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Summary: Several structural components made by fibre reinforced concrete (FRC) are submitted to 
axial load and bending moments. In some cases fibres cannot replace completely the conventional 
reinforcement, even if strain hardening FRC is used; therefore the optimization of the reinforcement 
solution for these elements depends on the post-cracking behaviour of the FRC, as well as the 
percentage of conventional reinforcement to replace. To fully exploit the FRC capabilities, the 
development of a suitable, comprehensive and design-oriented model of its tensile response is of the 
utmost importance. To provide a practical tool for the pre-design of FRC-structural-elements subjected 
to axial load and bending moments, design curves were generated using a computational program 
capable of simulating the main features of the tensile and compressive behaviour of strain softening 
and strain hardening FRC’s, and steel bars. The post-cracking tensile behaviour of the FRC is 
characterized by two parameters that define its residual strength ratio (α) and its corresponding tensile 
strain ratio (β). To generate these curves, a parametric study is carried out based on the tensile 
parameters α and β and considering distinct mechanical reinforcement ratios, from 0 to 1 with a step 
of 0.2. For every reinforcement ratio, four distinct cases in terms of β are considered; additionally, for 
every case of β, α is divided from strain hardening to strain softening in five distinct residual strength 
classes. By sequentially varying α and β, the bending capacity of a section is evaluated to provide a 
design perspective of the effect of ductility and strength. The model used in this study is described, the 
design curves are presented and analyzed and some practical design examples are provided. 

 

1 INTRODUCTION 

Romualdi and Mandel [1, 2] proposed for the first time the use of dispersed steel fibres for the 
reinforcement of concrete elements. Later various other researchers [3-7] have used different types of 
fibres as dispersed reinforcement. The main aim of using these fibres was to improve the resistance to 
cracking and crack propagation, as the dispersed fibres are able to hold the concrete matrix together 
even after extensive cracking. This additional ν-μ of concrete increases the post cracking energy 
absorption capacity. Most of the studies [8-11] conducted during the 70’s highlight the increase in 
terms of energy absorption capacity that strain softening FRC can provide. The strain hardening 
behaviour in tension was reported, for the first time, by Kasperkiewickz [12]. Naaman and Shah [13] 
reported inelastic response with multiple cracking and ductile failure during their experiments, which 
was later, correlated to strain hardening behaviour of this cement composite. In 2005, Naaman and 
Reinhardt [14] proposed the classification of Fibre Reinforced Concrete (FRC) based on its tensile 
behaviour assessed from unnotched tensile specimens: it is classified as strain softening FRC 
(SSFRC) if after crack initiation the stress decreases with the increase of the strain; strain hardening 
FRC (SHFRC) presents a continuous increase of tensile stress after crack initiation up to its tensile 
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failure that occurs for a strain level that in general exceeds 1% with the formation of a diffuse crack 
pattern.  

In last decades, several researchers have determined the mechanical tensile properties of FRC. 
However, despite the important advances on the material characterization, still there is a lack of 
suitable design methods for FRC. Hence proper description and improvement of design guidelines are 
needed ([15-16]) so that design and analysis can be conducted reliably. To exploit the FRC 
capabilities, in the present work a parametric study is presented on use of FRC as partial replacement 
of reinforcing steel in design of elements submitted to axial force and bending moment. 

The paper starts with a brief description of the material constitutive laws adopted in the numerical 
model for the simulation of the behaviour of the intervening materials. The residual strength ratio (α) 
and residual tensile strain ratio (β) of FRC (see Figure 1) are the most prominent features of the post-
cracking tensile behaviour, which affects the moment carrying capacity of section. For distinct 
mechanical steel reinforcement ratios (ω), starting from 0 up to 1 with increments of 0.2, a set of ν-μ 
curves are determined, taking in account the combinations of possible ductile behaviour and residual 
tensile strength of FRC. Finally, the performance of FRC is appraised by a set of design examples 
where FRC is used to replace conventional longitudinal reinforcement. 

2 CONSTITUTIVE LAWS 

The envelope curves used to simulate the tensile and compressive behaviour of steel, and the 
compressive behaviour of concrete is described elsewhere [17]. The tension envelope of FRC is 
simulated by the stress-strain diagram composed by multi-linear branches represented in Fig. 1, as 
proposed by Soranakom and Mobasher [18]. The first branch (OA, designated Zone I) simulates the 
linear-elastic behaviour of FRC up to crack initiation (εctc, fctc). After crack initiation, a SSFRC presents 
a softening phase characterized by the branch AB´, while a SHFRC shows a hardening phase 
modelled by the branch AB. This phase (named Zone II) ends at a point characterized by (εctr, fctr). The 
last phase (BC in case of SHFRC, and B´C´ for SSFRC, designated Zone III) is defined by a constant 
tensile stress up to the ultimate strain (εctu).  Zone I is characterized by the initial FRC Young’s 
modulus and ends at the strain for crack initiation (εctc) when the stress at crack initiation is installed 
(fctc). In zone II the SHFRC exhibits an increase of the tensile stress with the tensile strain due to the 
formation of multiple cracks, while SSFRC presents a decrease of the tensile stress with the tensile 
strain due to the formation of one macro-crack. By setting post cracking modulus (Ecr) to either a 
negative or a positive value, strain softening and strain hardening response can be simulated, 
respectively. Zone III is characterized by a constant stress up to a strain limit above which it is 
assumed that fibres cannot transfer the residual tensile stresses anymore, so the tensile capacity 
becomes null. The ratio between this residual stress (fctr) and fctc is represented by α, and the ratio 
between the strain at the initiation of Zone III, εctr, and εctc is designated by β. 

 

Figure 1: Schematic diagram showing concrete tensile envelope. 
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The stress-strain relationships for tension envelope are illustrated as: 

 

fct = Ec εct for 0 ≤ εct < εctc 
(1a) 

 

fct = Ec εctc + Ecr(εct - εctc) for εctc  ≤ εct < εctr 
(1b) 

 

fct = α fctc for εctr  ≤ εct < εctu 
(1c) 

 

fct = 0 for εct  εctu  

(1d) 

3 NUMERICAL MODEL 

The moment-curvature diagrams for the cross sections were generated using DOCROS, which is a 
software developed in University of Minho for Design Of CROss-Section. This model assumes that a 
plane section remains plane after deformation and bond between materials is perfect. The section is 
divided in horizontal layers, and the thickness and width of each layer is user-defined and depend on 
the cross-section geometry (Figure 2). DOCROS can analyze sections of irregular shape and size, 
composed of different types of materials subjected to an axial force and variable curvature. Composite 
layers are used when more than one material exist at same depth of the cross section. Each layer can 
have an initial non-null stress in order to simulate a pre-stress effect. The software can also analyze 
sections that have layers with distinct construction phases, such as in the case of retrofitting, where 
strengthening materials are active in later phases. DOCROS has a wide database of constitutive laws 
for the simulation of monotonic and cyclic behavior of cement based materials, polymer based 
materials and steel bars. Any layer can be assumed as control layer for which predefined incremental 
strain is assigned. Assuming the predefined strain of control layer, curvature (χ) of the cross-section is 
estimated iteratively, assuming the linear strain profile along z-axis [19]. The new constitutive model 
for modeling the tensile behavior of SS- and SHFRC was implemented in DOCROS.  
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Figure 2: Discretization of a typical section in DOCROS. 

The constitutive laws are used to calculate the stresses corresponding to the strains in the layers. 
The equilibrium of the cross section in terms of force and bending moment is attained by imposing: 
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where N and M are axial load and bending moment, respectively, and n is the number of layers along 
z-axis. If a composite layer exists at zi position (see Figure 2), σij and bij represent the stress and the 
width of layer situated at i

th
 position along z-axis and j

th
 location along x-axis, respectively. In this case 

m represents the total number of layers along x-axis at i
th
 position, and di is the thickness of i

th
 layer. 

The stress and strain are taken as positive for tension and negative for compression. The algorithm to 
obtain the M-χ relationship is described in detail elsewhere [19]. 

4 DESIGN GRAPHS 

Symmetrically reinforced cross-section of 200 mm width (b) by 400 mm height (h) with a concrete 
cover (c) of 20 mm (the bending moment mobilizes the larger moment of inertia of the cross section) 
was used to develop design curves by varying ω, α and β sequentially. Each design curve is 
designated by ωiαjβk, where i, j and k represent values of ω, α and β, respectively. The mechanical 
steel reinforcement ratio is varied from 0 to 1 with an increment of 0.2 and is calculated as: 

ω = Asfsy / bdfccp (3) 

where As is the total area of steel reinforcement in the section, fsy  and fccp are yielding stress of steel 
and the compressive strength of the concrete respectively and; b and d represent the width and 
effective depth of the section (d=h-c), respectively. As it is assumed that the residual strength can vary 
from negligible value to a maximum of twice the first cracking strength, hence j can vary from 0 to 2 
with a step of 0.5. To the value of β, represented by k, was assigned 1, 5, 10 and 30, illustrating 
negligible to significant ductility. 

A generic design curve ωiαjβk is a dimensionless N-M envelope curve, built from a set of analysis 
with DOCROS from Nmin (maximum compressive force) and its corresponding maximum moment up to 
Nmax (maximum tensile force) and its corresponding moment. In this process an increment of 100 kN 
for N was adopted. The generated data is plotted on dimensionless force (ν) and dimensionless 
moment (μ), being calculated as 

ν = N/bdfccp (4a) 

μ = M/bd
2
fccp (4b) 

In the generated ν-μ curves ν is assumed positive for compressive loads. The design values illustrated 
in Table 1 and 2 were used in the constitutive model of concrete and steel, respectively. In Table 1 εccp 
is the concrete strain at peak compressive stress. 
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Table 1: Mechanical properties of the concrete used in constitutive model. 

fccp 

(MPa) 

εccp 

(mm/mm) 

Ec 

(GPa) 

fctc 

(MPa) 

fctr 

(MPa) 

εctc 

(mm/mm) 

εctr 

(mm/mm) 

εctu 

(mm/mm) 

20.0 2.010
-3

 29.0 1.33 αfctc 4.5910
-5

 βεctc 2.010
-3

 

Table 2: Mechanical properties of the reinforcing bar used in the constitutive model. 

fsy 

(MPa) 

εsy 

(mm/mm) 

fsh 

(MPa) 

εsh 

(mm/mm) 

fsu 

(MPa) 

εsu 

(mm/mm) 

Es 

(GPa) 

348.0 1.7410
-3

 348.5 5.010
-3

 349.0 0.1 200.0 

In Table 2 fsh and fsu is the hardening stress and the ultimate stress, respectively, and εsh and εsu are 
the corresponding strains. Es and εsy represent the elasticity modulus and the yielding strain of 
reinforcing bar, respectively.  
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Figure 3: The ν-μ diagrams by varying (a) α (b) β. 

Figure 3(a) and Figure 3(b) illustrate a specific set of ν-μ curve for varying α and βrespectively, for 
constant ω(0.4). These sets of Figure 3(a) and Figure 3(b) can be described by ω0.4αjβ30 and 

ω0.4α0.5βk, respectively. It should be noted that keeping all the parameters constant; change in β 
produces coinciding curves, while change in α generates slight variation in curves; as the increase in 
flexural capacity is dependent on tensile strength of concrete and not on ductility. 
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Figure 4: The ν-μ diagrams by varying ω 
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Figure 5: The ν-μ diagrams for (a) ω=0 (b) ω=0.4 (c) ω=0.6 (d) ω=1.0. 

The ν-μ curve for varying ωfrom 0 to 1 with α=2 and β=30 is illustrated in Figure 4. With increase in 
reinforcement the bending and load carrying capacity of a section increases and as the analytical 
expressions for estimation of M and N remain same for these graphs, the generated curves are 
homologous in nature. Hence from design perspective, the favourable variation in diagrams is possible 
by varying either α or ω.  
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To present the curves in a more comprehensible way, ν, μ and β are assumed as axes, and are 
plotted for every steel reinforcement ratio separately. The ν-μ curves generated are illustrated in 
Figure 5 while the results for complete set of ω are described elsewhere [19]. To emphasize the effect 
of α for certain reinforcement ratios, Figure 5(c) and 5(d) represents a portion of ν-μ curve with ν < 0.7. 
After ν > 0.7, the failure of section is governed by the compressive parameters; hence the effect of α is 
found to be insignificant. 

 
In Figure 5 the size of the markers in the curves for each β is proportional to the α value. It is observed 
that for a definite β and ω, the flexural capacity increases with α. The favourable effect of α increases 
with the decrease of ν and ω. 

To illustrate the effect of α, the relationship μ×100/μRC versus ν is plotted in Figure 6 where 
differential dimensionless moment (Δμ) is illustrated as: 

Δμ = μFRC- μRC    (5) 

where μFRC and μRC represent dimensionless moment calculated for FRC and corresponding plain 
concrete section. 
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Figure 6: Percentage increase in dimensionless moment for (a) ω=0.2 (b) ω=0.8. 

 

A α=0 and β=1 represent the case of brittle failure. This situation can be assumed a benchmark 

similar to the plain concrete behaviour, for all ω. It should be noted that μ×100/μRC increases with the 
decrease of ν, which is attributed to the fact that by decreasing ν, the M is calculated with increasing 
number of layers in tension, resulting in favourable effect of the FRC tensile parameters. In fact this 
figure shows the favourable effect of both α and β parameters on the flexural capacity of a cross 
section submitted to axial and bending moments. This reinforces that plain concrete when replaced by 
FRC, can increase the flexural capacity of cross-sections subjected to axial and bending moments. 

While for the same ν, μ×100/μRC is observed to have increase with increase in α. From Figure 6, it is 
inferred that the effect of ductility parameter β is insignificant; as μ is related to maximum moment, 
which does not depend on ductility. 
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5  DESIGN EXAMPLES 

A surface represented in Figure 7(a) is generated by connecting a set of ν-μ design curves by 
varying β and keeping ω and α constant. This representation shows clearly the benefits of α and β 
(specially the former one) on the flexural capacity of a cross section, but its use for design purposes is 
not simple. The design surface can be simplified by creating their contour map on a 2D ν-μ 
representation, as shown in Figure 7(b), where design curves for ω=0 and ω=0.2 are plotted. 
Assuming a designer perspective, the graphic of Figure 7(b) is used to perform a design example. 
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Figure 7: (a) Design surfaces for ω=0; and (b) Design curves for ω=0 and ω=0.2. 

Consider an example with the cross section of 400 mm × 400 mm, with a reinforcement ratio of 0.2 
and clear cover of 20 mm. For this section made of plain concrete, the hypothetical design load is 380 
kN (ν = 0.125) in compression and design moments is proposed. Assuming same reinforcement ratio 
and compressive load, the section is designed by FRC and the possible increase in moment capacity 

is discussed. From the Figure 7(b) the moment is found as 164.04 kNm (μ = 0.142) on α0β1 (plain 
concrete) curve and illustrated by boxed X (in green colour). The maximum moment of ω=0.2 series is 

represented by boxed X (in blue colour, see Fig 7(b)) and found to be 193.78 kNm, an increase of 
approximately 18%. The moments for the other cases lie in between the boxed X’s, (see in Fig 7(b)) 
and are presented in Table 4 with percentage increment with respect to plain concrete case 
(ω0.2α0β1). In case of SSFRC, the moment increase is insignificant, as the peak tensile strength in 
case of SSFRC is equal to the plain concrete. However, in case where plain concrete is completely 
replaced by SHFRC the increment in moment was significant. It is to be noted that the maximum 
moment of a section depends more on the tensile strength (or residual tensile strength, α) rather than 
ductility (or β), hence SHFRC can only yield favourable result.  
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Table 4. Increase in moment for strain hardening and strain softening FRC. 

Strain 
softening 
material 

Moment 

(kNm) 

Increase in 
Moment (%) 

Strain 
hardening 
material 

Moment 

(kNm) 

Increase in 
Moment (%) 

α0β5 164.04 0.002 α1βj* 172.20 4.974 

α0β10 164.04 0.002 α1.5β5 183.45 11.831 

α0β30 164.14 0.063 α1.5β10 182.69 11.371 

α0.5β1 164.40 0.222 α1.5β30 181.18 10.450 

α0.5β5 164.40 0.221 α2β5 193.78 18.130 

α0.5β10 164.43 0.237 α2β10 193.68 18.072 

α0.5β30 164.52 0.295 α2β30 189.34 15.472 

*  j  = 1, 5, 10, 30 

Consider another hypothetical example of a conventionally reinforced continuous shallow beam 
with three supports and spans of 5000 mm each in length. The geometry, support and reinforcement 
details of RC beam are illustrated in Figure 8. The beam design is simplified, and assumed to be 
composed of two types of cross-sections. The 1400mm length on each side of middle support is 
described by S2-S’2 section and the rest of beam is described by S1-S’1 section. The permissible 
deflection (δ) of the beam is L/480 (L=5000 mm is the span length of the beam) recommended by the 
ACI 318 (2004). The beam has the longitudinal reinforcement ratio (ρ) of 1.02% and 1.13% for 
sections S1-S’1 and S2-S’2, respectively, where 

ρ = 100 (As + A’s) / bh (6) 

The beam was analysed for ultimate load carrying capacity by Femix, a finite element software 
developed with the collaboration of members of the Structural Composite research group of University 
of Minho. The analysis used Fibre model [19], in which the beam was divided in 22 Timoshenko beam 
elements of equal length, along the longitudinal direction. The cross section was divided in 40 
concrete fibres, and each steel bar is assumed as an additional fibre. The design values of concrete 
and steel are described in Table 2 and 3, respectively. After applying dead load of 2.5kN/m

2
, uniform 

distributed live load was applied until the displacement reached more than two times the permissible 
deflection. The force-deflection graphs are illustrated in figure 9, where force corresponds to total 
uniformly distributed load on each span, and deflection corresponds to mid-point of span (see point B 
in Figure 8).   

5000 5000
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Figure 8: Beam and cross-sectional dimensions 
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Figure 9: Force-deflection relationship of the continuous beam 

From Figure 9, it can be seen that there was a substantial increment in load carrying capacity of 
beam. Table 5 presents the increment in terms of load percent for two deflection levels, δ and 2δ, for 
four different post-cracking performance of FRC. It can be concluded that the benefits in terms of load 
carrying capacity provided by a certain post-cracking performance of a FRC is higher than those at the 
cross section level. The benefits in term of load carrying capacity for serviceability and ultimate limit 
states increase with the degree of the statically indeterminacy of the structure. 

Table 5. Increase in Span-Load for FRC continuous beams 

FRC material For δ deflection, 
increase in Span-Load 

(%) 

For 2δ deflection, 
increase in Span-Load 

(%) 

α0.5β5  16.62   7.5 

α1β5   31.58  14.58 

α1.5β5   45.36   20.14 

α2β5   58.21  25.95 

6  CONCLUSIONS 

The present paper presented some design-curves of strain softening and strain hardening fibre 
reinforced concrete elements subjected to axial load and bending moments. 

Due to advent of computation technology, the material properties can be used to precise value for 
finding the optimal solution, hence future design improvements are possible by improvement of 
material properties of concrete, like in case of FRC. 

The shape of interaction curve depends on mechanical properties of concrete and steel, position of 
bars, reinforcement ratio and shape of the section. As FRC itself is composed of various small fibres, 
the design curves depend on mechanical properties of such fibres significantly. 

The effect of α and β on the design a curve was noteworthy until the section failed in tension or 
was partially in tension during failure. The effect of α and β diminished for section failing in 
compression, because of the fact that neither the bending moment nor the axial load calculations are 
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governed by concrete tensile parameters. For a constant β, increasing in α has significant effect on ν-μ 
curve. The response is attributed to possible higher strength even after cracking. While increasing in β 
and keeping α constant has insignificant effect. 

The design example strengthens the fact that the FRC can be used as a partially replaceable 
material for reinforcement. The ductility parameter has insignificant effect on the maximum moment, 
but it should be noted that the structure failure is guided by ductility limits. 
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