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Abstract 

Considering the fish scales composition of hydroxyapatite and type I collagen fibrils, the 

organized and regular pattern of the scales, and also their capability to provide a form of armor 

plating to protect fish from injury and disease transmission, its potential biomedical application 

might be striking. In this work, fish scales of the specie Lates Calcarifer, also known as White 

Seabass, were studied, in particular by the assessment of their potential as model for osteogenic 

cells culture.  

For this purpose the fish scales were collected in a market in Thailand. The scales 

characterization, especially concerning their pattern, was done by observations in SEM and 

Confocal Microscope. Results showed that the overall scales pattern is formed by parallel 

concentric lines and is highly composed of collagen. An in vitro biological analysis of the scales 

when used as films to support cell (osteoblasts) proliferation was also done. In order to infer 

about the scales patterning potential on the proliferation of cells, fibroin films with the same 

pattern of the fish scales were produced, as well as and films without any pattern. To assess cell 

viability and cell proliferation, a technique denominated Alamar Blue was performed, being the 

cell proliferation higher on the scales, comparing with the fibroin films. Cell adhesion 

morphology, cytoskeleton architecture and alignment were evaluated by observations in the SEM 

and Confocal Microscope. The osteoblasts presented an orientation according to the fish scales 

pattern alignment and acquired an elongated and narrow shape. The DNA quantification and ALP 

test allowed drawing conclusions about the cell activity. The cells on the fibroin samples did not 

show any ALP activity during the 14 days of proliferation, although the ones on the scales already 

showed some activity after 14 days of the cells seeding.  

An in vitro biological analysis of the fish scales using human adipose-derived stem cells 

(hASCs) was executed, in the presence or absence of osteogenic differentiation factors. The stem 

cells behavior was very similar to the osteoblasts, presenting a strait and elongated shape aligned 

with the pattern axis.  

Results suggest that the fish scales composition and topography are responsible for a 

good cell proliferation and induce modifications in cell organization and morphology. 
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Resumo 

Tendo em conta a composição das escamas de peixe em hidroxiapatite e fibras de 

colagénio do tipo I, o padrão organizado e regular das escamas, e também a sua capacidade de 

proporcionar uma forma de blindagem para proteger o peixe de lesões e transmissão de 

doenças, a sua aplicação biomédica poderá ser espantosa. Neste trabalho foram estudadas 

escamas de peixe da espécie Lates Calcarifer, referente ao Robalo Asiático, em particular a 

avaliação do seu potencial como modelos para cultura de células osteogénicas. 

 Para este efeito, as escamas de peixe foram trazidas de um mercado na Tailândia. A 

caracterização das escamas, tendo predominantemente em conta o seu padrão, foi feita através 

de observações no SEM e Microscópio Confocal. Os resultados mostraram que o padrão global 

das escamas é constituído por linhas concêntricas paralelas e altamente composto por 

colagénio. Uma análise biológica in vitro das escamas quando usadas como scaffolds para 

suporte de proliferação celular (osteoblastos) também foi realizada. A fim de inferir acerca do 

potencial das escamas na proliferação dessas células foram também produzidos filmes de 

fibroína com o mesmo padrão das escamas e filmes sem qualquer padrão. Para avaliar a 

viabilidade e proliferação celular foi realizada uma técnica denominada “Alamar Blue”, tendo 

sido a proliferação celular maior nas escamas comparando com os filmes de fibroína. A 

morfologia de adesão celular, arquitectura do citoesqueleto e alinhamento foram avaliados por 

observações no SEM e Microscópio Confocal. Os osteoblastos apresentaram uma orientação de 

acordo com o alinhamento do padrão das escamas e adquiriram uma forma alongada e estreita. 

A quantificação de DNA e teste de ALP permitiram tirar conclusões acerca da actividade celular. 

As células nas amostras de fibroína não mostraram qualquer actividade celular durante os 14 

dias de proliferação, contudo nas escamas mostraram já alguma actividade 14 dias depois do 

início da cultura das células. 

 Uma nova análise in vitro das escamas foi feita com células estaminais do tecido 

adiposo, na presença e ausência de factores de diferenciação osteogénica. O comportamento 

das células estaminais foi semelhante ao dos osteoblastos, apresentando uma forma estreita e 

alongada e alinhadas com o eixo do padrão.     

 Os resultados sugerem que a composição e topografia das escamas são responsáveis 

por boa proliferação celular e por induzirem modificações na morfologia e organização celular. 
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1| Motivation and outline 

“Biomimetics” is a recent definition but in fact the humankind was inspired by Nature 

since the beginning of civilization. Creatures and plants possess tools and skills that are attractive 

to mimic. Mimicking nature cannot be a goal in itself, once this would hardly represent progress. 

The goal is to learn its principles, extract the general physic-chemical processes of the 

object/principle to be mimicked, and thereafter transfer it to a synthetic process or new material 

[1]. Fish scales study is relevant in order to extract some principles for appliance in different 

areas, being the biomedicine a potential environment for this praxis considering the fish scales 

composition, structure and functions. 

There are many bone diseases that can affect and condition at many levels people‟s 

lives. The traditional existent treatments are not, in many cases, an effective response for these 

problems, mainly because the bone ability to recover and regenerate is limited. Therefore the 

search for alternative and more complex methods for the treatment of bone diseases is a field 

where many developments can be achieved as a response to improve many people‟s life quality. 

Bone tissue engineering is a developing field, being an attractive approach with great potential for 

repairing bone defects since it is based in the body‟s natural biological response combined with 

engineering principles.  

 Tissue engineering is a rich and challenging area to be explored. To achieve great 

progress many small/big steps still have to be undertaken, and the testing of many hypotheses 

to be made. The fish scales study fits in this context, with great potential, as it will be mentioned 

later.    

The aims of this project were the characterization of fish scales of Lates Calcarifer more 

concerning their pattern, and the study of the scales as scaffolds with the assessment of the cells 

behavior such as proliferation, adhesion, alignment and activity. The cells used for this study 

were both osteoblasts and, in a later phase, human adipose derived stem cells (hASCs). A first 

study using osteoblasts involved the utilization of 3 groups of fish scales, differing in the 

treatments they were submitted to, and fibroin films with the same surface pattern found in the 

scales, following a biomimetic approach, and without any pattern. In the study of the role of the 

fish scales pattern over hASCs, collagen films with the scales pattern were also prepared, and the 

cells behavior in the presence and absence of osteogenic differentiation factors were compared.          



Chapter I. General Introduction 

4 

2| Bone morphology, problems and therapeutic approaches  

Bone can be regarded as a composite material composed by cells, organic and inorganic 

matrices, and an extracellular matrix (ECM). Bone cells can be further subdivided in osteoblasts 

(the bone forming cells), osteocytes (the main cells of fully formed bone), and osteoclasts (the 

multinucleated giant cells responsible for bone resorption). The organic matrix (approximately 

35% of the dry weight of bone) is mainly constituted of type I collagen (approximately 90%). 

Collagen is organized in fibers in which mineralized tissue is deposited [2] [3]. The inorganic 

matrix (approximately 60%-70% of the dry weight of bone) provides minerals for homeostasis, 

such as Ca, O, Na and Mg, and it consists of hydroxyapatite (HAp). This family of materials also 

contains other members, like dentin (material that constitutes the inner layers of teeth) and 

cementum (thin layer that binds the roots of teeth to the jaw) [4] [5] [6]. The ECM is composed 

by non-collagenous proteins, which are responsible for providing the linking structure and 

function of cells with soluble signaling factors, thus affecting cell anchorage, proliferation and 

expression [7] [8] [9].  

Typically, the adult skeleton contains 80% cortical (compact) bone and 20% trabecular 

bone. Cortical bone is hard and dense and makes up the shaft surrounding the marrow cavity of 

long bones as well as the outer shell of some other bones. Cortical bone is only 10% porous, 

allowing room for only a small number of cells and blood vessels. The structural unit of cortical 

bone is a cylindrically shaped osteon, which is composed of concentric layers of bone called 

lamellae. Blood vessels run through Haversian canals located at the center of each osteon while 

nutrient diffusion is further aided by canaliculi, or microscale canals within bone. Osteons are 

aligned in the longitudinal direction of bone and, therefore, cortical bone is anisotropic [2] [3] [4] 

[5] [6] [7]. 

Bone tissue is responsible for assuring functional properties, such as mechanical support 

and protection of the organs, and a site of attachment for muscles used in locomotion, as well as 

physiological activities, such as responsiveness to metabolic needs [4] [10]. It also acts as a 

deposit for phosphate and calcium in the preservation of normal mineral homeostasis [6]. 
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Figure 1,1 - Anatomy and microanatomy of bone (adapted from Ralston, Stuart H. Structure and metabolism of 
bone. Medicine. 2005) 

 

 

Bone is continuously remodeled during the lifespan of most vertebrates, including man. 

Bone remodeling is the result of the balance between the activities of two different cell 

populations, the osteoclasts and the osteoblasts that are responsible for bone resorption and 

deposition, respectively. Bone lesions and defects occur in an ample variety of clinical situations, 

and their reconstruction to provide mechanical and functional integrity is an essential step in the 

patient‟s rehabilitation. The potential of bone to regenerate spontaneously many bone lesions, 

such as fractures, allow the healing with conventional conservative therapy or surgery. 

Nevertheless, bone diseases are many and quite different. Current available options for treatment 

of orthopedic diseases include grafts and synthetic materials, with their respective advantages 

and drawbacks. In the treatment of some bone diseases, biomaterials play an important role and 

constitute an outstanding improvement in the quality of life of a large amount of patients, who 

would otherwise be confined to their most basic activities and limited to a painful life. Such 

diseases include skeletal loss due to trauma or removal of tumors, fractures and joint 

malfunctioning, as well as a wide spectrum of specific bone diseases [5] [7] [11] [12] .   

The deployment of bone tissue engineering has made it an attractive forthcoming with 

great potential for repairing bone defects resulted from trauma, surgical resection and congenital 

deformity corrections. Bone tissue engineering provides a promising alternative strategy of 

healing severe bone injuries by using the body‟s natural biological response to tissue damage in 
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conjunction with engineering principles. Osteogenic cells, biomaterial scaffolds, and growth 

factors are the ground base of the many bone tissue engineering strategies applied to achieve 

repair and restoration of damaged tissue. An ideal biomaterial scaffold will offer mechanical 

support in an injured site and simultaneously deliver growth factors and cells into the defect to 

encourage tissue growth. Besides that, this biomaterial should degrade in a controlled manner 

without causing a significant inflammatory response in order to restore damaged bone 

structurally and functionally [7] [10] [13] [14] [15] [16]. 

 

3| Fish Scales: Morphology and Potential 

This study focuses on the fish scales of a species denominated Lates Calcarifer, which is 

one of the nine Lates species of the family Centropomidae [17]. The normal maximum size of 

these fish is about 120 cm but they can grow up to 180 cm [18].  

Like many other structural biological materials, the fish scales structure displays a 

characteristic hierarchical structure, built over several distinct length scales (Figure 1.2) [19].   

 

 

Figure 1.2  - The hierarchical structure of a fish scale: a) fish; b) staggered multiple scales; c) an individual 
scale; d) cross-section of a scale; e) cross-ply collagen structure; f) collagen fibrils (adapted from Zhu, D., et al. 

Structure and Mechanical Performance of a ‘‘Modern’’ Fish Scale. Advanced Engineering Materials. 2011)  
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At the macroscopic level, the scales are staggered together and cover most of the body 

of the fish, providing a form of armor plating to protect the fish from injury and disease 

transmission, and they also assist in swimming by reducing water friction and resistance [20]. 

The fish scales are composed of extracellular matrix, mainly type I collagen fibers and 

calcium-deficient hydroxyapatite (HAp), which together form a highly ordered three-dimensional 

structure. Each scale consists of two distinct regions: an osseous layer and a fibrillary plate 

mainly composed of collagen [21]. Then, fish scales are composed by HAp and type I collagen 

fibrils with a plywood structure of aligned fibril sheets. This fibrils alignment is similar to those of 

bones, tendons and corneas in the human body [22] [23]. Zhu et al. (2011) [19] studied the 

mechanical properties of fish scales and concluded that these are high performance natural 

protective systems considering the importance of the structure and architecture of the scales in 

“amplifying” the properties of their components. 

Although the main sources of type I collagen are bovine or porcine dermis, outbreak of 

different transmissible diseases in pigs and cattle, restrict the use of collagens and allied 

products from these sources [24] [25] [26]. The collagen from the fish scales is unlikely to be 

associated with infections such as BSE, TSE and FMD [27] [28]. Collagen isolated from fish 

scales is already being studied for biomedical and pharmaceutical applications owing to its cell 

attachment capabilities, excellent biocompatibility, biodegradability and weak antigenicity [29]. 

Therefore, type I collagen derived from fish scales attracted much interest as an alternative 

collagen source for artificial substitutes and several authors already extracted collagen from fish 

scales and characterized it. Nagai et al. (2004) [25] reported that fish scale collagens were 

heterotrimers with chain composition of (α1)2 and α2 and the denaturation temperature was 

lower than land animal collagen. Pati et al. (2010) [21] isolated collagen from Rohu and Catla 

and this collagen had a denaturation temperature of 36.5ºC, which is promising as an advantage 

for biomedical application due to its closeness to mammalian collagen.    

Fish scales from different species present variations in size, shape and arrangement. The 

general classification includes: placoid, cosmoid, ganoid, and elasmoid (cycloid and ctenoid). 

These elasmoid scales are more evolved scales when compared with the other types being 

thinner and more flexible, which improved the swimming capability, present greater 

hydrodynamic properties and a more resistant protective layer [19]. In this study we have 

investigated scales of the elasmoid cycloid type, which are a bit like tree trunks, because, as they 

age, they form concentric lines, which provide to scientists a way of determining the age of a fish. 
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The scales pattern allows also the establishment of a correspondence to events occurred in the 

life of a fish [30]. A cycloid scale is formed of a rigid surface layer consisting of calcium-based 

salts and a fibrous inner layer mainly made of collagen. Two different calcifying mechanisms 

function for a growing scale in the fibrillary plate and the osseous layer. Calcification in the 

osseous layer happens by nucleation of crystals with generation of larger patches, and in the 

fibrillary plate by uniform growth of crystals along the calcifying front [21]. 

Cells in tissues are arranged in distinct patterns; the orientation and the position of the 

cells with respect to each other are established by the tissue type. The study of the ability to 

control the placement of cells in an organized micro-pattern, such like the existent in the fish 

scales, on a substrate has become increasingly important for tissue engineering applications, 

which require that cells can be specifically placed to generate organized structures, such as a 

neural network for example [31] [32]. Also the ability to constrain the spreading to a specific cell-

surface contact area has been shown to dramatically affect cellular development. Mechanical 

compliance of the cell-adhering substrates can also substantially affect the cells response and 

development [33]. Cells were reported to elongate in the direction of the micrometer-size grooves 

existent in the pattern and migrate as guided by these grooves, being this phenomenon 

denominated as contact guidance [34]. The disintegration and formation of fibrous cellular 

components is also influenced by surface topography. There is evidence that cell shape can 

control cell growth, gene expression, secretion of proteinases and ECM metabolism. Micro-

patterned tissue engineered constructions are expected to better preserve cell morphology, 

differentiation and functionality for long periods of time. The micro-topography provides 

directional growth for cells and also can create tissue architecture at cellular and subcellular level 

in a reproducible manner [35]. 

Fish scales study is important in order to extract some principles for application in other 

fields, being the biomedicine a potential field for this application considering the fish scales 

composition, structure and functions. Another attractive reason to study the fish scales is the 

abundance and prosperity of its source and the fact that they are directed to low-added value 

ends. Marine capture fisheries mean over 50% of total world fish production and more than 70% 

of this production has been utilized for processing. As a result, every year considerable amounts 

of total catch are discarded as processing leftovers, consisting more than 30% of this waste of 

skin, scale and bone, which are rich in collagen and have received increasing attention as 

collagen sources. Recent estimates revealed that discards from the world‟s fisheries exceed 20 



Chapter I. General Introduction 

9 

million tons, meaning 25% of the total production of marine capture fisheries. Therefore, there is 

a great potential in marine bioprocess industry to convert and utilize more of these products as 

valuable ones [36] [37] [38]. 

 

4| Scaffolds Preparation with Natural Polymeric Materials 

The main strategy of bone tissue engineering implicates the utilization of artificial 

extracellular matrixes as scaffolds in combination with specific types of cells under stimulation of 

growth factors in order to restore damaged bone both structurally and functionally. 

Biocompatibility and mechanical properties with suitable biodegradability are mandatory 

characteristics to be incorporated in these scaffolds. Matrices occurring naturally have 

advantages because of their relevant biocompatibility properties [7] [10] [13] [14] [39]. In this 

study fibroin and collagen films were prepared to be used as cell proliferation supports. 

4.1. Fibroin 

Silks are fibrous proteins commonly produced by insects and spiders. They exhibit a 

unique and useful conjunction of properties such as being degradable and lightweight with 

excellent mechanical and thermal properties. In nature, silks are used, for example, as materials 

for web construction and prey capture (spider webs), and reproduction enclosures (cocoons) 

where the silkworms are included. These features are also related to the current use of silks as 

sutures, nevertheless they are being gradually replaced by synthetic polymers. Silk consists of 

two different proteins: fibroin and sericin. Fibroin is the protein responsible for the filaments of 

silkworm silk and it can be regenerated in various ways depending on the application. Recently, 

researchers have investigated silk proteins, mainly silk fibroin, as one potential candidate 

material for biomedical applications, because it has several distinctive biological properties such 

as: significant biocompatibility, good oxygen and water vapor permeability, biodegradability, 

praiseworthy mechanical strength in the wet state, resistance against enzymatic cleavage, drug 

permeability and minimal inflammatory reaction [40] [41]. Beyond their traditional use as 

sutures, silk fibroin has been exploited as a biomaterial for cell culture and tissue engineering in 

vitro and in vivo since the mid-90s. In early studies, silk films obtained from native silkworm 

fibroin collected from glands of Bombyx mori domestic silkworms and Antheraea pernyi wild 
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silkworms were found to support the attachment and proliferation of fibroblasts. Later reports 

showed that regenerated silk films prepared by dissolution of silkworm cocoon fibers in 9–9.5 M 

LiBr supported the attachment and growth of human and animal cell lines. These studies 

provided clues to the use of regenerated silk fibroin as a scaffold or matrix biomaterial for cell 

culture and tissue engineering [40] [42] [43].  

Numerous studies have already explored regenerated silk fibroin-based biomaterials in 

various forms, including films, membranes, mats, nets, hydrogels, and porous sponges for 

biomedical applications. The in vivo behavior of biomaterials prepared from silk fibroin solutions 

has not been completely demonstrated, despite the fact that the biocompatibility and degradation 

of silk sutures, which are prepared from native silk fibers, have been well established. Previous 

studies showed that two-dimensional silk fibroin films have good biocompatibility. Recent 

progress in processing techniques has yielded three-dimensional porous silk fibroin scaffolds with 

control of morphological and structural features [40] [42] [43]. 

4.2. Collagen 

Collagen is the most abundant insoluble fibrous protein in the extracellular matrix and in 

the connective tissue. In fact, it is the major protein in vertebrates and in the animal kingdom, 

and constitutes about 25% of vertebrate total proteins and approximately 30% of all protein in the 

human body. There are at least 16 types of collagen, but 80-90% of the collagen in the human 

body consists of types I, II, and III. These collagen molecules pack together forming long 

thin fibrils with similar structure. In contrast, type IV forms a two-dimensional reticulum. Other 

types of collagen can associate with fibril-type collagens, link between each other or link with 

other matrix components. Firstly it was thought that collagens were secreted by fibroblasts in 

connective tissue, but is now known that numerous epithelial cells produce certain types of 

collagen. The various collagens existent and the structures they form have the same purpose: to 

help tissues resist stretching [44]. 

The collagen fundamental structural unit is a long (300 nm), thin (1.5 nm of diameter) 

protein that consists of three coiled subunits: two α1 chains and one α2. Each chain consists 

precisely of 1050 amino acids wounded around one another in a typical right-handed triple helix 

[45] [46]. 
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Type I collagen fibrils have a immense tensile strength, which means that such fibrils can 

be highly stretched without being broken. These fibrils, approximately 50 nm in diameter and 

several micrometers long, are packed side-by-side in parallel bundles, denominated collagen 

fibers, which can be found for example in tendons, where they connect muscles with bones and 

have to withstand high tension [44] [47]. 

In tissue engineering, collagen is being used for development of scaffolds either alone or 

in combination with other biomaterials for skin replacement, as artificial blood vessel, heart valve, 

bone graft, cartilage and ligament replacement among others. The utilization of collagen in 

pharmaceutical applications includes production of wound dressings, vitreous implants and as 

carriers for drug delivery. The applications of collagen in drug delivery systems are quite diverse 

such as collagen shields in ophthalmology, sponges for burns/wounds, mini-pellets and tablets 

for protein delivery, gel formulation in combination with liposomes for sustained drug delivery, as 

controlling material for transdermal delivery, and nanoparticles for gene delivery. In addition, 

collagen is used as surgical sutures and as haemostatic agent [29] [48] [49] .  

 There are many attractive characteristics that make the collagen type I a popular ECM of 

connective tissue. Some examples are: biocompatible, osteocompatible, fibrous, adhesive, 

cohesive, nonfriable, suturable, highly porous, can be combined with other materials, etc. The 

main limitation is the inexistence of inherent rigidity [39] [50]. To optimize this mechanical 

property and modify the biodegrading rate, an effective method commonly used is the cross-

linking of the collagen or the addition of ceramics, such as hydroxyapatite [51]. 

 

5| Cell Types 

As previously referred, in bone tissue engineering, cells play a fundamental role for the 

bone regeneration. For that reason, the utilization of cells with the ability and potential for 

osteogenesis is mandatory.       

5.1. Osteoblasts 

Osteoblasts are cells of mesenchymal origin responsible for synthesis and mineralization 

of bone during both bone formation and bone remodeling. They form a closely packed sheet on 

the bone‟s surface, from which cellular processes extend through the developing bone.  The 
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goals for scaffolds in bone tissue engineering include suitable chemistry, morphology and 

structure in order to promote cell adhesion for osteoblasts, their further migration, and synthesis 

of extracellular matrix and mineralization [52] [53] [3]. 

The osteoblasts form organic, non-mineralized bone matrix and are involved in complex 

interactions with a variety of factors, mediators and cell types [54]. Mature osteoblasts are highly 

polarized, and present a prominent Golgi apparatus which is typical of highly secretory cells. The 

main secretory product of osteoblasts is type I collagen [55]. 

5.2. Adipose-derived Stem Cells 

Tissue engineering and regenerative medicine are multidisciplinary sciences evolved in 

parallel with recent biotechnological advances. It combines biomaterials, growth factors, and 

stem cells to repair failing organs. Stem cells are characterized by their capability to self-renew 

and their ability to differentiate along multiple lineage pathways. Among the several types, human 

subcutaneous adipose tissue emerges as a source of adult or somatic stem cells [56].  

Due to the increased incidence of obesity all over the world, subcutaneous adipose tissue 

is abundant and readily accessible. For example, approximately 400,000 liposuction surgeries 

are performed in the United States of America every year. These procedures can yield from 

100mL to 3L of lipoaspirate tissue. This resultant material is routinely discarded [57].  

Recent developments in the field of stem cells suggested that hASCs can be induced into 

adipogenic, osteogenic, chondrogenic, and myogenic lineages under appropriate conditions. 

hASCs are easy to obtain, have relatively lower donor site morbidity and a higher yield at harvest, 

and can expand more rapidly in vitro compared with BMSCs for example, which are now 

commonly used as seed cells for bone repair and regeneration. In addition, hASCs have 

multipotency which is independent of serum source and quality. Thus, hASCs might be a novel 

and very promising alternative cell source for bone tissue engineering [13]. 

 

6| Concluding Remarks 

Bone diseases are variable and can affect people in different levels. The existent 

treatments are, in many cases, not enough for good recovery of the patient. There is still much 
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room for development of more effective treatment strategies and bone tissue engineering can 

provide promising alternatives for more efficient treatments. 

 Bone tissue engineering has a long path to be explored and the definition of the best 

strategies to achieve better results is still not clear. Therefore, attempts to find different 

alternatives are important, being the study of the effect of fish scales pattern on osteoblasts and 

stem cells the testing of hypothesis that can extend the knowledge of cells behavior when 

submitted to different environments. 

 Fish scales present interesting characteristics attractive for their study as cellular 

supports, such as being highly composed of collagen and hidroxyapatite and presenting a very 

organized structure.   
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1| Fish Scales Preparation 

The fish scales to be studied were collected from a market in Thailand. The studied fish 

specie was Lates Calcarifer, being the common name White Seabass.  

The scales preparation procedures were adapted from Ikoma T. et al [26] and Pati F. et 

al [5]. In brief, the scales were immersed in distilled water and conserved at 4ºC. A group of 

scales was stored in an antibacterial solution of sodium azide 1%wt for further investigation of 

this group of untreated fish scales (G1). The remaining scales were washed twice in 10%wt of 

NaCl solution, to remove unnecessary proteins on the surface, for 48h. Afterwards, one part of 

these scales was washed with distilled water forming a second group (G2), and the remaining 

scales were submitted to a process of demineralization and extraction of the soluble collagen, in 

order to achieve the third group of scales (G3). For the demineralization, it was used a solution of 

0.5 mol/L of EDTA, to immerse the fish scales for 48h. Then the extraction of soluble collagen 

was done by the immersion of the scales in a solution of 0.5 mol/L of Tris, HCl buffered at pH 

7.5, for 48h. Scales were finally washed with distilled water and kept in it until further use. 

 

2| Fish Scales Characterization 

2.1. Morphology 

The scales of the 3 groups were observed in the Optical Microscope (Axiotech, Zeiss) and 

in the SEM (Supra 40, Zeiss) in order to analyze the surface patterns. They were also observed in 

the Polarized Microscope and in the Confocal Laser Microscope (Eclipse, Ti-E, Nikon). 

2.2. Collagen Imaging 

Confocal Laser Microscope (Eclipse, Ti-E, Nikon) was used to evaluate collagen 

architecture on different group samples, and Direct Red 80 [27] was used as unspecific stain for 

collagen, typically used for detection in tissue histological section. Samples were stained for 60 

minutes in an aqueous solution of 0.1% of Sirius Red F3BA (Sigma Aldrich) saturated with picric 

acid, pH 2. After that, samples were washed for 2 minutes in 0.01M HCl, rinsed in ethanol 70%, 

and dehydrated with ethanol gradients, 70, 90, and 2x100%. 
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3| Fibroin Films 

3.1. Fibroin Production 

In addition to G1, G2 and G3 groups, two more groups were created. Fibroin films with 

the same patterning as the scales (F1), and fibroin films without patterning (F2), in order to allow 

drawing conclusions about the pattern role in the cellular behavior. 

In order to mimic the fish scales pattern, the material selected was the fibroin. To 

prepare the fibroin needed, the process was divided in two steps: degumming and dissolution. 

 

Degumming 

Bombyx mori cocoons (kindly provided by Socio Lario, Cassina Rizzardi, Como, Italy) 

were degummed for 1.5 hours in a bath of boiling water containing 1.1 g/l Na2CO3 (10 g of silk in 

1L of solution), then for 1.5 hours in another bath of boiling water containing 0.4 g/l Na2CO3. 

After the two baths cocoons were rinsed thoroughly with distilled warm water to remove salts and 

dried in air.  

 

Dissolution 

Fibroin-water solutions were prepared by dissolving the fibroin obtained in the previous 

step in 9.3 M LiBr (Fluka Chemical) aqueous solution (1g/10ml) at 65°C for 2 hours, followed 

by dialysis against distilled water with a 3500 Da MWCO membrane (Slyde-A-Lyzer, Pierce) in 

order to eliminate salts. 

The concentration of the resultant fibroin solution was measured by UV-VIS 

spectrophotometer (Nanodrop). The solution was then diluted to a concentration of 2.5% w/v. 

The pH of the solution was 5. 

3.2. Construction of fibroin samples with the fish scales pattern (F1) 

 The first step of this process was the creation of silicon molds with the fish scales 

pattern. This was achieved using a plate with nine prominent cylinders with a glued fish scale 

with the pattern turned up on the top of each cylinder, as shown in figure 2.1. 
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Figure 2.1 - Plate where the scales were glued and covered with silicon to form the molds with scale patterning 

 

The plate was filled with a silicon solution (Sylgard Silicone Elastomer kit 184) and the air 

bubbles were removed with the aid of a dissector. Then the plate was transferred to an oven at 

65ºC during 24h. The resultant molds contained negatives of fish scales patterns. The result of 

this process is shown in figure 2.2, as the bottom of each of its wells transducers the negative of 

the fish scales pattern. 

 

 

Figure 2.2 - a), b) - Silicon mold with the negative of the fish scales pattern in the bottom of each well 

 

 Figure 2.3 refers to the pattern seen in one of the resultant negatives using the Optical 

Microscope (Axiotech, Zeiss), being similar to the fish scales pattern, as it will be shown further 

ahead. 

 

Figure 2.3 - a), b), c) - Pattern of the negatives existent in the bottom of each well of the silicon mold 



Chapter II. Materials and Methods 

24 

 

To achieve the copy of the pattern of the fish scales, the wells containing the negatives 

were filled with the fibroin solution and left drying for 3 days at room temperature. From each 

well, a sample of fibroin like the one shown in figure 2.4 was produced. 

 

Figure 2.4 - Fibroin sample with a pattern similar to the fish scales 

 

Figure 2.5 shows the pattern of one of the resultant samples of fibroin observed using 

the Optical Microscope, similar to the fish scales, as shown. 

 

Figure 2.5 - a), b), c) - Fibroin sample pattern observed in the Optical Microscope 

 

 In order to stabilize the fibroin samples, these were immersed in an aqueous solution of 

methanol 80% for 20 minutes, and then washed with distilled water. This procedure was shown 

not to affect the pattern. 

3.3. Construction of the fibroin samples without pattern (F2) 

Fibroin films were prepared by casting aqueous solutions with 2.5% w/v of total protein 

content on polyethylene plates at room temperature for 2 days. After that, the film was cut in 

circles with controlled diameter.  All resulting films were stabilized using the same procedure as 

the samples with the scale pattern. 
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Figure 2.6 - Fibroin sample without any pattern 

 

 

4| Collagen films 

4.1. Extraction of collagen from fish scales 

In a first phase the idea was to construct collagen films with collagen directly extracted 

from fish scales. Fish scales were collected from the company Ramirez. These scales were from 

the fish kind Sardina pilchardus, being the common name Sardine. 

 The scales were preserved in the freezer at -80ºC till their utilization. At this time they 

were washed several times with water and then completely dried with the aid of a liophilizer in 

order to measure their weight. The Sardine fish scales were treated with 10 % NaCl solution 

during 48h to remove unnecessary proteins. Then, they were demineralized by immersion in 0.5 

mol/L EDTA solution during 48h. To extract the collagen from the scales, these were immersed 

in 0,5mol/L Tris-HCl solution, buffered at pH 7.5, at 4 ºC, during 48 hours. The resultant 

suspension was centrifuged at 4ºC and 10,000 x g for 20 minutes to separate the collagen. The 

resultant residue of this process was dissolved in 0,01M HCl solution. After 48 hours, the 

collagen was precipitated from the acid solution by increasing solution pH to 7 by addition of 

NaOH solution. The acid soluble collagen was then separated by filtration and washed with 

distilled water. The collagen was further purified by dissolution in 0.5M acetic acid, dialized 

against 0.1M acetic acid during 2 days.  

For the quantification of the collagen existent in the solution after the dialysis was 

executed a method named as SIRCOL. Firstly was labeled a set of microcentrifuge eppendorfs. 

Then was prepared a standard curve, being the blanks constituted of 100µL of acetic acid 0,1M 

and the collagen standards (5, 10, 20, 30, 40µg) and making 100µL by adding acetic acid 0,1M 
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and finally vortexing these mixtures. The test samples were done in duplicate having each sample 

100µL too. To each eppendorf created was added 1mL of Sircol Dye reagent. The eppendorfs 

were placed in a mechanical shaker for 30 minutes for the binding of the Sircol dye with soluble 

collagen. The eppendorfs were transferred to a micro centrifuge and spin at 13.000g for 10 

minutes. The unbound dye solution was removed by carefully inverting and draining the tubes. 

Remaining droplets were removed by gently taping the inverted eppendorf. To each eppendorf 

was added 1mL of the Alkali reagent and the bound dye was released into solution using a 

vortex. After dissolution, the samples absorbance was measured using the Spectrophotometer 

set to a wavelength of 540nm. This data was collected and used to infer about the collagen 

existent by comparing the obtained values for the samples with the obtained standard curve. The 

yield of collagen extracted was very low, being about 0.01% on dry weight basis. 

As an attempt to raise the efficiency of the process of collagen extraction, to the previous 

procedure were changed some parameters. This time, the whole procedure was executed at a 

temperature of 4ºC; the scales while immersed in the solutions for unnecessary proteins 

removal, demineralization and collagen extraction were submitted to constant agitation; the 

suspensions centrifugation was done at 20,000 x g for 1 hour; and the dialysis was done against 

0,5M acetic acid instead of 0,1M. This attempt succeeded with a raise in the yield of collagen 

extracted, being this time of about 0.2% on dry weight basis. Although this method was still very 

inefficient, even after executing this procedure five times the collagen collected was still in a very 

low quantity for the application it was needed – the production of collagen films. 

 After this, the encountered way was to produce the collagen films with already available 

collagen and with still fish origins, being the solution the production of the films based on shark 

skin collagen.   

4.2. Construction of shark collagen films with scales patterning 

 The shark skin collagen used was kindly provided by Ricardo I. Perez-Martin and Carmen 

G. Sotelo (CSIC, Inst Invest Marinas, Vigo 36208, Galicia, Spain). For the production of the films 

the collagen concentration used was 4% dissolved in acetic acid 0,5M. For the formation of stable 

films was then needed the cross-linking of collagen. For the cross-linking the first tries were with 

EDC and NHS but these were somehow frustrated because the results were always a gelatin, 

being unstable films. The solution found was the utilization of Genipin for the cross-linking. For 
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that, Genipin was added to the collagen solution in order to be in a concentration of 10mM. 

Then, while stirring, the solution was inserted in a mineral oil bath at 37ºC and controlled while 

was getting more and more viscous and changing to a darker color. After about 3h of this 

process the solution was already darker and more viscous and was transferred to proper 

recipients. 

 The shark skin collagen films with the fish scales pattern were achieved with the 

utilization of silicon molds with wells with the scales pattern which were constructed with a 

similar method as the one described in section 2.1.2. Each well of these molds was filled with 

1mL of the collagen solution prepared and after 3 days were formed stable dry collagen films 

with the fish scales pattern. 

 

5| In vitro Biological tests 

The experiment in vitro described below was preceded by a simpler in vitro experiment. 

This experiment studied the cellular behavior (osteoblasts) when seeded on the fish scales from 

the 3 groups for 5 days. Promising results were achieved by the execution of the Alamar Blue 

tests, Confocal Microscope and SEM analysis. 

5.1. Cells culture and seeding 

Before the in vitro tests, the scales (G1, G2, G3) and fibroin films (F1, F2) were 

immersed in ethanol 70% at 4ºC respectively for 24 hours and 2 hours and washed with sterile 

distilled water. 

Osteoblasts of MG63 cell line were cultured in Minimum Essential Medium (MEM) 

(Invitrogen), 10% Fetal Calf Serum, 1% Sodium Piruvate, 100 mM Euroclone, 2% L-glutamine 100 

mM Euroclone, Non Essential Aminoacids Gibco, and 1% of Antibiotic / Antimicotic. Cells were 

cultured in an atmosphere of 37ºC and 5% CO2.  After the cells have reached confluence, they 

were detached by the removal of the medium, the washing of the flask with PBS and the addition 

of trypsin. The cell concentration was 1,0x105 cells/ml. To execute this protocol, 37 samples 

from each group (G1, G2, G3, F1 and F2) were used. After 1 day, 4 samples of each group were 

removed from the experiment to be analyzed (2 by SEM and 2 by Confocal Microscope), and 

another 4 samples from each group were removed for the ALP test. The same was done after 3, 
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7 and 14 days, when the experiment was concluded. It is important to mention that the samples 

for the Alamar Blue test were always the same. This means that 5 samples from each group 

were used during the whole experiment, since this procedure does not damage the cells. The in 

vitro experiment had the duration of 14 days: day 0 was considered the day of seeding; on day 1 

all the samples were switched to different well plates in order to remove all the cells not attached 

to the samples from the equation, as well as it was the first day of control; day 3 was the second 

day of control; on day 5, a change of the medium was done; day 7 was the third day of control; 

on days 9 and 11, a change of medium was done; and finally day 14 was the last day of control. 

On the days of control, the Alamar Blue test was performed and the samples to be controlled in 

that day were submitted to a protocol of fixation.  

The potential of fish scales to support the osteogenic differentiation of human adipose 

derived stem cells (hASCs) was studied. Scales from Lates calcarifer were submitted to a 

treatment for removal of unnecessary proteins on their surface by immersion in NaCl (Panreac) 

10%wt during 48h, equivalent to the already mentioned for the G2 samples. All the scales were 

cut in circles with 10mm of diameter and immersed in ethanol 70% during 2 hours for 

sterilization. After this, scales were washed with sterile PBS. Cells were cultured in basal culture 

medium (α-MEM plus 10% FBS and 1% of A/B) and standard osteogenic medium (α-MEM plus 

10% FBS and 1% of A/B, and supplemented with 10 mM beta-glycerophosphate, 50 g/mL of 

ascorbic acid and 10-8M of dexamethasone). hASCs at passage 2 were seeded at a density of 

2000 cells/cm2. The quantity of medium immersing each sample was of 1ml. Tissue culture 

polystyrene coverslips (TCPs) were used as controls. Cultures were maintained for 1, 3, 10, 21 

and 30 days.  

5.2. AlamarBlue Assay 

AlamarBlue assay kit (Biosource International Inc., USA) was used to assess metabolic 

activity at the end of each experimental time point of the studies with MG63. This technique is a 

quantitative process providing a linear measurement over time, being safe and nontoxic for the 

cells. It is designed to measure the proliferation of various human and animal cell lines 

quantitatively. A higher proliferation causes a larger absorbance value as well as a larger 

percentage of reduced alamarBlue. The assay was performed according to the manufacturer‟s 

instructions [4]. 
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In brief, the seeded samples were incubated for 4 hours at 37°C with fresh culture 

medium (with reduced serum) supplemented with alamarBlue diluted according to 

manufacturer‟s data sheet (simply adding the alamarBlue reagent as 10% of the sample volume). 

A total of 3 replicates were used for each sample and each replicate was split into 4 wells for the 

final reading. The references were taken from wells with unseeded samples incubated with the 

alamarBlue solution, wells with only culture medium, and wells with only cells. Absorbance was 

measured at 570 nm and 620 nm with a photometric microplate reader (Multiskan EX, 

ThermoLabsystems, Finland) and the percentage of reduced alamarBlue was calculated. The 

whole procedure was executed in the absence of light. 

 The calculations to get the percentage of reduced alamarBlue (being this percentage 

directly proportional to the quantity of cells existent) were: 

- Subtract the absorbance values of medium only from the absorbance values 

of Alamar Blue. 

- Calling AOLW = absorbance of form at lower wavelength, and AOHW = 

absorbance of oxidized form at higher wavelength, correction factor:  

R0 = AOLW / AOHW. 

- To calculate the percentage of reduced Alamar Blue in a specific well: 

%Reduced = ALW – (AHW x R0) x 100, being ALW the absorbance at 570nm and 

AHW the absorbance at 620nm. 

Statistical Analysis 

Statistical Analysis was performed for the AlamarBlue assay results which are presented 

as means ± STDEV (Standard Deviation of the Mean). Friedman Test (non- parametric test 

equivalent to One Way Repeated Measurements ANOVA) was performed for each group analyzed 

along time. One Way ANOVA on Ranks followed by Tukey Test was performed for each time point 

for group comparison (SigmaStat 3.0, SPSS, Chicago, IL, USA). 

5.3. Confocal Laser Microscope (CLM) Analysis 

Evaluation of cell attachment, distribution, and morphology on fish scales (G1, G2 and 

G3) and fibroin films (F1 and F2) seeded with MG63 was performed by confocal laser 

microscopy (Nikon Eclipse, Ti-E) after Phalloidin Rhodamine (Biosource International, Invitrogen) 

and DAPI (Sigma Aldrich) staining according to the manufacturer‟s protocol. Fixation with a 
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formaldehyde solution (4% formaldehyde in PBS solution) and permeabilization with TritonX 100 

(0.2% TritonX in PBS solution) were performed before staining. 

5.4. Scanning Electron Microscope (SEM) Analysis 

Morphological observations were performed with scanning electron microscopy (Supra 

40 Zeiss), operating mode: high vacuum, secondary electron detector) on fish scales (G1, G2 and 

G3) and fibroin films (F1 and F2) seeded with MG63. At each time point, films were fixed with 

gluteraldehyde solution (2,5% gluteraldehyde in cacodylic buffer solution, 0,1 M) to preserve 

biological structures. Samples dehydration was performed by soaking in a series of aqueous 

ethanol solutions at increasing concentrations from 30% - 100% and drying in air at room 

temperature. Before SEM imaging, all samples were sputter coated with gold (SEM Coating Unit 

PS3, Assing S.p.A., Rome, Italy). 

5.5. Alkaline Phosphatase (ALP) activity quantification  

Alkaline Phosphatase (ALP) is the biochemical marker of osteoblastic bone formation 

most frequently used. The activity of ALP is evaluated using p-nitrophenol assay. Para-nitrophenyl 

phosphate, which is colorless, is hydrolysed by alkaline phosphatase at 37ºC to form free 

paranitrophenol, which is colored yellow. The reaction is stopped by addition of NaOH and the 

absorbance read at 405 nm. 

Osteoblastic activity on fish scales (G1, G2 and G3) and fibroin fims (F1 and F2) was 

monitored measuring Alkaline phosphatase activity (ALP) based on the conversion of p-

nitrophenyl phosphate to p-nitrophenol. Firstly, solutions were added in nine test tubes (Sample 

Diluent, Buffer Solution and p-Nitrophenol Standard) in order to build a standard curve, as shown 

in table 2.1. 

Tube # 1 2 3 4 5 6 7 8 9 

Sample Diluent (µL) 250 250 250 250 250 250 250 250 250 

Buffer Solution (µL) 250 245 240 230 220 210 200 190 180 

pNP Standard (µL) 0 5 10 20 30 40 50 60 70 

Concentration (µmol/mL) 0 1 2 4 6 8 10 12 14 

Table 2.1 - Solutions execution for the nine test tubes in order to build the standard curve for ALP test 
(osteoblasts) 

 All the tubes were vortexed and then 100µl from each standard tube were transferred to 

a 96-well plate. After this, the same quantity of NaOH solution was added to all the standard 
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wells and measured spectrophotometrically at 405 nm in a microplate reader (Multiskan EX, 

ThermoLabsystems, Finland), to set up the calibration curve. 

To prepare the samples reading, 50µl from each sample (all the samples in 

quadruplicate) were put in a 96-well plate, 50µl of 0.05% Triton-X (Sigma) in PBS were put in 6 

wells to use as blank, and then 50µl of Buffer Solution were added. Finally the samples were 

incubated at 37ºC till the majority of the solutions in the wells turned yellow, which happened 

after 3h20mins for the samples from days 1 and 3 of control, and after 1h42mins for the 

samples from days 7 and 14 of control.  

This procedure presented some differences when executed for the scales of G2 seeded 

with hASCs. The following solutions were used: substrate buffer (1M Diethanolamine HCl, pH9.8 

- Sigma); substrate solution (0.2% w/v p-nytrophenyl phosphate in substrate buffer); stop solution 

and blank (2M NaOH/0.2mM EDTA); product/standard solution (p-nytrophenol stock solution 

10µmol/ml – Sigma); and PBS. 

 In each well of 96-well plates the following mixture was made: 20µl of sample and 60µl 

of substrate in triplicate. Then the 96-well plates were incubated at 37ºC for 45min. After the 

incubation period, 80µl of stop solution were added to each well. The ALP standards were 

prepared according to table 2.2: 

pNP Stock Solution (µl) 0.0 0.8 1.6 2.4 3.2 

Stop Solution (µl) 160 159.2 158.4 157.6 156.8 

Standard Concentration (µmol/ml) 0.00 0.05 0.10 0.15 0.20 

Table 2.2 - Solutions execution for the nine test tubes in order to build the standard curve for ALP test  

(stem cells) 

 

5.6. Macro BCA Protein Assay 

 In order to find the protein concentration of all samples, the Macro BCA Protein assay 

(micro BCA protein assay kit, Thermo Scientific, USA) was performed. In nine test tubes, the 

standard solutions were prepared, using different concentrations of Sample Diluent and Albumin 

Standard in each tube, as shown in table 2.3.  

Tube # 1 2 3 4 5 6 7 8 9 

Sample Diluent (µL) 200 195 190 180 160 140 120 100 80 

Albumin Standard (µL) 0 5 10 20 40 60 80 100 120 

Concentration (µg/µL) 0 0.05 0.1 0.2 0.4 0.6 0.8 1 1.2 

Table 2.3 - Solutions execution for the nine test tubes in order to build the standard curve for BCA assay 
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All the tubes were then vortexed and 25µl were transferred in triplicate to a 96-well plate, 

in order to measure the absorbance and create the calibration curve. 

 To prepare the samples absorbance reading, 25µl from each one were transferred in 

duplicate to a 96-well plate. Another 6 wells were used as blank, putting 25µl of Sample Diluent 

in each one. Then, to each well, including standards, samples and blanks, 200µl of working 

solution was added (prepared with two different reagents as indicated in protocol). Finally the 

samples were incubated at 37ºC for 30 minutes and read in the microplate reader (Multiskan EX, 

ThermoLabsystems, Finland) at 570nm. 

5.7. DNA measurement 

DNA content in fish scales (G1, G2 and G3) and fibroin fims (F1 and F2) seeded with 

MG63 was measured through Picogreen, according to the manufacturer‟s protocol (Quant-iT 

PicoGreen dsDNA Assay Kit (Invitrogen). Firstly, the preparation of TE solution and a dilute 

PicoGreen solution following a protocol (Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen) was 

performed. With the prepared solutions, eight assay tubes were filled with different quantities in 

order to set the standard solutions. To the wells of a 96-well plate, 100µl of the standards and 

samples in duplicate were transferred, and 100µl of PicoGreen solution were added. Finally, the 

plate was read on a fluorescent plate reader, exciting at 485nm and reading at 538nm. 

The procedure executed for the DNA quantification for the scales of G2 seeded with 

hASCs presented some differences. After the samples defrosting and the preparation of the 

necessary solutions following the previously mentioned indications of the assay kit manufacturer, 

in each well of 96-well white opaque plates the following mixture was made: 28.7µl of sample or 

standard, 71.3µl of Picogreen solution and 100µl of 1XTE. Then the plates were incubated in the 

dark for 10min and the fluorescence read using the parameters of excitation of 485nm and 

emission of 528nm. 

5.8. Fluorescence Microscopy Analysis 

Evaluation of stem cell attachment and distribution on the seeded samples was 

performed by fluorescence microscopy using a Zeiss Axioimager Z1 microscope (Zeiss, Germany) 

after Phalloidin Rhodamine (Sigma) and DAPI (Sigma) staining according to the manufacturer‟s 

protocol. Fixation with Formalin 10% (BioOptica) was performed before staining. 
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Abstract 

“Biomimetics” refers to human-made substances, processes, devices, or systems that 

somehow imitate nature. Creatures and plants possess tools and skills that are attractive to 

imitate, being the goal to learn its principles, and thereafter transfer the principle to a synthetic 

process or new material. Considering the fish scales composition of hydroxyapatite and type I 

collagen fibrils, and also their capability to provide a form of armor plating to protect it from injury 

and disease transmission. The fish scales study will allow us to extract some principles for 

application in other fields, being the biomedicine a potential field for this application. In the 

present work, fish scales of the specie Lates Calcarifer, also known as White Seabass, were 

studied. Scales characterization was done by observations in the Optical Microscope, SEM and 

Confocal Laser Microscope, with specific focus on their pattern. Fish scales were found to be very 

organized consisting mainly of parallel concentric grooved lines.  In vitro biological analysis of the 

scales was performed using them as patterned films for cell culture. Scales supported cell 

proliferation and the cells presented an orientation according to the fish scales patterning 
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alignment both for osteoblasts (MG63) and hASCs, acquiring an elongated and narrow shape. 

The present work is the first to evaluate cell behavior induced by fish scale patterning.  

 

1| Introduction 

 “Biomimetics” is a recent definition but in fact the humankind was inspired by Nature 

since the beginning of civilization. Creatures and plants possess tools and skills that are attractive 

to mimic. Mimicking nature cannot be a goal in itself, once this would hardly represent progress. 

The goal is to learn its principles, extract the general physic-chemical processes of the 

object/principle to be mimicked, and thereafter transfer it to a synthetic process or new material 

[1]. Fish scales study is relevant in order to extract some principles for appliance in different 

areas, being the biomedicine a potential environment for this praxis considering the fish scales 

composition, structure and functions. 

This study focuses on the fish scales of a specie denominated Lates Calcarifer, which is 

one of the nine Lates species of the family Centropomidae [2] [3]. 

At the macroscopic level, fish scales are staggered together and cover most of the body 

of the fish, providing a form of armor plating to protect the fish from injury and disease 

transmission, and they also assist in swimming by reducing water friction and resistance [4]. 

The fish scales are composed of extracellular matrix, mainly type I collagen fibers and 

calcium-deficient hydroxyapatite (HAp), which together form a highly ordered three-dimensional 

structure. Each scale consists of two distinct regions: an osseous layer and a fibrillary plate 

mainly composed of collagen [5]. Fish scales are composed by HAp and type I collagen fibrils 

with a plywood structure of aligned fibril sheets. This fibrils alignment is similar to those of bones, 

tendons and corneas in the human body [6] [7]. Zhu et al. (2011) [8] studied the mechanical 

properties of fish scales and concluded that these are high performance natural protective 

systems, considering the importance of the structure and architecture of the scales in amplifying 

the properties of their components. 

Fish scales from different species present variations in size, shape and arrangement. The 

general classification includes: placoid, cosmoid, ganoid, and elasmoid (cycloid and ctenoid). 

These elasmoid scales are more evolved scales when compared with the other types being 

thinner and more flexible, which improved the swimming capability, present greater 
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hydrodynamic properties and a more resistant protective layer [8]. In this study we have 

investigated scales of the elasmoid cycloid type, which are similar to tree trunks, because, as 

they age, they form concentric lines, which provide to scientists a way of determining the age of a 

fish. The scales pattern allows also the establishment of a correspondence to events occurred in 

the life of a fish [9]. 

Cells in tissues are arranged in distinct patterns; the orientation and the position of the 

cells with respect to each other are established by the tissue type. The study of the ability to 

control the placement of cells in an organized micro-pattern, such like the existent in the fish 

scales, on a substrate has become increasingly important for tissue engineering applications, 

which require that cells can be specifically placed to generate organized structures, such as a 

neural network for example [10] [11]. Also the ability to constrain the spreading to a specific cell-

surface contact area has been shown to dramatically affect cellular development. Mechanical 

compliance of the cell-adhering substrates can also substantially affect the cells response and 

development [12]. Cells were reported to elongate in the direction of the micrometer-size grooves 

existing in the pattern and migrate as guided by these grooves. The disintegration and formation 

of fibrous cellular components is also influenced by surface topography. There is evidence that 

cell shape can control cell growth, gene expression, secretion of proteinases and ECM 

metabolism. Micro-patterned tissue engineered constructions are expected to better preserve cell 

morphology, differentiation and functionality for long periods of time. The micro-topography 

provides directional growth for cells and also can create tissue architecture at cellular and 

subcellular level in a reproducible manner [13]. 

 Another attractive reason to study the fish scales is the abundance and prosperity of its 

source and the fact that they are directed to low-added value ends. Marine capture fisheries 

represent over 50% of total world fish production and more than 70% of this production has been 

utilized for fish processing. As a result, every year considerable amounts of total catch are 

discarded as processing leftovers, consisting more than 30% of this waste of skin, scale and 

bone, which are rich in collagen and have received increasing attention as collagen sources. 

Recent estimates revealed that discards from the world‟s fisheries exceed 20 million tons, 

meaning 25% of the total production of marine capture fisheries. Therefore, there is a great 

potential in marine bioprocess industry to convert and utilize more of these products as added 

valuable products [14] [15] [16]. 
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Silks are fibrous proteins commonly produced by insects and spiders. They exhibit a 

unique and useful conjunction of properties such as being degradable and lightweight with 

excellent mechanical and thermal properties. In nature, silks are used, for example, as materials 

for web construction and prey capture (spider webs), and reproduction enclosures (cocoons) 

where the silkworms are included. These features are also related to the current use of silks as 

sutures, nevertheless they are being gradually replaced by synthetic polymers. Silk consists of 

two different proteins: fibroin and sericin. Fibroin is the protein responsible for the filaments of 

silkworm silk and it can be regenerated in various ways depending on the application. Recently, 

many researchers have investigated silk proteins, mainly silk fibroin, as one of the candidate 

materials for biomedical applications, because it has several distinctive biological properties such 

as: significant biocompatibility, good oxygen and water vapor permeability, biodegradability, 

praiseworthy mechanical strength in the wet state, resistance against enzymatic cleavage, drug 

permeability and minimal inflammatory reaction [17] [18]. Beyond their traditional use as 

sutures, silk fibroin has been exploited as a biomaterial for cell culture and tissue engineering in 

vitro and in vivo since the mid-90s. In early studies, silk films obtained from native silkworm 

fibroin collected from glands of Bombyx mori domestic silkworms and Antheraea pernyi wild 

silkworms were found to support the attachment and proliferation of fibroblasts. Later reports 

showed that regenerated silk films prepared by dissolution of silkworm cocoon fibers in 9–9.5 M 

LiBr supported the attachment and growth of human and animal cell lines. These studies 

provided clues to the use of regenerated silk fibroin as a scaffold or matrix biomaterial for cell 

culture and tissue engineering. Numerous studies have already explored regenerated silk fibroin-

based biomaterials in various forms, including films, membranes, mats, nets, hydrogels, and 

porous sponges for biomedical applications. The in vivo behavior of biomaterials prepared from 

silk fibroin solutions has not been completely demonstrated, despite the fact that the 

biocompatibility and degradation of silk sutures, which are prepared from native silk fibers, have 

been well established. Previous studies showed that two-dimensional silk fibroin films have good 

biocompatibility. Recent progress in processing techniques has yielded three-dimensional porous 

silk fibroin scaffolds with control of morphological and structural features [17] [19] [20]. 

Osteoblasts are cells of mesenchymal origin responsible for synthesis and mineralization 

of bone during both bone formation and bone remodeling. They form a closely packed sheet on 

the bone‟s surface, from which cellular processes extend through the developing bone.  The 

goals for scaffolds in bone tissue engineering include suitable chemistry, morphology and 
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structure in order to promote cell adhesion for osteoblasts, migration, differentiation, synthesis of 

extracellular matrix and mineralization [21] [22] [23]. 

Stem cells are characterized by their capability to self-renew and their ability to 

differentiate along multiple lineage pathways. Human subcutaneous adipose tissue emerges as a 

source of adult or somatic stem cells [24]. Recent developments in the field of stem cells 

suggested that hASCs can be induced into adipogenic, osteogenic, chondrogenic, and myogenic 

lineages under appropriate conditions. hASCs are easy to obtain, have relatively lower donor site 

morbidity and a higher yield at harvest, and can expand more rapidly in vitro compared with 

BMSCs for example, which are now commonly used as seed cells for bone repair and 

regeneration. In addition, hASCs have multipotency which is independent of serum source and 

quality. Thus, hASCs might be a novel and very promising alternative cell source for bone tissue 

engineering [25]. 

Concluding, the main objective of this study was determining both osteoblasts and stem 

cells behavior when submitted to the fish scales pattern. 

 

 

2| Materials and Methods 

2.1. Fish scales preparation 

The fish scales to be studied were collected from a market in Thailand. The studied fish 

specie was Lates Calcarifer, being the common name White Seabass.  

The scales preparation procedures were adapted from Ikoma T. et al [26] and Pati F. et 

al [5]. In brief, the scales were immersed in distilled water and conserved at 4ºC. A group of 

scales was stored in an antibacterial solution of sodium azide 1%wt for further investigation of 

this group of untreated fish scales (G1). The remaining scales were washed twice in 10%wt of 

NaCl solution, to remove unnecessary proteins on the surface, for 48h. Afterwards, one part of 

these scales was washed with distilled water forming a second group (G2), and the remaining 

scales were submitted to a process of demineralization and extraction of the soluble collagen, in 

order to achieve the third group of scales (G3). For the demineralization, it was used a solution of 

0.5 mol/L of EDTA, to immerse the fish scales for 48h. Then the extraction of soluble collagen 
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was done by the immersion of the scales in a solution of 0.5 mol/L of Tris, HCl buffered at pH 

7.5, for 48h. Scales were finally washed with distilled water and kept in it until further use. 

 

2.2. Fish scales characterization 

2.2.1. Morphology 

The scales of the 3 groups were observed in the Optical Microscope (Axiotech, Zeiss) and 

in the SEM (Supra 40, Zeiss) in order to analyze the surface patterns.  

2.2.2. Collagen Imaging 

Confocal Laser Microscope (Eclipse, Ti-E, Nikon) was used to evaluate collagen 

architecture on different group samples, and Direct Red 80 [27] was used as unspecific stain for 

collagen, typically used for detection in tissue histological section. Samples were stained for 60 

minutes in an aqueous solution of 0.1% of Sirius Red F3BA (Sigma Aldrich) saturated with picric 

acid, pH 2. After that, samples were washed for 2 minutes in 0.01M HCl, rinsed in ethanol 70%, 

and dehydrated with ethanol gradients, 70, 90, and 2x100%. 

 

2.3. Fibroin films 

In addition to G1, G2 and G3 groups, two more groups were created. Fibroin films with 

the same patterning as the scales (F1), and fibroin films without patterning (F2), in order to allow 

drawing conclusions about the pattern role in the cellular behavior. 

The material used to mimic the fish scales patterning was fibroin. To isolate the fibroin, 

the process was divided in two steps: degumming and dissolution. 

 

Degumming 

Bombyx mori cocoons (kindly provided by Socio Lario, Cassina Rizzardi, Como, Italy) 

were degummed for 1.5 hours in a bath of boiling water containing 1.1 g/l Na2CO3 (10 g of silk in 

1L of solution), then for 1.5 hours in another bath of boiling water containing 0.4 g/l Na2CO3. 

After the two baths cocoons were rinsed thoroughly with distilled warm water to remove salts and 

dried in air.  
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Dissolution 

Fibroin-water solutions were prepared by dissolving the fibroin obtained in the previous 

step in 9.3 M LiBr (Fluka Chemical) aqueous solution (1g/10ml) at 65°C for 2 hours, followed 

by dialysis against distilled water with a 3500 Da MWCO membrane (Slyde-A-Lyzer, Pierce) in 

order to eliminate salts. 

The concentration of the resultant fibroin solution was measured by UV-VIS 

spectrophotometer (Nanodrop). The solution was then diluted to a concentration of 2.5% w/v. 

The pH of the solution was 5. 

2.3.1. Construction of fibroin films with the fish scales patterning (F1) 

The first step of this process was the creation of silicon molds with the fish scales 

patterning. This was achieved using a plate with nine prominent cylinders with a glued fish scale 

with the pattern turned up on the top of each cylinder. The plate was filled with a silicon solution 

(Sylgard Silicone Elastomer kit 184) and the air bubbles were removed with the aid of a vacuum 

pump. After, the plate was transferred to an oven at 65ºC for 24h. The resultant molds contained 

negatives of fish scales patterning. 

 To achieve the copy of the pattern of the fish scales, the wells containing the negatives 

were filled with the fibroin solution and left to dry for 3 days at room temperature. From each well 

resulted a fibroin film with the same pattern of the fish scales. In order to stabilize the fibroin 

samples, these were immersed in an aqueous solution of methanol 80% for 20 minutes, and 

then washed by some immersions in distilled water. 

2.3.2. Construction of fibroin films without pattern (F2) 

Fibroin films were prepared by casting aqueous solutions with 2.5% w/v of total protein content 

on polyethylene plates at room temperature for 2 days. All resulting films were stabilized using 

the same procedure mentioned before for the films with the scale patterning. 
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2.4. In vitro Biological tests 

2.4.1. Cells culture and seeding 

Before the in vitro tests, the scales (G1, G2, G3) and fibroin films (F1, F2) were 

immersed in ethanol 70% at 4ºC respectively for 24 hours and 2 hours and washed with sterile 

distilled water. 

 Osteoblasts of MG63 cell line were cultured in Minimum Essential Medium (MEM) 

(Invitrogen), 10% Fetal Calf Serum, 1% Sodium Piruvate, 100 mM Euroclone, 2% L-glutamine 100 

mM Euroclone, Non Essential Aminoacids Gibco, and 1% of Antibiotic / Antimicotic. Cells were 

cultured in an atmosphere of 37ºC and 5% CO2. A cell suspension with a concentration of 1*105 

cells/ml and 0.6mL were seeded on the samples. Cultures were maintained for 1, 3, 7 and 14 

days.  

The potential of fish scales to support the osteogenic differentiation of human adipose 

derived stem cells (hASCs) was studied. Scales from Lates calcarifer were submitted to a 

treatment for removal of unnecessary proteins on their surface by immersion in NaCl (Panreac) 

10%wt during 48h, equivalent to the already mentioned for the G2 samples. All the scales were 

cut in circles with 10mm of diameter and immersed in ethanol 70% during 2 hours for 

sterilization. After this, scales were washed with sterile PBS. Cells were cultured in basal culture 

medium (α-MEM plus 10% FBS and 1% of A/B) and standard osteogenic medium (α-MEM plus 

10% FBS and 1% of A/B, and supplemented with 10 mM beta-glycerophosphate, 50 g/mL of 

ascorbic acid and 10-8M of dexamethasone). hASCs at passage 2 were seeded at a density of 

2000 cells/cm2. The quantity of medium immersing each sample was of 1ml. Tissue culture 

polystyrene coverslips (TCPs) were used as controls. Cultures were maintained for 1, 3, 10, 21 

and 30 days.  

2.4.2. AlamarBlue Assay 

AlamarBlue assay kit (Biosource International Inc., USA) was used to assess metabolic 

activity at the end of each experimental time point of the studies with MG63. The assay was 

performed according to the manufacturer‟s instructions [28].  

In brief, the seeded films were incubated for 4 hours at 37°C with fresh culture medium 

(with reduced serum) supplemented with 10% of alamarBlue solution according to 

manufacturer‟s data sheet. A total of 3 replicates were used for each sample and each replicate 
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was split into 4 wells for the final reading. The references were taken from wells with unseeded 

samples incubated with the alamarBlue solution, wells with only culture medium, and wells only 

with cells. Absorbance was measured at 570 nm and 620 nm in a microplate reader (Multiskan 

EX, ThermoLabsystems, Finland) and the percentage of reduced alamarBlue was calculated and 

plotted against the time.  

Statistical Analysis 

Statistical Analysis was performed for the AlamarBlue assay results which are presented 

as means ± STDEV (Standard Deviation of the Mean). Friedman Test (non- parametric test 

equivalent to One Way Repeated Measurements ANOVA) was performed for each group analyzed 

along time. One Way ANOVA on Ranks followed by Tukey Test was performed for each time point 

for group comparison (SigmaStat 3.0, SPSS, Chicago, IL, USA). 

2.4.3. Confocal Laser Microscope (CLM) analysis 

Evaluation of cell attachment, distribution, and morphology, on fish scales (G1, G2 and 

G3) and fibroin films (F1 and F2) seeded with MG63, was performed by confocal laser 

microscopy (Nikon Eclipse, Ti-E) after Phalloidin Rhodamine (Biosource International, Invitrogen) 

and DAPI (Sigma Aldrich) staining according to the manufacturer‟s protocol. Fixation with a 

formaldehyde solution (4% formaldehyde in PBS solution) and permeabilization with TritonX 100 

(0.2% TritonX in PBS solution) were performed before staining. 

2.4.4. Scanning Electron Microscope (SEM) analysis 

Morphological observations were performed with scanning electron microscopy (Supra 

40 Zeiss), operating mode: high vacuum, secondary electron detector) on fish scales (G1, G2 and 

G3) and fibroin films (F1 and F2) seeded with MG63. At each time point, films were fixed with 

gluteraldehyde solution (2,5% gluteraldehyde in cacodylic buffer solution, 0,1 M) to preserve 

biological structures. Samples dehydration was performed by soaking in a series of aqueous 

ethanol solutions at increasing concentrations from 30% - 100% and drying in air at room 

temperature. Before SEM imaging, all samples were sputter coated with gold (SEM Coating Unit 

PS3, Assing S.p.A., Rome, Italy). 
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2.4.5. Alkaline Phosphatase (ALP) activity quantification 

Osteoblastic activity on fish scales (G1, G2 and G3) and fibroin films (F1 and F2) was 

monitored measuring Alkaline phosphatase activity (ALP) based on the conversion of p-

nitrophenyl phosphate to p-nitrophenol. 

 A standard curve was firstly prepared using a kit for this assay with concentrations of 

pNP Standard ranging from 0 to 14 µmol/mL. The ALP assay was carried out in a 96 well-plate, 

where 50µl of each sample medium were put in quadruplicate, 50µl of 0,05% Triton-X (Sigma) in 

PBS were put in 6 wells to use as blank, and then 50µl of Buffer Solution from the assay kit were 

added to all. Finally the films were incubated at 37ºC till the majority of the wells turned yellow, 

which happened after 3h20mins for the samples from days 1 and 3 of control, and after 

1h42mins for the samples from days 7 and 14 of control.    

2.4.6. DNA measurement 

DNA content in fish scales (G1, G2 and G3) and fibroin films (F1 and F2) seeded with 

MG63 was measured through Picogreen, according to the manufacturer‟s protocol (Quant-iT 

PicoGreen dsDNA Assay Kit (Invitrogen). In brief, a standard curve was prepared with DNA 

concentrations ranging from 0 to 2 µg/mL, and to the wells of a 96-well plate, 100µl of the 

standards and samples in duplicate were transferred, and 100µl of PicoGreen solution were 

added. Finally, the plate was read on a fluorescent plate reader, excitation of 485nm and 

emission 538nm. 

2.4.7. Fluorescence Microscopy Analysis 

Evaluation of stem cell attachment and distribution on the seeded samples was 

performed by fluorescence microscopy using a Zeiss Axioimager Z1 microscope (Zeiss, Germany) 

after Phalloidin Rhodamine (Sigma) and DAPI (Sigma) staining according to the manufacturer‟s 

protocol. Fixation with Formalin 10% (BioOptica) was performed before staining. 
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3| Results and Discussion 

3.1. Fish scales topography 

Lates Calcarifer (white seabass) fish scales present a patterning on only one of their 

sides. The other side of the scales present no defined pattern, being mainly composed of 

minerals. Using the Optical Microscope, the patterning of the scale could be easily analyzed. The 

observations made in the SEM (Figure 3.1) were more detailed and confirmed the observations in 

the Optical Microscope. 

 

 

Figure 3.1 - Fish scales from group 1 observed in the SEM 

 

The overall patterning of fish scales of white seabass is similar to a human fingerprint, 

being very organized and consisting mainly of parallel concentric lines. The grooves that delineate 

the patterning present widths of about 10-20 µm. Many scales of the three groups of scales 

created (G1, G2, G3) were observed and all of them presented similar patterning, although the 

third group had a less incisive pattern, most probably due to the performed treatment that 

removed soluble collagen.  



Chapter III. Fish Scales as Model for Osteogenic Cells Culture 

48 

The Confocal Microscope analysis using a red staining to identify the collagen confirmed 

that the scales are rich in collagen, presenting a more intense staining in the patterning lines 

(Figure 3.2), which is due to a higher concentration of collagen in those areas.  

 

 

Figure 3.2 - Fish scale observed in the Confocal Microscope with Direct Red 80 staining for collagen 
identification: a) center, b) side and c) top areas of the scale 

 

Fish scales presented an attractive structure for cell culture due to presenting a 

organized and regular patterning and also being highly composed of collagen which is a major 

protein in the human body. 

   

3.2. Osteoblast Behavior 

Theoretically, the percentage of reduced Alamar Blue should be continuously upward 

with the advance of the days in the case of cellular proliferation, what would mean an increasing 

of the cells number. In the graphic of Figure 3.3 it is shown the percentage of reduced Alamar 

Blue based in the calculations from the absorbance results. 

Besides the AlamarBlue test, cell proliferation on the different films was evaluated 

through the Picogreen assay. The results of this test confirmed the main ideas collected from the 

AlamarBlue test, being the same overall tendencies shown, although was evidence cell 

proliferation for all groups of samples. 

 

 

a) b) c) 
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Figure 3.3 - Percentage of reduced Alamar Blue for each group in the different days of control. Values are mean 
± STDEV, bars with like characters are not significantly different (P>0.05). Abbreviations: G1 – untreated fish 
scales; G2 – fish scales after a treatment for unnecessary proteins removal from the surface; G3 – fish scales 
after demineralization and collagen extraction; F1 – fibroin films with the fish scales surface pattern; F2 – 
fibroin films without pattern; Ctrl – controls with cells seeded in the wells-plate. 

 

Analyzing the resultant graphic (Figure 3) is perceptive the tendency of the three groups 

of fish scales (G1, G2 and G3) to have a growth in the percentage of reduced AlamarBlue along 

the 14 days of culture, that means an increase of cells amount. After 7 days of culture, the cells 

amount presented already a significant increase for G2 and G3 of fish scales. The most 

significant cellular proliferation along the 14 days was for group 2 (fish scales after a treatment to 

remove unnecessary proteins from their surface). 

Concerning the groups of fibroin, the percentage of reduced AlamarBlue did not present 

a significant growth in the 14 days. In spite of that, DNA measurement results showed 

osteoblasts proliferation for the groups of fibroin, which means that osteoblasts exhibited less 

metabolic activity on these samples.  

Therefore the fish scales provided good conditions for cellular proliferation, such as good 

chemical composition that allowed cellular attachment and induction for multiplication. 

The ALP test measures the activity of alkaline phosphatase by the quantification of 

hydrolyzed pNPP in the samples, being an indicative of the cells ability to mineralize.  
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Figure 3.4 - Quantity of pNP enzyme produced per DNA µg per minute for each group of samples on different 
days of control. Abbreviations: G1 – untreated fish scales; G2 – fish scales after a treatment for unnecessary 
proteins removal from the surface; G3 – fish scales after demineralization and collagen extraction; F1 – fibroin 
films with the fish scales surface pattern; F2 – fibroin films without pattern. 

 

By the Figure 3.4 analysis it can be deduced that the ALP activity on the first 7 days after 

the seeding is practically null, however the samples of day 14 already started showing some 

activity. The samples of group 2 are the ones presenting higher ALP activity showing more 

potential for the mineralization induction.  

The fibroin samples presented very low activity, although Altman G. et al. [29] showed 

that fibroin films induced osteoblasts mineralization in vitro, when the films were chemically 

modified with the peptide RGD to promote integrin interactions for adhesion.   

The samples analyzed by Confocal Microscope were stained with Phalloidin Rhodamine 

to identify actin filaments in the cytoplasm, and DAPI to identify the cells nuclei.  

 In Figure 3.5 it is possible to see the cell behavior in the different samples along the the 

time, with the exception of the samples F2 for reasons that will be explained further ahead. On 

the first days many cells were already noticed, being visible their alignment along the axis of the 

pattern of the scale and that they acquired an elongated shape. With the advance of the days it 

could be noticed more zones with cells and an increase of cellular density. Even in some 

situations when there was high cell density and existed some superimposition between the cells 

the alignment and elongated shape was maintained. This was the cell behavior for all the types of 

samples, although F1 presented fewer cells with a less elongated shape than the cells in the 

scales, but still following the pattern in the fibroin. 
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 Walboomers et al. [30] studied the behavior of fibroblasts in micro-grooved polystyrene 

and concluded that the width of the grooves that form a pattern has high influence in the cells 

behavior: for a cell to sense the topography of the surface on which it is seeded, the physical 

cues should not be greater than the actual size of that cell, although the grooves have to be wide 

enough to allow cells to descend. Ber et al. [13] also showed that the cells behavior was not 

affected when the grooves were wider than the cells size. The osteoblasts culture in the scales 

micro-pattern seems to be ideal, since the normal size of osteoblasts is about 20-30µm in 

diameter and the scales grooves are of 10-20µm, allowing the cells to descend but also narrow 

enough for cell shape and alignment.  

 

    

    

    

 

  

 

 

  

   

Scales G1 Scales G2 Scales G3 Fibroin F1 

Figure 3.5 - Results of the Confocal Microscope observation after stainings with DAPI and Phalloidin Rhodamine. The 

subscripts indicate the type of sample and the time period after the cellular seeding. The scale bar is 100 µm. 
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The samples of fibroin without any pattern (F2) had some zones with cells, but those 

presented different shapes between them. Along time the cell behavior did not change but could 

be observed a raise on cellular density. 

The observations in the SEM (Figure 3.6) confirmed the results of the Confocal 

Microscopy. The cellular orientation due to the existent pattern and their elongated shape was 

perceptible. 

 

    

    

    

 

  

 

B 

  

 

 

The fish scales samples of the first time point day presented quite similar results 

between each other, having some zones with cells although difficult to identify due to being 

between the scales pattern. For longer time points an increase of cell density for every sample 

was observed. The samples of day 14 presented already high density of cells as can be observed 

for example in G2 day 14 corresponding image, where the cells even overlap the pattern.  

Scales G1 Scales G2 Scales G3 Fibroin F1 

Figure 3.6 - Results of the SEM observation. The subscripts indicate the type of sample and the time period                        

after the cell seeding. 
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 The F2 samples presented different shapes and were located and oriented uncritically. 

Cell spreading was not influenced by any constrictions making them to acquire variable shapes 

and orientations. 

 

Figure 3.7 – Samples of F2 after: a) 1 day; b) 7 days. Along time cells spread without any specific orientation.   

 

3.3. Stem cells (hASCs) Behavior 

 The study with hASCs in fish scales by Fluorescence Microscopy permitted to observe 

that the stem cells when seeded were able to descend into the scales pattern microgrooves.  In 

Figure 3.8 we can observe a sequence of images showing the cell behavior along the 30 days of 

culture for the fish scales when submitted to a basal culture medium and a osteogenic medium.  

From the analysis in the Fluorescence Microscope no significant difference between the 

samples submitted to basal culture medium and osteogenic culture medium could be detected. 

Along the days was obvious the growth of cellular density in the samples. In the first 3 days after 

the cells seeding was already perceptible the cells spreading and acquisition of a narrow and 

elongated shape. After 10 days the cellular density was already high but the cells still presented 

an orientation according to the scales pattern axis. At day 21 there were already many zones with 

cellular superposition that led to a loss of the cells orientation, in spite of in some zones this 

alignment with the pattern and also the elongated form of the cells was still visible. After 30 days 

cells were already forming several layers that induced the cells to be oriented randomly and 

without morphologic criteria. 

 

 

 

 

  

 

a) b) 
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4| Conclusion 

The fish scales of Lates Calcarifer presented a very organized pattern consisting mainly 

of parallel concentric lines. The three groups of scales created could support a considerable 

cellular proliferation showing good capacity for cell attachment, especially G2 (fish scales after a 

treatment for removal of unnecessary proteins from the surface). The microgrooves existent in 

the scales create a pattern, which influences cell spreading and cause the cells to be narrower 

and aligned with surface microgrooves.  

 It may be true that bone regeneration can be already achieved without the aid of 

patterns, nevertheless there is always room for improvement. Patterns could induce faster bone 

formation by shortening the cells reorganization periods.  
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Figure 3.8 - Results of the observation in a Reflected/Transmitted Light Microscope after stainings with DAPI and 

Phalloidin Rhodamine. The subscripts indicate the type of culture medium used and the time period after the cellular 

seeding. The scale bar is 50 µm. 
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    Our results suggest that the fish scales composition and topography are responsible for a 

good cell proliferation and induce modifications in cell organization and morphology. Further 

studies will be needed to conclude about the hASCs osteogenic activity when submitted to the 

fish scales pattern.  
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General Discussion and Future Work 

Scales of Lates calcarifer, also known as White Seabass, were collected in a market in 

Thailand and were not submitted to any treatment till the start of this study. They were then 

divided in three groups: untreated fish scales (G1); scales after a treatment for removal of 

unnecessary proteins from the surface (G2); and a third group of scales after demineralization 

and extraction of the soluble collagen (G3). The pattern of these scales was analyzed and the 3 

groups presented a similar organized pattern consisting mainly of parallel concentric lines and 

highly composed of collagen, being the pattern in G3 less incisive due to the soluble collagen 

extraction.  

 The potential of the 3 groups of scales created as scaffolds for cell proliferation and the 

behavior of osteoblasts MG63 were evaluated. To draw conclusions about it, fibroin films with the 

same pattern of the scales and without any pattern were also created. The scales showed the 

ability to support cell proliferation obtaining better results than the fibroin samples, both with and 

without pattern, being this mostly due to their composition of hydroxyapatite and collagen [1] [2].  

The scales of G2 (without undesirable proteins on the surface but still with the presence of high 

quantity of collagen) were the ones that supported the highest cell proliferation. The ALP test 

results indicated that osteoblasts on the scales presented some activity after 14 days of cell 

culture, although this activity was practically inexistent for the fibroin films. The scales of G2 were 

again the ones presenting more promising results. Analysis of the samples in the Confocal 

Microscope and SEM were conclusive about the osteoblasts behavior on the fish scales. The cells 

presented an orientation according to the scales pattern alignment, acquired an elongated and 

strait shape. Then, the mechanical stress [3] granted by the scales pattern played a determinant 

role in the osteoblasts shape and in the way of their distribution, being this phenomenon 

denominated as contact guidance [4]. 

 The culture of stem cells (hASCs) on fish scales presented accordant results with the 

previously tested osteoblasts behavior. The scales pattern still guided, oriented and led the cells 

to acquire a narrow and elongated shape at least till the cells superposition surpassed the 

grooves of the pattern. The stem cells behavior was similar when the samples were submitted 

both to a basal culture medium and osteogenic culture medium. 
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 Tissue regeneration is a three dimensional event and in this context the presence of 

patterns in biomaterials could be helpful with the cells guidance. Then, scales pattern presence 

could shorten the tissue formation and the cells reorganization period.    

 In this work, also collagen films with a pattern similar to the fish scales were achieved. 

Although the cross-linking method used using Genipin was not enough to guise the collagen 

hydrophilic nature that led to films deterioration via hydrolysis after some time immersed in 

culture medium for example. This would also make it difficult to use in long-term applications. 

Ber et al. [5] tried to overcome this difficulty with the collagen films subjecting these to a variety 

of stabilization treatments. They observed that calcium phosphate deposition was a very good 

treatment method, so in future works the collagen films should be submitted to this treatment to 

acquire a greater capability to resist in the presence of water. Curiously the films would also get a 

similar arrangement to the fish scales, being composed of collagen and calcium phosphate. 

 Fish scales pattern showed great potential both for osteoblasts MG63 and stem cells 

(hASCs), although further studies should be performed to conclude about the hASCs osteogenic 

activity when submitted to the fish scales pattern. For future work is believed that this pattern or 

adaptations of this depending on the purpose should be tested.  
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APPENDIX 
 
Collagen films 

In this work, collagen films with a pattern similar to the fish scales were achieved with 

the procedure described in the Materials and Methods section of this work. Although the cross-

linking method used using Genipin was not enough to guise the collagen hydrophilic nature that 

led to films deterioration via hydrolysis after some time immersed in culture medium for example. 

 The collagen films lack of stability in culture medium was an important factor that did not 

allow results of these films with stem cells. 

 

 

DNA measurement and ALP test – stem cells 

The results obtained for DNA and ALP were not concordant to the expected and to the 

previous observations regarding both fish scales and controls. 

 

 By the previous graphic analysis is easily perceptible these results are not according to 

the expectable since the controls do not present an increase of DNA concentration along the 

days, being this evidential that there was not cell proliferation. This strange behavior was 

indicative that these results could not be acceptable, since the normal behavior would be the cell 

proliferation in the controls along the days. Besides not being a quantitative and conclusive 

measure, in the observations in the microscope of both fish scales and controls could be 
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perceptible cell growth and the existence of higher cell density along the days that contradict 

these results.  

 

 Since the ALP test was performed over the same samples of the DNA test, and the 

results are also directly connected to the DNA results, no assertive conclusions could be taken 

about the cellular activity.  

 

 

Immunocytochemistry test – stem cells 

This test was performed to identify the presence of osteocalcin that would be an 

indicative of cell mineralization since it is a secreted protein associated with the mineralized 

matrix of bone. 

 The results obtained of this analysis were not clear since fish scales presented auto-

fluorescence that can be due to their highly mineralized structure. This did not allow clear and 

perceptible results regarding the fish scales. Nevertheless with the controls consisting of 

coverslips was already possible a better observation of the presence of osteocalcin since these 

did not present a background prejudicing the observation. The images got for these controls are 

nextly presented.     
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 For the controls the presence of osteocalcin was more evident only after 30 days of 

culture and for the osteoinductive culture medium. 
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