇u|2
) 1

2

−−−→
ε→0

0.

So

0 ≥ 〈λ, ϕ2v+〉 − 〈λ, |∇u|2v+〉 −
∫

Ω

(ϕ2 − |∇u|2)v+ = 〈λ− 1, (ϕ2 − |∇u|2)v+〉 ≥ 0,

by (34d), concluding that

〈λ− 1, (ϕ2 − |∇u|2)v+〉 = 0 ∀v ∈ L∞(Ω).

Given w ∈ L∞(Ω), if we choose v =
w

ϕ+ |∇u|
∈ L∞(Ω), because ϕ ≥ ϕ∗ > 0, we conclude that

〈λ− 1, (ϕ− |∇u|)w+〉 = 0 ∀w ∈ L∞(Ω),

which implies (34e).

To conclude, it remains to prove that if (u, λ) solves (34) then u solves the variational inequality (35).

Given v ∈ Kϕ, as

∇u · ∇(v − u) ≤ |∇u||∇v| − |∇u|2 ≤ |∇u|
(
ϕ− |∇u|

)
,

we have

〈λ− 1,∇u · ∇(v − u)〉 ≤ 〈λ− 1, |∇u|(ϕ− |∇u|)〉 = 0,

and so, ∫
Ω

f(v − u) = 〈λ,∇u · ∇(v − u)〉 ≤
∫

Ω

∇u · ∇(v − u),

which concludes the proof. �
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financed by FEDER Funds through “Programa Operacional Factores de Competitividade - COMPETE” and
by Portuguese Funds through FCT - “Fundação para a Ciência e a Tecnologia”, within the Project Est-
C/MAT/UI0013/2011.



Assis Azevedo, Fernando Miranda and Lisa Santos 21

References

[1] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth
domains, Math. Methods Appl. Sci. 21(9) (1998) 823–864.

[2] C. Amrouche and N. E. H. Seloula, On the Stokes equations with the Navier-type boundary conditions,
Differ. Equ. Appl. 3(4) (2011) 581–607.

[3] A. Azevedo and L. Santos, Convergence of convex sets with gradient constraint, J. Convex Anal. 11(2)
(2004) 285–301.

[4] J. W. Barrett and L. Prigozhin, A quasi-variational inequality problem in superconductivity, Math. Models
Methods Appl. Sci. 20(5) (2010) 679–706.

[5] H. Brezis, Multiplicateur de Lagrange en torsion elasto-plastique, Arch. Rational Mech. Anal. 49 (1972)
32–40.

[6] H. Brezis, L. Caffarelli and A. Friedman, Reinforcement problems for elliptic equations and variational
inequalities, Ann. Mat. Pura Appl. (4) 123 (1980) 219–246.

[7] L. A. Caffarelli and A. Friedman, Reinforcement problems in elastoplasticity, Rocky Mountain J.
Math. 10(1) (1980) 155–184.

[8] V. Chiad Piat and D. Percivale, (1994) Generalized Lagrange multipliers in elastoplastic torsion, J.
Differential Equations 114(2) (1994) 570–579.

[9] P. Daniele, S. Giuffr, G. Idone and A. Maugeri, Infinite dimensional duality and applications, Math.
Ann. 339(1) (2007) 221–239.

[10] R. Dautray and J.-L. Lions. Mathematical analysis and numerical methods for science and technology,
Volume 3, Springer-Verlag, Berlin, 1990.

[11] C. Gerhardt, On the existence and uniqueness of a warpening function in the elastic-plastic torsion of
a cylindrical bar with multiply connected cross-section, Joint Sympos., IUTAM/IMU, Marseille, 1975, pp.
328–342. Lecture Notes in Math., 503. Berlin: Springer, 1976.

[12] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications,
Volume 88 of Pure and Applied Mathematics, Academic Press Inc., New York, 1980.

[13] M. Kunze and J.-F. Rodrigues, An elliptic quasi-variational inequality with gradient constraints and some
of its applications, Math. Methods Appl. Sci. 23(10) (2000) 897–908.
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[26] T. W. Ting, Elastic-plastic torsion problem II, Arch. Rational Mech. Anal. 25 (1967) 342–366.

[27] G. H. Williams, Nonlinear nonhomogeneous elliptic variational inequalities with a nonconstant gradient
constraint, J. Math. Pures Appl. (9) 60(2) (1981) 213–226.


	Introduction
	The problem with curl constraint
	The problem with gradient constraint
	The Neumann boundary condition case
	The Dirichlet boundary condition case

	Existence of a Lagrange multiplier in the case of gradient constraint and p=2

