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Abstract A fish swarm intelligence algorithm based on the filter set concept to accept, at each iteration, a
population of trial solutions whenever they improve constraint violation or objective function, rela-
tive to the current solutions, is proposed for constrained global continuous optimization problems.
Preliminary numerical results are provided.
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1. Introduction

The problem to be addressed in this paper has the form

min
x∈Ω

f(x) , subject to gj(x) ≤ 0 , j = 1, . . . ,m (1)

where at least one of the functions f, gj : Rn → R, is nonlinear and Ω = {x ∈ Rn : lk ≤
xk ≤ uk, k = 1, . . . , n}. Problems with equality constraints can be reformulated in the above
form using a small tolerance. When convexity is not assumed, problem (1) may have multiple
optimal solutions in Ω. This paper aims at proposing a stochastic method to compute a global
solution of (1). From the class of stochastic methods, swarm intelligence algorithms have
shown to be effective in reaching a global solution. Recent studies involving the artificial
fish swarm (AFS) algorithm show that highly accurate solutions may be obtained with reduced
computational costs [6, 7]. Although penalty function methods are probably the most known
constraint handling techniques, a penalty function depends, in general, on a penalty parameter.
Unfortunately, the performance of these algorithms depends strongly on the values set to the
penalty parameter throughout the iterative procedure. Adaptive penalties [9] and augmented
Lagrangian methodologies [2, 8] are just recent strategies to overcome partially this issue. The
separate use of objective function and constraint violation with the nondominance concept from
multiobjective programming, for example in [1], avoids the use of penalty parameters. Fletcher
and Leyffer [4] proposed a filter method as an alternative to penalty functions to guarantee
convergence to optimizers in nonlinear constrained optimization. This technique incorporates
the concept of nondominance to build a filter set that is able to accept solutions if they improve
either the objective function or the constraint violation, instead of a linear combination of those
two measures.
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In this paper, an artificial fish swarm filter-based algorithm, hereafter denoted by AFSFilter,
for nonlinear constrained global optimization problems is proposed. Results from preliminary
numerical experiments are provided.

2. Artificial Fish Swarm Algorithm

Here is some notation used in the paper. Constraint violation of a point x is measured by the
function

θ(x) =
m
∑

j=1

max {0, gj(x)}+
n
∑

k=1

(max {0, xk − uk}+max {0, lk − xk}) , (2)

xi ∈ Rn represents the ith point of a population of size p, and xbest is the best point in the
population. Pairwise comparisons in the population use the following concept: between two
points xi and xj , xi is better than xj if the following condition holds:

θ(xi) < θ(xj) or
(

θ(xi) = θ(xj) and f(xi) < f(xj)
)

. (3)

In the AFS algorithm, the initial population of p points is randomly generated inside the
set Ω. A crucial quantity of the algorithm is the ‘visual scope’ of a point, say xi. This is
defined as the closed neighborhood with center xi and radius equal to a positive quantity
v = ςmaxk∈{1,...,n}(uk − lk), where ς is a positive visual parameter. Let ni be the number of

points in its ‘visual scope’ (ni < p). If the condition ni/p ≤ κ holds, where κ ∈ (0, 1] is the
crowd parameter, the ‘visual scope’ of xi is said to be not crowded. Depending on the relative
position of the points in the population, one of the following three situations occurs.

1. When ni = 0, the ‘visual scope’ is empty, and the point xi, with no other points in its
neighborhood to follow, has a random behavior. Here, a point is randomly generated in
the search space, xr, and a movement is tried along the direction defined by d = xr − xi.

2. When the ‘visual scope’ is crowded, the point has some difficulty in following any particular
point, and starts by following a searching behavior. A point inside the ‘visual scope’ is
randomly generated, xs, and a movement towards it is carried out if xs is better than xi

(see condition (3)); otherwise, xi moves according to a random behavior.

3. When the ‘visual scope’ is not crowded, the point firstly tries the chasing behavior moving
towards the best point inside the ‘visual scope’, denoted by xmin, if this is better than
xi, thus being the direction of movement d = xmin − xi. Otherwise, the point tries to
follow the swarming behavior moving towards the central point, c, of the ‘visual scope’.
However, if c is not better than xi, the point tries to follow a searching behavior; and
if that randomly generated point xs is not better than xi, the point follows a random
behavior.

The algorithm also implements an elitism procedure in the sense that the best point of the
population is not moved and is maintained throughout the iterative process. For each current
point xi of the population, the trial point yi is generated according to a direction d and a step
size α ∈ (0, 1]

yi = xi + αd , i = 1, . . . , p and i 6= best. (4)

The procedure that decides if the trial solution is to be accepted and replaces the current point
is a filter method combined with a backtracking line search, as described in the next section.
The algorithm terminates with a successful run if the stopping conditions

∣

∣

∣f(xbest)− f∗
∣

∣

∣ ≤ ǫ1 |f
∗|+ ǫ2 and θ(xbest) ≤ ǫ2
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are satisfied, for small positive tolerances ǫ1, ǫ2; otherwise xi ← yi for all i 6= best and the
procedure is repeated until a maximum number of iterations is reached, where f∗ is the best
global solution of the problem available in the literature.

3. The Implemented Filter Methodology

This section briefly describes the filter methodology that aims at deciding which trial solution
is to be accepted in the sequence of Eq. (4). The herein proposed AFSFilter method uses
the filter set concept, as outlined in [3, 4], with the ability of exploring both feasible and
infeasible regions, and building a filter set that is able to accept a trial point if it improves
either the objective function or the constraint violation, relative to the current point. Filter-
based algorithms treat the optimization problem as a biobjective problem aiming to minimize
both the objective function and the nonnegative constraint violation function (2).

After a search direction d has been computed, A decreasing sequence of step sizes {αj} with
limj αj = 0 is tried, until a set of acceptance conditions are satisfied. This j denotes the
iteration counter for the inner loop. A trial step size αj might be accepted if the corresponding
trial point yi = xi +αj d is acceptable by the filter. We only require an improvement in θ or in
f , relative to the current point xi, to consider the trial point yi, in Eq. (4), to be acceptable,
as shown:

θ(yi) < θ(xi) or f(yi) < f(xi). (5)

However, when xi is (almost) feasible, the trial point yi has to satisfy only the condition of
simple reduction on f :

f(yi) < f(xi) (6)

to be acceptable. To prevent cycling between points that improve either θ or f , at each iteration,
the algorithm maintains a filter F which is defined as a finite set of entries (θ(xj), f(xj)) that
correspond to a collection of infeasible solutions xj such that no filter entry is dominated by any
of the others in the filter. During the backtracking line search procedure, the yi is acceptable
only if (θ(yi), f(yi)) /∈ F . (Only solutions that are not dominated by any entry in the filter
might be accepted.)

The filter is initialized with entries (θ, f) that satisfy θ ≥ θmax, where θmax > 0 is the upper
bound on θ. Furthermore, the filter is augmented whenever yi is accepted because condition
(5) is satisfied. When it is not possible to find a point yi with a step size αj > αmin > 0
that satisfies one of the conditions (5) or (6), a restoration phase is invoked. In this phase,
the algorithm performs a coordinate random local search around the best point, with length
10−3maxk{uk − lk}, to find a point inside [l, u] that is acceptable to the filter. If no such point
is found, the algorithm maintains the current point to the next iteration.

4. Preliminary Results

Table 1 contains the numerical results of our preliminary experiments with the AFSFilter
method. Three well-known engineering design problems are used in the comparison with the
results obtained by the Filter Simulated Annealing (SA) method proposed in [5]. The welded
‘beam’ design problem has four design variables and seven inequality constraints, the ten-
sion/compression ‘spring’ design problem has three continuous variables and four inequality
constraints and the cylindrical ‘vessel’ design problem has four design variables (two of them
are multiples of 0.0625) and four inequality constraints [5]. The size of the population is set to
p = 5n and the algorithm was allowed to run for a maximum of 200 iterations. A comparison
with the pattern search hybrid GA from MatLabTM (with the tournament selection option to
handle constraints) is also provided. A set of four small but difficult problems, with n = 2,
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selected from [2] and a technical report from the same authors1, is also tested and the results
are reported in the table for comparison with GA. The size of the population is set to p = 20
and a maximum of 50 iterations is allowed.

Each problem was run 30 times and the results reported in the table are: ‘f best’, the best
solution obtained during all the runs and ‘avg.n.f.e.’, the average number of function evaluations
(from the 30 runs). Other parameter values are set as follows: ǫ1 = 10−6, ǫ2 = 10−8, θmax = 104,
αmin = 10−3 and ς is set to one and is reduced every p iterations until it reaches 0.1. We may
conclude that the proposed AFSFilter method is effective in reaching a global optimal solution
with reasonable computational costs. New developments with further experimentation will
follow.

Table 1. Comparison of AFSFilter with Filter SA in [5] and Hybrid GA in MatLab.

Prob. AFSFilter Filter SA in [5] Hybrid GA from MatLab

f∗ fbest avg.n.f.e. fbest avg.n.f.e. fbest avg.n.f.e.

beam 2.38081 2.3866641 65 687 2.381065 56 243 2.5526753 168 119
spring 0.012664 0.0126653 35 929 0.0126653 49 531 0.0126663 3 480
vessel 5854.738 5868.974 45 283 5868.765 108 883 5859.977 21 289

Example 1 in [2] -1.0000000 -0.9983634 7 906 n.a. n.a. -0.9999910 4 027
Example 3 in [2] 1.0000000 1.0000013 10 849 n.a. n.a. 0.9999987 5 366
Example 5 in [2] -2.0000000 -2.0000330 8 180 n.a. n.a. -2.0000043 51 067

Problem 6† -9.4772944 -9.4772842 9 458 n.a. n.a. -3.2883714‡ 5 108

† Technical report MCDO-051015 (2005) in http://www.ime.usp.br/∼egbirgin/, pre-print to [2]
‡ This is a local optimal solution
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