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ABSTRACT 

 

Heavy metal contamination of aquifers by industrial effluents is a known environmental 

concern for which a recent effort for the development of treatment/remediation 

technologies has been conducted. Nevertheless, technologies that allow 

recuperation/reutilization of the metals are still of limited application. 

This work presents the development of a clean technology allowing treatment and recovery 

of heavy metals in industrial effluents. The proposed recovered metals will be used as 

catalysts in liquid-phase oxidation reactions. The proposed system consists in bridging the 

biosorption capacity of the Arthrobacter viscosus bacterium with the intrinsic ion-exchange 

capacity of synthetic zeolites. This system was tested in the treatment of Cr(VI) solutions, 

in batch conditions (either in single step or sequencing reactor operation). 

The system showed capacity for the treatment of Cr(VI) solutions. Although zeolites have 

natural limitation to exchanging Cr(VI) species, as they are anionic in solution, the 

bacterium is able to reduce Cr(VI) to Cr(III) and the last is cationic in solution and 

therefore has access to the zeolites. 

Several operational parameters were evaluated in order to increase the performance of this 

system in the treatment of Cr(VI) solutions up to 100 mgCr/g. The pH in each reactor was 

allowed to vary freely in early studies. It was observed that the chemical composition of the 

zeolitic support had influence on the efficiency of the bioreduction of Cr(VI) to Cr(III). H+-

containing zeolites allowed higher reduction than the Na+-containing counterparts. Despite 

this fact, subsequent studies demonstrated that this contribution was of minor effect when 

compared to the optimization of two parameters: biomass concentration and solution pH. 

The ensuing studies were performed with a biomass concentration of 5 g/L and controlled 

pH (4.0). Four zeolites were tested, HY, NaY, HMOR and NaMOR. In both single-step or 

sequencing reactor operation, Y zeolites demonstrated higher contribution to Cr(VI) 

reduction and overall chromium removal. In single-step operation, it was observed that the 

reduction of Cr(VI) follows a typical biosorption kinetics, being very fast during the first 24 

hours, decreasing drastically thereafter. The highest uptake was achieved with the NaY 

support (11.7 mgCr/gzeolite), after 27 days. This support was also tested in a long-term assay, 

where complete reduction of Cr(VI) was observed after 98 days. The operation in 



Preparation of catalysts from biosorbents supported on zeolites 

vi 
 

sequencing batch reactor allowed reducing the time needed for complete Cr(VI) removal, 

requiring two four-day cycles with HY and NaY zeolites and three four-day cycles with 

HMOR and NaMOR zeolites. Maximum chromium removal was achieved with the HY 

support (98.2 %). 

The recovery of the Cr-containing supports as catalysts was achieved. Cr-laden zeolites 

required that immobilization of the metal centers was performed prior to the application in 

liquid-phase reactions, in order to avoid leaching of chromium. The Cr-zeolites underwent 

immobilization of the metals through the flexible ligand method, using ligands with 

different nitrogen functional groups (pyridazine, pyridylazo and diphenyltriazene). All 

supports and catalysts were extensively characterized, confirming the successful 

immobilization of Cr(III) complexes in Y zeolites. It was observed that CrHY-based 

catalysts presented mostly Cr(III) in their structure, whereas CrNaY-based catalysts 

presented both Cr(VI) and Cr(III). This was found to be related to the different dynamics of 

both supports in the Cr(VI) biotreatment studies. 

The catalytic activity of the catalysts was evaluated in two oxidation reactions, for 

cyclohexanol and cyclohexanone. The oxidation of cyclohexanol allowed a better 

understanding of the contribution of the different chromium species present. The highest 

conversion for this reaction was obtained with CrNaY-based catalysts (63.5 %). The 

presence of chromium in the reaction medium was confirmed, being of lesser extent when 

immobilized catalysts were employed. For the oxidation of cyclohexene, CrHY-based 

catalysts achieved the highest conversion of 73 %. It was found that the contribution of 

parent HY zeolite to the overall conversion was greater than of parent NaY zeolite, thus 

endowing CrHY catalysts with bi-functionality. The immobilized CrHY catalyst did not 

present significant decrease in activity after immobilization of chromium complexes, when 

compared to the parent support. For both reactions, it was possible to test the reuse of a 

CrNaY support and respective immobilized catalyst, confirming that the loss in activity 

with recycling was less pronounced when immobilized catalysts were used. 
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RESUMO 

 

A contaminação de aquíferos por efluentes industriais contendo metais pesados é um 

problema ambiental para o qual houve um esforço recente no sentido de desenvolver 

tecnologias para minimizar os efeitos nos seres vivos. Apesar desses esforços, tecnologias 

que permitam recuperação/reutilização dos metais pesados são limitadas ou 

economicamente inviáveis.  

Neste âmbito, este trabalho propõe uma tecnologia limpa para tratamento e recuperação de 

efluentes contaminados com metais pesados que permita a reutilização dos metais na forma 

de catalisadores para reacções de oxidação em fase líquida. O sistema proposto consiste na 

combinação das propriedades de biossorção de uma bactéria, Arthrobacter viscosus, com a 

capacidade intrínseca de permuta iónica de zeólitos sintéticos do tipo faujasite e mordenite. 

Este sistema foi testado no tratamento de soluções contendo crómio hexavalente, Cr(VI), 

em sistema fechado (mono-etapa ou em modo sequencial). 

O sistema provou ser eficaz no tratamento das soluções de Cr(VI). Apesar dos zeólitos 

terem uma limitação natural à permuta de crómio hexavalente (que forma espécies 

aniónicas em ambiente aquoso), a bactéria é capaz de reduzir Cr(VI) a Cr(III), que existe 

em forma catiónica e é passível de permuta iónica no zeólito. 

Vários parâmetros operacionais foram testados para melhorar o desempenho do sistema no 

tratamento de soluções de Cr(VI) com concentração máxima de 100 mgCr/L. Após estudos 

iniciais com pH livre, observou-se que a composição do suporte zeolítico interfere na 

eficácia da redução do Cr(VI) a Cr(III). Os zeólitos contendo iões H+ provaram ser mais 

eficazes que os zeólitos contendo iões Na+. Contudo, estudos posteriores demonstraram que 

a contribuição do suporte na redução do Cr(VI) é de menor efeito quando comparado com 

os resultados obtidos optimizando dois parâmetros: concentração de biomassa e pH da 

solução. Os estudos posteriores foram efectuados com uma concentração de biomassa de 5 

g/L, a um pH controlado (4.0). Foram testados 4 zeólitos, HY, NaY, HMOR e NaMOR. 

Quer em sistema fechado de mono-etapa ou sequencial, os zeólitos Y demonstraram maior 

contribuição para a redução e remoção do crómio presente nas soluções. Em sistema mono-

etapa, observou-se que a redução do Cr(VI) está de acordo com uma cinética típica de 

biossorção, sendo um processo rápido nas primeiras 24 horas de ensaio, diminuindo 
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drasticamente nos intervalos de tempo subsequentes. O suporte que permitiu maior uptake 

foi o NaY (11.7 mgCr/gzeólito), ao fim de 27 dias. Este suporte foi testado num ensaio de 

longa duração, 98 dias, em que se observou a redução completa de uma solução de 100 

mgCr/L. A operação em sistema sequencial permitiu reduzir o tempo necessário para a 

redução completa do Cr(VI), sendo necessários 2 ciclos de 4 dias para os suportes HY e 

NaY e 3 ciclos de 4 dias para os suportes HMOR e NaMOR. Neste modo, a remoção 

máxima de crómio foi alcançada com o suporte HY (98.2 %). 

A recuperação dos suportes contendo crómio na forma de catalisadores foi conseguida. Os 

zeólitos com crómio necessitaram um tratamento prévio para imobilizar os centros 

metálicos na sua estrutura, de forma a evitar a lixiviação dos mesmos para o meio 

reaccional. Para o efeito, recorreu-se ao método do ligando flexível, usando ligandos 

contendo azoto em diferentes grupos estruturais (piridazina, piridilazo e difeniltriazeno). 

Todos os suportes foram extensivamente caracterizados, confirmando-se a imobilização de 

complexos de Cr(III) na estrutura de zeólitos Y. Observou-se que os suportes CrHY 

apresentam maioritariamente Cr(III) na sua estrutura e os suportes CrNaY apresentam 

Cr(VI) e Cr(III). Este facto foi relacionado com as dinâmicas diferentes observadas nos 

estudos de tratamento de soluções de Cr(VI). 

A avaliação da actividade dos catalisadores foi efectuada em duas reacções de oxidação, do 

ciclohexeno e do ciclohexanol. A reacção do ciclohexanol permitiu um melhor 

entendimento das contribuições das diferentes espécies de crómio presentes. Nesta reacção, 

os catalisadores CrNaY obtiveram as conversões mais elevadas (63.5 %). Foi confirmada a 

presença de crómio no meio reaccional, sendo em menor quantidade no caso dos 

catalisadores que sofreram o processo de imobilização do metal. Na oxidação do 

ciclohexeno, os catalisadores CrHY demonstraram maior actividade, devida à maior 

contribuição do zeólito HY na reacção, em relação ao NaY. Neste aspecto, os catalisadores 

CrHY demonstraram bifuncionalidade, alcançando uma conversão máxima de 73 %. Os 

suportes CrHY e respectivos catalisadores não apresentaram diminuição de actividade após 

imobilização do crómio. Para as duas reacções, foi possível estudar a comparação da 

reutilização de suportes CrNaY e dos respectivos catalisadores imobilizados, sendo 

observada uma menor perda de actividade em cada ciclo no caso dos catalisadores 

imobilizados. 
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CHAPTER 1 – INTRODUCTION 

 

 

Heavy metal contamination of soils and water sources is a direct consequence of human 

activity, mostly industrial. This particular type of pollution is hazardous to humans as 

heavy metals accumulate in microorganisms, progressing through the food chain [1]. 

Several technologies have been proposed to remediate or reduce emissions of heavy metals 

into the environment. However, some technologies lack the possibility of recovery and/or 

reuse of the metals, while processes allowing recovery may be costly to operate. Due to 

greater economical constraints and ever-increasing demand on metal ores, efforts have been 

carried out to develop recovery-reuse technologies for the treatment of heavy metal 

pollution [2].  

One of the treatment options that has seen considerable advance in recent years is 

biosorption, in which inexpensive biomass or biomaterials are employed to remove heavy 

metal ions from aqueous media [3-5]. Recovery of the metal ions from biosorbents is 

possible and the generally low cost of the sorbents renders this technology of great interest. 

The use of zeolites as highly valued ion-exchangers for the removal of heavy metal 

contamination (and other pollutants) in aqueous media has been referred as a low-cost 

approach by many authors [1,6,7]. 

The work described in this thesis presents two main objectives. The first is the development 

of a biotreatment system that allows recovery-reuse of chromium (Cr). This metal is present 

in effluents of electroplating and textile industries, which are important industrial sectors in 

the northern region of Portugal. The proposed system combines a biosorbent, the 

Arthrobacter viscous bacterium, with zeolitic supports (faujasite and mordenite type 

zeolites). The aim of joining these two constituents is to take advantage of the sorption 

properties of bacteria and zeolites, while the reuse of the removed metal will be performed 

in the catalysis field, which is the second objective of this work: the development of Cr 

catalysts for liquid-phase oxidation reactions, namely the oxidation of cyclohexanol and 

cyclohexene. 
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1.1 Outline 

The presentation of the different aspects related to the development of this work was 

divided in seven chapters. Chapters 1 and 2 will be devoted to the presentation of the 

fundamental aspects that will enable a better understanding of the work. Chapters 3 to 6 

will cover all aspects related to the development of experimental work, with presentation 

and discussion of the obtained results. Chapter 7 will close this thesis with a resume of the 

conclusions of this work. 

Figure 1.1 presents the division and themes covered in the different chapters. 

 

 

Figure 1.1: Outline of this thesis. 
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1.2 Theory and Fundamentals 

This section presents theoretical background on the different aspects and technologies that 

are covered throughout this work.  

The first subject presented in this section is Chromium, which will be followed by 

Treatment of heavy metal pollution. The following definitions are part of the proposed 

Cr(VI) biotreatment system: biosorption, which is the basis of the proposed technology 

(including details on the selected biosorbent, the Arthrobacter viscosus bacterium), and the 

definition of zeolite, which is important for the understanding of this work. Catalysis will 

be detailed following zeolites.  

 

1.2.1 Chromium 

Chromium is the element with atomic number 24. Its discovery dates back to the XVIIIth 

century, being reported by Louis Vauquelin, who was also responsible for the naming of 

this metal. Its name derives from the Greek chroma (“colour”), due to the different vivid 

colours exhibited by the different ores and compounds of this metal. Chromium is the 6th 

most abundant element of the Earth’s crust [8] and is rarely found in the elemental form, 

being oxides such as chromite (Fe2Cr2O4) the most abundant source for the metal [9]. 

Chromium is a transition metal, with electronic configuration [Ar] 3d5 4s1. It can be found 

naturally in the II, III and VI formal oxidation states, being Cr(III) the most stable [10]. In 

aqueous solution, Cr(III) and Cr(VI) speciation is highly dependent on pH and Cr 

concentration. Compounds of the trivalent state usually form chromium hydroxides in 

water, being mono or polynuclear species (CrOH2-, Cr(OH)2
+, Cr(OH)3, Cr(OH)4

-, 

Cr2(OH)2 or Cr3(OH)4
5+), whereas the hexavalent chromium predominantly forms 

chromate or dichromate anions (CrO4
2- and Cr2O7

2-, respectively) [11]. Figure 1.2 presents 

a speciation diagram for Cr(VI)  species. 
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Figure 1.2: Speciation diagram for Cr(VI) (source: Mohan and Pittman, 2006 [11]). 

 

Hexavalent chromium species are very strong oxidizing agents. The equation for the 

reduction of dichromate in acid medium is given by equation 1.1.  

O7H2Cr6e14HOCr 2
32

72 +→++ +−+−  (eq. 1.1) 

The standard reduction potential for dichromate is very high, at +1.360 V [12]. 

Chromium is a key element in industry. Being one of the most widespread metal in several 

industries [11], its main application is surface finishing on electroplating industries, being 

also of importance in textile industries (textile dyeing), wood preservation and production 

of pigments [2]. The presence of this metal in effluents from these industries is common 

and constitutes a potential environmental hazard if not treated properly.  

 

Toxicological effects of chromium 

Chromium in hexavalent oxidation state is very toxic. Metallic Cr does not present 

significant toxicity while Cr(III) is an essential trace element to living beings. In humans it 

assists the metabolism of glucose and cholesterol [13,14]. The mobility of Cr(III) 

compounds in aqueous solutions is reduced as this ion is prone to complexation with 

organic molecules or in the form of hydroxides [15]. In cellular structures, Cr(III) 

compounds are efficiently blocked by the cell wall. 
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Hexavalent Cr forms oxyanions compounds in aqueous media. These species are highly 

soluble and mobile in both aquifers and soils, which renders Cr(VI) compounds very 

accessible to life forms [15]. Contrarily to Cr(III) species, the Cr(VI) chromate and 

dichromate anions are very mobile in cellular structures, being taken by both prokaryotic 

and eukaryotic cells [16,17]. Owing to its high oxidation potential, as Cr(VI) reaches the 

cell cytoplasm and is in the presence of reducing cellular components, reduction to lower 

valence states may occur, leading to the formation of mainly Cr(III) species or some short-

life intermediaries such as Cr(V) and Cr(IV). Once reduced, the Cr(III) species can form 

adducts with important biomolecules such as DNA or proteins, blocking their normal 

functionality, hence its mutagenic and carcinogenic effects [15-17]. Human exposure to 

Cr(VI) compounds leads to several health issues which may range from allergic-like 

reactions to more complicated respiratory tract problems [15]. 

 

Treatment of Cr-contaminated effluents 

Cr is a heavy metal pollutant with high-priority for treatment [1]. According to Portuguese 

law (Decreto-Lei 243/2001, September 5th), the maximum chromium concentration in water 

for human consumption is 0.050 mgCr/L, while the maximum emission concentration in 

effluents is 2.0 mgCr/L for total Cr with a 0.1 mgCr/L limit for Cr(VI). 

The common treatments for industrial Cr-containing effluents are physicochemical 

processes such as chemical reduction-precipitation, ion-exchange, adsorption on activated 

carbon, electrolysis, reverse osmosis, solvent extraction or evaporation [2,15]. The most 

predominantly used is chemical precipitation which requires previous reduction of Cr(VI) 

to Cr(III) with an adequate reductant (such as FeSO4, SO2, BaSO3 or Na2SO3) in 

controlled pH conditions that would subsequently be precipitated as chromium hydroxides. 

This procedure has the drawbacks of consuming a considerable amount of reactants and 

generating Cr sludge which is normally deposited in a landfill.  

Treatments which allow recovery of the metal, recovery-reuse processes, such as 

electrolysis, ion-exchange and membrane processes are currently being employed. 

However, the recovery of the metal is limited to local regeneration (such as electrolysis 

recovery in electroplating industries) or suffers from the high costs of energy consumption 

(reverse osmosis and membrane processes) or the cost of suitable supports (ion-exchange).  
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Bioremediation techniques have been recently proposed for the treatment of Cr-containing 

effluents. These techniques employ Cr-reducing microorganisms or simply rely on ion-

exchange and adsorption phenomena on inexpensive biomass. These techniques will be 

further commented in sections 1.2.2 and 1.3. 

 

1.2.2 Biosorption 

The main process involved in the Arthrobacter viscosus – zeolite system is biosorption.  

Biosorption is defined as the ability of any biomaterial to remove a given substrate from its 

environment. The true definition of the term “biosorption” is part of a debate where many 

authors offer different views on the subject. Although there is consensus on the fact that 

uptake during biosorption is due to physicochemical phenomena only, some authors claim 

that biosorption should only be used whenever dead biomass is involved, as it disregards 

any metabolism-dependent uptake processes [2,18,19]. However, other authors state that 

active uptake through metabolic pathways represent a negligible part of the global 

biosorption process in living organisms [20]. This definition is more sensitive when the 

removal of heavy metal ions is involved, as biomaterials cannot degrade metals [3,21]. 

Therefore, a distinction between biosorption and bioaccumulation is done to separate 

whether the removal of heavy metals is conducted by metabolic or non-metabolic 

processes, respectively [22].  

In either way, authors agree that biosorption of heavy metals is mainly due to 

physicochemical process, such as adsorption on external cell wall, ion exchange, 

complexation, microprecipitation and oxidation/reduction [3,23]. Ion exchange is often 

referred as the prevalent process. The complex chemical nature of the biomolecules that 

constitute the external cell wall offers several functional groups such as carboxylic acids (-

COOH), hydroxyl groups (-OH) and amine groups (-NH2) that are able to exchange 

protons (H+) with metal cations, providing the pH conditions of the medium would allow it 

(by influencing protonation/deprotonation of the functional groups).  

While virtually any type of biomaterial can be used, such as bacteria, yeast, algae, fungi, 

fermentation waste or agricultural by-products such as tree bark or seed husk, microbiotic 

biomass is of particular interest for the application in large-scale processes. Microbes 

present the best compromise between surface area per volume of any living form [24], 
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which coupled to their low cost renders them useful materials for treatment of heavy metal 

contaminated effluents. Other advantages include metal recovery, possible regeneration of 

the biosorbents and minimal production of biological or chemical sludge [25]. Also of 

interest is the possibility of biosorbents to conduct selective separation of metal cations to 

levels as accurate as required for their further use in analytical procedures [26]. 

In order to be successfully applied in the removal of metals from contaminated solutions, it 

is often required that the biomass should be immobilized, either bound to a support or 

entrapped in a reactor [3,4]. Immobilization in a matrix (a polymer or an inorganic support 

such as silica) endows the biosorbent with mechanical resistance which is needed for 

continuous flow operation. Other bioreactors employ biomass immobilized through several 

processes, according to the specificity of the biomass itself and intended application [5]. 

Figure 1.3 presents some of the most used process for biomass immobilization. 

 

Figure 1.3: Some strategies for the immobilization of biomass. 

 

Arthrobacter viscosus  

Arthrobacter viscosus bacterium was selected as the biosorbent for the Cr(VI) biotreatment 

system. This bacterium presents interesting properties for the biosorption of heavy metals, 

such as great capacity for the production of extracellular polysaccharides (or 

exopolysaccharides - EPS) [27], which will increase the number of biosorption sites 

available for chromium ions. Also, EPS assist the fixation to a support and aggregate 

cellular growth, which in turn results in higher cellular concentration in biomass 

suspension. Arthrobacter viscosus bacterium is also non-pathogenic and alike most bacteria 

Floculation Cross–linking Adsorption to a surface

Gel encapsulation Entrapment in a matrix Covalent bonding to a surface
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from Arthrobacter sp. genus, this bacterium thrives on aquatic media such as riverbed 

sediments or underground. 

Arthrobacter sp. bacteria present different morphology according to their growth stage. 

During cellular exponential growth stage the bacteria present a rod-like shape which 

changes to cocci in the stationary phase [28]. The Gram coloration also varies, although in 

the stationary phase cells are Gram-positive [29]. Arthrobacter sp. bacteria are also known 

for their high DNA C+G content, normally in excess of 70 % [28]. 

 

1.2.3 Zeolites 

The selected supports for the Arthrobacter viscosus biosorbent were zeolites. 

In brief, zeolites are crystalline aluminosilicates composed by alumina (Al2O3) and silica 

(SiO2) dispersed in a well-ordered lattice. 

The discovery of zeolites is attributed to the Swedish mineralogist Crønstedt (1722-1765), 

who reported in 1756 that a certain mineral released considerable amounts of water vapour 

upon heating on a flame. This mineral was later known to be stilbite and the naming zeolite 

originated from the combination of the Greek words zeo or zein (fusing) with lithos (rock), 

which translates the observations made by Crønstedt: “the rock that boils” [30,31].  

Later research revealed that zeolites presented several framework types, some being related 

to other known mineral structures while others are characteristic to zeolites. However, all 

share the same common building block: TO4 tetrahedra, where T is any tetrahedrally 

coordinated cation (Si or Al), that are bound together sharing the oxygen (O) atoms on the 

tetrahedra corners [32,33]. The empirical chemical formula of a zeolite is  

O].pHOSi[AlM 2y)2(xyx
n

y
x +
+

 (eq. 1.2) 

where M is the stabilizing cation (usually a metal) and n is the corresponding charge. 

The first scientific studies with zeolites were reported in the mid-1800s. The dehydration of 

zeolite crystals was found to be reversible and non-damaging to the crystal transparency by 

Damour in 1840. Another important finding was reported by Eichorn in 1858: the 
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reversibility of ion-exchange in zeolites [34]. The adsorption of gases on dehydrated 

zeolites was reported by Friedel at the end of the XIXth century [35]. 

The great step in zeolite science occurred in the mid-1900s with the discovery of the 

synthetic pathway for the production of zeolites. Barrer and Milton are referred as the 

“founding fathers” of zeolite synthesis due to their discovery of the first fully synthetic 

zeolites of structures that were unknown to natural minerals [35,36]. Zeolites A, X and Y 

were amongst the first synthetic zeolites to be obtained by the hydrothermal synthesis 

process and soon became of great importance in industrial processes. The following trend 

led to the discovery of new structures and a push for high-silica zeolites was met with 

success with the advent of the synthesis of zeolites such as ZSM5 or Beta zeolites.  

To date, more than 130 zeolitic structures are known to exist, with natural zeolites 

accounting for around 40 structures [32]. These structures are compiled in the Atlas of 

Zeolite Framework Types, which is responsibility of the Structure Commission of the 

International Zeolite Association (IZA). Each structure was given a three-letter code, such 

as FAU for faujasite type zeolites (Y and X zeolites), MOR for mordenite type zeolites, 

LTA for Linde Type-A zeolite or MFI for ZSM5 zeolite. 

While the basic building block of zeolites is the TO4 tetrahedra, several common structures 

of greater complexity are well known. Figure 1.4 presents an overview of the most common 

secondary building units (SBU). 

 

Figure 1.4: Example of some of the most common SBUs. 

 

The zeolites used in this work belong to two distinct structures, namely, Y zeolite which is 

a faujasite (FAU) structure while mordenite zeolite shares the structure name with 

mordenite mineral (MOR). The unit cell for a FAU zeolite is cubic and comprises two 

SBUs: double-6 rings which bind sodalite cages, as shown in Figure 1.5. The main feature 

of the FAU unit cell is its central cavity, also known as supercavity or α-cavity. These are 

Double-4 ring

(D4R)
T5 unit
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interconnected by threedimensional channels (on all three axis directions), so that the 

supercavities present pore openings of 12 T or O atoms (7.4 Å in diameter). This pore size 

is considered a “large-pore” opening [33].  

MOR zeolites are formed from five-ring SBUs [35], also named mor SBU. The resulting 

structure forms large pore openings of 12 T or O atoms, the same size as FAU. The 

continuous structure is strikingly different to the cavity-laden FAU zeolites, with one-

dimensional large pore channels along the [001] axis and 8-ring pores are present in the 

[010] axis, although these are inaccessible to most molecules [37]. 

 

Figure 1.5: FAU and MOR framework types. Corner atoms represent either Si or Al atoms,  

while lines represent O bridges. 

 

The zeolite properties are related to their particular chemical composition as well as their 

structure. One of the most important factors in zeolite chemistry is the presence of 

aluminium (Al) atoms in the structure. Silicon atoms are tetravalent, which renders the 

SiO4 units neutral in electric charge, whereas the trivalent Al atoms are not able to fully 

compensate the charges of the four neighbouring oxygen atoms, meaning that the AlO4 

tetrahedra are negatively charged. This charge is balanced by the presence of 

extraframework cations, mostly of alkali- or earth-metal elements. These cations are kept in 

the zeolite framework by electrostatic forces that can easily be countered by other cationic 

species and this gives rise to the ion-exchange ability of zeolites. Ion exchange capacity of 
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a zeolite is related to the amount of Al atoms present in the framework, so that Al-rich 

zeolites are widely used in ion-exchange processes, such as detergent softening.  

Another important feature of the zeolitic structure is the microporosity of the well-defined 

structure. Most zeolites present two types of porosity, primary and secondary. Primary 

porosity is related to the framework structure itself while secondary porosity originates 

from eventual macropores on the structure, resulting from the interspaces between small 

sized zeolite crystallites or structural defects [38,39]. The microporosity leads to high 

surface areas which can exceed 700 m2/g [40]. For this reason, zeolites present great 

adsorption properties, which render them useful in industrial applications such as gas 

drying or purification.  

Another aspect of the well-defined and rigid structures of zeolites is their ability to separate 

molecules, as their pores and channels dimensions are in the range of molecular sizes 

[41,42]. Molecular sieving using zeolites is another important industrial application and 

shape selectivity is a key factor for the successful implementation of zeolites in industrial 

catalysis. 

 

1.2.4 Catalysis 

Catalysis is a cumulative term for the physicochemical processes which lead a certain 

material to act on the course of a chemical reaction without being consumed in the same 

reaction. A material with these properties is named catalyst which, according to the IUPAC 

definition is a component which is strange to the reaction, yet changes the rate of reaction 

while not being consumed in the process [43]. 

A catalyst decreases the activation energy of a reaction, offering favourable energetic 

pathways to the reaction, according to the diagram in Figure 1.6. A reaction is considered a 

catalytic reaction if a one of more turn-over number of events (TON) occurs at the catalyst 

or catalytic sites [44]. 



Preparation of catalysts from biosorbents supported on zeolites 

Chapter 1 – Introduction 13 
 

 

Figure 1.6: Energy diagram for a non-catalyzed reaction (red) and the equivalent catalyzed reaction 

(blue). 

 

Although catalysts may alter the rate of the reaction, either increasing or decreasing (these 

are named inhibitors), the equilibrium position of the reaction is not altered. The effect on 

the reaction rate is related to the activity of the catalyst. Despite the equilibrium position 

being kept, the distribution of reaction products can be changed by the presence of catalysts 

- this is named catalyst selectivity and is another important feature of catalysis. The 

different energetic pathways that catalysts offer may induce preferable formation of a given 

product in multi-product reactions, which also includes the formation of new products that 

would not be obtained under normal reaction conditions. 

Since the physicochemical phenomena behind catalytic activity are diverse, it is possible to 

divide catalysts under several categories. Catalysts are divided in heterogeneous or 

homogeneous, according to their physical state being different of the same as the substrate. 

A third distinction is used by some authors to place biocatalysts (enzymes) outside purely 

heterogeneous or homogeneous catalysts [44]. From the chemical point of view, catalysts 

can be of acid or alkaline type, redox type or a combination of more than one of these types 

(named a bifunctional catalyst). 

Homogeneous catalysts are generally more active, since the limitation of mass transfer by 

diffusion is favourable if catalysts and reactants are dispersed on the same phase. 

Homogeneous catalysts are still highly valued in organic synthesis [45]. Heterogeneous 

catalysts are susceptible to diffusion limitations between bulk reactants and the catalytic 

active sites on the catalyst surface, requiring efficient mass transfer in order to be 
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comparatively active as the homogeneous counterparts. However, the greater ease in 

recovery from reaction as well as greater stability and resistance are key features for 

industrial-scale use, to the point that efforts leading to the preparation of heterogeneous 

catalysts from homogeneous equivalents are still conducted. 

 

Catalysis by metals 

Metallic compounds are some of the oldest heterogeneous catalysts to be used industrially. 

One of the earliest industrial applications was the Haber process for the production of 

ammonia with an iron catalyst in the early 1900s. It was based on studies of this catalyst 

that Emmett and Brunauer reported one of the earliest advances in understanding the 

surface phenomena on metals that led to catalytic activity. For the given reaction, the 

authors found that the chemiosorption of nitrogen in the catalyst was the rate-determining 

step of the reaction [46]. Up to this day, studies on the full understanding of chemical 

reactivity of metal surfaces due to chemiosorption phenomena are still conducted [47].  

Metals in the form of homogenous complexes were also known to be catalysts since the 

XIXth century and are still widely used in redox catalysis [48]. These compounds can form 

coordination species with the transient intermediaries or stabilizing otherwise less likely 

reaction compounds. Oxidation with peroxides can also be catalysed by metal particles, 

through electron-transfer processes that lead to free radical formation of alkylperoxy or 

hydroperoxy radicals [49]. In this particular case second-row transition metals offer more 

stable radical intermediaries, as the catalytic activity of first-row transition metals may be 

so high that decomposition of the peroxides to unreactive compounds (such as H2 and H2O 

from H2O2) may occur, hindering the conversion of the substrate [50]. 

 

Zeolites as catalysts 

Zeolites are used in many reactions as catalysts: acid, basic, acid-basic, redox and 

bifunctionual. However, their great application is in the field of acid catalysis for 

hydrocarbon transformations [39,41].   

The catalytic activity of zeolites is related to framework structure and composition. 

Framework AlO4 tetrahedra create a negative charge which can be compensated by 
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positively charged ions. The zeolitic acidic sites can be generated by the introduction of 

protons in the structure, that will create the Brønsted acid sites, as shown in Figure 1.7. 

 

Figure 1.7: Possible representations of the Brønsted acid sites present in zeolites. 

 

The global activity of Brønsted acid sites depends on several factors, such as their density 

in the framework, the zeolite Si/Al ratio (which will interfere in the acid strength of the 

sites) and local strain on bond angles. It was found that high-silica zeolites present much 

stronger Brønsted acid sites, despite their lesser availability of Al T atoms, which led to the 

development of high-silica zeolites such as the ZSM5, which are of great importance for the 

petrochemical industry. 

Zeolites may also present Lewis acidity by loss of water of the Brønsted acid sites upon 

heating, according to Figure 1.8. 

 

Figure 1.8: Generation of Lewis Acid sites in zeolites. 

 

Zeolites can also be modified or synthesised for use in catalysis by inclusion of metal 

species in their structure. This can be achieved by two ways: a synthetic way, where 

isomorphic substitution of T atoms with selected metals is performed and a post-synthetic 

way, consisting of a simple ion-exchange with a salt of the desired metal or inclusion of the 

metal active centre by grafting/tethering onto the zeolite surface (Figure 1.9) [49]. 
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Figure 1.9: Examples of insertion of metal species into zeolites: A) isomorphic substitution, B) ion-

exchange, C) grafting (top) and tethering (bottom) and D) encapsulation of metal complexes in 

supercavities. 

 

The insertion of catalytically active metal species offers the possibility of operating 

bifunctional catalysts. The earliest example of success in the synthesis of isomorphic-

substituted zeolites was the synthesis of TS1 by Enichem, where Ti(IV) was used to 

substitute Al atoms in the structure of a MFI zeolite (also called a titanosilicate) [39,49]. 

Ion-exchange with transition metal cations or complexes is also a possible way of forming 

stable heterogenous catalysts, while grafting or tethering (covalent bonding of the metal to 

the zeolite) are some of the most used techniques for the preparation of stable asymmetric 

catalysts [51]. 

Encapsulated metal complexes are somewhat different from other metal-zeolite catalysts, as 

in this case there is no physical interaction between the metal complex and host, which will 

eliminate possible interferences in the electronic environment of the central metal ion [51]. 

The encapsulation of metal complexes can be achieved by in-situ assembly of the complex 

or by synthesizing the zeolite around the previously formed complex [33]. Both approaches 

have specific requirements to be successfully implemented.  

The in-situ synthesis requires that the size of ligand molecules used for the coordination 

with the central metal is such that it allows them to diffuse through the zeolite pores and, 
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upon coordination, the bulk volume of the complex becomes larger than the pores accessing 

the cavity, blocking the exit of the metal. This process is called the flexible ligand method, 

also known as ship-in-a-bottle synthesis. A schematic view is presented in figure 1.10. 

 

Figure 1.10: Immobilization of a metal ion in a zeolitic cavity by the flexible ligand method.  

 

The target zeolite structures for this approach are three-dimensional structures with cavities 

interconnected by well-defined pores. In this case, FAU zeolites are amongst the most used 

ones while BEA zeolites can also be used [33]. 

In alternative, the encapsulation process may be performed by building the “bottle” around 

the “ship”, also known as zeolite synthesis [52]. Once having a formed complex, it is 

possible to synthesize the zeolite so that the cavities will be occupied by the coordination 

structures. However, it is an absolute requirement that the metal complex may be able to 

tolerate the hydrothermal synthesis conditions, namely, pH and temperature, and that 

crystallization of the zeolite synthesis gel may occur around the metal complex. Although 

these requirements are somewhat limiting to prepare catalysts, Fe and Cu phtalocyanines 

complexes have been successfully encapsulated in X and Y zeolites [52]. The resulting 

complex immobilization in zeolites is very attractive for catalysis in redox reactions. 

 

  

Mn+Mn+
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1.3 Recent Developments 

This section presents an overview of the achievements on the several areas of knowledge 

used in this study, with focus on the particular nature of chromium. 

 

1.3.1 Biosorption of hexavalent chromium 

The recent interest on the biosorption of heavy metals as a potential clean and low-cost 

technology resulted in a great effort from researchers worldwide and publications on this 

field have increased steadily over the past 30 years. In their recent review, Park et al. 

referred that while the first studies on metal ions uptake by microbial biomass date back to 

1902, publications on the biosorption field (as a whole) are currently in excess of 3000 

[25]. 

One of the most particular aspects on the biosorption of hexavalent chromium is that the 

global mechanism is somewhat different to other metals. This is due to the combination of 

two facts: Cr(VI) species are anionic in solution, which differ from most other heavy metals 

which tend to form cationic species; secondly, Cr(VI) species present a high reduction 

potential and are known to be strong oxidants.  

The global mechanism of hexavalent chromium biosorption has been subject of intense 

research and some doubts remained until recent studies. According to Saha and Orvig, four 

different processes were proposed, combining the possibilities of adsorption in anionic or 

cationic surfaces with possibility or absence or Cr(VI) reduction [53]: 

- anionic adsorption, based on the data from adsorption of anionic Cr(VI) species 

on protonated surfaces (at low pH), whereas at high pH, where the number of 

protonated sites decreases, adsorption of hexavalent chromium is limited due to 

charge repulsion between the chromic anions and the predominantly negative 

charge of the biomass surface; 

- adsoption-coupled reduction, strongly defended by Park et al., based on data 

from several analytical methods that confirm the formation of Cr(III) species 

during biosorption in the presence of acid [54-56]. These data are supported by 

other authors who used electromagnetic spectroscopy to determine the formation 

of Cr(V) intermediaries on the biosorption of Cr(VI) by Arthrobacter sp. 
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bacteria. The reduced Cr(III) species were not accumulated by the bacteria 

[28,57]; 

- anionic and cationic adsorption, where hexavalent chromium is adsorbed in the 

surface as well as the reduced trivalent chromium species; 

- reduction and anionic adsorption, similar to the previous, without retention of 

the reduced trivalent species that remain in solution. 

The question that many authors raise on whether biosorption of heavy metals should use 

live or dead biomass also remains for the particular case of Cr(VI) biosorption, especially 

as both live and dead biomass are able to perform the reduction to Cr(III), being either 

bacteria, fungi or algae [21,58,59]. An interesting review from Sen and Dastidar covered 

the aspects of performing the biosorption of Cr(VI) with live or dead biomass [60]. 

According to the authors the usage of dead biomass has the advantage of eliminating 

dependency on the operating temperature, pH conditions and resistance to the toxicological 

effects to suit the biomass requirements. This is the approach mostly defended by Volesky, 

Tsezos and Park [4,19,25]. However, enzymatic side-processes which could assist Cr(VI) 

reduction only occur when live biomass is used, and this is one of the advantages of using 

live cells. Although most authors agree that there is a degree of bioaccumulation by living 

cells, some enzymatic process take place externally to the cell [15,61]. Moreover, living 

cells can trigger defence mechanisms when exposed to Cr(VI) (or other metals), namely 

cell wall modification in thickness or composition, which allows increased retention of the 

metal outside the cell wall [23,62]. A third alternative is also considered by other authors, 

which is the use of growing cells instead of fully grown suspensions. This approach 

counters the need for cultivation, harvesting and treatment, but requires the cells to be Cr-

tolerant during this stage. 

The usage of Arthrobacter sp. bacteria in the biotreatment of Cr(VI) solutions has been 

reported by several authors. Tsibakhashvili et al. have based their studies on the mechanism 

of Cr(VI) bioreduction with Arthrobacter oxydans [28,57,63-65] on the detection of Cr(V) 

intermediaries by ESR spectroscopy. Isolation of Arthrobacter crystallopoietes from Cr(VI) 

contaminated sites was reported by Camargo et al., who also used molecular biology to 

understand the biological processes that related to Cr(VI) reduction and bioaccumulation 

[66]. Horton et al. identified Arthrobacter aurescens as an indigenous Cr-reducing 

bacterium consortium from a Cr-contaminated aquifer [67]. In recent studies, Mishra and 

Mukesh reported the identification of Arthrobacter sp. on isolates collected from an 
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effluent from an electroplating facility that contained chromium [68]. Patra et al. also 

isolated Arthrobacter sp. bacteria from Cr(VI) contaminated sites and found them to be 

Cr(VI)-reducing bacteria [69]. 

The use of a suspension of Arthrobacter viscosus to treat a Cr(VI) solution was reported by 

Silva et al. [70]. The suspended bacteria (5 g/L) were able to completely reduce a 100 

mgCr/L solution within a pH range of 1-4, whereas maximum chromium uptake was 12.6 

mgCr/gbiomass. While lower pH values were found to favour the rate of Cr(VI) reduction, 

higher pH allowed greater metal retention by the biomass. This was attributed to the surface 

protonation degree. High surface protonation at pH 1 offered more positively-chargerd 

adsorption sites for chromate or dichromate ions, while reduced Cr3+ ions were not retained 

by the surface due to electrostatic repulsion. These findings are in agreement to the studies 

of Park et al.  

 

1.3.2 Usage of zeolites for the treatment of Cr(VI) solutions 

Due to their great affinity for ion-exchange with heavy metal cations, zeolites are often 

reported as interesting supports for the treatment of heavy metal pollution, in cost-

efficiency terms [1,6,7]. However, direct use of zeolites on the treatment of Cr(VI) solution 

is not possible as the electrostatic repulsion forces between anionic chromate or dichromate 

ions and the net negative charge of the framework hinders ion-exchange of these species. 

Moreover, even the ion-exchange of other cationic metal ions may suffer obstruction when 

Cr(VI) species are present in solution, as it was reported by Mier et al. [71]. 

Despite their lack of affinity for anionic species, the versatility of zeolites compensated for 

this natural limitation and this property was responsible for the dedication of several 

researchers in improving the ability of zeolites for Cr(VI) retention. This improvement was 

met with success through different methodologies, which resulted in supports for the direct 

adsorption of chromate and dichromate ions or via indirect processes that involve previous 

reduction of Cr(VI). These methodologies can be separated into three categories: 

surfactant-modified zeolites, surface functionalization and metal modification. None of 

these processes requires changes promoted during synthesis or crystallization of zeolites, 

meaning they are applicable to natural zeolites as well. 
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Surfactant modified zeolites (SMZs) 

The modification of zeolites with surfactant molecules induces changes in the polarity of 

the surface, i.e., inverting the zeta potential of the zeolite surface. This strategy consists on 

the deposition of quaternary amine salts with long alkyl chains on the zeolitic surface. If the 

solution concentration of the surfactant is below the critical micelle concentration (CMC), 

an ordered monolayer of molecules is deposited on the surface (named hemimicelle), with 

the positive charge of the amine centre directed towards the surface and the long 

hydrophobic alkyl chains pointing outwards. However, if the surfactant concentration 

exceeds its CMC, a double layer will form (known as admicelle), with the top layer 

inversed; with the positive centre pointing outwards (Figure 1.11) 

 

Figure 1.11: Formation of a hemimicelle and admicelle, at different surfactant concentrations. 

 

Once the admicelle is formed on the zeolite surface, the positive charges of the quaternary 

amine salts allow the retention of the negatively charged chromate or dichromate species, 

as illustrated in Figure 1.12: 

 

 

Figure 1.12: Retention of chromate ions by SMZs. 
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This process not only allows retention of chromate, as it promotes the capture of other 

metal oxyanions (such as molybdenate and arsenate). Nevertheless, it was confirmed by 

Bowman that the retention of these oxyanions occurs without reduction of the metal [72]. 

According to the same author, the characteristic ion-exchange of zeolites remains unaltered, 

which allows the simultaneous retention of anionic and cationic species [73]. Also, SMZs 

are tolerant to extreme pH and ionic strength conditions and to organic solvents, allowing 

their application in the same conditions as unmodified zeolites [74]. 

One of the earliest attempts to tailor an inorganic support was reported by Boyd et al. in 

1988. The authors reported the application of the hexadecyltrimethylammonium (HDTMA) 

surfactant to modify soil samples in a bid to increase the retention of organic compounds 

[75]. Later, Santiago et al. reported the use of ethylhexadecyldimethylammonium 

(EHDDMA) and cetylpyridinium (CPD) surfactants to modify zeolites, achieving uptakes 

of Cr(VI) below 1 mgCr/gsupport [1]. The evaluation of the mechanism of chromate removal 

was also conducted, and several authors reported that the Langmuir adsorption model 

provided good fitting for both the retention of surfactant molecules on the zeolite and 

further Cr(VI) removal by different SMZs [76]. Another interesting feature of SMZs is the 

potential reusability of the sorbent, as demonstrated by Zeng et al. The authors reported the 

preparation of HDTMA-surfacted clinoptilolite and chabazite SMZs that were rinsed with 

HCl (0.1 M) after a first cycle of Cr(VI) removal, achieving 90 % of the original uptake on 

a second cycle of Cr(VI) removal [77].  

In terms of uptake capacities of SMZs, the highest figures were reported by Zeng et al., 

using modified natural chabazite zeolite to remove Cr(VI) up to 14.0 mgCr/gSMZ [77,78]. 

 

Surface functionalization of zeolites 

A different approach to provide zeolites with species having affinity for Cr(VI). This is 

achieved via surface functionalization, by grafting these species to the zeolite framework. 

There are differences towards SMZs, mainly the fact that covalent bonding is involved 

between the zeolite and the functional group that is inserted. The most common grafting 

agents are hybrid organic-inorganic compounds, such as alkyl silanes. These are able to 

react with surface silanol groups (SiOH), which offer good reactivity towards the grafting 
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agent [79]. An example of grafting minopropyl-triethoxy-silane (APTES) into a silica-like 

surface is presented in Figure 1.13.  

 

Figure 1.13: Grafting of APTES to a silica-like surface. 

 

Although this process is more suited for silicates or silica-based supports, zeolites can also 

be used provided they offer a low Si/Al ratio or present a Si-rich external surface, since 

surface-laid Al centres do not present the hydroxyl groups as the surface SiOH 

counterparts. However, the internal area of zeolites, which is much greater than the external 

area, lacks silanol groups that are replaced by the hydroxyl groups available as the Si-(OH)-

Al acid Brønsted sites [80]. Therefore, Si-rich zeolites with nano-crystallinity are better 

suited for surface functionalization, according to Song et al. [81]. 

In the example shown in Figure 1.13, APTES is of great interest to the removal of Cr(VI) 

oxyanions as the terminal amino group (-NH2) is easily protonated at acidic pH, resulting in 

a positively charge that is responsible for the attraction of the chromate/dichromate anions 

(in a process similar to the observed in SMZs). Figure 1.14 presents a schematic view of the 

retention of Cr(VI) by APTES-functionalized silica-rich surfaces. 

 

Figure 1.14: Retention of dichromate anion by previously protonated amino-functionalized silica. 
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Other terminal groups may include metal species that are used to coordinate with specific 

targets. Fryxell et al. reported the use of silica functionalized with Cu-(ethylenediamine) 

complexes that were found to coordinate to aqueous As(V) and Cr(VI) species, even on the 

presence of competing anions, such as sulphate [82]. The authors reported a maxium uptake 

of 54 mgCr/gSupport, tested on initial concentrations up to 1000 mgCr/L. Yukoi et al. reported 

that a MCM-41 zeolite functionalized with coordinated Fe(III) was able to remove the 

oxyanions of Cr(VI), As(V), Mo(VI) and Se(VI), achieving a maximum uptake of 95 

mgCr/gsupport from initial concentrations of 230 mgCr/L [83]. Another work on separation of 

Cr(VI) was reported by Lam et al., using NH2 and Na+COO- functionalized MCM-41 

supports. The latest was found to be useful on the separation of Cr(VI) from Cu(II) ions at 

pH 2 while the support achieved an uptake of 23 mgCr/gsupport from diluted solutions (7 

mgCr/L) [84]. 

Similar SMZs, functionalized zeolites also retain their natural ion-exchange capacities, 

which is useful in the preparation of multi-functional supports. One type of bifunctional 

support for the removal of Cr(VI) was proposed by Barquist and Larsen, using magnetic 

NaY zeolite functionalized with APTES. The magnetization of NaY was achieved by ion-

exchanging Fe(III) and Fe(II) in order to form magnetic iron oxides after mild alkaline 

treatment. This modification was chosen to allow easy recovery of the APTES-treated 

supports, which present hydrophobicity and tend to form colloidal suspension in water 

media. The reported uptake was to 44 mgCr/gsupport
 from 100 mgCr/L solutions [85]. 

 

Modified zeolites with chromium-reducing metals 

Unlike the two previous processes for zeolite modification that were detailed in this section, 

modification of zeolites with Cr(VI)-reducing metals and subsequent ion-exchange of the 

reduced Cr(III) species by the zeolite is an indirect process for the removal of hexavalent 

chromium with zeolites. This process is similar in operation to the proposed Arthrobacter 

viscosus-zeolite system, although the Cr(VI) reducing species are inserted in the zeolite 

framework prior to use in solution. 

Some metals or metal ions are able to contribute as electron donors for the reduction of 

hexavalent chromium. Iron (Fe) is a long-time studied metal for this process [86], although 

aluminium (Al) and barium (Ba) have also been successfully used [87,88]. Fe(II)-modified 
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FAU zeolites have been used by Kiser and Manning to treat Cr(VI)-containing solutions 

and the overall mechanism was studied in detail [89]. According to the authors, the 

reversibility of ion-exchange of Fe(II) by the zeolites provides an effective mean for 

delivering this reactant for subsequent reduction of Cr(VI) to Cr(III), which is favorable 

under environmentally relevant conditions. Since the formed Cr(III) readily displaces the 

Fe(II) ions from the zeolite exchange sites, a cooperative mechanism between these two 

favorable reactions occurs. Furthermore, the presence of the Al–O–Si or SiO2 surfaces in 

the zeolite structure may assist the reduction of Cr(VI) with Fe(II) by providing a catalytic 

effect. The observed uptake was of the same magnitude as SMZs, with a maximum of 15.6 

mgCr/gsupport being achieved by the Fe(II)-FAU support. Comparable results were obtained 

by Bolortamir and Egashira using natural Mongolian clinoptilolite modified with Ba2+ ions 

to achieve a maximum uptake of 14.0 mgCr/gzeolite, while the unmodified zeolite samples 

only achieved residual chromate removal [88]. 

 

1.3.3 Use of chromium as catalyst for oxidation reactions 

The oxidation of organic compounds has long been considered of great importance in 

chemistry and in industrial processes, mainly for organic synthesis [90]. As an example, the 

oxidation of C-H or C-C bonds into more reactive C-OH or C=O allows the formation of 

precursors which can be subsequently selectively transformed into other added-value 

products [91]. However, oxidation of organic compounds is an inefficient process which is 

greatly assisted by the use of adequate catalytic processes [92]. Furthermore, catalysts are 

now required to allow the use of environmental-friendly oxidants such as O2, H2O2 or 

RO2H to replace undesirable inorganic oxidants like K2Cr2O7 or KMnO4 [93]. 

According to Muzart, chromium has been used in this field since the dawn of organic 

synthesis. This author presented a comprehensive view of the uses of homogeneous Cr 

catalysts in several types of organic oxidation reactions, distinguishing between the 

different formal oxidation states while keeping larger focus on Cr(III)- and Cr(VI)- 

catalysed reactions [94,95]. Despite the known problems associated to the toxicity of this 

metal, coupled to the possible difficulties in end-of-reaction recovery or disposal of the 

catalyst, the author pointed out the great activity and versatility of chromium catalysts. 

Reckoned homogenous Cr-based catalysts are the Jones reagent (CrO3, H2SO4 and 
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acetone), the Collins reagent (CrO3 and pyridine) and the PCC reagent (CrO3, pyridine and 

HCl) [96]. 

Weckhuysen et al. have commented on the application of supported Cr catalysts in several 

reactions, from olefin oxidation to polymerization and hydrogenation-dehydrogenation of 

alkanes [97]. Concerning the authors’ comments on olefin oxidation, Cr catalysts are very 

active in the oxidation of alcohols, although Cr(VI) oxide proved to be a much more active 

catalyst than Cr(III) oxide in the oxidation of methanol. Cr-aluminophosphate molecular 

sieves (Cr-APO) were referred as excellent catalysts for the oxidation of secondary alcohols 

with tert-butylhydroperoxide (t-BuOOH). The authors also commented on the activity of 

heterogeneous Cr catalysts on amorphous supports on the oxidation of hydrocarbons. 

Athough the usefulness of Cr heterogeneous catalysts is acknowledged, the actual degree of 

heterogeneity in these catalysts is still subject of some debate. Arends and Sheldon have 

reported several works on the subject of Cr leaching from heterogeneous catalysts [49,98]. 

According to the authors, even framework-substituted catalysts such as Cr-APOs molecular 

sieves present loss of Cr ions in the solution when in contact with alkylhydroperoxide 

oxidants (RO2H), which led to the breakdown of Al-O-Cr and Si-O-Cr bonds. Lounis et al. 

have used a Cr(III) ion-exchanged ZSM5 zeolite as catalyst for the oxidation of several 

alcohols with t-BuOOH and reported the leaching of Cr species during heating of the 

reaction mixture [90]. The authors indicated the complexation of Cr with the alkyl peroxide 

to be responsible for the leaching of the metal species, as it led to the formation of a soluble 

complex. However, the authors also observed the re-adsorption of part of the leached 

species during the cooling down of the reaction mixture. Schuchardt et al. reported the 

preparation and test of Cr(III)-silicate catalyst and the authors also observed homogenous 

character due to leached Cr ions in the liquid-phase oxidation of cyclohexane with t-

BuOOH or in the oxidation of cyclohexane with hydrogen peroxide [99,100]. The authors 

concluded that the loss of Cr was due to solvolysis of the Cr-O bonds from the support with 

polar compounds, such as water or peroxides. 

Despite the constant debate on the stability of heterogeneous Cr catalysts, this subject is not 

commonly covered in publications reporting the use of zeolite-encapsulated Cr complexes. 

This can be due to the specific nature of these catalysts, being the closest heterogeneous 

equivalents to the stable homogenous Cr complexes which are widely used in organic 

oxidation. One of the earliest successful applications of encapsulated Cr complexes was 
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reported by Maurya et al., on the wet peroxide oxidation of phenol using Cr(III)-salen 

complexes encapsulated in Y zeolite [101,102]. The authors compared the activity of this 

catalyst to Fe(III) and Bi(III) equivalents and concluded that the Cr(III)-based catalysts 

achieved higher phenol conversion. 

 

1.3.4 Oxidation reactions of cyclohexene and cyclohexanol 

The two model reactions chosen to test the recovered Cr-biosorption supports as catalysts 

are the oxidation of cyclohexene and cyclohexanol. These reactions are somewhat different 

in nature, as cyclohexene is an olefin while the oxidation of cyclohexanol takes the 

common pathway for the oxidation of a secondary alcohol, with the formation of the ketone 

derivative, as illustrated in Figure 1.15. 

 

Figure 1.15: Peroxide oxidation of cyclohexanol into cyclohexanone. 

 

The production of cyclohexanone has particular industrial interest since this compound is a 

precursor to the production of nylon-6 and nylon-6,6 [93].  

Catalysts containing hexavalent Cr derivatives are very active on the oxidation of 

cyclohexanol [103,104]. The associated problems of toxicity and catalyst recovery have led 

to developments of heterogeneous catalysts. Since Cr(VI) is an active catalyst for this 

reaction, some authors reported the preparation of heterogeneous catalysts which employed 

this metal ion. An interesting work was reported by Parentis et al. who studied the 

oxidation of cyclohexanol with tert-butylhydroperoxide in the presence and in the absence 

of molecular oxygen, using a Cr(III) silica-supported catalyst [105]. The authors concluded 

that the presence of O2 increases overall conversion of cyclohexanol, although the reaction 

can take place in its absence, although with a slightly lower conversion. Moreover, O2 was 

considered a co-oxidant, since when in absence of tert-butylhidroperoxide, molecular 

oxygen was not able to induce any oxidation of cyclohexanol, hence the alkyl peroxide was 

the initiator of the reaction. The authors also proposed the following reaction mechanism: 

OH O
ROOH
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Figure 1.16: Proposed mechanism of cyclohexanol oxidation with tert-butylhydroperoxide using Cr 

catalysts. 

 

The research into developing heterogeneous Cr catalysts for this reaction led to different 

approaches. A report on the use of Cr oxides was given by Nakamura and Matsuhashi, who 

employed Cr(VI) oxides supported in zirconia (CrO3/ZrO2) as an efficient heterogeneous 

catalyst [96]. Isomorphic Cr-substituted molecular sieves have also been tested for the 

oxidation of cyclohexanol, as it was reported by Laha and Gläser [106]. The authors 

reported the synthesis of Cr(III)-containing MCM and APO molecular sieves, named 

CrMCM-41, CrMCM-48 and CrAPO-5. The catalytic tests showed activity for the reaction. 

However, leaching of Cr species into the reaction medium was found to occur, with higher 

incidence on the mesoporous MCM-based catalyst than in the microporous APO 

counterpart. 

The second oxidation reaction covered in this work is the oxidation of cyclohexene. 

Compared to the previous reaction, cyclohexene has a more intricate oxidation behaviour, 

with the competition of C-H and C=C bonds for the active oxidant [92]. This will have an 

effect on the mechanism being due to epoxidation or allylic oxidation. This reaction may 

yield a significant number of products, being the most common presented in Figure 1.17. 

 

Figure 1.17: Main reaction products of the peroxide oxidation of cyclohexene. 
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catalysts. As early as 1994, Bautista et al. reported the use of mixed CrPO4-AlPO4 for the 

oxidation of cyclohexene [107]. Sakthivel et al. published a report on the use of CrMCM 

molecular sieves as interesting catalysts for the oxidation of olefins, which were 

subsequently tested for the oxidation of cyclohexene with tert-butylhydroperoxide 

[108,109]. The authors proposed a free radical mechanism to be responsible for the 

reaction, with Cr radical centres being generated by the peroxide action. Cr supported on 

silica was also tested by Adam et al., using silica from rice husk and a Cr(III) solution in 

the synthesis gel. The catalysts were tested with H2O2 on the oxidation of cyclohexane and 

cyclohexene, being comparatively as active as other high-surface area heterogeneous 

catalysts [110]. 

Works on the use of Cr complexes encapsulated in zeolites have been recently reported. 

Masoud Salavati-Niasari has devoted his work to the preparation of this type of catalysts 

for reactions such as cyclohexene oxidation, studying different metals and supports, 

although recurrently using Y zeolite for the encapsulation of the metal complexes [111-

113]. In a recent paper, Abbo and Titinchi reported the in-situ synthesis of thio-Schiff base 

complexes of Cr(III), Zn(II) and Ni(II) in Y zeolite [114]. The authors conducted the 

oxidation of cyclohexene with H2O2 at 80 ºC and observed that both Ni and Cr 

encapsulated complexes present good activity for the reaction, achieving more than 70 % 

conversion, whereas the Zn counterpart was not active. 
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CHAPTER 2 – ANALYTICAL TECHIQUES 

 

 

This chapter presents theory and background information on the different analytical 

techniques employed throughout this work. Also, additional details concerning the 

application of these techniques to the specific nature of the samples produced in this work 

are included. 

The different techniques employed in this work can be separated into five main groups, 

namely spectral techniques, X-ray techniques, microscopy techniques, thermal analysis 

techniques and chromatographic methods.  

 

 

2.1 Spectral techniques 

These techniques are based on the interaction phenomena between matter and 

electromagnetic radiation from specific spectrum regions. 

 

2.1.1 Fourier Transform Infrared Spectroscopy (FTIR) 

Fourier Transform Infrared Spectroscopy (FTIR) is widely used in molecular 

characterization or identification of compounds. Although mostly used as a qualitative 

technique, it is also possible to operate FTIR spectrometers in quantitative analysis. 

Infrared spectroscopy is based on the absorption of radiation on the infrared spectral region 

by any material. This technique has seen intense development during the XXth century and 

is now one of the most widespread and straightforward methods for the determination of 

molecular structure. 

When infrared radiation is absorbed by a material, excitation of the molecular vibration 

levels occurs. Since electromagnetic radiation interacts with matter through electric or 

magnetic fields, molecular vibrations can only be excited if they are capable of changes in 

dipole moment [1]. Hence, a non-polar diatomic molecule such as O2 presents no 

absorption of infrared radiation. Molecular vibration also depends directly on the chemical 
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nature of the bond; therefore, the frequency of the absorbed radiation by a chemical group 

is specific [2]. The vibrational frequency of a chemical bond is given by 
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fν  (eq. 2.1) 

where ν is the absorbance frequency (in cm-1), f is the force constant of the bond (in N.m-1) 

and m1 and m2 are the atomic masses of the atoms (in atomic units) [3]. Although the 

absorption frequency of a given chemical group is specific, influence from the chemical 

environment on the molecule may cause interactions that change the frequency value, 

therefore increasing the individuality of the infrared fingerprint of a molecule. 

Chemical groups often allow several vibration modes to take place. When variation in 

chemical bond length occurs, the vibrational mode is called stretch. For a simple three atom 

group, if there is variation on the angle formed by the group, then it is called bending. Other 

possible vibrational modes are rotation and twisting of the molecule. Figure 2.1 presents a 

schematic view of the possible stretching and bending modes on a molecule. 

 

Figure 2.1: Symmetric and asymmetric stretch modes of the C-H bond of the formaldehyde 

molecule and bending modes for the water molecule. “+” and “-” refer the movement to the front or 

to the back on the perpendicular view to the plane. 

 

An early typical infrared spectrometer would consist of an infrared radiation source, a 

monochromator (either optical prisms or slit grids) and a detector. Its operation mode is 

based on dispersive methods. Further evolution in electronics and informatics led to the 

implementation of interferometry methods. For this, the development of the Michelson 

interferometer was a key step, which was coupled to the use of Fourier transform to achieve 

what is known as Fourier Transform Infrared spectroscopy (FTIR). The advantages of 

interferometry spectrometer are greater spectrum acquisition speed, higher sensitivity and, 

in most cases, the elimination of a double-beam process (simultaneous reading of reference 

and sample spectra). 
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FTIR analysis is a powerful and popular technique used in the materials characterization 

field. 

Zeolite characterization by FTIR analysis provides useful structural information. According 

to Jentys and Lercher [4], the crystalline lattice of zeolites presents well defined absorption 

regions between 500–4000 cm-1, namely double ring vibrations (500–600 cm-1), T-O-T 

symmetric and asymmetric stretch (750–1150 cm-1) and T-OH vibrational modes (3000–

4000 cm-1). These are indicated in Figure 2.2. Moreover, the absorbance of structural water 

molecules is identified by the band at 1600 cm-1 [5].  

 

Figure 2.2: Double-ring vibration region (1), T-O-T stretching region (2)  

and T-OH vibration region (3). 

 

FTIR spectroscopy has allowed the characterization of zeolites in almost every detail, such 

as framework structure, location of sites and cations and also adsorption and catalytic 

properties of zeolites [6]. In a recent study, Ghesti et al. have used FTIR spectroscopy to 

determine framework Si/Al ratios [7]. Moreover, this technique can be employed for the 

identification of compounds that are introduced or react inside the framework.  

Application of FTIR spectroscopy to microorganism analysis has also been successfully 

achieved. Maquelin et al. have reported the usage of combined microscopy-FTIR analysis 

to the identification of microorganisms by vibrational techniques [8]. FTIR spectroscopy 

has also been employed by Omoike and Chorover for the characterization of extracellular 
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substances produced by Bacillus subtilis, as well as the adsorption properties of the same to 

solid surfaces [9,10]. 

 

2.1.2 Raman Spectroscopy 

Vibrational Raman Spectroscopy is related to Infrared Spectroscopy, since it originates 

from vibrational and rotational transitions. However, the processes that occur are quite 

different. Raman spectroscopy is based on the light scattering effects that take place when a 

material absorbs monochromatic radiation from the visible to infrared region.  

When a sample is hit by visible to infrared radiation, most of the scattered radiation is due 

to elastic Rayleigh scattering. However, a small fraction of the scattered radiation was 

observed to have a different frequency compared to the incident radiation – this is known as 

the Raman effect, discovered in 1928 [11]. The inelastic scattered radiation is very weak in 

intensity, when compared to the elastic counterpart, in which only one between 106 and 107 

photons are inelastically scattered by a Raman process. This inelastic scattering is obtained 

when a sample allows polarization modulation by electronic, vibrational and rotational 

motion [6]. 

A photon scattered from a molecular transition to a higher energy state has a lower 

frequency than the incident photons – this is originated from a Stokes process. Conversely, 

if the molecular transition is towards a lower energy state, the scattered photon has a higher 

frequency and the process is called anti-Stokes. A Stokes process generates a photon with 

frequency described by equation 2.2: 

νscat = νin - ∆E/h (eq. 2.2) 

where ∆E is the energy transition on the molecular vibrational state and h is the Planck’s 

constant. For an anti-Stokes processes, equation 2.2 turns into  

νscat = νin + ∆E/h (eq. 2.3) 

Therefore, an equal ∆E generates two different scattered photon frequencies, of the same 

shift when compared to the excitation radiation frequency. For this fact, Raman 

spectroscopy spectra are compared in terms of frequency shifts – called Raman shift – 

rather than specific absorption frequencies, as it is the case for FTIR spectroscopy. Despite 

Stokes and anti-Stokes processes generate the same Raman shift, they occur with different 

proportion and Stokes processes are predominant. This is mainly due to the fact that 
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molecules on the ground energy state, which originate Stokes lines, are more abundant than 

molecules on an excited energy level that return to the lower energy levels, which are 

responsible for the anti-Stokes lines [6]. 

Since the amount of photons scattered by Raman effect is very small, an intense excitation 

light is required to generate a significant Raman signal. Modern Raman spectrometers 

employ lasers as light source, which comply with the requirements for a monochromatic 

and highly energetic excitation source. Moreover, lasers can be applied to samples in any 

state (liquid, gas or solid) or even suspensions or solutions [11]. 

Although Raman spectroscopy is vibrational in nature, it arises from the changes in 

polarizability of a molecule during vibration, rather than variation of the dipole moment 

that occurs in infrared spectroscopy [3]. Hence, Raman and FTIR spectroscopy are 

complementary in terms of the information that is retrieved from a sample. While FTIR 

spectroscopy is well established in organic chemistry as a useful characterization technique, 

Raman spectroscopy is more adequate for the identification of inorganic or coordination 

compounds.  

The study of zeolitic structures using Raman spectroscopy has been achieved. Initial studies 

on this field met technical difficulties, arising from the strong background noise which 

masked Raman signals. Early attempts to solve this issue concluded that the strong 

fluorescence was mainly due to the presence of organic fluorescent molecules that could be 

formed inside the framework or the presence of iron (Fe) impurities [12]. For most cases, 

oxidation of samples at high temperatures removed the organic fluorescent species, whereas 

changing the excitation wavelength resulted in a decrease of fluorescence. The latest was 

possible with the advent of near infrared excitation sources and Fourier Transform Raman 

(FT-Raman) spectroscopy [6]. Although Raman signal intensities can be lower in FT-

Raman, application to zeolite study was achieved [13]. 

Raman spectroscopy is able to offer data from zeolite framework and from charge-

balancing cations present in the structure or framework-substituted heteroatoms. The 

strongest zeolite structure-sensitive bands arise from the motion of T-O-T bonds and 

normally appear in the Raman shift region between 300–600 cm-1 [12]. The most intense 

band in this region often correlates with T-O-T angles from diverse building units, as well 

as with the Si/Al ratio of the matrix [6]. Bands in this region can be influenced by the 

charge-balancing cations present. Adsorbed molecules are also possible to be detected by 
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Raman spectroscopy, especially when compared to FTIR spectroscopy, where the strong T-

O-T absorbance around 1200 cm-1 may mask the presence of other species. 

 

2.1.3 Ultraviolet-visible (UV-Vis) spectroscopy  

Ultraviolet-visible (UV-Vis) spectroscopy refers to absorption spectroscopy or reflectance 

spectroscopy in the ultraviolet-visible spectral region. UV-Vis spectroscopy belongs to the 

electronic spectroscopy techniques and is widely used in quantitative analysis, although it 

may also provide molecular qualitative information.  

UV-Vis radiation is sufficiently energetic to promote electronic transitions from lower 

energy to higher orbitals. When an electron receives the exact energy difference between 

two orbitals from a photon with the corresponding hν energy, the transition from the lower 

energy orbital to the higher energy orbital takes place. Since h is a constant, the photon 

frequency ν is determinant for the electronic transition to take place.  

At an atomic level, absorption of radiation by valence electrons occurs at discrete lines of 

the exact wavelength required for the electronic orbital transition. However, in a molecular 

environment, several energy levels can be found for the bonding electrons, and UV-Vis 

absorption spectra will consist of a multitude of closely packed absorption lines, which will 

translate to absorption bands as a whole [14].  

Bonding electrons are able to transit from the corresponding highest occupied molecular 

orbit (HOMO) to the corresponding lowest unoccupied molecular orbit (LUMO). For a 

sigma bond (σ), electrons can move to the corresponding anti-bonding σ* orbital. Double 

and triple π electrons move to the anti-bonding π* orbit, whereas non-bonding n electrons 

can transit to both σ* and π* orbitals. These transitions are schematically illustrated in 

Figure 2.3: 

 

http://en.wikipedia.org/wiki/Absorption_spectroscopy
http://en.wikipedia.org/wiki/Ultraviolet
http://en.wikipedia.org/wiki/Visible_spectrum
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Figure 2.3: Comparative view of the possible orbital transitions and the respective energy gaps. 

 

As it can be seen from Figure 2.3, σ electrons require the highest energy for the transition to 

occur. This is due to the fact that σ bonds are the most stable of chemical bonds and the 

energy required to excite an electron in this orbital often requires radiation with wavelength 

below 180 nm [14]. Conversely, π electrons from double or triple bonds are more loosely 

held by the attraction of the nuclei, thus requiring lesser excitation energy and 

correspondingly, higher wavelengths, situated in the ultraviolet or visible region of the 

spectrum. Functional groups possessing this kind of electrons are named chromophores. 

Identification of chromophores in a molecule by UV-Vis spectroscopy is somewhat 

possible – precise determination of maximum absorption wavelengths is influenced by 

other molecular interaction phenomena, such as conjugation with other chromophores, 

solvent interaction or other vibrational effects. Still, some data on maximum absorbance 

wavelengths of specific chromophores can be found. Nevertheless, UV-Vis spectroscopy 

can be used as a screening tool for the detection of unsaturated groups in an unknown 

sample. 

The most common application of UV-Vis spectroscopy is in quantitative analysis. Most 

compounds absorb in the UV-Vis region (organic species, transition metal ions, biological 

samples, etc.), and even non-absorbing species can be previously treated with 

chromophoric reagents to be UV-Vis active (provided that the reaction is complete and with 

known stoichiometry). Whenever its application is possible, the latest process is preferable 

as it presents increased analytical specificity and higher sensitivity.  

The absorbance of a sample, at a given wavelength, is given by equation 2.4 

P
PAbs 0log=   (eq. 2.4) 
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where Abs stands for absorbance, P0 is the beam power submitted to the sample and P is 

the power of the transmitted beam. Provided that absorbance is kept between 0 to 1 at a 

given wavelength, a linear relationship between concentration of chromophores and sample 

absorbance exists, which is translate by Beer’s law (equation 2.5). 

Abs = εlC or Abs = l.ΣεiCi  (eq. 2.5) 

where ε is the molar extinction coefficient, l is the overall optical path and C is the 

concentration of the absorbing species.  

Another key element for the widespread use of UV-Vis spectroscopy is the simplicity of 

UV-Vis spectrometers. These equipments usually consist of a light source (normally 

coupled tungsten filament/D2 lamps), a monochromator responsible for selecting the exact 

wavelength which will be used for analysis, a sample compartment and a detector. Several 

sample compartments are available for analysing samples in all physical states or allowing 

detection of either transmitted light, reflected light (diffuse-reflectance UV-Vis 

spectroscopy) or fluorescent light (fluorescent spectroscopy). 

 

2.1.4 Atomic Absorbance Spectroscopy (AAS) 

Atomic absorbance spectroscopy (AAS) is based on the ability of several elements to 

absorb electromagnetic radiation in specific wavelengths (spectral lines). Other atomic 

spectroscopy techniques are atomic emission and/or atomic fluorescence spectroscopy, 

which are based on emission of radiation of excited elements [15]. 

In atomic absorbance spectroscopy techniques, samples are atomized into their elemental 

components. Once the elements are in the gas phase, the freedom from all molecular or 

ionic interaction allows each of the elements to absorb radiation from a monochromatic 

source. By transmitting radiation from a source with the exact wavelength in which a given 

element absorbs, the transmitted beam will suffer a decrease in intensity that is dependent 

on the quantity of absorbing species in the atomized sample vapour.  

A basic atomic absorbance spectrometer consists on an atom cell unit, responsible for the 

atomization of the sample, a monochromatic light source, an atomic chamber and a 

transmitted light detector. The most common atom cell resorts to a flame atomizer, 

normally a laminar-flow burner, which first nebulises the sample and carries it into a flame, 

where the fuel/oxidant mixture promotes the atomization. It is also in the flame that the 



Preparation of catalysts from biosorbents supported on zeolites 
 

48   Chapter 2 – Analytical Techniques  
 

sample travels through the light beam, which is usually provided by a hollow cathode lamp, 

normally specific to the element being analysed. The light beam travels through the flame, 

where the absorbing atomic species decrease the intensity of the beam, which is then 

determined by the detector. Figure 2.4 presents the schematic view of a single beam atomic 

absorbance spectrometer with a laminar-flow burner. 

 

 

Figure 2.4: Schematic view of an atomic absorbance spectrometer, depicting in (a) the sample 

nebulizer, and in (b) the laminar-flow burner. 

 

Provided that dependence in sample concentration and signal response can be met, AAS is 

a powerful analytical technique. The main analytical field for this technique is the 

determination of the concentration of metals and metalloids, given the good sensitivity and 

little interference for these elements [16]. 

 

 

2.2 X-Ray Techniques 

These techniques employ radiation on the X-ray region to obtain information on the 

chemical and structural composition of solid materials. 

 

2.2.1 X-ray Photoelectron Spectroscopy (XPS) 

X-ray Photoelectron Spectroscopy (XPS) is a technique where a monochromatic X-ray 

radiation source is used to eject electrons from atoms of a sample.  
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When radiation in the X-ray region is absorbed by an atom in ultra high vacuum conditions, 

the excitation of electrons from the inner layers may occur. Since X-ray radiation is highly 

energetic, the ejection of electrons from the innermost atomic layers occurs and this is the 

primary source of detectable electrons. Additionally, relaxation through displacement of 

electrons from a higher energy orbital to fill the vacancy left after ejection results in 

emission of X-ray fluorescence. Also, ejection of additional electrons from outer orbital 

may arise from relaxation, which is known as the Auger effect [4]. 

The binding energy of an ejected electron is given by equation 2.6: 

Φ−−= bEhE υ  (eq. 2.6) 

where E is the kinetic energy of the electron, hν is the energy of the X-ray beam, Eb is the 

electron binding energy and Φ is the work function.  

Since the energy levels of electrons from atomic inner layers depend on the environment of 

the atom and on its chemical state, this results that ejected electrons possess energy levels 

that are specific to the elements from which they were removed. Also, the binding energy 

of an electron also contains information on the charge of the same elements, as the charge 

of an atom affects the electronic energy levels. 

Although this technique is spectroscopic in its nature, the fact that the probing depth of the 

X-ray beam is limited, ultimately restricts the application of this technique to the 

characterization of the qualitative and quantitative composition of the sample surface or 

near-surface layers (usually up to 10 nm depth).  

This technique provides useful information on the chemical composition of the top layers 

on a zeolite surface. Moreover, it is capable of identifying between different oxidation 

states of the atoms present on the zeolite surface. 

 

2.2.2 X-Ray Diffraction (XRD) 

X-ray diffraction (XRD) is a powerful technique for determining crystal structure of 

crystalline materials and use for the characterization of crystalline materials such as 

zeolites. 
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X-ray diffraction occurs when a crystal solid is hit with X-ray radiation that is directed at 

specific angles (or continuous arcs). The diffraction is due to interference phenomena 

between the X-ray photons with wavelength comparable to inter-atomic planes on a crystal 

lattice, and the electrons from the atoms in the crystal lattice.  

Since a crystalline material presents well-defined planes with a high density of atoms, 

electronic density will be therefore high. This increases the chance of a merely elastic 

collision between the X-ray photons and electrons, giving rise to a high density of 

diffracted photons. If the geometry of the atomic planes and the X-ray beam sets diffracted 

photons in the same phase, they will interfere constructively (Figure 2.5). 

 

Figure 2.5: Illustration of X-ray diffraction from constructive interference of diffracted photons. 

 

The angle θ at which the diffraction occurs is predicted by Bragg’s law, 

θλ sin2dn =   (eq. 2.7) 

where d is the inter-planar distance of the diffracting lattice planes and λ is the wavelength 

of the X-ray beam. This law is the basic principle of XRD analysis, as the different 

crystalline materials present specific inter-planar distances and geometries which will yield 

specific line diffraction profiles [17].  

XRD analysis is a very useful tool in zeolite science, mainly used for determination of 

long-range order and phase purity, as well as for the characterization of unit cell geometry 

[4]. Also, it can be used for the determination of the chemical composition of zeolites, 

namely Si/Al ratios. This is due to the fact that a Si-O bond has a different length than Al-O 

bond and this will cause the unit cell dimensions to vary according to the Si/Al ratio.  

d

θ
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The unit cell dimensions of a given zeolite are determined from the Miller index h, k and l 

of the diffracting plane, according to equation 2.8, which is a representation of Bragg’s law: 

θλ sin2 hkldn =  (eq. 2.8) 

In the case of cubic geometry, such as in FAU type zeolites, the unit cell parameter (a0) will 

have a single value, given by  

θsin2
)( 222

0
lkh

a
++

=  (eq. 2.9) 

According to ASTM D3942-80, the unit cell parameter of a FAU zeolite is calculated from 

the average of the a0 values for the peak positions for the Miller index 533, 642 and 555. 

This parameter is also used for the determination of Si/Al ratios by the Breck and Flanigen 

equation [18]: 
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a  (eq. 2.10) 

where the relation 115.2(a0-24.191) indicates the number of Al atoms per unit cell. 

 

 

2.3 Microscopy Techniques 

 

2.3.1 Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy (SEM) is a widespread surface characterization tool in 

materials science. This technique allows a magnified view of a sample surface and, since 

electrons are used as the light source, allows much greater resolution than common optical 

microscopes.  

The SEM technique consists of directing a beam of high-energy electrons into a sample, 

ensuing detection of the electrons that are reflected by the surface. The sample is required 

to be electrically conductive, although non-conductive samples can be covered by a thin 

metallic film in order to comply with this requirement. When the electron beam hits the 

sample, three distinct phenomena originate the different types of reflected radiation: 
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- primary electrons are reflected when inelastic collisions take place, such as 

collision of electrons and atomic nuclei. These electrons possess energy levels 

similar to the incising beam; 

- secondary electrons result from inelastic collisions with the electrons which are 

present in electron clouds of sample atoms. This results in electrons from outer 

orbitals being removed from the atoms and scattered at lower energies than 

primary electrons. This is the main source of detectable electrons in SEM; 

- X-rays emission takes place if the electron beam removes electrons from the 

inner orbitals, where the relaxation of the atom occurs with emission of radiation 

in the X-ray region. The photon wavelength is specific to the element from 

which the electron is removed, and this is useful for qualitative analysis of a 

sample. 

A SEM microscope possesses a detector for each type of reflected emission, being the 

image formed from the combined input of the different detectors. Primary electrons 

detectors are usually placed very distant to the sample, since these electrons are very 

energetic and can travel longer distances. Secondary electrons, being less energetic, are 

detected in the sample surroundings, the same for X-rays. Figure 2.6 presents a schematic 

view of a SEM microscope. 

 

Figure 2.6: Schematic view of a SEM microscope. 
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Although less useful for SEM imaging, detection of X-ray signals allows elemental analysis 

of a sample, both qualitative and quantitative. This technique is known as Energy 

Dispersive X-Ray Spectroscopy (EDS or EDX) and although it is possible to use 

separately, this technique is most commonly found associated to SEM and TEM 

(Transmission Electron Microscopy). This confers the ability of SEM-EDS microscopes to 

characterize a sample in visual and elemental terms. 

 

 

2.4 Thermal Analysis Techniques 

 

2.4.1 Thermogravimetric Analysis (TGA) 

Thermogravimetric analysis (TGA) is a thermal technique which allows the evaluation of 

changes in sample mass with respect to temperature.  

This technique can be applied to materials with temperature-dependant physico-chemical 

properties that may promote variations in mass. However, some physico-chemical 

processes do not promote mass changes, such as crystallization, glass transition or fusion. 

Nevertheless, some important processes can be monitored by TGA, and these include 

evaporation/sublimation, decomposition (partial or total), oxidation and 

adsorption/desorption. 

A TGA study can be run with temperature scan (dynamic study) or at a constant 

temperature (isothermal study). In a dynamic study, the plotting of temperature vs. sample 

mass results on a thermogravimetric curve. Figure 2.7 illustrates the appearance of a 

thermogravimetric curve and the processes taking place: 
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Figure 2.7: Example of a thermogravimetric curve and the attribution of the corresponding 

processes. 

 

A thermogravimetric curve is dependent of several experimental factors, being heating rate 

one of the most important. Due to the thermal inertia of the sample, at low heating rates, the 

temperature at which a process begins is shifted to a lower temperature range, whereas for 

higher heating rates the same processes will start at higher temperatures. Therefore, in order 

to correctly compare the thermogravimetric behaviour of different samples, it is required 

that all samples have been subject to the same heating rate. 

An auxiliary tool for the thermogravimetric characterization of a material is the Differential 

Thermogravimetry (DTG), which is simply the derivative of sample mass variation against 

temperature. Figure 2.8 presents the aspect of a combined TGA-DTG analysis: 

 

Figure 2.8: Examples of TGA (black line) and DTG (red line) curves of a sample. 
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DTG is useful for the exact determination of the temperatures at which the maximum rate 

of mass variation takes place. DTG may also be used to identify the presence of certain 

compounds on a mixture or complex samples, as the DTG peak position of a compound is 

constant under the same heating rate. For the precise determination of mass variation, TGA 

is more helpful.  

A simple thermogravimetric analyser consists of two main components: a microbalance 

connected to a sample holder placed on an oven. Most TGA analysers also allow the 

selection of the oven atmosphere, which can be inert (He, N2) or oxidizing/reducing (air, 

O2 or CO). A schematic view of a TGA analyser is shown in Figure 2.9: 

 

Figure 2.9: Schematic view of a simple thermogravimetric analyser.  

 

The application of TGA-DTG to zeolite samples allows a straightforward determination of 

the amount of adsorbed species. Water is the most common and its desorption usually 

occurs on a temperature range below 150 ºC [19]. For higher temperatures, zeolites are 

inert up to 600 ºC and the inclusion of other compounds can be detected in this range, 

namely immobilized metal complexes [19-21]. Advanced applications of TGA to the study 

of zeolite samples includes coupling with Differential Scan Calorimetry to determine the 

heat of adsorption of adsorbates, as well as the use of basic molecules to determine overall 

acidity [4]. 
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2.5 Chromatographic Methods 

 

2.5.1 Gas-phase Chromatography (GC)  

Gas-phase chromatography (GC) is based on the partition between a mobile gaseous phase 

carrying the analyte and a stationary phase, either consisting of a solid (gas-solid 

chromatography) or immobilized liquid (gas-liquid chromatography). Gas-solid 

chromatography is based on the physical adsorption of the vaporized sample whereas in 

gas-liquid chromatography, the separation is based on the partition between the sample 

components and a liquid-phase that is immobilized on an inert solid. Due to the limited 

application of gas-solid chromatography (as adsorption is non-linear), gas-liquid 

chromatography is the most widespread use for GC [14]. 

Alike the other chromatographic methods, the basic principle in GC is the separation of the 

components of a sample by their different affinity as they elute through a stationary phase. 

However, GC adds the possibility to control the temperature of elution, which will affect 

the affinity between analyte and stationary-phase, allowing the separation and 

determination of closely related molecules. 

In GC, the sample (mobile phase) is vaporized and injected into the stationary phase (a 

chromatographic column). The column is kept inside an oven with temperature control 

(either isothermal or dynamic). The effluent of the column is then passed through a detector 

which is able to measure the amount of analyte that is exiting the column. A simple 

diagram of a GC apparatus is presented in Figure 2.10: 

 

Figure 2.10: Schematic diagram of a gas chromatograph. 
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The injector is responsible for evaporating the sample and feeding an appropriate amount of 

the latest into the column. GC columns can be packed or capillary, with variable length, 

diameter and composition of stationary phase. The internal coating of the liquid phase must 

be thermally stable, chemically inert and present a solvent-like behaviour to the sample. A 

typical coating for non-polar capillary columns consists of polydimethyl siloxane or 

phenyl.polydimethyl siloxane. Progressive substitution with polar functional groups (such 

as polyethylene glycol) will shift the affinity of the columns towards polar compounds.  

The ultimate section of a GC chromatograph is the detector. The two most commonly 

employed detectors in GC analysis are the flame ionization detector (FID) and thermal 

conductivity detector (TCD). The FID consists of a H2/air burner fitted with a collector 

electrode over the flame, which measures the conductivity of the sample. When organic 

compounds are pyrolized by the flame, ions are produced, which decreases electrical 

resistance, allowing electric current to flow through the plasma. This current is detected by 

the electrode and the amount of ionized species (which in turn is related to their 

concentration) promotes a linear response. A drawback of this detector is the impossibility 

of measuring non-combustible compounds (such as H2O). The TCD measures changes in 

the thermal conductivity of an electrically heated element. The flowing of gas molecules 

will draw heat from the detector and increase its electrical resistance and this is the 

measured signal. The TCD can be used with most organic and inorganic species and is non-

destructive, allowing further analysis of the sample (for example, on a mass spectrometer). 

However it possesses low sensitivity and limits the choice of carrier gas. 

The signals acquired by the detector are presented as a chromatogram, which can be 

depicted as detector signal vs. elution time or as detector signal vs. temperature. Signals 

appear as peaks and are useful in both qualitative and quantitative analysis of the sample. 

The elution time of a component is constant; however, it is only applicable to the 

identification of compounds on samples of known composition (since the retention time 

depends on experimental variables and is not unique to a certain compound). In quantitative 

analysis, peak area is related to the analyte concentration on the sample by  

analyteanalyte CfA .=   (eq. 2.11) 

where f  is the response factor of the detector to the specific analyte and varies according to 

the nature of the analyte and the detector type. 
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CHAPTER 3 – EXPERIMENTAL PROCEDURES 

 

 

This chapter covers all aspects and details related to the execution of the experimental 

work. Work carried out during this study is divided into three main areas: biotreatment of 

Cr(VI) solutions by the bacterium-zeolite system, preparation of heterogeneous catalysts by 

immobilization of chromium in zeolite and catalytic reactions in liquid phase.  

 

3.1 Biotreatment of Cr(VI) solutions 

This section presents the experimental procedures used for the treatment of Cr(VI) 

solutions, to be detailed in Chapter 4. 

 

3.1.1 Studies with low biomass concentration 

Initial studies on the remediation of hexavalent chromium (Cr(VI)) were carried out using 

the Arthrobacter viscosus bacterium supported on two mordenite type (MOR) zeolites with 

different acidity behaviour.  

Arthrobacter viscosus was obtained from the Spanish type-culture collection and previously 

grown in suspension, before addition to the reactor. The bacteria were grown for 24 h at 28 

ºC using the culture medium described in table 3.1 (as suggested by the supplier), with pH 

set to 7.0: 

 

Table 3.1: Composition of the Arthrobacter viscosus culture medium. 

Component Concentration (g/L) 

Glucose 10 

Peptone 5 

Malt extract 3 

Yeast extract 3 

Agar (plate use only) 15 
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MOR zeolites, NH4
+-stabilized MOR (HMOR) and Na+-stabilized MOR (NaMOR) were 

purchased from Zeolyst International, with the respective references CBV 21A and CBV 

10A. Zeolites in powder form were calcined under a dry air flow (50 mL/min) with a 

heating rate of 5 ºC/min until a maximum temperature of 500 ºC, which was kept for 8 h 

(according to Figure 3.1). 

 

Figure 3.1: Temperature programme for the calcination of zeolites. 

 

The zeolite CBV 21A was available in the ammonium form. After heating, ammonium is 

transformed into NH3 and H+. NH3 desorbs and the presence of protons increases the 

number of acid sites. The protonic form of MOR (HMOR) was obtained after the 

calcination. Specific details of these zeolites are presented in table 3.2. 

The treatment of Cr(VI) solutions was performed in batch conditions in 250 mL 

Erlenmeyer flasks. Each reactor contained 1.0 g of either HMOR or NaMOR zeolite and 

15.0 mL of previously grown Arthrobacter viscosus suspension. 150 mL of a K2Cr2O7 

(Riedel, analytical grade) solution in deionised water, with concentrations of 20, 40, 60, 80, 

100 and 120 mgCr/L, were later added to each reactor. All concentrations were tested in 

triplicate.  

The flasks were kept at 28 ºC with moderate agitation on an orbital incubator for 8 days. 

Samples were collected regularly throughout the experiment by transferring 1.0 mL of the 

reactor content to a sample tube, which was centrifuged and the supernatant solution was 

analysed for Cr(VI) by the 1,5-diphenylcarbazide method (detailed further in this section). 

pH was allowed to change freely and was monitored regularly. 
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3.1.2 Studies with high biomass concentration 

The bulk of the work on treatment of Cr(VI) was conducted with improved biosorption 

conditions. It was found that, in order to improve the Cr(VI) reducing capacity of the 

Arthrobacter viscosus – zeolite system, a pH of 4.0 and a biomass concentration of 5 g/L 

yielded the best results [1,2]; therefore, all work in this section was carried out under those 

conditions. Two different operating modes were employed: single-step batch experiments 

(as the previous studies) and sequential batch reactor experiments. 

In all conditions, a total of four different zeolite structures were tested, possessing either 

FAU framework (faujasite type zeolite) or MOR framework (mordenite type zeolite). They 

were supplied by Zeolyst International. The specifications of the zeolites were obtained 

from the supplier for MOR zeolites (HMOR and NaMOR) and FAU zeolites (HY and 

NaY) were characterized by different techniques (table 3.2). 

 

Table 3.2: Specifications of the zeolite samples used in this work. 

Zeolite name 
Framework 

type 

Stabilizing 

Ion 
Si/Al ratio 

Total surface 

area (m2/g) 

Suplier 

reference 

HY 
FAU 

H+ 2.80a 665c CBV 400 

NaY Na+ 2.83a 787c CBV 100 

HMOR 
MOR 

NH4
+ 10.00b 500b CBV 21A 

NaMOR Na+ 6.50b 425b CBV 10A 
aTotal Si/Al ratio determined from ICP-AES.  
bData from Zeolyst International. 
cDetermined by nitrogen adsorption. 
 

Single-step batch reactor operation 

All single-batch reactors used correspond to 250 mL Erlenmeyer flasks containing 1.0 g of 

supporting zeolite, 150 mL of Cr(VI) solution and 15.0 mL of concentrated biomass 

suspension.  

The biomass suspension was processed previously. Arthrobacter viscosus was grown in 

500 mL of the culture medium (table 3.1) for 24 h at 28 ºC, in an orbital incubator with 

moderate agitation (150 rpm). Afterwards, this volume was divided and transferred to 2 

flasks containing fresh culture medium and the contents were allowed to a second growth 



Preparation of catalysts from biosorbents supported on zeolites 

Chapter 3 – Experimental Procedures 65 
 

cycle for 48 h, under the same conditions of the first growth cycle. After achievement of the 

second cycle, the biomass is centrifuged in 250 mL flasks on a Sigma 4K15 centrifuge (set 

at a maximum RCF of 8000). The supernatant is stored in a sterilized flasks and an 

adequate volume was used to resuspend the centrifuged biomass pellets. This volume was 

calculated as to set the biomass concentration in each reactor to 5.0 g/L. 

The single-batch experiments were conducted with all zeolites and two Cr(VI) solutions, 

with concentrations of 50 and 100 mgCr/L, prepared from K2Cr2O7. All assays were 

conducted in duplicate. Flasks were kept in an orbital incubator set at 28 ºC with moderate 

agitation (125 rpm) for 27 days. pH was set to 4.0 on the initial stages with H2SO4 4.0 or 

1.0 M, and constantly monitored and controlled thereafter. Samples were withdrawn, 

centrifuged and the supernatant solution was analysed for both Cr(VI) and total Cr 

concentrations by the 1,5-diphenylcarbazide method. 

One long-term experiment was conducted with NaY zeolite. The process was the same as 

described above, with the exception of experimental time which was set to 165 days. 

 

Sequential-batch reactor (SBR) operation 

A sequential-batch reactor (SBR), as described in this work, corresponds to three 250 mL 

Erlenmeyer flasks containing 1.0 g of zeolite and 15.0 mL of concentrated biomass 

suspension (prepared as detailed previously) through which a Cr(VI) solution is passed 

sequentially, with a residence time of 96 h for each reactor. 

The first step in the SBR operation is prepared identically to the single-step batch 

experiments. 150 mL of a 100 mgCr/L Cr(VI) solution is transferred to a reactor containing 

the zeolite and biomass suspension. The pH is set immediately to 4.0 with H2SO2 4.0 or 1.0 

M (when necessary). After 96 h, the solution was recovered by centrifugation on a Sigma 

4K15 centrifuge (set at maximum RCF of 7000). The volume of the supernatant solution 

was measured on a sterilized graduated cylinder and transferred to the second reactor, 

where it is treated for another 96 h. The centrifugation process was repeated for the start of 

the third cycle. 

All zeolites were tested in duplicate in all process cycles. The reactors were kept at 28 ºC in 

an orbital incubator with moderate agitation (125 rpm). The pH was constantly monitored 
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and corrected to 4.0 as necessary using H2SO2 1.0 M. Samples were collected regularly, 

centrifuged and the supernatant solution was analysed for both Cr(VI) and total Cr 

concentrations using the 1,5-diphenylcarbazide method. 

 

3.1.3 Definition of sample nomenclature 

Samples collected from the different Cr(VI) treatment studies bear reference to the 

employed zeolite, with the “Cr” prefix. Samples of FAU zeolites are named “CrNaY” or 

“CrHY”, while samples from mordenite zeolites are referred to as “CrMOR” or 

“CrHMOR”. 

Adding to the reference name, every sample possesses a distinctive suffix. The following 

suffixes are applied: 

- (samples from single-step batch reactors): reference to the initial chromium 

concentration of the solution tested (example: CrHMOR 80 refers to a HMOR 

zeolite used in the biotreatment of a 80 mgCr/L solution); 

- CrNaY sample recovered from the long-duration experiment was given the 

reference “CrNaY EXT” (as for “extended duration”) 

- (samples from sequential batch reactors): the suffix “SBR” is applied instead of the 

initial chromium concentration of the experiment. According to the reactor cycle, 

SBR 1, SBR 2 or SBR 3 suffixes are employed (example: the HY zeolite recovered 

from the second cycle reactor is named CrHYSBR 2). 

 

 

3.2 Preparation of the heterogeneous catalysts 

All solid samples described in this section are recovered from the Cr(VI) biotreatment 

experiments, consisting of the biomass-zeolite system. Some exceptions (the preparation of 

Cr(III) catalysts by ion-exchange) are mentioned wherever necessary.  

The full experimental results from this section will be detailed in Chapter 5. 
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3.2.1 Recovery and treatment of used biomass-zeolite 

The different Cr-zeolite concentrations and processes (single-batch or SBR cycle) are 

treated individually.  

After the achievement of the Cr(VI) biotreatment studies, the residual solid was recovered 

by centrifugation using a Sigma 4K15 centrifuge, set at a maximum RCF of 6000. The 

supernatant solution is discarded or stored for analysis (as necessary) and the solid phase is 

dried in an oven at 105 ºC (normal atmosphere). After 24 h drying, the solids are ground 

and calcined using the same temperature program as described in Figure 3.1, under a dry air 

flow at 40 mL/min.  

 

3.2.2 Synthesis of the heterogeneous catalysts 

Early studies on the synthesis of heterogeneous catalysts were based on zeolitic samples 

from previous studies [3-5]. 

For all catalysts prepared in this work, the chromium obtained after the biotreament was 

entrapped in zeolite by the flexible ligand method using specific heterocyclic derivative 

ligands. The overall preparation can be summarized as follows for NaY as example:  

I- Reduction of Cr(VI) to Cr(III) by Arthrobacter viscosus supported on NaY 

II- Ion-exchange of Cr(III) ions in zeolite obtained by biosorption process 

Na53Y + xCr3+  ↔  CrxNa53-3xY + 3xNa+   [1] 

III- In situ immobilization of the Cr complex  

CrxNa53-3xY + excess L  ↔  [Cr(Ln)]xNa53-3xY  [2] 

where x represents the atom fraction of Cr3+ ions migrating into the zeolite and L represents 

the heterocyclic derivative ligand coordinated to the chromium center. The heterocyclic 

derivative ligands used in this work were: 1-(2-pyridylazo)-2-naphthol (PAN) and 

diphenyltriazene derivatives ligands.  

 

Immobilization with PAN ligand 

A single Cr-containing NaY zeolite from previous studies was used in this work, named 

“CrNaY* 100” (the asterisk is for the distinction between this sample and the CrNaY 100 

sample obtained from high biomass concentration studies), with a chromium loading of 
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0.14 % (w/w). PAN ligand (Aldrich) was used as received and the corresponding molecular 

structure can be found in Figure 3.2. 

 

Figure 3.2: Molecular structure of the 1-(2-pyridylazo)-2-naphthol (PAN) ligand. 

 

The immobilization process consisted in three steps: in-situ synthesis, Soxhlet extraction 

and stabilization with sodium ions (Na+).  

The in-situ synthesis of the complex was carried out using 0.5 g of calcined Cr-zeolite and 

0.76 mol of PAN ligand. The CrNaY* 100 sample was previously dried at 150 ºC under 

vacuum for 12 h. The solid was transferred into 100 mL round flask with 50 mL of 

tetrahydrofuran (THF). The mixture was refluxed for 12 h and the solids were recovered by 

filtration and dried at 60 ºC overnight.  

Soxhlet extraction was performed to remove uncoordinated PAN molecules, Cr-PAN 

complexes that formed on the outer surface of the zeolite and possible THF molecules 

retained by the framework. The extraction was carried out with 60 mL ethanol during 12 h, 

after which the solid was collected and dried overnight at 60 ºC. The final step of the 

process was stabilization with an aqueous NaCl solution (0.01 M) to remove uncoordinated 

Cr ions, for 24 h. The solid was recovered by filtration and dried overnight at 90 ºC under 

vacuum. 

 

Immobilization with diphenyltriazene derivative ligands 

The ligand compounds used in this work were synthesized in the Chemistry Department of 

the University of Minho. The structures, codenames and correspondent nomenclature are 

presented in Figure 3.3. 

 

N N
N

OH
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Figure 3.3: Structures and nomenclature of the diphenyltriazene ligands. 

 

Selected Cr(VI) treatment samples were used as supports for the encapsulation of Cr 

complexes, with the corresponding ligands indicated in table 3.3. Additionally, a Cr(III)-

NaY sample was prepared for comparison purposes. This sample was prepared by allowing 

2.5 g of calcined NaY zeolite to contact 150 mL of a CrCl3.6H2O solution (85 mgCr/L), 

under agitation at room temperature for 72 h. The solid was recovered by filtration and 

dried at 200 ºC overnight.  

Table 3.3: Combination of supports/ligands used in this work. 

Support Tested ligands 

CrNaY 100 DPT, MeDPT, NODPT 

CrNaY SBR 1 DPT 

CrHY SBR 1 DPT 

Cr(III)-NaY DPT 

 

The immobilization of Cr complexes in FAU type zeolites was carried out in a similar 

process as to the preparation of Cr-PAN complexes, using the same three steps.  

For the in-situ synthesis, 1.0 g of the support (previously dried at 150 ºC under vacuum) 

was refluxed with 0.28 mmol of ligand in 100 mL of ethanol (99.9 %) for 24 h. The solid 

was recovered by filtration and dried at 60 ºC overnight. Soxhlet extraction was performed 

with dichloromethane (50 mL) for 5 h and the solid was dried at 60 ºC overnight before the 

stabilization with a NaNO3 0.01 M solution. The solid was recovered by filtration, washed 

with distilled water and dried overnight at 60 ºC. 
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3.3 Catalytic reactions 

Evaluation of the performance of the prepared catalysts was conducted by two reactions: 

oxidation of cyclohexene and oxidation of cyclohexanol. Full results will be detailed in 

Chapter 6. 

 

Oxidation of cyclohexene 

The experimental conditions for the cyclohexene oxidation reaction were adjusted 

throughout the work. The previous conditions were based on the work of Nunes et al. [6]. 

The selected oxidant was tert-butylhydroperoxide (t-BuOOH) (Aldrich), commercially 

available in a 5.0-6.0 M solution in decane. The same solvent was chosen for the reaction 

(Aldrich, p.a.), due to its high boiling point. Cyclohexene was purchase from Aldrich (GC 

grade, 99%) and toluene was purchased from Riedel (p.a.) and used as internal standard for 

GC analysis. Both compounds were stored in darkness and in closed glass bottles with dry 

4A molecular sieves (BDH Limited). 

The reaction was carried out in 50 mL three-way round flasks, immersed in an oil bath 

thermostated fitted with a water condenser. The reaction mixture used in all experiments 

was the following: 

Table 3.4: Reaction mixture for the oxidation of cyclohexene. 

Compound Quantity (mL) Purpose 

Decane 5.8 solvent 

Cyclohexene 0.2 (2 mmol)) substrate 

Toluene 0.4 GC internal standard 

t-BuOOH (5.0 – 6.0 M in decane) 2.0 (≈ 12 mmol) oxidant 

 

The general procedure is as follows: 50 mg of chosen catalyst are previously dried at 105 

ºC under vacuum for a minimum of 12 h and allowed to cool down (also under vacuum) to 

the reaction temperature prior to use. Decane, cyclohexene and toluene are transferred into 

the reactor already at the selected reaction temperature. Agitation is provided by a magnetic 

stirrer set at 100 rpm. After a short mixing time, a sample of this initial solution is collected 

before the addition of the catalyst. After transferring the catalyst, the reactor is sealed with a 
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rubber septum and allowed to mix for 20 min, when the t-BuOOH oxidant is transferred 

dropwise with a glass syringe. The addition of the oxidant marks the start of the reaction (t 

= 0 s). The reaction is allowed to run for 23 h (or otherwise specified). With the exception 

of the initial solution sample, all samples are collected with a disposable syringe and 

filtered with 0.20 μm pore size syringe filters. 

Whenever necessary, the solid contents were recovered by filtration with a 10-16 μm pore 

glass filter, washed with ethanol and acetone and dried at 105 ºC under vacuum. 

The conversion of the substrate in the reaction is given by equation 3.1. 
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where X is the reaction conversion and A represents peak area from GC analysis of either 

cyclohexene or toluene. The initial and final samples were analysed in triplicate for each 

reaction and the conversion was determined from the average result. The error is 

determined by the t-student distribution for a 95 % confidence level. If a catalyst is tested 

more than once, the overall average and error are determined from all individual analytical 

results. 

The determination of reaction selectivity for each oxidation product is given by equation 

3.2. 

nba
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+++
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.100   (eq. 3.2) 

where S is selectivity, A is the peak area from GC analysis of the sample and a, b,...,n 

represent the several reaction products. 

 

Oxidation of cyclohexanol 

The second catalytic reaction covered in this work is the oxidation of cyclohexanol. The 

same experimental apparatus used in the oxidation of cyclohexene was used for this study 

and the only difference was the composition of the reaction mixture. Since cyclohexanol is 
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more polar than cyclohexene, a change in solvent was required and the selected option was 

diethylketone (DEK) (Aldrich, 98 %, reagent grade). This solvent presents good solubility 

for the reaction components and a high boiling point (105 ºC). Cyclohexanol was purchased 

from Panreac (99 %, synthesis grade) and chlorobenzene (Acros Organics, spectroscopy 

grade) was selected as internal standard for GC analysis. Both compounds were stored in 

dark and in closed glass bottles with dry 4A molecular sieves (BDH Limited). The same 

oxidant was used (t-BuOOH, 5.0 – 6.0 M in decane, Aldrich). The reaction mixture used in 

all experiments was the following: 

 

Table 3.5: Reaction mixture for the oxidation of cyclohexanol. 

Compound Quantity (mL) Purpose 

Diethylketone 5.0 solvent 

Cyclohexanol 0.3 (2.9 mmol) substrate 

Chlorobenzene 0.4 GC internal standard 

tBuOOH (5.0 – 6.0 M in decane) 2.0 (≈ 12 mmol) oxidant 

 

The same overall procedure and sampling employed in the oxidation of cyclohexene was 

used for this reaction. The determination of reaction yield was determined using equation 

3.3 

0

.100

=

















=

teneChlorobenz

olCyclohexan

ieneChlorobenz

olCyclohexan

olCyclohexan

A
A

A
A

X   (eq. 3.3) 

where X is reaction conversion and A represents the peak area from GC analysis of either 

cyclohexene or toluene. The initial and final samples were analysed in triplicate for each 

reaction and the conversion was determined from the average result. The error is 

determined by the t-student distribution for a 95% confidence level. If a catalyst is tested 

more than once, the overall average and error are determined from all individual analytical 

results. The determination of product selectivity was not carried out as this is a single-

product oxidation reaction. 
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Evaluation of chromium leaching from the catalyst was performed for this reaction. Liquid 

samples from end-of-reaction experimental time were digested with nitric acid (HNO3, 

66%, p.a.) in a microwave and analysed for total Cr by AAS. 

 

 

3.4 Analytical conditions 

The determination of Cr(VI) and total Cr concentration in all samples from Cr(VI) 

biotreatment studies was carried out using the 1,5-diphenylcarbazide colorimetric method. 

This is one of the longstanding analysis method for Cr(VI) [7] and has become a standard 

method [8], successfully employed for the determination of Cr(VI) and total Cr in samples 

from biosorption studies [9,10]. Liquid samples were diluted according to the initial Cr 

concentration of the essay (1:50 and 1:100 for initial concentrations of 50 mgCr/L or 100 

mgCr/L, respectively). For the determination of total Cr, samples were previously digested 

with excess KMnO4 to oxidize any other Cr oxidation state to Cr(VI). Absorbance was 

measured at 540 nm wavelength in a 1 cm cell, averaging three readings per sample. 

Calibration curves were performed using Cr(VI) standard solutions that received the same 

treatment as samples. 

Determination of total Cr in microwave digested samples was performed by AAS in a 

Varian SpectrAA-250 spectrometer, with acetylene/air supported flame. Acid digestion was 

performed with HNO3 on a CEM MDS-2000 microwave (0.5 mL of sample for 10.0 mL of 

acid). 

FTIR spectra of solid samples were collected on a Bomen MB104 spectrometer. Samples 

were ground with dry KBr ia a sample:KBr mass proportion of 1:100 (possibly increasing 

KBr ratio if saturation of signal is detected). Spectra were collected by averaging 10 scans 

per sample, with a resolution of 4 cm-1. 

Raman spectra of solid samples were obtained with a Perkin-Elmer 400F Ramanstation 

spectrometer, fitted with an infrared laser (λ = 785 nm) able to supply a maximum power at 

sample of 100 mW. All samples were analysed in powder form with individual adjustments 

to laser power, exposition time and number of expositions per sample being carried out as 

necessary to reduce background fluorescence.  
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TGA analysis was conducted on a Shimadzu TGA-50 equipment. Samples were placed in 

aluminium crucibles (maximum operating temperature of 600 ºC), with sample masses 

ranging from 2.5 to 3.5 mg. Every analysis was conducted with constant heating of 6 

ºC/min to a maximum temperature of 580 ºC, under a 50 mL/min dry N2 flow. 

Nitrogen adsorption isotherms were performed on a Micromeritics ASAP-2000 automatic 

instrument. All samples were previously degassed at 140 ºC for 2 h. 

GC analysis of liquid samples from the catalytic reactions was performed on a SRI 

Instruments 8610C gas chromatograph, equipped with a Quadrex 007 5%-methyl-phenyl 

silicone capillary column (30 m length per 0.25 mm internal diameter) and a FID detector. 

Temperature programs and carrier gas pressure (dry N2) were adjusted to enable good 

separation of products, especially substrate and oxidation products. All monitored 

components were identified from the retention times of the corresponding GC-grade 

standards and confirmed by coupled GC-MS spectroscopy (Varian 4000 Performance).  

 

 

3.5 Material conditioning and waste management 

All glassware and materials used for handling, testing and storing of aqueous Cr(VI) 

solutions were previously washed with diluted nitric acid and rinsed with deionised water. 

All glassware and materials used in the preparation of culture media, bacterial growth or for 

the concentration of biomass suspensions were previously sterilized in autoclave at 121 ºC 

for 20 min. 

All glassware and materials used in catalytic reactions were previously treated with diluted 

nitric acid in an ultrasound bath for 10-15 mins and rinsed with deionised water. 

Liquid medium wastes were stored according to their specific nature and collected for 

treatment by a specialized company. Cr(VI) solutions and wastes generated by the 1,5-

diphenylcarbazide colorimetric method were stored altogether. The liquid contents 

collected from the catalytic reactions were stored as non-halogenated solvents waste. 

 

  



Preparation of catalysts from biosorbents supported on zeolites 

Chapter 3 – Experimental Procedures 75 
 

3.6 References 

 

[1] B. Silva, H. Figueiredo, I.C. Neves, T. Tavares, The role of pH on Cr (VI) Reduction 
and Removal by Arthrobacter Viscosus, International Journal of Chemical and 
Biomolecular Engineering. 43 (2009) 59-62. 

[2] H. Figueiredo, B. Silva, C. Quintelas, I.C. Neves, T. Tavares, Effect of the 
Supporting Zeolite Structure on Cr Biosorption: Performance of a Single Step 
Reactor and of a Sequential Batch Reactor-a Comparison Study, Chemical 
Engineering Journal. 163 (2010) 22-27. 

[3] H. Figueiredo, B. Silva, C. Quintelas, M.M.M. Raposo, P. Parpot, A.M. Fonseca, 
A.E. Lewandowska, M.A. Bañares, I.C. Neves, T. Tavares, Immobilization of 
Chromium Complexes in Zeolite Y Obtained From Biosorbents: Synthesis, 
Characterization and Catalytic Behaviour, Applied Catalysis B: Environmental. 94 
(2010) 1-7. 

[4] H. Figueiredo, I.C. Neves, C. Quintelas, T. Tavares, M. Taralunga, J. Mijoin, P. 
Magnoux, Oxidation Catalysts Prepared From Biosorbents Supported on Zeolites, 
Applied Catalysis B: Environmental. 66 (2006) 274-280. 

[5] H. Figueiredo, M.M.M. Raposo, A.M. Fonseca, I.C. Neves, C. Quintelas, T. Tavares, 
Encapsulated Pyridazine Cr(III) Complexes Prepared From Biosorbents Supported in 
Zeolites, in: J. Cejka, I. Zilková, P. Nachtigall (Eds.), Molecular Sieves: From Basic 
Research To Industrial Applications, Proceedings Of the 3rd International Zeolite 
Symposium (3rd FEZA), Elsevier, 2005: pp. 1073-1080. 

[6] N. Nunes, R. Amaro, F. Costa, E. Rombi, M.A. Carvalho, I.C. Neves, A.M. Fonseca, 
Copper(II)–Purine Complexes Encapsulated in NaY Zeolite, European Journal of 
Inorganic Chemistry. 2007 (2007) 1682-1689. 

[7] R.T. Pflaum, L.C. Howick, The Chromium-Diphenylcarbazide Reaction, Journal of 
the American Chemical Society. 78 (1956) 4862–4866. 

[8] D. Eaton, L.S. Clesceri, A.E. Greenberg, Standard Methods for the Examination of 
Water and Wastewater, 19th ed., Washington D.C., American Public Health 
Association (APHA), 1995. 

[9] D. Park, S.-R. Lim, Y.-S. Yun, J.M. Park, Reliable Evidences That the Removal 
Mechanism of Hexavalent Chromium by Natural Biomaterials is Adsorption-coupled 
Reduction., Chemosphere. 70 (2007) 298-305. 

[10] D. Park, Y.-S. Yun, J.Y. Kim, J.M. Park, How to Study Cr(VI) Biosorption: Use of 
Fermentation Waste for Detoxifying Cr(VI) in Aqueous Solution, Chemical 
Engineering Journal. 136 (2008) 173-179.  

  



Preparation of catalysts from biosorbents supported on zeolites 
 

76   Chapter 3 – Experimental Procedures  
 

(this page is intentionally left blank) 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4  
 

 

 BIOTREATMENT OF Cr(VI) SOLUTIONS 



Preparation of catalysts from biosorbents supported on zeolites 
 

78 Chapter 4 – Biotreatment of Cr(VI) Solutions  
 

CHAPTER 4 – BIOTREATMENT OF Cr(VI) SOLUTIONS 

 

 

This chapter presents the experimental results and related discussion on the development of 

the Arthrobacter viscosus-zeolite system and its performance on the treatment of Cr(VI) 

solutions.  

The contents of this chapter are divided in three sections. The first, referred to as previous 

work, presents an historical overview of the early experiments and results obtained with the 

A. viscosus-FAU zeolite system, which were conducted previously to this PhD research 

plan, albeit of great importance for the development of this work. This section is followed 

by the initial studies with free pH and studies with optimized biomass and pH conditions, 

both belonging to the actual scope of this plan. 

 

 

4.1 Previous work on the Arthrobacter viscosus–zeolite system 

The first studies on the properties of Arthrobacter viscosus as an adequate biosorbent for 

Cr(VI) were performed using granular activated carbon (GAC) as the biofilm support [1]. 

The usage of natural zeolites instead of activated carbon arose from the possible synergistic 

effects between biomass and zeolites [2,3], the lower cost of zeolites vs. GAC, as well as 

the known sorption properties of zeolites towards metals in solution. Natural zeolite 

clinoptilolite was used either individually or mixed with GAC for supporting an A. viscosus 

biofilm to treat Cr(VI) solutions and it was found that, although individually inferior in 

performance to a GAC system, the combination of both supports enhanced Cr(VI) removal 

[4].  

The option for synthetic zeolites as biosorbent supports came later with the intentional aim 

of using the exhausted supports in catalytic applications. Those studies were conducted in 

batch conditions using faujasite (FAU) zeolite structures (NaX or NaY) that showed 

capacity for partial treatment of Cr(VI) solutions with concentrations up to 250 mgCr/L. 

The maximum Cr removal was 20 %, which was achieved with both zeolites [5,6]. The 

results demonstrated that the intrinsic inability of these zeolites for the capture of Cr(VI) 
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anionic species could be overcome by their reduction to Cr(III) ions, which was performed 

by the bacteria. Figure 4.1 presents a schematic view of the process. 

 

Figure 4.1: Schematic view of the Cr(VI) biotreatment by the A. viscosus-Y zeolite system. From 

left to right: 1) biomass deposition of Y zeolite, 2) Cr(VI) (yellow colour) biosorption by the 

biomass, 3) bioreduction to Cr(III) (green colour) and 4) ion-exchange of CrIII by the zeolite. 

Illustration is not in scale. 

 

The system was also tested for cationic species such as Fe(III) and Cr(VI), coupled with 

Cr(VI) solutions [7-9], and it showed good affinity for these species, both in presence and 

absence of competing Cr(VI) compounds. Structurally, the cristallinity of framework 

structure and chemical composition of the zeolites were preserved throughout the 

biosorption process, allowing their recovery for future use in catalysis. 

The relative lower removal capacity of A. viscosus -NaX or -NaY system, when compared 

to GAC, was subject of further studies. First, zeolites lack the same Cr(VI) affinity as GAC 

offers. This renders the zeolite based system largely dependent on the Cr(VI) reduction 

capacity of the biomass. Secondly, GAC offers a much larger surface area that is also more 

easily available to the bacteria, allowing more efficient deposition of the latest (biofilm 

formation) which can assist the transfer process of reduced Cr species to the support [4,5].  

In order to overcome this limitation, a modification of NaY zeolite was performed using 

alkali-treatment. The intention was to increase the roughness of the outer zeolite surface, 

thus increasing the availability of fixation sites for the bacteria. The zeolite was treated with 

sodium hydroxide (NaOH) solutions under reflux for 1 hour. It was found that this 

treatment selectively attacks the Si tetrahedra while conserving the Al-based structures. The 

decrease in Si/Al ratio was confirmed: from an initial 2.88 value to final values of 2.51 for 

bulk Si/Al ratio and 1.89 for exclusive framework Si/Al ratio [10]. Biosorption data 

revealed that an increase in Cr removal was possible by this modification; however, later 

retention of the Cr ions in the zeolite was affected by the alkali treatment, which was 

Cr
Cr

Cr Cr CrCr

Cr Cr

CrCr
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undesirable for the downstream catalytic application. Moreover, given the added 

complexity and increase in cost for large scale modification treatment of the zeolite, this 

approach was left behind in favour of improving biosorption performance, which marked 

the starting point of the studies, conducted under the scope of this work. 

 

 

4.2 Initial studies with free pH 

The studies presented in this section involve pH mediation by the biomass-zeolite system, 

without external contribution. Although the supports were selected in order to have a 

deliberate influence on pH, the absence of external control means that these studies are 

considered operating under free pH conditions. 

From the early studies, it was perceived that the biomass-zeolite system required a 

notorious capacity for Cr(VI) reduction in order to increase Cr retention. Looking into the 

factors that contribute to the redox properties of Cr(VI), a relevant dependence on 

availability of H+ ions and electron donors is easily noticed from the formal reduction 

equation of dichromate in acidic medium (eq. 4.1): 

O7H2Cr6e14HOCr 2
3-2

72 +⇔++ +−+  (eq. 4.1) 

The formal electrode potential for this reaction is quite high, at +1.330 V [11], which 

explains the proneness of dichromate to be reduced. The dependency on proton availability 

was mentioned in the studies of Park et al. [12,13]. Since the electron source on equation 

4.1 can be any of the different electron donor groups present in the complex nature of the 

cellular surface, limiting electron availability to biomass itself, a control on pH could 

possibly induce better Cr(VI) reduction performance. This could be achieved by external 

control of the pH of the solution; however, an alternative for internal pH regulation was 

considered by selective choice of the supporting zeolite, replacing alkali-metal containing 

zeolites for their hydrogen-containing counterparts.  

Taking into account the ionization equilibrium of water molecules (eq. 4.2), the presence of 

an alkali-metal containing zeolite (example: NaY) increases the pH of the solution [14], as 

it is able to exchange H+ ions from water (eq. 4.3). 
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−+ +⇔ OHHOH2  (eq. 4.2) 

−+++ ++⇔+ OHNaY-HOHY-Na 2  (eq.4.3) 

Conversely, the hydrolysis of a HY zeolite results in no change in H+ concentration (eq. 

4.4). Nevertheless, provided other cations are present in solution, such as K+ from the 

potassium dichromate salt, release of H+ ions from the HY zeolite into solution is possible, 

thus lowering the pH of the solution (eq. 4.5). 

−+++ ++⇔+ OHHY-HOH Y-H
(1)(2)2(2)(1)

 (eq. 4.4) 

++++ +⇔+ HY-KKY-H  (eq. 4.5) 

Free pH assays were conducted with two mordenite (MOR) zeolites, namely NaMOR and 

HMOR, according to their chemical composition. Although the first studies were conducted 

on NaX or NaY zeolites, the change in support was also tested in this experiment, in order 

to evaluate possible differences promoted by the structural nature of each zeolite, albeit 

possessing the same pore opening size (12 O openings). The biomass-MOR zeolite systems 

were tested for the treatment of Cr(VI) solution in the 20-120 mgCr/L range for an 

experimental period of 192 hours. The different zeolites promoted distinct pH profiles, as 

intended, which are presented in Table 4.1. 

 

Table 4.1: Measured pH values for the different solutions. 

Solution 

(mgCr/L) 

CrVI 

Solution 

pH 

HMOR NaMOR 

Initial Final Initial Final 

20 5.21 3.60 3.35 7.03 7.85 

40 5.20 3.52 3.27 6.31 8.19 

60 4.30 3.53 3.21 6.22 7.83 

80 5.02 3.29 3.10 6.08 5.41 

100 4.83 3.39 3.11 6.12 5.18 

120 4.72 3.31 3.07 6.09 5.34 
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Both zeolites induced instant shift in pH condition upon addition of Cr(VI) solution, as it 

can be seen from the pH values of the initial measurements. This set of data also shows the 

distinct behaviour of HMOR and NaMOR zeolites: HMOR zeolite instantly lowered the pH 

of Cr solutions to pH less than 4, which decreased slightly towards the end of the 

experiment. NaMOR zeolite increased the initial pH of the solution and for concentrations 

below 60 mgCr/L the pH increased until the end of the assays, while for the higher 

concentrations the pH tended to return to the original value of the parent Cr(VI) solutions. 

A possible explanation for this inversion in pH behaviour on the higher chromium 

concentrations could be the release of early-exchanged H+ ions with the more concentrated 

K+ ions (in these solutions) or even the higher concentration of Cr(III) species which also 

compete with the existing charge-balancing cations that could displace some H+ ions 

initially exchanged. 

The difference in pH behaviour had an impact on Cr(VI) reduction efficiency. Results for 

Cr(VI) removal (in terms of C/Cº: instant over initial Cr concentration ratio) are presented 

in Figure 4.2. 

 

Figure 4.2: C/Cº ratios for the different solutions tested and for the two zeolitic supports. 

 

As it can be seen in Figure 4.2, Cr(VI) C/Cº ratios are lower when the HMOR support is 

used in all Cr solutions, therefore indicating that the lower pH of the solution favours 

Cr(VI) reduction. Table 4.2 presents the results for Cr(VI) removal and Cr uptake (defined 

as mass of removed Cr per mass of dry zeolite): 
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Table 4.2: Removal and uptake of Cr(VI) by the biomass-MOR zeolite system, after an 

experimental period of 192 hours. 

Solution 

(mgCr/L) 

Cr(VI) Removal (%) Cr uptake (mgCr/gzeolite) 

NaMOR HMOR NaMOR HMOR 

20 21.0 33.7 0.72 1.15 

40 18.2 27.7 1.43 2.18 

60 16.6 22.9 1.86 2.57 

80 9.4 19.2 1.31 2.68 

100 9.6 19.6 1.71 3.49 

120 6.7 9.5 1.31 1.86 

 

The maximum observed Cr removal was 33.7 % of the initial amount, obtained for the least 

concentrated solution. For the 100 mgCr/L solution, a removal of 20 % was obtained with 

HMOR zeolite, which is comparable to the results obtained with NaY or NaX zeolites 

[5,6]. However, for NaMOR zeolite, the removal of Cr(VI) was less than 10 % which, 

comparatively to NaY or NaX based system, is quite low. This is due to the smaller ion-

exchange capacity of MOR zeolites compared to FAU zeolites (2.29 against 3.39 meq/g, 

respectively) [15]. Nevertheless, this limitation still allows the performance of HMOR to be 

comparable to NaY and NaX zeolites – in fact, it even stresses out the influence of the 

availability of H+ ions on Cr(VI) reduction and removal, as this low ion-exchange capacity 

zeolite is still able to achieve comparable Cr(VI) removal. 

The Langmuir adsorption model (eq. 4.6) fitted successfully the Cr(VI) adsorption data of 

HMOR-based system. For NaMOR, a slight deviation is observed. Figure 4.3 presents the 

plotted fitting of the model (in linear form) to the experimental data, while the calculated 

parameters are presented in Table 4.3.  

eq

eq

bC
bC

qq
+

=
1

.max   (eq. 4.6) 
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Figure 4.3: Fitting of the Langmuir adsorption model to the experimental data. 

 

Table 4.3: Fitting parameters for the Langmuir model, for both supports tested. 

Zeolite 

Maximum uptake 

(qmax), 

mgCr/gzeolite 

Affinity Coefficient 

(b), (mg/L)-1 
r2 

 

NaMOR 2.54 0.025 0.890 

HMOR 4.77 0.023 0.991 

 

The successful application of the Langmuir adsorption model to the experimental data 

obtained with the HMOR-based sorbent goes in line with the overall Cr(VI) removal by the 

adsorption-coupled reduction (ACR) mechanism proposed by Park et al. [12]. Other 

publications on Cr(VI) biosorption by Arthrobacter sp. also reported the successful fitting 

of the Langmuir or Langmuir-based adsorption models [16].  

In the adsorption-coupled reduction mechanism, the importance of both solution pH and 

biomass concentration has been stressed out [13]. While the first factor was investigated in 

this experiment, biomass concentration was not controlled up to this point. Moreover, the 

biomass adsorption of Cr(VI) appears to be the limiting step for the ACR mechanism, in 

terms of the amount of reduced Cr(III) that is generated. Although the support-regulated pH 

proved to be useful in increasing the efficiency of the system in terms of Cr(VI) removal, a 

major performance breakthrough to the initial tests was not achieved. Therefore, a study on 
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the influence of the concentration of A.viscosus was needed, which led to the work 

presented in the next section of this chapter. 

 

 

4.3 Studies with optimized biomass and pH conditions 

This section is adapted from Figueiredo, Silva, Quintelas, Neves and Tavares, Chemical 

Engineering Journal 163, 22-27, 2010 [17]. 

An evaluation of the biomass concentration used in previous studies with both FAU and 

MOR zeolite structures was performed based on estimations, as the exact determination of 

biomass contents by thermal or spectroscopic techniques is rendered difficult when zeolite 

particles are present in the medium. Thus, is was observed that the initial culture medium 

could grow a biomass concentration of 2.5 to 3.0 gbiomass/L in 24 hours (values for dry 

biomass concentration), which upon transfer to the reactor would be diluted to values 

between 0.22 and 0.27 gbiomass/L. This is a range of very low concentrations when 

compared to the literature, where concentrations up to 20 g/L were tested to treat Cr(VI) 

solutions. Therefore, a higher concentration of biomass was required to allow a greater 

capacity of Cr(VI) treatment. 

Initial studies on the influence of pH and biomass concentration on Cr(VI) reduction by a 

suspension of Arthrobacter viscosus was reported by Silva et al. [18]. After using biomass 

concentrations in the 1-5 mg/L range (dry biomass weight), it was found that the highest 

concentration allowed the best results in terms of Cr(VI) reduction and Cr uptake. 

Additionally, pH influence studies were carried out with biomass concentration of 5 g/L. 

The solutions were maintained at pH values of 1, 2, 3 or 4 and the initial concentration of 

Cr(VI) in each reactor was 100 mg/L. It was confirmed that Cr(VI) reduction by the 

bacteria was highly pH-dependant and pH 1 proved to be the best pH for Cr(VI) reduction. 

However, in terms of total Cr removal and uptake by the biomass, pH 4 yielded the best 

results. This is due to the fact that at a lower pH, the protonation of several functional 

groups on the cell’s surface occurs. The increased abundance of positive charges on the 

cellular surface limits the affinity for the formed cationic Cr(III) species, which therefore 

remain in solution at low pH. 
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After these studies, the operational parameters of pH 4 and biomass concentration of 5 g/L 

were set as “standard” for the upcoming experiments. Although a lower pH favours Cr(VI) 

reduction, the stability of the zeolite under strong acidic conditions would be a concern, as 

it is known that a strong acidic environment promotes the dealumination of the zeolite 

structure [19,20]. Moreover, as reported previously, a pH of 4 would allow greater 

contribution of the biomass to Cr uptake. Also, a lower ionic strength of the solution would 

favour the ion-exchange of the formed Cr(III) species by the zeolite. 

The experimental work carried out using these optimized conditions was performed in 

single batch or sequential batch operation. A total of four different zeolites were used, 

namely FAU zeolites (HY and NaY) and MOR zeolites (HMOR and NaMOR). 

 

4.3.1 Single-batch studies 

The single-batch studies with FAU and MOR zeolites were the first to be conducted under 

the set pH and biomass concentration parameters. Cr(VI) solutions of 50 and 100 mgCr/L 

were tested. However, the different systems responded differently to the pH maintenance 

which was carried out through the experiments. H-stabilized zeolites allowed a much 

swifter initial setting and subsequent maintenance, whereas Na-stabilized FAU and MOR 

zeolites required a higher amount of acid for the initial setting of pH 4 (mostly NaY), 

although the following maintenance was similar to the H-zeolites counterparts. In terms of 

biomass concentration, the initial concentration of each system was determined by the dry 

weight method before the biomass suspension was added to the reactor and concentrations 

ranged from 4.7 to 4.9 gbiomass/L (dry weight). 

Figures 4.4 and 4.5 present the evolution of Cr(VI) in each reactor, expressed as instant 

over initial Cr(VI) concentration (C/Cº), for the solutions of 50 and 100 mgCr/L, 

respectively. 
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Figure 4.4: Evolution of Cr(VI) concentration for the different supports tested, for an initial Cr 

concentration of 50 mg/L. 

 

Figure 4.5: Evolution of Cr(VI) concentration for the different supports tested, for an initial Cr 

concentration of 100 mg/L. 

 

Figures 4.4 and 4.5 show that the optimized conditions enabled the different biomass-

zeolite systems to achieve a much higher Cr(VI) reduction. With the higher concentration 

of biomass, Cr(VI) evolution presents typical biosorption kinetics, with a fast initial stage 

(observed in the first 24 h) corresponding to processes involving the external cell, and a 

second slower stage which is dependent on intra-cellular processes or cellular metabolism 

[4]. 

The experimental data for the 50 mg/L solution show that the different zeolites present 

slight differences in terms of Cr(VI) concentration along time, decreasing steadily until 
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total reduction is achieved in 17 days for all zeolites tested. However, the HY-based system 

presented the lowest Cr(VI) concentration throughout this experiment. 

Differences in performance of each support were made more noticeable using the higher 

Cr(VI) initial concentration. MOR zeolites presented similar Cr(VI) reduction performance, 

which is explained by their smaller capacity of ionic exchange when compared to FAU 

zeolites. This limits the interference in Cr(VI) reduction due to H+ consumption by 

NaMOR. The differences between the FAU zeolites are more striking, with HY being a 

more adequate support for the initial reduction of Cr(VI). This is due to the availability of 

H+ ions in the biomass-HY system, as the NaY counterpart consumes some of these ions in 

the initial stages (which was observed during setting of the initial pH), decreasing Cr(VI) 

reduction. However, in the longer term, the biomass-NaY system was able to achieve the 

highest removal of Cr(VI) in this study, surpassing the HY counterpart after 17 days. The 

reason for this higher second phase rate of Cr(VI) removal can be due to a more efficient 

ion-exchange with the formed Cr(III) species (since Na+ is more prone to ion-exchange 

than H+), or could be related to a side-process involving the beneficial presence of Na+ ions 

in terms of swifter cellular growth or surface regeneration, which would assist Cr(VI) 

reduction by replacing exhausted electron-donor groups. 

Analysis of total Cr confirmed the existence of free Cr(III) species in solution. Figure 4.6 

presents the concentration of total Cr at the end of experimental time and Table 4.4 presents 

Cr removal and uptake by the different systems and initial Cr concentration. 

 

Figure 4.6: Total Cr concentration after 27 days for all supports tested, for the different Cr solutions. 
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Table 4.4: Removal and uptake of total Cr for the different biomass-zeolite systems. 

Initial Cr 

concentration 

(mg/L) 

Support 
Cr removal  

(%) 

Cr Uptake 

(mgCr/gzeolite) 

51.4 

HY 93.4 7.2 

NaY 90.8 7.0 

HMOR 77.8 6.0 

NaMOR 88.2 6.8 

100.5 

HY 71.6 10.8 

NaY 77.6 11.7 

HMOR 65.6 9.9 

NaMOR 63.0 9.5 

 

Looking at the results obtained for the 50 mgCr/L solution, it is noticed that despite 

complete Cr(VI) reduction was achieved in all systems, a fraction of reduced Cr remains in 

solution. The presence of Cr(III) species in solution is most likely due to coordination of 

the latest with biomolecules such as cellular metabolites or EPS fragments, which is quite 

prone to occur [21,22]. The coordination with these compounds would render their size 

large enough to block accessibility to the zeolite structure, thus remaining in solution. The 

Y zeolites achieved comparable performance in terms of removal and uptake whereas 

NaMOR zeolite appears to be more effective than it HMOR counterpart. The initial stages 

of Cr(VI) evolution (Fig. 4.4) show that NaMOR presented a higher reduction capacity 

through the experimental period, which could explain this difference. 

For the higher Cr concentration, the differences in Cr removal between HY and NaY 

become greater. NaY zeolite was able to achieve the highest removal and uptake of this 

study, mostly due to a greater reduction rate observed in the secondary stage of biosorption. 

The experimental results for the MOR pair reveal that the performance of these supports is 

comparable.  

Since NaY zeolite was found to be the most efficient support for Cr(VI) treatment, a long-

term study was carried out with this support in order to determine the possibility of 

achieving complete Cr(VI) reduction from a 100 mgCr/L solution. The assay was carried 

out during 161 days. Figure 4.7 presents the evolution of Cr(VI) and total Cr in solution, for 

this support. 
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Figure 4.7: Evolution of Cr(VI) and total Cr for the long-term essay with NaY zeolite. 

 

This experiment confirmed that complete reduction of a 100 mgCr/L solution can be 

achieved by the biomass-NaY system, provided a long enough experimental period is used 

which, in this case, was 98 days. However, after complete reduction is achieved, the 

concentration of total Cr remains constant throughout the experiment, which indicates that 

a near-equilibrium state is reached and further ion-exchange of Cr(III) species may have 

ceased. The final Cr uptake was 13.9 mgCr/gzeolite, the highest uptake achieved in single-

batch studies. Cr removal was 93.7 % of the initial Cr. 

In general terms, the utilization of improved biomass and pH conditions allowed a drastic 

increase in the performance of the A.viscosus-zeolite system in Cr(VI) reduction, total Cr 

removal and uptake. However, the drawbacks of very long experimental periods and the 

fact that total Cr and Cr(VI) concentrations are out of legislation parameters still remain.  

A different approach was tested and the biosorption system was used in a sequential batch 

process, instead of the single-batch assays carried out up to this point which leads to the 

next section of this chapter. 

 

4.3.2 Sequential batch reactor studies 

The decision of operating the biomass-zeolite system in sequencing batch reactors (SBR) 

mode was based on the previous knowledge acquired from the single batch studies with 

optimized biosorption parameters. Looking at the performance of the system for the 100 
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mgCr/L solution in terms of Cr(VI) evolution (Figure 4.5), it was noted that the 

concentration of this species decreases up to 50 % in 24 hours, followed by a long second 

stage of reduction which continued throughout the experimental period. To take advantage 

of the higher reduction capacity during the early operational stages, the usage of a sequence 

of additional reactors could decrease the experimental time required for total Cr(VI) 

reduction.  

It was decided to start the SBR experiment with a 100 mgCr/L solution and with the same 

initial procedure as for the single-batch experiments. However, after a pre-established 

period of 4 days, the solution would be transferred to another reactor containing fresh 

biomass and equivalent mass of zeolite support. This procedure would be repeated in a 

third cycle, so that the overall experimental period would consist of three cycles of 4 days. 

The evolution of Cr(VI) concentration is presented in Figures 4.8 and 4.9, in the form of 

instant over initial Cr(VI) concentration (C/Cº). 

 

Figure 4.8: Evolution of Cr(VI) through the different reactor cycles for FAU (HY and NaY) 

supports (change in reactor is signalled by the vertical lines). 

 

0,0

0,2

0,4

0,6

0,8

1,0

0 96 192 288

C
 / 

C
º  

 

Time (hours)

FAU
HY

NaY



Preparation of catalysts from biosorbents supported on zeolites 
 

92 Chapter 4 – Biotreatment of Cr(VI) Solutions  
 

 

Figure 4.9: Evolution of Cr(VI) through the different reactor cycles for MOR (HMOR and NaMOR) 

supports (change in reactor is signalled by the vertical lines). 

 

The evolution of Cr(VI) concentration shows that complete reduction was achieved in the 

given experimental period of 12 days. For FAU zeolites, complete reduction was observed 

during cycle 2, whereas MOR zeolites required an additional third cycle to achieve total 

reduction. Again, the lower ion-exchange capacity is probably the main cause for the lower 

efficiency of based-MOR systems, which was also observed in single-batch studies.  

For both zeolite structures, the supports containing H+ ions perform better than the Na+ 

equivalents. The same principia that governed Cr(VI) reduction dynamics in single batch-

studies explain the higher reduction achieved with the acidic support, as the availability of 

H+ ions in the supports has a beneficial effect. The HY-based system was the first to 

register complete Cr(VI) reduction, 24 hours before the NaY-based system. MOR systems 

only achieved total reduction at the initial stages of cycle 3. These results are in accordance 

to the initial evolution of Cr(VI) in single-batch studies, where the HY-based system 

outperformed the remaining supports on the first 5 days of experimental time.  

The determination of total Cr concentration was made for each solution at the end of each 

cycle. The total Cr concentration at the end of each cycle is presented in Figure 4.10, while 

Table 4.5 presents Cr the removal efficiency and uptake achieved by each system. 
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Figure 4.10: Total Cr concentration at the end of each cycle, for all the tested supports. 

 

Table 4.5: Total Cr removal after cycle 3 and Cr uptake, for each support tested. 

Support 
Overall Cr removal 

after cycle 3 (%) 

Cr Uptake (mgCr/gzeolite) 

Cycle 1 Cycle 2 Cycle 3 Accumulated 

HY 98.2 8.3 5.2 0.3 13.8 

NaY 87.3 6.7 4.6 0.4 11.7 

HMOR 93.4 6.5 5.3 1.3 13.1 

NaMOR 90.5 6.2 5.5 0.8 12.5 

 

The experimental data reveal that the third cycle is less efficient in terms of removal of the 

reduced Cr(III) species. As it was the case for the single-batch studies, a reason for the less 

efficient ion-exchange of Cr(III) species could be the formation of coordination compounds 

with biomolecules present in solution. Although the solid contents of each system are 

removed at the end of cycles, cellular metabolites or EPS fragments still remain in solution 

and after 3 consecutive cycles, the increasing concentration of these compounds could ease 

the formation of Cr(III) complexes which will have a detrimental effect in Cr removal by 

the systems.  

The HY-based system was able to achieve a total Cr concentration below 2.0 mg/L which, 

coupled to the absence of Cr(VI), means that this solution is now in accordance with the 

legislation parameters for concentration in an effluent. The remaining zeolites were able to 

achieve removal ratios ranging from 87 to 94 %. The cumulative uptake values are also 
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higher than the obtained in single-batch studies; however, end-of-cycle Cr uptake values are 

considerably lower.  

 

4.3.3 Cr loading of the zeolitic supports 

After the achievement of the studies on biotreatment of Cr(VI) solutions, it was concluded 

that FAU zeolite structures showed better performance, compared to MOR zeolite 

structures. In single batch operation, the based-NaY system achieved the best removal and 

uptake of Cr, while the SBR intrinsic dynamics render HY zeolite as the best support for 

the biotreatment system. 

The evaluation of Cr loading on the FAU supports was conducted by chemical analysis of 

the calcined solid samples from single and sequencing batch studies. Samples from single-

batch studies were collected from the 100 mgCr/L initial solution assays, namely CrNaY, 

CrHY and CrNaY EXT (from the extended study of 167 days). Additionally, a comparison 

with a sample from previous studies, conducted without pH control, under low biomass 

concentration and from an initial 100 mgCr/L solution, was added to this study, being 

named CrNaY*. Samples from SBR studies are marked as CrHYSBR and CrNaYSBR. Table 

4.6 presents the obtained Cr loading of all samples.  
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Table 4.6: Cr loading on selected supports, recovered from Cr(VI) biotreatment studies. 

Sample Cr loading (%, w/w) 

(single batch studies)  

CrNaY* (previous studies [5])  0.14 

CrHY 0.54 

CrNaY 0.75 

CrNaY EXT 0.94 

(sequencing batch studies) cycle  

CrHYSBR 

1 0.59 

2 0.45 

3 0.04 

CrNaYSBR 

1 0.46 

2 0.36 

3 0.05 

 

The first sample in Table 4.6, CrNaY* presents a Cr loading of 0.14 %, whereas the 

equivalent CrNaY presents almost five times more Cr, which is a good indication of the 

difference in performance which is achieved using optimized biosorption conditions. 

The comparison of the Cr loading on single-batch and SBR studies presented interesting 

data on the dynamics of both systems. The Cr loading in NaY supports increases with the 

solution contact period, which is in accordance to the previously stated higher affinity for 

ion-exchange of reduced Cr species. The secondary reduction stage presented higher rates 

of reduction when NaY supports were used and the Cr loading in CrNaYSBR, CrNaY and 

CrNaY EXT confirm that tendency, with increasing the Cr loading with contact period. 

HY-based systems presented different results. Comparing CrHY and CrHYSBR, which were 

submitted to the same initial conditions, it is observed that the Cr loading is similar (0.59 

and 0.54%), even if CrHYSBR only contacted the metal solution during 4 days and CrHY 

contacted it during 27 days. This means that the ion-exchange of the reduced Cr species 

only takes place on the early stages, probably due to a fast equilibrium being achieved 

between the H+ ions present in the solution and the remaining cations. Since this support 

also registered the higher initial rate of Cr(VI) reduction, it is likely that these early reduced 

species might be also included in this swift equilibrium with the H+ ions from the zeolite. 
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4.4 Conclusions  

 

From the results presented in this chapter, it was possible to conclude that the biotreatment 

of Cr(VI) species by the Arthrobacter viscosus bacterium is strongly dependent on the 

support, solution pH and biomass concentration. 

While the chemical composition of the zeolite may affect the pH of the solution, an external 

control is preferable as the free pH studies with MOR zeolite structures demonstrated that, 

despite the support action on the solution, the pH of each solution varied through a wide 

range. However, the contribution of the chemical composition of the support, although 

seemingly minor to the solution pH, proved to be also influent on the performance of the 

system, in terms of Cr(VI) reduction efficiency. 

It was possible to achieve an increase in Cr(VI) reduction and overall removal efficiency 

using optimized pH and biomass concentration parameters. Single-batch studies showed 

that the biotreatment of the Cr(VI) solutions occurred in two distinct stages, as a normal 

biosorption kinetics. The first stage is fast and takes place on the first 24 hours of treatment, 

whereas the second stage, which is considerably slower, continued throughout the 

remaining experimental period. To this extent, zeolites containing H+ ions registered a 

higher Cr(VI) reduction rate in the first stage. However, NaY zeolite with presented the 

highest upkate. Ultimately, this zeolite was able to achieve the highest removal and uptake 

for the 100 mgCr/L solution. The required experimental periods for complete Cr(VI) 

reduction from initial Cr concentrations of 50 and 100 mg/L were 17 and 98 days, 

respectively.  

The operation in SBR allowed a balanced exploitation of the fast initial rates of reduction 

which were observed in each reactor in single batch studies, in order to overcome the need 

for long experimental periods. HY zeolite was the best support, ultimately achieving Cr(VI) 

and total Cr concentrations within legislation limits. The remaining supports also improved 

Cr removal when compared to the experimental data from single-batch studies, for an initial 

Cr concentration at 100 mg/L and 27 days of assay. 

The evaluation of Cr(VI) and total Cr concentrations in both single and sequencing batch 

reactors offered different perspectives in terms of treatment dynamics. Single batch 

processes ultimately allowed a higher loading of metal to the zeolite matrix, which is 
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potentially useful for the downstream catalytic studies. SBR reactors lacked sufficient 

contact to achieve comparable Cr loadings on NaY zeolite. However, the metal loading on 

HY zeolite was comparable in either single or sequential batch studies, which allows 

concluding that the removal of Cr by this support is fast, occurring only within the first four 

days of assays.  
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CHAPTER 5 – PREPARATION OF Cr CATALYSTS FROM BIOSORPTION 
SUPPORTS 

 

 

This chapter presents experimental results and related discussion on the development of the 

Cr heterogeneous catalysts. Also, this chapter bridges the two distinct fields covered in this 

study: Cr(VI) biotreatment and liquid-phase catalysis in oxidation reactions. 

Despite FAU and MOR zeolites were used throughout the biotreatment experiments, only 

FAU zeolites were recovered for the preparation of encapsulated catalysts by the flexible 

ligand method. This results from their favourable microporous structure, where the 

supercages with tetrahedrally-oriented 12-ring pore openings and a 3-dimensional channel 

system offer the ideal support for encapsulation of metal complexes. MOR zeolite presents 

a 2-dimensional channel system with 12-ring channels connected by short alternating 8-ring 

channels, of which only the 12-ring channel is accessible. Consequently, the channel 

system has effectively one dimension. Therefore, these structures were dropped in favour of 

FAU zeolites. Nevertheless, Cr-MOR zeolites could be tested as catalysts for gas-phase 

reactions which are outside the scope of this work. 

The overall process tested in this project may be summarized as follows:  

I- Reduction of Cr(VI) to Cr(III) by Arthrobacter viscosus supported on NaY 

II- Ion-exchange of Cr(III) ions in zeolite obtained by biosorption process (example 

of a NaY zeolite) 

Na53Y + xCr3+  ↔  CrxNa53-3xY + 3xNa+   (eq. 5.1) 

III- In situ encapsulation of the Cr complex  

CrxNa53-3xY + excess L  ↔  [Cr(Ln)]xNa53-3xY  (eq. 5.2) 

where x represents the atom fraction of Cr3+ ions migrating into the zeolite and L represents 

the heterocyclic ligand coordinated to the chromium center. 
 

 



Preparation of catalysts from biosorbents supported on zeolites 

 Chapter 5 – Preparation of Chromium Catalysts from Biosorption Supports 103 
 

5.1 Recovery of the biosorption supports and characterization 

 

The recovery of the solid residues of the several Cr(VI) biotreatment assays was initially 

performed by vacuum filtration using a 10-16 μm pore sintered glass filter. This process 

was mainly used for the recovery of CrNaY and CrNaX zeolites from the experiments with 

low biomass concentration. Due to operational limitations, such as decrease in rate of 

filtration due to sedimentation of fine solids over the glass filter with filtration time, this 

process was dropped in favour of centrifugation of the whole reactor contents. All solid 

samples recovered from biotreatment studies within optimized conditions were recovered 

by centrifugation, discarding the supernatant. Either filtrated or centrifuged, all recovered 

samples were individually dried after collection at moderate temperature (typically below 

60 ºC), ensuing calcination at 500 ºC for 8 hours, in order to remove the whole biomass 

from the zeolite. 

For all Cr-zeolite samples, the zeolitic hosts change their colour after calcination. While 

parent FAU or MOR zeolites are white, collected samples from biosorption present a light 

brown colour (from the biomass contents), which upon calcination changes to a pale yellow 

colour. 

Scanning electronic microscopy (SEM) was used to characterize the collected samples. 

Figure 5.1 presents SEM images of parent zeolite, as-recovered biotreatment samples and 

calcined samples (example of sample CrNaY*). Calcined samples present the same 

morphology of parent zeolites, with the hexagonal shaped crystals, which are typical of 

FAU-type zeolites, being conserved throughout the process.  

 

Figure 5.1: SEM images of: NaY (a) and CrNaY* prior to calcination (b) and after calcination (c), 

with magnification of 3000x (imported from [1]). 
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The same behaviour was observed on calcined samples which were recovered from studies 

with concentrated biomass. Figures 5.2 presents SEM images of CrHY after calcination, 

coupled to the energy-dispersive spectroscopy (EDS) spectrum. Amongst the spectral 

signals for Si and Al, the Kα line for Cr was detected at 5.41 keV [2], as well as the signal 

for P, detected at 2.03 keV [3]. The presence of this element is likely to be due to the higher 

biomass concentration that the sample contained before calcination, forming phosphorous 

residues on the surface of the zeolite during the thermal treatment. 
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Figure 5.2: SEM image of calcined CrHY (left) with magnification 10.000x and the respective EDS 

spectrum (right). 

 

TGA analysis confirmed that the calcination process ensured an efficient removal of the 

biomass. Figure 5.3 presents the comparison of the thermograms of NaY zeolite and 

CrNaY*, before and after calcination. While the calcined sample presents the same thermal 

behaviour of NaY zeolite, with a single-stage weight loss due to the loss of water from the 

structure, as-recovered sample presents a second weight loss which is attributed to the 

decomposition of the biomass. This occurs at circa 300 ºC and accounts for 5% of the 

sample mass.  
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Figure 5.3: TGA curves for NaY zeolite and CrNaY*, before and after calcination.  

 

Chemical analysis of the calcined samples confirmed both the presence of chromium in the 

structure, as well as the absence of nitrogen, which is an important indicator of successful 

biomass removal during calcination. Moreover, the absence of nitrogen in the Cr-

containing hosts is useful for future chemical analysis of the prepared heterogeneous 

catalysts, to be discussed later. Carbon appears as a trace residue in samples that were 

recovered from studies using high biomass concentration, being this fact responsible for the 

presence of the carbonaceous residue from incomplete C oxidation after calcination. 

Table 5.1 presents the data from the combined chemical analysis performed on the supports 

which were selected under the scope of this work, including two Cr(III)-NaY samples 

prepared by ion-exchange, which were used for the purpose of comparison.  
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Table 5.1: Chemical analysis of the supports used for the preparation of heterogeneous catalysts. 

Support 
Elemental content (%, w/w) 

Cr C 

NaY 0.00 0.00 

CrNaY* 0.14 0.00 

CrNaY 0.75 0.16 

CrNaYSBR 0.46 0.22 

CrHYSBR 0.59 0.43 

Cr(III)-NaY1 0.62 0.00 

Cr(III)-NaY2  

(non calcined) 
0.36 0.00 

 

From the structural point of view, infrared spectroscopy (FTIR) and X-ray diffraction 

(XRD) analysis confirmed the integrity of the crystalline FAU matrix. FTIR spectra for 

CrNaY* before and after calcination are presented in Figure 5.4, combined with the FTIR 

spectrum of dry Arthrobacter viscosus bacteria. The bands in the 1250-1000 cm-1 and 4000-

3250 cm-1 regions, seen in both spectra of CrNaY*, indicate that the structure is kept 

unchanged during the process. The only significant difference between these spectra is the 

band at 1400 cm-1 observed in as-recovered CrNaY* (as indicated by the arrows in Figure 

5.4), which disappears after calcination. This band is due to carboxylate groups (R-COO-) 

[4], resulting from the presence of the Arthrobacter viscosus biomass. 
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Figure 5.4: FTIR spectra of dry Arthrobacter viscosus and CrNaY* before and after calcination. 
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XRD analysis of the different solid samples further confirmed that the crystalline structure 

is maintained throughout the biosorption process. Figure 5.5 presents XRD diffractograms 

of parent NaY zeolite and calcined CrNaY*. No shifts in peak positions or new peaks were 

detected, confirming that the crystalline matrix was not damaged. Further determination of 

framework Si/Al ratios showed a very slight decrease in NaY-based samples, from 2.80 on 

parent NaY samples to 2.70 in calcined biosorption samples. The same results were 

obtained with similar samples, either originating from Cr(VI) or Cr(III) biotreatment [1,5–

7] or from Fe(III) biotreatment [8]. This proves that the robustness of the zeolitic matrix is 

sufficient to ensure that no damage occurs during the various processes from biotreatment 

to recovery. The only case where structural damage was observed during Cr(VI) 

biotreatment was the alkali-modified zeolites, when the modified surface endured further 

loss of Si from the framework, as determined by XRD [9]. 
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Figure 5.5: XRD analysis of parent NaY and calcined CrNaY*. 

 

In conclusion, the combined analytical data confirm that the supports maintained their 

structural integrity, while efficiently removing the biomass and ensuring the retention of Cr 

species. Therefore, the recovered supports offer good properties for the preparation of 

heterogeneous catalysts by in-situ synthesis.  
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5.2 Preparation of heterogeneous catalysts with N-heterocyclic ligands 

 

The first studies on the preparation of heterogeneous Cr catalysts from recovered 

biosorption supports, using the flexible ligand method, were based on the CrNaY* support. 

For the coordination of the Cr(III) ions within the framework, a total of four heterocyclic 

ligands were selected (structures presented in Figure 5.6), namely 3-methoxy-6-

chloropyridazine (PyMe), 3-ethoxy-6-chloropyridazine (PyEt), 3-piperidino-6-

chloropyridazine (PyP) and 1-(2-pyridylazo)-2-naphthol (PAN). All ligands used in this 

work are able to diffuse freely through the FAU zeolite pores. The chloropyridazine 

derivatives were synthesized on the Chemistry Department at University of Minho and the 

synthesis process was previously reported [8]. PAN ligand is a commercially available 

product from Aldrich. 

N N
Cl OMe

N N
Cl OEt N

N N
Cl N N

N

OH

PyMe PyEt PyP PAN  

Figure 5.6: Heterocyclic ligands used for the encapsulation of chromium on CrNaY*. 

 

The structures of the heterocyclic ligands are different. The selected ligands present 

different atoms which are available for coordination. In the case of pyridazine derivatives, 

the coordinating nitrogen atoms are part of the aromatic ring. However, the coordination 

with PAN ligand involves the nitrogen atoms from the azo group and the oxygen atom. 

Pyridazine compounds have been widely referred as interesting ligands for metal 

coordination. Pyridazine ligands are able to bridge two metal ions and their strong magnetic 

mediation properties allow them to stabilize low oxidation states of metal ions [10,11]. 

The heterogeneous catalysts were prepared by the flexible ligand method in three steps: in-

situ complex synthesis, liquid-solid extraction and stabilization. In the first step, the 

solution containing the specific ligand and Cr-containing support is refluxed and the 
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molecules of the first diffuse through the zeolitic framework and reach the Cr(III) ions. The 

second step consists of a liquid-solid Soxhlet extraction, where the uncoordinated 

molecules are removed (such as merely adsorbed species), as well as eventual Cr (III) 

complexes not encapsuled in the supercages. The final step is a charge-balancing 

procedure, where the samples are allowed to be ion-exchanged with a diluted NaCl 

solution, in order to compensate eventual charge deficits in the formed coordination 

compounds. 

 

5.2.1 Encapsulated Cr-Pyridazine catalysts 

Cr-Pyridazine complexes encapsulated in CrNaY* matrix were the first heterogeneous 

catalysts to be prepared and studied. Full details on the characterization of these catalysts 

has been reported [1,6,12] and are summarized in this section. The characterization of the 

compounds included several analytical techniques such as FTIR, XRD, TGA and chemical 

analysis. 

Chemical analyses were performed and the presence of C and N was detected in the 

prepared catalysts. While the presence of carbon can be due to solvent molecules as well as 

to ligand molecules, the presence of nitrogen is a clear indicator that pyridazine molecules 

were successfully coordinated with chromium and the complex was entrapped in the 

zeolitic matrix. 

FTIR spectra of the Cr-pyridazine catalysts, coupled to XRD data, revealed that the zeolite 

structure is not affected by the encapsulation of the metal complex. The detection of new 

bands in FTIR analysis was hampered by the inherent crystalline rigidity of the zeolitic 

matrix that limits vibrational states of molecules within it, coupled to the low loading of 

organic compounds (less than 3.0 %, determined by TGA), altogether limiting the detection 

of Cr complexes to very weak signals. 

TGA analyses presented the most significant data on metal complex encapsulation. Figure 

5.7 presents the comparison of the thermogravimetric curves for Cr-PyEt complex ([Cr-

PyEt]NaY*) and parent CrNaY* host. The thermogram of the heterogeneous catalyst 

presents two distinct mass loss stages, whereas for parent CrNaY* host, only water loss is 

observed below, 200 ºC. The mass loss that starts at 500 ºC is attributed to the 

decomposition of the encapsulated complex, which decomposes at such high temperatures 
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due to thermal shielding from the zeolitic structure. The same TGA behaviour has been 

reported for metal complexes immobilized in NaY zeolite [13–15]. 
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Figure 5.7: TGA curves for CrNaY* host and [Cr-PyEt]NaY* catalyst. 

 

Table 5.2 presents combined chemical composition and TGA data of the several 

immobilized pyridazine complexes. 

 

Table 5.2: Chemical composition and TGA data for immobilized Cr-Pyridazine catalysts. 

Ligand Host 

Elemental Composition (%) TGA data 

Cra Cb Nb 
Complex mass  

(%) (w/w) 

Decomposition 

T (ºC) 

PyMe 
CrNaY* 0.09 0.82 0.05 2.7 540 

Cr(III)-NaY1 0.58 0.65 0.03 2.5 537 

PyEt 
CrNaY* 

0.13 n.d. n.d. 2.0 543 

PyP 0.09 0.67 0.04 1.0 546 
aCr loading on FAU supports determined by ICP-AES analysis.  
bCarbon and nitrogen loadings obtained by elemental analysis. 
 

It was observed that the mass of complex was dependent on the ligand structure. PyMe was 

able to form the biggest mass of complex with 2.7 % and its PyP counterpart was only able 

to form 1.0 %. The bulk size of the different substitution groups (-OMe, -OEt and –
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N(CH2)5) is the main responsible for the decrease in mobility through the zeolite pores, 

which in turn limits the ability of the ligand to coordinate with the metal ions.  

Comparing the Cr(III)-NaY1 support with CrNaY*, it is seen that the same ligand molecule 

was able to form a comparable amount of complex in supports with striking differences in 

terms of Cr loading. This indicates that most of the Cr(III) ions in Cr(III)-NaY1 support are 

inaccessible to the ligand molecules. The fact that this fraction could still be present at 

certain sites of the zeolite cannot be ruled out. Y zeolite has two sites inside the hexagonal 

prism and the sodalite cages where cations can be accommodated and solvated by the 

zeolite oxygen atoms, but they cannot participate in the formation of the complexes due to 

steric constraints [16]. Only Cr(III) ions located inside the supercages are available to 

interact with ligands, forming the complex [17].  

Further analyses brought additional data on the nature of the chromium species on the 

surface of Cr(III)-NaY1 support. Raman signals for Cr(VI) species were detected (Figure 

5.8). The presence of dichromate species is confirmed by the Raman shifts at 902 and 952 

cm-1 from Cr-O vibrations of dichromate ions [18]. Signals for Cr(III) species are expected 

at 550 cm-1 and are absent from the spectra, mainly due to masking by the strong signal at 

500 cm-1 which is the characteristic peak for FAU zeolites [19]. This means that superficial 

Cr(III) species were oxidized to Cr(VI), which is an occurrence previously reported when 

Cr(III) ion-exchanged NaY zeolites were calcined in the presence of O2 [20].  
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Figure 5.8: Raman spectra of NaY zeolite and Cr(III)-NaY1. 
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It was not possible to obtain any information on the valence of the innermost Cr ions from 

Raman analysis; however, the fact that Cr complexes were encapsulated in this support 

indicates that Cr(III) species were likely to be present within of the framework. 

 

5.2.2 Encapsulated Cr-PAN catalyst 

The encapsulation of chromium complexes in CrNaY* support was also performed with the 

PAN ligand. As it was shown in Figure 5.6, this molecule presents some differences when 

compared to the pyridazine derivatives, as the N=N bond is not part of a heterocyclic 

group.  

After the in-situ synthesis of the CrPAN complex, the color of CrNaY* changed from pale 

yellow to purple. The characterization of [CrPAN]NaY* through FTIR, TGA and chemical 

analysis indicated a similar behaviour to the one previously observed for the encapsulated 

Cr-pyridazine complexes. TGA analysis yielded the most significant result as it confirmed 

the presence of encapsulated complexes with 1.0 % of total sample mass. Chemical 

analysis revealed that the Cr contents of this catalyst were 0.07%, a decrease from the 

original 0.14% of the parent host. Although not quantified, it is likely that the loss of Cr 

happened during stabilization with NaCl. 

The characterization of [CrPAN]NaY* through diffuse reflectance UV spectroscopy (DR-

UV) brought to light some new information on the valence of the Cr ions, presented in 

Figure 5.9. 
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Figure 5.9: DR-UV spectra of CrNaY* and [CrPAN]NaY*.  

 

The DR-UV spectra of CrNaY* is mainly dominated by a peak at 28000 cm-1 and a broad 

band centred at 38000 cm-1. These signals have been described as indicative of 

monochromate species on the surface of the support [21], formed during calcination of the 

zeolitic support. This was previously observed from the Raman signals of Cr(III) ion-

exchanged Cr(III)-NaY1 zeolite. The spectrum of the immobilized complex presents 

differences compared to the parent host, such as the broad band centered at 23000 cm-1 

indicating the presence of di- or polychromates [20]. Monochromate species are less 

evident in the DR-UV spectra of the encapsulated complex, maybe due to simple leaching 

during the flexible ligand method, as it may be concluded from the decrease in Cr loading 

(0.14 % to 0.07 %). However, the most significant differences in the DR-UV spectra are the 

peaks appearing between 15000 and 18000 cm-1, seen in the encapsulated complex. These 

are due to the d-d transitions of Cr(III) species [18,20] and their DR-UV signal became 

more intense upon coordination with the ligand due to their stabilization.  

The presence of Cr(III) ions was also confirmed by cyclic voltammetry. Solid samples of 

[CrPAN]NaY* were deposited in carbon Toray (as well as parent NaY) and the respective 

voltammograms are presented in Figure 5.10. While parent NaY zeolite does not present 

any redox process in the range from -1.5 to +1.5 V vs. saturated calomel electrode (SCE), it 

was found that the samples of encapsulated complex were electroactive, with a reversible 
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redox process observed on the wave occurring between -0.20 V and +0.25 V (vs. SCE). 

This is attributed to the redox couple Cr(III)/Cr(II) and the peak positions and shape are not 

affected by the variation of scan rates, which indicates reproducibility of the electrode 

reaction. Moreover, the same phenomenon was reported by Koley et al. in their study with 

Cr(III)-salen complexes [22]. 

 

Figure 5.10: Cyclic voltammograms for NaY zeolite (dashed line) and [CrPAN]NaY* catalyst (dark 

line). Image imported from reference [1]. 

 

 

5.3 Preparation of heterogeneous catalysts with diphenyltriazene ligands 

 

This section details the studies of the encapsulation of chromium complexes on the 

supports recovered from the Cr(VI) biotreatment under optimized conditions. These 

supports differ from the early used, as the loading of chromium on the matrix is 

considerably higher, as the comparison between CrNaY* (0.14 %) and CrNaY (0.75 %) 

clearly demonstrates.  

The study of the encapsulation of Cr-PAN complex raised interesting questions concerning 

the nature of the chromium species present in the zeolite moiety after calcination of the 

recovered supports. Indications of potential Cr(III) oxidation to Cr(VI) after calcination 

were observed from Raman and DR-UV spectroscopy (Figures 5.8 and 5.9). In order to 

have a better understanding of the higher Cr loading supports, a XPS study was conducted 
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with CrNaY and CrHYSBR. The respective chromium high resolution spectra are presented 

in Figure 5.11. 
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Figure 5.11: XPS spectra and respective peak fitting of the Cr2p region of calcined CrHYSBR and 

CrNaY samples. 

 

Peak fitting of the XPS spectra was conducted with the XPS PEAK 4.1 software, for a 

fitting of 4 peaks. Both spectra are dominated by the typical signals of Cr(III) ions at 

binding energies of 587 and 577 eV, corresponding to the Cr2p1/2 and Cr2p3/2 orbitals, 

respectively [23]. The correspondent signals for Cr(VI) species are expected at slightly 

higher binding energy, as observed in the spectra for CrNaY. The shape of the spectra 

appears to be wider, compared to CrHYSBR and a shoulder is visible at 581 eV. Software 

fitting of this peak shows signals for Cr(VI) which are expected at 580 eV [18]. It is likely 

that these Cr(VI) species might be situated in the external surface of the zeolite – as it was 

seen in Chapter 4. CrNaY presented a two-step Cr(VI) reduction process while CrHYSBR 

presented a swift Cr(VI) reduction in less than 48 hours. The presence of Cr(VI) in the 

external surface of the zeolite is  due to the calcination treatment, where a fraction of the 

exchanged Cr(III) species would be re-oxidized to Cr(VI). This fact was reported by 

Weckhuysen et al., where Cr(III) ion-exchanged Y zeolites would form chromate species 

upon calcination in a oxygen-rich atmosphere [20]. Since the recovered biosorption 

supports were calcined under dry air flow, it is likely that a partial oxidation occurs and the 

supports contain both Cr(VI) and Cr(III) species.  
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A new series of ligands was, then, selected to perform the encapsulation of Cr complexes in 

these supports and their structures are presented in Figure 5.12. For this work, a series of 

diphenyltriazene derivatives were employed, namely 1,3-diphenyltriazene (DPT), 1,3-bis(p-

methylphenyl)triazene (MeDPT) and 1,3-bis(p-nitrophenyl)triazene (NODPT). All ligands 

could be chelated by 1,3 nitrogen atoms.  
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Figure 5.12: Structures of the different ligands used for the immobilization of chromium on the 

supports with higher loading of the metal.  

 

These ligands were synthesized in the Chemistry Department at University of Minho using 

previously described methods in the literature [24,25] 

The coordination of chromium by these ligands is strongly affected by the substitution in 

the para-aryl position. The nitro group in para position of the aromatic ring decreases the 

coordination of triazenido as a result of its electro-withdrawing ability. However, the 

methyl group in para position increases the electronic density in the central triazenido 

group, resulting in enhanced coordination. The chemical environment for the coordination 

also has an important role for the final complexes, since it is necessary to assure that 

deprotonation of the acidic hydrogen occurs in the triazene group [26]. 

DPT ligand was used on all four hosts for comparison, namely CrNaY, CrHYSBR, 

CrNaYSBR and Cr(III)-NaY2 supports. The latest sample was prepared by ion-exchange and 

was not calcined in order to avoid oxidation of the exchanged Cr(III) ions, as previously 

witnessed in section 5.2. Additionally, in order to compare the effect of molecular structure 

of the ligand on the efficiency of chromium complex encapsulation, the two remaining 

ligands (MeDPT and NODPT) were used for encapsulation on the same host, CrNaY, since 

this one presents the highest chromium loading. 
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Catalysts prepared using DPT ligand promoted a colour change of the supports to dark 

grey, whereas MeDPT ligand promoted a change to light brown colour. NODPT did not 

promote any visible change in the coloration of the host.  

The characterization of the heterogeneous catalysts included the same techniques 

previously employed (FTIR, TGA and chemical analysis). Raman spectroscopy and 

determination of BET area of the prepared catalysts were also performed. 

The analysis of the solid samples by vibrational spectroscopy techniques confirmed that the 

ligands were present in the matrix, with the exception of NODPT. Figure 5.13 presents the 

FTIR spectra of the different catalysts prepared from CrNaY host. 
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Figure 5.13: FTIR spectra of the three catalysts prepared from the different ligands and CrNaYhost. 

 

All FTIR spectra are dominated by the strong bands attributable to the zeolite structure. No 

shift or broadening of the zeolite vibration bands is observed upon incorporation of the 

chromium complexes. FTIR spectrum of CrNaY is characterized by a very intense broad 

band at ca. 3460 cm-1 with a poorly resolved shoulder at ca. 3600 cm-1 which can be 

attributed to the hydroxyl groups in the supercages and in the sodalite cages respectively  

The spectra of CrNaY and of the catalysts provide evidence that the zeolite framework is 

preserved throughout calcination and immobilization of the triazenido derivative chromium 
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complex. The spectra of [Cr-DPT]NaY and [Cr-MeDPT]NaY show the bands at 1492 and 

1593 cm-1, attributed to the ν( N N N) of the triazene group which proves that these ligands 

were successfully coordinated within the zeolite framework. Figure 5.14 presents the 

Raman spectra of the different catalysts prepared from CrNaY host. 
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Figure 5.14: Raman spectra of the catalysts prepared with CrNaY host. 

 

The same indications are given by Raman spectroscopy. All Raman spectra are dominated 

by the strong background fluorescence which is common in zeolite samples [27]. However, 

some of the immobilized complex samples present changes in the shape of the spectra, 

mainly on the samples with DPT and MeDPT ligands. In these spectra, it is possible to 

identify peaks at 1360 and 942 cm-1, while the spectrum of [Cr-NODPT]NaY is similar to 

CrNaY. The first signal corresponds to the D-band of carbon compounds [28] while the 

second peak is attributed to surface Cr(VI) species [18]. The presence of these species is 

related to the calcination conditions that favour the oxidation of Cr(III) to Cr(VI).  

The confirmation of encapsulated Cr complexes was given by the combined TGA–BET 

area analysis. Table 5.3 presents the combined data from TGA (extracted from Figure 

5.15), chemical analysis and BET area determination of all catalyst samples. 
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Figure 5.15: Thermogravimetric analysis of the three catalysts prepared with different ligands and 

CrNaY host. 

Table 5.3: Chemical, thermogravimetric and textural analyses data for all the catalysts and hosts. 

  Elemental analysis (%, w/w) TGA analysis 
BET  

Surface Area 
 (m2.g-1) Support Ligand Cra Cb Nb Cr/N 

 
Loss of mass at 
temp. > 250 ºC 

(%, w/w) 
 

CrNaY 

--- 0.75 0 0 --- --- 562.85 

DPT 0.71 0.75 0.19 3.74 2.5 195.79 

MeDPT 0.71 1.23 0.20 3.55 2.1 317.15 

NODPT 0.72 0.10 0.02 14.5 0.2 562.48 

CrNaYSBR 
--- 0.46 0 0 --- --- 590.34 

DPT 0.47 0.32 0.05 9.40 0.8 539.64 

CrHYSBR 
--- 0.59 0 0 --- --- 495.65 

DPT 0.55 1.04 0.29 1.89 2.5 201.19 

Cr(III)-NaY2 
--- 0.36 0 0 --- --- 622.67 

DPT 0.38 0.07 0.02 15.3 0.2 580.33 

aCr loading on FAU supports determined by ICP-AES analysis.  
bCarbon and nitrogen from Cr complexes obtained by elemental analysis. 
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Thermogravimetric analysis provided further indication that immobilization of Cr-DPT and 

Cr-MeDPT complexes was achieved. TG and DTG curves of all samples show a weight 

loss at 110 ºC which is attributed to the loss of water molecules present in the framework of 

the zeolite. After the synthesis of the complex, the catalysts based in DPT and MeDPT 

ligands present a second weight loss, taking place at a higher temperature around 380 ºC, 

attributed to the decomposition of the organic matter from the complexes. Comparing the 

complexes formed with DPT ligand, the extent of the secondary weight loss varied with the 

different supports. This ligand was able to form up to 2.5 % (w/w) mass of chromium 

complex within CrNaY and CrHYSBR. Despite having different chromium loadings, the 

formation of complex with DPT ligand was comparable between these two supports.  

The thermogravimetric analysis of [Cr-NODPT]-NaY is similar to the CrNaY host 

indicating that the complex is not obtained, in agreement with other characterization 

techniques. The different weight loss observed for the catalysts confirm that the NODPT 

ligand is not coordinated with the chromium.  

Concerning the other hosts in study (CrHYSBR, CrNaYSBR and CrIIINaY2), only CrHYSBR 

support was able to perform comparatively to CrNaY, in terms of immobilization of 

chromium complex. In the case of the chromium complex formed in CrNaYSBR and Cr(III)-

NaY2 supports, the TGA results show that the lower amount of formed complex is related to 

the lower loading of chromium in these supports.  

The immobilization of the chromium complexes in the supports was confirmed by the 

analytical data of carbon, nitrogen and metal. High Cr/N ratios were obtained, observed for 

different catalysts, which suggests the presence of a fraction of uncoordinated chromium 

ions. It is assumed that one part of these ions could be located in framework sites that are 

inaccessible for the ligands [16]. However, the lower nitrogen amount in the [Cr-

NODPT]NaY catalyst comfirm that the complex with NODPT ligand was not achieved. 

These results are due to the decrease of the electron-donor strength of the triazenido ligand 

by the NO2 group in para position of the aromatic ring in acidic medium [26].  

The low amount of formed chromium complex is related to the presence of the different 

chromium species in the biosorption-recovered Y supports. The Cr(VI) species detected in 

XPS and Raman do not coordinate with the triazenido ligands which means that only a 

small fraction of chromium takes part in the synthesis of the complex, being this fraction 

Cr(III) species. 

For all catalysts, the total surface areas (SBET) were calculated by applying the BET 

equation and the data show a reduction in area upon coordination, when compared to the 
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respective parent supports. This is further indication of successful immobilization [13]. 

However, for the catalysts obtained from CrNaY (with both DPT and MeDPT) and 

CrHYSBR the decrease in BET area is significant. 

The chemical analysis of the supports and respective catalysts revealed that no significant 

loss of chromium occurred during the in-situ synthesis, which means that the overall 

catalytic activity of each support is not significantly changed. 

 

 

5.4 Conclusions  

 

The results presented in this chapter allowed concluding that the recovered Cr(VI) 

biotreatment supports may be potentially used as catalysts for liquid-phase oxidation 

reactions. 

Different ligands were employed for the immobilization of Cr complexes in FAU supports. 

All ligands present nitrogen atoms for coordination in different chemical structures, 

pyridazine, azo and triazenido groups. Analytical results from different techniques 

demonstrated the presence of ligand molecules in the framework and this was possible by 

coordination with the chromium ions present in the zeolitic moiety. 

Diphenyltriazene ligands were successfully employed for the in-situ synthesis of chromium 

complexes on the supports recovered from assays performed under optimized conditions, 

which allowed higher loading of the metal. 
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CHAPTER 6 – ASSESSMENT OF THE Cr CATALYSTS IN LIQUID-PHASE 

OXIDATION REACTIONS 

 

 

This chapter presents the experimental results obtained from the catalytic experiments 

conducted with the chromium catalysts, previously described in Chapter 5.  

There was a previous catalytic evaluation of the as-recovered Cr(VI) biotreatment supports,  

conducted on the gas-phase oxidation of 1,2-dichlorobenzene, using CrNaY and CrNaX 

supports [1]. The performance of the several Cr catalysts in liquid-phase was evaluated in 

two different oxidation reactions, namely, the oxidation of cyclohexene and the oxidation 

of cyclohexanol. Both reactions were referred to in Chapter 1 (see section 1.3.4).  

 

 

6.1 Oxidation of cyclohexanol 

The oxidation of cyclohexanol using tert-butylhydroperoxide (TBHP) as the oxygen source 

follows the typical reaction pathway for an oxidation of a secondary alcohol, with the 

formation of the corresponding ketone, which in this case is cyclohexanone (Figure 6.1). 

 

Figure 6.1: Peroxide oxidation of cyclohexanol into cyclohexanone. 

 

The experimental work on this reaction was conducted later to the studies on cyclohexene 

oxidation. Due to the exhaustion of the Cr-chloropiridazine and Cr-PAN catalysts on those 

studies, only the Cr-diphenyltriazene catalyst series allowed a comprehensive study for the 

oxidation of cyclohexanol. Therefore, only the experimental results with these catalysts will 

be presented in this section. 

OH O
ROOH
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A series of blank reactions were carried out to test the stability of the solvents and of the 

GC internal standards to the THBP oxidant. Diethylketone (DEK) was chosen as solvent 

for the reaction due to its intermediate polarity and high boiling point (105 ºC), which is 

useful given the chosen reaction temperature (later discussed). Due to the same fact, 

chlorobenzene was chosen as GC internal standard as it has high stability at the reaction 

temperature vs. other tested compounds (cyclohexane and toluene). This compound was 

also used as solvent and GC standard for this reaction by Laha and Gläser [2] and Sakthivel 

[3]. 

The selection of temperature was based on the comparison between the conversion 

achieved by two catalysts of distinct natures, CrNaY host and the corresponding 

encapsulated complex of [Cr-MeDPT]NaY. The catalytic results are presented in Figure 

6.2.  

 

Figure 6.2: Conversion of cyclohexanol by CrNaY and [Cr-MeDPT]NaYcatalysts, for the tested 

temperature range, after 23 hours of reaction. 

 

The temperature range between 40-60 ºC was selected to assure mild oxidation conditions 

while avoiding decomposition of the TBHP oxidant. This compound is known to be more 

stable than H2O2 while being environmentally safe [4], withstanding reaction temperatures 

up to 120 ºC (reported by Sakthivel et al. [3]). The data presented in Figure 6.2 shows that 

the maximum cyclohexanol conversion was achieved at 60 ºC for both catalysts tested. 

Although the increase in cyclohexanol conversion between 50 and 60 ºC is minor for 
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CrNaY, a significant increase was observed for [Cr-MeDPT]NaY. For this fact, all 

reactions were carried out at 60 ºC. 

The reaction time was set at 23 hours. However, some reactions were allowed to proceed 

during 48 hours and an increase in circa 5% of cyclohexanol conversion was observed 

(compared to the conversion after 23 hours). Despite the non-equilibrium conditions, the 

experimental time of 23 hours was deemed sufficient and was used throughout the 

experiments.  

The complete study on the activity of the different catalysts is presented in Table 6.1. The 

catalysts may be separated into three main groups: biosorption supports from the high-

biomass concentration studies (also named hosts); the encapsulated Cr-diphenyltriazene 

complexes and the supports prepared by ion-exchange with Cr(III). Experimental results for 

a non-catalyzed reaction as well as the blank reactions with calcined NaY and HY zeolites 

were also included. The turn-over number (TON) was also determined, being defined as the 

ratio between the moles of converted cyclohexanol molecules and the initial moles of 

chromium ions available in the catalyst. This figure indicates the average catalytic cycles 

performed by each active metal centre. 

 

  



Preparation of catalysts from biosorbents supported on zeolites 

 Chapter 6 – Assessment of the chromium catalysts in liquid-phase reactions 129 
 

Table 6.1: Conversion of cyclohexanol and turn-over numbers (TON) for the different catalysts 

tested. 

Catalyst 
Cyclohexanol 

conversion (%) 

Analytical      

error  

(%) 

Cr loading of 

catalyst (%, w/w) TONa 

Blank reaction 18.6 ± 3.5 --- --- 

NaY 15.8 ± 5.3 --- --- 

HY 14.2 ± 1.4 --- --- 

CrNaY 61.2 ± 1.2 0.75 246.2 

[CrDPT]NaY 57.3 ± 3.0 0.71 243.4 

[CrMeDPT]NaY 54.1 ± 1.7 0.81 201.4 

[CrNODPT]NaY 63.5 ± 2.8 0.72 266.0 

CrNaY EXT 61.8 ± 3.1 0.94 198.2 

CrNaYSBR 56.8 ± 4.5 0.46 372.5 

[CrDPT]NaYSBR 49.1 ± 4.6 0.47 314.9 

CrHY 50.7 ± 4.2 0.54 283.2 

CrHYSBR 48.0 ± 1.1 0.59 245.4 

[CrDPT]HYSBR 42.9 ± 2.9 0.55 235.4 

Cr(III)-NaY1 (calcined) 51.9 ± 4.3 0.62 252.5 

Cr(III)-NaY2 42.6 ± 1.0 0.36 357.1 

[Cr(III)-DPT]NaY2 38.3 ± 0.9 0.38 304.0 

aThe turnover number (TON) was determined from the converted cyclohexanol moles over the 
initial molarity of chromium on the respective catalyst. 
 

The data presented in Table 6.1 will be discussed comparing the three different catalyst 

types.  

Analysing the conversion values for the zeolitic hosts, it is possible to conclude that the 

NaY or HY zeolites do not contribute to cyclohexanol conversion as NaY- or HY-catalyzed 

reactions achieved a conversion comparable to the blank reaction. On the other hand, the 
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biosorption samples confirmed that the presence of chromium resulted in a significant 

increase in conversion. Therefore, the presence of chromium ions on the support greatly 

increases the cyclohexanol conversion. 

Comparing the performance of the four biosorption supports (CrHY, CrHYSBR, CrNaY and 

CrNaYSBR) plus the CrNaY EXT sample, it is possible to notice some aspects. The first is 

related to the NaY-based catalysts, where the chromium loading of the supports does not 

promote a linear response in terms of catalytic activity. This is highlighted in Figure 6.3, 

where the catalytic activity of the NaY- and HY-based catalysts is plotted vs. the Cr loading 

of the support. 

 

Figure 6.3: Cyclohexanol conversion vs. chromium loading of the different biosorption supports. 

 

In the NaY series, it is visible that the cyclohexanol conversion increases with the Cr 

loading of the support until a conversion of circa 62% is achieved with the CrNaY and 

CrNaY EXT supports. Despite the higher loading of metal on the last support, the activity 

is comparable to the first, meaning that the accessible Cr active sites are equally available. 

This could be explained by the dynamics of Cr(VI) biotreatment on these supports 

(presented in Chapter 4): for CrNaYSBR, the chromium ions are mostly located at the 

outermost zeolite surface, since the residence time of 4 days did not allow an efficient ion-

exchange of the bioreduced Cr(III) species. For CrNaY and CrNaY EXT, the contact time 

of the Cr(VI) solution allowed the slower secondary ion-exchange process to take place, 

also allowing difusion of the reduced Cr into the framework.  
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For the CrNaY hosts from biosorption treatments, both Cr(VI) and Cr(III) species were 

observed on the surface after the calcination of the samples, as it was seen in Chapter 5. 

XPS studies of these supports show that both Cr(VI) and Cr(III) species are present in the 

external surface or close to the surface of CrNaY. This could explain the higher activity of 

the CrNaY hosts when compared to the CrHY samples, since Cr(VI)-containing catalysts 

are known to be very active on the peroxide oxidation of primary and secondary alcohols 

[5,6]. An important fraction of the Cr(III) species is located in the zeolite framework of the 

hosts and these  are also contributing to the overall conversion, as witnessed in the CrHY 

and Cr(III)-NaY2 samples .  However, some ions can be inaccessible to the reactants, being 

present at certain sites of the zeolite that cannot be ruled out, such as within the hexagonal 

prisms or sodalite cages [7,8]. The TON values of the three CrNaY-based supports also 

sustain this interpretation, as they decrease with the increase in Cr loading. This indicates 

that not all of the loaded chromium is active on this reaction. 

By the same XPS study described in Chapter 5, CrHYSBR host presented a clear spectrum 

for Cr(III) species, meaning that the surface would lack the same amount of Cr(VI) active 

sites as CrNaY counterparts. This explains the low conversion observed for CrHY supports. 

Since CrHY and CrHYSBR present comparable chromium loadings and conversion values, 

Cr(III)-NaY2 sample was included in the plot presented in Figure 6.3 and appears to follow 

the same tendency as CrHY supports. This further sustains the Cr(III) nature of the catalytic 

active sites. Therefore, considering the two different plots in Figure 6.3, it may be assumed 

that the CrNaY plot represents a catalytic process with the combined contribution of Cr(VI) 

and Cr(III) active centres, whereas the CrHY plot represents a process with a 

predominantly CrIII-mediated process. 

Looking at the performance of the encapsulated chromium complexes, the catalytic activity 

decreases when compared to the corresponding hosts. Although some authors comment that 

zeolite-encapsulated metal complexes can achieve higher catalytic activity than the 

equivalent homogenous complexes [9,10], these results raised some questions on the 

possible leaching of active metal centres into the reaction medium. This is mainly brought 

up by the fact that CrNaY and [Cr-NODPT]NaY achieved identical conversion, whereas 

[Cr-DPT]NaY and [Cr-MeDPT]NaY presented a slight decrease in conversion. Since it was 

seen in Chapter 5 that no encapsulation took place when NODPT ligand was used with 

CrNaY, it is clear that the [Cr-NODPT]NaY catalyst may be very similar to the parent host. 

Moreover, since the chromium ions are encapsulated in the other catalysts with DPT and 
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MeDPT ligands, it is likely that the conversion of the parent Cr-zeolite hosts might be due 

to leaching of chromium ions to the reaction medium. In order to confirm this, acid 

digestion of the reaction medium after conclusion of the reaction, was performed and the 

determination of chromium content was conducted by AAS. The results for this analysis are 

presented in Figure 6.4. 

 

Figure 6.4: Leached Cr mass for the different catalysts. 

 

As it can be seen in Figure 6.4, leaching of chromium was observed for the different 

catalysts, maybe with the exception of the almost negligible leaching observed for [Cr-

DPT]HYSBR. It can also be seen that the other encapsulated complexes minimized the 

leaching of metal from their respective hosts. Some additional conclusions can also be 

inferred from this analysis.  

Firstly, comparing CrNaYSBR and CrHYSBR, it can be seen that although the chromium 

loading is higher on the last support, it is the first that presents a higher leaching during 

reaction. This is in accordance with the previously commented dynamics of the Cr(VI) 

biotreatment studies indicating a higher dispersion of metal on the CrNaYSBR surface,  

while for CrHY it was more efficiently ion-exchanged. It is likely that the superficial 

chromium species are more susceptible to removal by the TBHP oxidant, as Sheldon et al. 

referred for the cleavage of Si-O-Cr bonds being responsible for the loss of heterogeneous 
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character on CrAPO catalysts [11–13]. In the CrHYSBR host, the chromium ions are located 

within the framework, being less exposed to a leaching action by the peroxide. This 

explains the lesser extent of chromium loss when compared to the CrNaY hosts. 

Another fact that can be observed in Figure 6.4 is that NaY-based catalysts are more prone 

to leaching. CrNaY and CrNaYSBR are amongst the most susceptible catalysts, while 

comparing to the ion-exchanged Cr(III)-NaY2 support to CrHYSBR, the amount of leached 

metal is similar even if the CrHY support presents a higher chromium loading. This can be 

mainly due to the preferable deposition of chromium on the NaY-supports during the 

Cr(VI) biotreatment assays. These chromium species, even when coordinated with the 

diphenyltriazene ligands, are more exposed to the TBHP oxidant than the encapsulated 

complexes, and this may lead to break-down of the metal-zeolite interaction. 

In order to evaluate the effect of chromium leaching on the reusability of the catalysts, a 

recycling test was conducted using the most active host (CrNaY) and its corresponding 

encapsulated [Cr-DPT]NaY catalyst. The catalysts were removed from the reaction medium 

by filtration and dried before the following reaction. This process resulted in a significant 

loss of mass from cycle to cycle; nevertheless, it was possible to conduct the reactions with 

the available catalyst mass and the result is presented in Figure 6.5. 

 

Figure 6.5: Conversion of cyclohexanol for CrNaY and [Cr-DPT]NaY for the different catalytic 

cycles. Average catalyst masses are indicated on top of each cycle. 
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The recycling experiment confirmed that both non-immobilized and immobilized catalyst 

maintain catalytic activity for this reaction for 3 consecutive cycles. However, while 

CrNaY presents a decrease in conversion from cycle 1 to 2, [CrDPT]NaY is able to perform 

the same conversion after 2 cycles.  

In conclusion, the oxidation of cyclohexanol allowed a catalytic evaluation of the Cr-

containing biosorption supports and the corresponding immobilized catalysts. Leaching of 

chromium ions was observed from the biosorption supports, which has decreased upon 

encapsulation of the Cr ions with diphenyltriazene ligands. To this extent, [Cr-DPT]HYSBR 

was the best catalyst in terms of stability. Nevertheless, both immobilized and non-

immobilized catalysts exhibited activity for the reaction for 3 consecutive reaction cycles. 

 

 

6.2 Oxidation of cyclohexene 

The second reaction considered is the oxidation of cyclohexene with TBHP for the 

evaluation of the different catalysts prepared in this work. According to works presented by 

different authors, this reaction is known to generate several reaction products [4,14–17]. A 

summary of those is presented in Figure 6.6. 

 

Figure 6.6: Oxidation products for the peroxide oxidation of cyclohexene. 
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OH O OH
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The oxidation of cyclohexene with peroxides may undergo different pathways, with 

epoxidation of C-C bonds competing with allylic oxidation of C-H bonds [18]. The extent 

of each pathway depends on several reaction conditions, such as the choice of peroxide 

oxidant, solvent and catalyst. 

The oxidation of cyclohexene was carried out to evaluate the catalytic performance of the 

different biotreatment supports and immobilized Cr complexes. This was conducted in two 

distinct phases. In the first one, the reaction conditions and analytical routines were 

developed using the immobilized Cr-pyridazine and Cr-PAN catalysts, as well as the 

corresponding supports, collected from the early studies in Cr(VI) biotreatment. In a second 

phase, the immobilized Cr-diphenyltriazene and the respective hosts were tested for this 

reaction. This will be covered in two separate sections. 

 

6.2.1 Oxidation of cyclohexene using encapsulated Cr-pyridazine and Cr-PAN 

complexes 

(Note: studies presented in this section have been previously reported in Figueiredo, Silva, 

Quintelas, Raposo, Parpot, Fonseca, Lewandowska, Bañares, Neves and Tavares, Applied 

Catalysis B: Environmental 94, 2010, 1-7 [19]). 

The oxidation of cyclohexene with Cr-pyridazine and Cr-PAN complexes marked the first 

liquid-phase catalytic test of the materials prepared from Cr(VI) biotreatment studies. To 

this extent, most of the reaction conditions and analytical routines were selected using as-

recovered Cr(VI) biotreatment supports from early studies, such as CrNaY*. Another 

support extensively used was the ion-exchanged Cr(III)-NaY1, in the calcined form. 

The definition of reaction conditions was based on the works of Nunes et al. [16]. The 

chosen solvent for this reaction was the same solvent on which the TBHP oxidant was 

commercially provided, decane. Additional factors such as its known chemical inertness 

and high solubility for cyclohexene contributed for this option. Toluene was used as GC 

internal standard. Blank reactions were conducted in order to assure that the observed 

reaction products were originated exclusively from the oxidation of cyclohexene and not 

from solvent or toluene. This last one has been used as solvent for this reaction [18]. The 

initial tests were conducted at a temperature of 30 ºC; however, it would soon be increased 

to 40 ºC to allow higher conversion of cyclohexene.  
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The experimental time was set at 23 hours of reaction, as early results showed no further 

conversion of cyclohexene beyond this point. Figure 6.7 shows an example of time-

dependency of the conversion of cyclohexene using Cr(III)-NaY1 support as catalyst, 

which was found to be the most active in this study (see Table 6.2). 

 

Figure 6.7: Time dependency of the conversion of cyclohexene with Cr(III)-NaY1 catalyst. 

 

The first results showed the absence of cyclohexeneoxide (ChO) amongst the reaction 

products. The main products obtained from the oxidation were 2-cyclohexen-1-ol (ChOl) 

and 2-cyclohexene-1-one (ChOne). The formation of a third product that did not match any 

of the standards for the oxidation products presented in Figure 6.6 was observed. This 

product was identified by GC-MS, corresponding to tert-butyl-cyclohexylperoxide (Ch-

TBHP) and was found to behave as an intermediary product towards the formation of ChOl 

and ChOne, as it is presented in Figure 6.8. As it can be seen, Ch-TBHP is the first product 

to be formed and the formation of the other two, ChOl and ChOne, increases upon the 

consumption of the intermediary. The formation of this intermediary product was also 

reported by other authors [14,20].  
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Figure 6.8: Evolution of the reaction products for the oxidation of cyclohexene with TBHP, using 

CrIIINaY1 catalyst. Evolution of products is calculated as instant over maximum concentration 

(C/Cmax) during the experimental time. 

 

The complete results for the oxidation of cyclohexene are presented in Table 6.2. 

Table 6.2: Conversion of cyclohexene, product selectivity and turn-over numbers for the Cr-

pyridazine and Cr-PAN encapsulated complexes and their respective hosts. 

Catalyst 
Conversion 

(%) 

Analytical 

error 

(%) 

Selectivity (%) Cr loading 

of catalyst 

(%) 

TON 
ChOl ChOne Ch-TBHP 

blank reaction 16.2 ± 5.5 0.0 0.0 100.0 --- --- 

NaY 14.2 ± 8.6 0.0 0.0 100.0 --- --- 

CrNaY* 40.3 ± 4.9 0.0 34.3 65.7 0.14 614 

CrIIINaY1 (calc.) 51.2 ± 3.9 20.1 79.9 0.0 0.62 160 

[Cr-PyMe]NaY* 27.6 ± 4.6 0.0 17.0 83.0 0.09 647 

[Cr-PyP]NaY* 30.3 ± 6.5 0.0 21.5 71.5 0.09 717 

[Cr-PAN]NaY* 31.8 ± 5.0 0.0 21.5 78.5 0.07 851 

[Cr(III)-PyMe]NaY1 37.9 4.4 9.5 44.5 46.0 0.58 127 
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The experimental results show that while NaY zeolite is inactive for the oxidation of 

cyclohexene, the presence of chromium on the CrNaY*, Cr(III)-NaY1 supports and 

respective encapsulated complexes increases cyclohexene conversion. Additionally, the 

selectivity appears to be dependent on the quantity of metal of the support. 

Comparing the CrNaY* and calcined Cr(III)-NaY1 supports with parent NaY zeolite, it is 

clearly noticeable that the selectivity towards ChOl and ChOne depends on the availability 

of chromium on the support. This is further evidenced by the absence of the Ch-TBHP 

intermediary using the Cr(III)-NaY1 support. A previous study by Buijs et al. highlighted 

the activity of Cr(VI) catalysts on the decomposition of cyclohexyl-hydroperoxide into 

cyclohexanone [21], and this process appears to be valid for this reaction as well. Since the 

calcined Cr(III)-NaY1 support presented superficial Cr(VI) species (commented in Chapter 

5), the contribution of all chromium species may be responsible for the high cyclohexene 

conversion achieved with this support. Moreover, the higher selectivity towards ChOne 

over ChOl may also be due to secondary oxidation of the ChOl product into ChOne, in a 

similar process to the previously observed for the oxidation of cyclohexanol to 

cyclohexanone (section 6.1).  

Comparing the product selectivity to the reported in literature, it is possible to find 

divergent results. As an example, the work of Adam and Fook referred the use of a Cr-silica 

catalyst prepared by treatment with a Cr(III) solution and subsequent calcination at 500 ºC, 

which was used for the oxidation of cyclohexene with H2O2 oxidant, reaching a maximum 

conversion of 31 %. The main reaction product was ChOne while ChOl was produced in a 

lesser extent (circa 60% to 20%, respectively) [22]. A study by Abbo et al. reported that 

ChOl was the main product from the oxidation of cyclohexene with H2O2 using a Cr(III) 

complex encapsulated in NaY zeolite [17]. This could mean that Cr(III) species are less 

active on the formation of ChOne or this ion lacks the activity of Cr(VI) for the secondary 

oxidation of ChOl to ChOne, which could be responsible for the observations of Adam and 

Fook.  

Despite the lower cromium loading on CrNaY* comparatively to Cr(III)-NaY1, the 

evaluation of the respective TON shows that the catalytically active centres are more 

accessible in the biosorption support than in the ion-exchange catalyst. This is due to the 

ion-exchange of Cr(III) ions occurring in different sites on the zeolite framework, some of 

which are inaccessible to cyclohexene. On another perspective, it is likely that the 
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chromium species in CrNaY* might be found on the surface or within the near-surface 

framework, since this support was recovered from assays using low biomass concentration, 

limiting the extent of the reduction of Cr(VI) to Cr(III). As consequence, less exchangeable 

chromium was available to the zeolite, allowing a higher dispersion on the framework 

surface. Moreover, the dispersion of metal on the surface of CrNaY* may prevent the 

formation of polynuclear chromium species. 

Comparing the performances of the encapsulated chromium complexes, a decrease in 

cyclohexene conversion face to the respective parent hosts was observed. As it was 

previously commented for the oxidation of cyclohexanol in section 6.1, it is likely that this 

decrease might be due to a limitation of chromium leaching to the reaction medium. 

Furthermore, as it was previously commented in Chapter 5, the encapsulated complexes 

presented a loss of the Cr(VI) signals of CrNaY* (from DR-UV data), which would explain 

the smaller activity on the oxidation of cyclohexene. Nevertheless, the selectivity towards 

ChOne is still maintained. 

The catalytic performance of the three encapsulated complexes in CrNaY* is comparable in 

terms of cyclohexene conversion and product selectivity. [Cr-PAN]NaY* achieved the 

highest TON of this study, whereas [Cr-PyMe]NaY* and [Cr-PyP]NaY* presented a slight 

increase of TON compared to the parent host. This suggests that the encapsulation of Cr-

complexes renders the metal centres more accessible and active for the oxidation reaction. 

For the ion-exchange catalysts, the encapsulation of Cr-PyMe also resulted in a decrease of 

conversion and the selectivity was affected by the loss of activity on the decomposition of 

the intermediary Ch-TBHP product. This could be due to the effectiveness in preventing 

leaching of active chromium centres into the reaction medium, as previously commented on 

the activity of the Cr(III)-NaY1 host. 

From the results indicated in Table 6.2 and Figure 6.8 it is evident that ChOne is selectively 

formed in the presence of Cr(III)-NaY1 . The evolution of the allylic oxidation products for 

this host shows that chromium improves the ChOne production, reducing the selectivity 

towards ChOl. Ch-TBHP is an intermediary product of the reaction and the appearance of 

this product is an indication of radicalar reaction pathway [23,24]. The selectivity analysis 

shows that Ch-TBHP is an unstable product, while ChOne appears as a secondary and 

stable product. The reaction mechanism proposed for the formation of the allylic oxidation 

products, ChOne and ChOl, is related to the cage controlled metal-OH chemistry rather 
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than to free radical mechanism. The overall mechanism for the oxidation of cyclohexene 

proceeds through a radical mechanism, as presented in figure 6.9 [16,23,24]: 

 

Figure 6.9: Reaction mechanism for the oxidation of cyclohexene. Image imported from reference 

[19]. 

 

6.2.2 Oxidation of cyclohexene using encapsulated Cr-diphenyltriazene complexes 

The second phase of the study on catalytic oxidation of cyclohexene consisted in the use of 

Cr(VI) biotreatment supports recovered from optimized biosorption conditions and the 

encapsulated Cr-diphenyltriazene derivatives that were prepared from those supports. 

The same reaction conditions were kept, with the exception of reaction temperature, which 

was increased from 40 to 50 ºC, as commented for cyclohexanol (Figure 6.2). A 

temperature-dependence study was conducted, with resulting data are presented in Figure 

6.10. 
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Figure 6.10: Conversion of cyclohexene with TBHP using CrNaY and [CrMeDPT]NaY catalysts, 

for different temperatures. 

 

As it can be seen in Figure 6.10, the conversion of cyclohexene increases with the increase 

in temperature, for both catalysts. In parallel to the temperature effect in cyclohexanol 

conversion, the conversion of cyclohexene with the CrNaY host presents a slight increase 

from 40 to 50 ºC, more significant for the immobilized complex, justifying the selection of 

50 ºC as the reaction temperature for the ensuing studies. The complete experimental 

results for all the different catalysts are presented in Table 6.3. 
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Table 6.3: Conversion, product selectivity and turn-over numbers for the oxidation of cyclohexene. 

 

The blank reaction assays run without catalyst or in the presence of parent NaY or HY 

zeolite revealed an interesting feature: while NaY remains inactive for this reaction, HY 

zeolite presents slight catalytic activity, with a conversion near 30 %. However, the 

selectivity is the same as for the non-catalyzed reaction, showing only Ch-TBHP product. 

This indicates that HY zeolite only assists the formation of the intermediary product. 

Comparing the performance of the recovered biotreatment supports, it can be seen that 

CrNaY, CrNaY EXT and CrHYSBR present comparable conversion results, despite their 

varying chromium contents. Contrarily to the observations for the oxidation of 

cyclohexanol, CrHYSBR is more active than the CrNaY support for this reaction. This 

indicates that the intrinsic activity of HY zeolite is also contributing to the overall reaction 

Catalyst 
Conversion 

(%) 

Analytical 

error  

(%) 

Product selectivity (%) 
Cr 

loading of 

catalyst 

(%) 

TON 

ChOl ChOne Ch-TBHP 

blank reaction 16.9 ± 5.9 --- --- 100.0 --- --- 

NaY 14.1 ± 2.2 --- --- 100.0 --- --- 

HY 28.7 ± 4.8 --- --- 100.0 --- --- 

CrNaY 69.0 ± 1.8 21.6 67.8 10.7 0.74 189.6 

[Cr-DPT]NaY 56.0 ± 1.5 12.2 69.4 18.5 0.71 164.0 

[Cr-MeDPT]NaY 55.1 ± 2.5 15.1 74.0 10.8 0.81 140.4 

[Cr-NODPT]NaY 60.4 ± 3.1 15.4 71.6 13.0 0.72 173.2 

CrNaY EXT 75.9 ± 0.8 22,4 59,1 18,5 0.94 166.7 

CrNaYSBR 61.2 ± 1.0 16.7 68.9 14.3 0.46 277.5 

[CrDPT]NaYSBR 60.8 ± 1.1 14.4 63.0 22.7 0.47 266.9 

CrHYSBR 72.9 ± 1.4 25.0 65.0 10.0 0.59 255.2 

[Cr-DPT]HYSBR 71.6 ± 1.3 22.8 66.8 10.3 0.55 268.7 

Cr(III)-NaY2 34.8 ± 1.3 7,8 37,6 54,6 0.36 199,7 

[Cr(III)-DPT]NaY2 32.7 ± 0.8 7,6 40,9 51,5 0.38 177,5 
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and the CrHYSBR can be considered a bifunctional catalyst for the oxidation of 

cyclohexene. The CrNaY-based catalyst series follows an increasing trend of conversion vs. 

chromium loading of catalysts, as it is presented in Figure 6.11, without reaching an 

apparent saturation of the catalytic active centres with the increase in metal loading. 

 

Figure 6.11: Plotting of the cyclohexene conversion vs. chromium loading of the catalyst, for the 

CrNaY series of biotreatment supports. 

  

Comparing the selectivity of the biotreatment supports, the ketone, ChOne, remains the 

main reaction product. An increase in ChOl selectivity is observed compared with the 

supports used in the previous section (presented in Table 6.2). A residual amount of Ch-

TBHP intermediary remains in all solutions, maybe due to the high conversion of 

cyclohexene, resulting directly in a high formation of the intermediary, that would not be 

decomposed into ChOl or ChOne at the same rate as cyclohexene would be transformed 

into Ch-THBP.  

Cr(III)-NaY2 showed less activity on the conversion of cyclohexene than the Cr(VI)-

containing counterparts. Additionally, this support evidenced less ability to decompose the 

intermediary peroxide product, Ch-TBHP, into ChOl and ChOne. Nevertheless, the ratio 

between ChOl and ChOne appears to be of the same magnitude as for the other catalysts. 

This supports the conclusion that Cr(VI) species are more active towards the 

disproportionation of the cyclohexenyl peroxides than Cr(III) species. However, this 

finding turns the catalytic behaviour of CrHYSBR and its encapsulated complex even more 
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intriguing, as this is a Cr(III)-rich catalyst that achieves comparable selectivity as the 

CrNaY-based catalyst, whose XPS spectra showed higher availability of Cr(VI) species on 

the surface. The explanation for this fact could be given by a synergetic effect between the 

activity of the HY framework and the presence of the Cr(III) ions. 

The catalytic activity of the encapsulated Cr-diphenyltriazene complexes decreases slightly 

when compared to the respective parent hosts. This is again explained by the leaching of 

chromium from the catalysts, which in turn minimizes the contribution of homogenous 

catalysis to the overall process. An exception is seen on [Cr-DPT]HYSBR catalyst that 

presents comparable catalytic activity, selectivity and TON as the CrHYSBR host. Since this 

support behaves as a bifunctional catalyst, the process of encapsulation of the complex in 

the host does not promote any interference on the contribution of the HY framework to the 

overall conversion of cyclohexene. This is of great interest as this catalyst showed to be a 

truly heterogeneous catalyst on the oxidation of cyclohexanol. From the distinct ligand 

molecules employed, [Cr-NODPT]NaY showed higher activity than the [Cr-DPT]NaY 100 

and [CrMeDPT]NaY counterparts. This might be due to the inefficiency in encapsulating 

Cr-complexes with this ligand, as well as a possible retardation effect on TBHP 

decomposition (free radical formation) by the presence of small amounts of free NODPT 

ligand [25]. 

An attempt to determine the presence of chromium on liquid samples recovered from the 

concluded reaction mediums was carried out in a similar way as it was described for the 

oxidation of cyclohexanol. However, it was not possible to perform the acid digestion of 

the liquid medium samples, due to the inertness and immiscibility of decane and the 

eventual digestion samples showed random and irreproducible results when analyzed for 

total chromium contents. Therefore, the interpretation of the relative leaching proneness of 

the catalysts is limited to the conclusions of the study on cyclohexanol oxidation. 

A catalyst reuse test was performed in a similar procedure as it was conducted for the 

oxidation of cyclohexanol. It was not possible to perform three reaction cycles with the 

same initial mass of CrNaY and [Cr-DPT]NaY, as the mass loss between cycles was 

greater than in the case of the cyclohexanol reaction. Reasons for this fact are not clear, 

being most likely due to solvent effects on the zeolite crystal sizes, which given the 

repulsion between the non-polar moiety and the hydrophilic nature of the zeolite could limit 

the aggregation of zeolite crystals into greater size particles that could be retained by the 

10-16 μm pore glass filter upon recovery. Hence, only two cycles were possible for each 
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catalyst, with the mass in cycle 2 being roughly half of the initial. Figure 6.12 presents the 

conversion of cyclohexene for each catalyst on each cycle, whereas the product selectivity 

is shown in Table 6.4. 

 

Figure 6.12: Conversion of cyclohexene with CrNaY and [CrDPT]NaY, for the different reaction 

cycles. Average catalyst masses on each cycle are indicated on the graph. 

 

Table 6.4: Product selectivity from the oxidation of cyclohexene with CrNaY and [Cr-DPT]NaY 

catalysts, for the different cycles. 

Catalyst Reaction cycle 
Product Selectivity (%) 

ChOl ChOne Ch-TBHP 

CrNaY 
1 23.2 63.6 13.3 

2 13.4 50.0 36.6 

[Cr-DPT]NaY 
1 12.4 59.8 27.9 

2 13.1 45.6 41.3 

 

The decrease in cyclohexene conversion for both catalysts was observed, from cycle 1 to 2. 

Although this can be attributed to the lower catalyst mass employed in cycle 2, the decrease 

in conversion is less pronounced on the encapsulated catalyst than on the CrNaY host, 

indicating that the [Cr-DPT]NaY catalyst is more stable. Product selectivity showed a 

reduced capacity for the decomposition of Cr-TBHP intermediary, which is related to the 

lower catalytic activity of the catalysts on cycle 2 (in parallel to the results presented in 

Table 6.2). 
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6.3 Conclusions  

 

The recovered Cr(VI) biotreatment supports and related catalysts prepared by in-situ 

synthesis revealed activity for the liquid-phase oxidation of cyclohexanol and cyclohexene 

using TBHP oxidant. 

The oxidation of cyclohexanol was useful to evaluate the activity and stability of 

biosorption supports and encapsulated catalysts. The experimental results showed that 

CrNaY-based catalysts were more active than the CrHY-based counterparts. Comparing the 

activity of a Cr(III)-containing zeolite, the results supported the conclusions from previous 

chapters on the complex chemistry of the chromium species present on the zeolites, where 

CrHY had a more distinct Cr(III)-like performance and CrNaY catalysts evidenced the 

presence of Cr(VI) on the surface. The immobilized complexes showed efficiency in the 

limitation of chromium leaching from the respective hosts. However, leaching is still 

possible from CrNaY-based encapsulated complexes. Nevertheless, although still suffering 

lesser leaching than its host, [Cr-DPT]NaY proved to be more stable than CrNaY when 

recycled 3 times. [Cr-DPT]HYSBR is the least leaching-prone catalyst, being the loss of 

chromium ions negligible.  

The catalysts also presented activity for the oxidation of cyclohexene. For NaY-based 

catalysts, the activity is related to the chromium contents on the support, while HY zeolite 

revealed minor activity for this reaction, still observeable on the CrHY-based catalysts. 

CrHYSBR showed comparable catalytic activity to CrNaY and CrNaY EXT, which possess 

a higher amount of chromium. This is due to a synergetic effect of the HY framework with 

the Cr(III) ions present, being considered a bifunctional catalyst.  

The study on product selectivity indicates that the first product to be formed is the 

intermediary tert-butyl-cyclohexenylperoxide, being the sole product when chromium is 

absent from the catalyst. With the increase in metal loading of the catalyst, the 

decomposition of the intermediary Ch-TBHP into ChOne is observed and for the higher Cr-

containing catalyst, ChOl is also detected. Cr(VI)-containing catalysts showed good activity 

for the decomposition of Ch-TBHP into alcohol and ketone, whereas Cr(III)-catalysts are 

less active on this aspect and the selectivity towards Ch-TBHP is higher on these supports. 
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The encapsulation of Cr-complexes resulted in a decrease of catalytic activity of the 

respective hosts. This indicates that part of the observed cyclohexene conversion by the 

hosts is due to the contribution of homogeneous chromium, or the decrease of substrate 

conversion for cyclohexanol and cyclohexene can also be explained by blocking effect of 

Cr-complexes that could limit the accessibility of the molecules in the zeolite channels. 

However, [Cr-DPT]HYSBR was able to maintain the activity compared to the respective 

CrHYSBR host, being the bifunctional character of this catalyst deemed responsible for that 

fact. A recycling study was carried out again with CrNaY and [Cr-DPT]NaY and the results 

showed that the encapsulation of Cr-DPT complex limited the loss of activity from reaction 

cycle 1 to cycle 2, due to the limitation of Cr leaching.  
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CHAPTER 7 – FINAL REMARKS AND PERSPECTIVES 
 

 

This chapter presents a global overview of the conclusions of this work, interlinking the 

different experimental fields that were individually discussed on the previous chapters. This 

will be developed in section 7.1. Perspectives for future work will be presented in section 

7.2. 

 

7.1 Conclusion summary 

The motivation for the development of a biosorption based process for the treatment of 

Cr(VI) liquid solutions which endowed recovery and reuse of the metal led to the 

successful application of a system consisting of an Arthrobacter viscosus biofilm supported 

on zeolites. 

The initial application of this system showed that the biofilm was able to reduce the Cr(VI) 

species to Cr(III) ions, that were exchanged by the zeolite support, turning the zeolite into 

an active support. This reduction was found to be limited and efforts towards the 

improvement of biosorption conditions were conducted. The control of pH plays an active 

role on the performance of the system; however, although very acid pH favours the 

reduction of Cr(VI), the retention by the biomass-zeolite system was found to be greater at 

pH 4.0. Also, the extent of Cr(VI) reduction is dependent on the biomass availability, hence 

reactors with 5.0 gbiomass/L under a fix pH of 4.0 were used in the optimization studies. 

Initial assays with Cr(VI) concentrations up to 100 mgCr/L showed that the reactors were 

able to remove 50 % of Cr(VI) during the first 24 hours if FAU-type zeolites were 

employed. MOR-type zeolites were also used on these experiments and the combination of 

MOR supports and biomass resulted in a less efficient system than the FAU-supported 

biomass.  

The chemistry of the support was found to be of importance in assisting the bioreduction of 

Cr(VI), as well as the subsequent retention of the Cr(III) ions. Na+-containing zeolites were 

found to be less efficient than H+-containing FAU or MOR supports, due to the removal of 

H+ ions from the reactor medium that are required for the acid reduction of chromate. 
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However, while the biofilm supported on H+-zeolites performs better in the first 24 hours of 

the assay, the subsequent Cr(VI) reduction and removal performance by the system 

decreases drastically. Conversely, the NaY-based system was able to maintain the 

performance during the experimental time of 27 days, ultimately achieving the highest  

uptake of chromium, from the four zeolites in study: HY, NaY, HMOR and NaMOR. The 

respective uptake values were 10.8, 11.7, 9.9 and 9.5 mgCr/gzeolite.  

The bioreduction of Cr(VI) after the initial 24 hours was found to be a slow process: a 

study demonstrated that an A. viscosus -NaY system on a single batch experiment required 

98 days to fully reduce the hexavalent chromium from a 100 mgCr/L solution. In order to 

take advantage of the fast initial Cr(VI) reduction promoted by the system, this was 

operated on a sequencing-batch process (SBR) using an initial 100 mgCr/L solution that 

passed through 3 reactors with fresh biomass-zeolite (residence time of 4 days). Results 

showed that HY zeolite was the best support in terms of overall Cr(VI)  reduction and 

chromium retention in SBR operation, being the only system that achieved a final Cr(VI) 

and total chromium concentration within the legal limits for environmental discharge 

(achieved at the third SBR cycle). Furthermore, the operation on SBR highlighted the 

different dynamics promoted by the several zeolites on study: HY zeolite-based systems 

performed the bioreduction and ion-exchange by the zeolite in the first 4 days of 

experimental time, whereas the NaY-based system required the subsequent secondary 

reduction stage to achieve higher chromium removal. 

In terms of chromium loading into the zeolitic support, HY zeolite achieved comparable 

results whether on a single-batch study or SBR (first cycle), a 0.5-0.6 % loading. NaY 

zeolite requires the additional experimental time of a single-batch assay, however, 

ultimately achieving higher chromium loadings of 0.74 % (27 days) or almost 1.0 % (98 

days).  

After the biotreatment experiments, the calcination of the collected solid reactor contents 

allowed the recovery of Cr-containing zeolites. The several characterization techniques 

permitted a thorough analysis of the solid content, confirming that the zeolite structure was 

kept unchanged while chromium species were successfully retained. Raman and XPS 

analyses demonstrated the complexity of chromium distribution on the zeolite surface, with 

co-existing Cr(III) and Cr(VI) species. The presence of Cr(VI) species was related to a re-
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oxidation of Cr(III) ions during calcination, which was conducted in the presence of 

oxygen. 

The immobilization of chromium species in the biosorption supports was conducted by in-

situ synthesis of coordination compounds. Different heterocyclic ligands containing 

nitrogen atoms for coordination in different chemical structures (pyridazine, azo and 

triazenido groups) were successfully used. The extent of complex formation was estimated 

by TGA analysis and crossing data with several other analytical techniques (BET area, 

FTIR and Raman spectroscopy) it was possible to confirm that Cr-complexes were 

immobilized within the FAU-type recovered samples. 

The catalytic tests allowed a double purpose: the evaluation of catalytic activity of the 

supports and prepared catalysts in liquid-phase reactions, and a further insight into the 

characterization of Cr(VI) biotreatment-recovered supports. The oxidation of cyclohexanol, 

being a simple Cr-specific reaction, was used for the catalytic tests with the high Cr-content 

supports with diphenyltriazene ligands. CrNaY-based catalysts were found to be the most 

active, with TON values up to 372 (CrNaYSBR host). However, it was found that chromium 

leaches from CrNaY catalysts into the reaction medium, being some of the overall 

cyclohexanol conversion attributed to the homogenous contribution. The immobilization of 

complexes decreased the leaching proneness of the corresponding hosts, achieving 

negligible leaching for [Cr-DPT]HYSBR catalyst. The comparison with a Cr(III) catalyst 

indicated two distinct activity tendencies: a Cr(III)-alike series, which included CrHY 

hosts, and a Cr(VI)-alike counterpart series, correspondent to CrNaY series. This 

information corroborates the XPS data for CrNaY and CrHY, showing the dual presence of 

Cr(III) and Cr(VI) species in the first, while the second showed predominance of Cr(III) 

species on its surface. 

The oxidation of cyclohexene is more interesting in terms of the assessment of the activity 

and selectivity of the catalysts. The previous conclusions on Cr(VI) or Cr(III) active centres 

for CrNaY and CrHY could not be confirmed by this reaction as parent HY zeolite presents 

slight catalytic activity. Coupled with the intrinsic activity of chromium, CrHYSBR-based 

catalysts are bifunctional, which explains the higher activity of these supports, compared to 

the CrNaY-based catalysts, more active for the oxidation of cyclohexanol.  

The oxidation of cyclohexene has three reaction products, being tert-butyl-

cyclohexenylperoxide an intermediary product that transforms into 2-cyclohexene-1-ol and 
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2-cyclohexene-1-one. The ketone product was found to be the main oxidation product when 

Cr-containing catalysts were used, depending on the metal loading of the support. For 

higher Cr-loading of the catalyst, the selectivity towards the alcohol product increases. The 

Cr-loading is also related to the decomposition of the intermediary peroxide product. 

The decrease of substrate conversion (cyclohexanol and cyclohexene) observed for all 

encapsulated Cr-complexes with different ligands in FAU zeolite hosts can be explained by 

´blocking´ effect of the formed Cr-complex.  

A recycling test was conducted for both reactions and confirmed that the immobilization of 

Cr complexes in the Cr(VI) biotreatment supports allows the reuse of the catalysts, since 

the loss of catalytic activity in each reaction cycle is lower for the immobilized samples 

than for the corresponding host. 

 

 

7.2 Perspectives for future work 

The experimental work conducted in the scope of this thesis was integrated on a multi-

disciplinary project. Therefore, several experimental aspects on the application of zeolite-

supported bacteria have also been considered by the research team, leading to an interesting 

array of options already covered. Some of these issues have been developed and are listed 

as example of the complexity and/or feasibility of application of the zeolite-supported 

biomass as a Cr(VI) treatment system: 

- the use of different bacterial strains was reported previously, with the 

performance of A. viscosus being compared to E. coli and using NaY zeolite as 

support, with the uptake and removal values similar between the two species; 

- the scale-up of the biotreatment system has been performed, using a pilot-scale 

experimental setup (reactor volume: 150 L). A. viscosus was supported on 13X 

molecular sieve; 

- the comparison of Cr(VI) reduction and retention performance by living or dry 

A. viscosus has also been carried out. The reduction rate of hexavalent to 

trivalent chromium is somewhat faster with dry biomass, although achieving 

comparable end-of-time reduction and retention of the metal; 
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- application of the calcined biotreatment supports as catalyst for gas-phase 

oxidation reactions has also been studied. 

 

Concerning future work on the application of the A. viscosus-zeolite treatment system and 

the catalysts prepared from the respective supports, some additional studies could be 

pointed out. 

Firstly, the choice of zeolitic support could be further explored, although this work 

demonstrated that high-Al containing zeolites are quite adequate supports, favouring FAU-

type structures. Also, application of specific natural zeolites could be considered in order to 

decrease the overall cost of the system. Another feature worth exploring is the enhancement 

of the interaction between biomass and the zeolitic support. If the zeolite could hold a 

significant mass of biofilm, operation with open systems or with flow reactors could be 

considered in detriment of batch operation.  

Still considering the A. viscosus-zeolite system, another aspect worth testing is the 

reutilization of the calcined biotreatment supports in further Cr(VI) treatment cycles, in 

order to evaluate whether the zeolitic support suffers from depletion of the chromium 

exchange sites. Also of interest when H+-containing zeolites are concerned, the influence of 

the depletion of H+ ions from the support during the first cycle on its capacity of pH 

mediation by the system on further cycles. Ultimately, this could lead to a decrease on the 

overall operational cost of the system, while possibly increasing chromium loading of the 

zeolite for future catalytic applications. The latest could be an interesting way to 

compensate the reduced chromium loading of HY zeolites, for example. 

To close the perspectives on the biotreatment capacities of the system, another aspect 

needing evaluation is the test with multi-metal solutions. Although this aspect was already 

covered for binary mixtures of Cr(VI) with Fe(III) or Cr(III), some metal ions are prone to 

the formation of chemical sludge when in the presence of dichromate anions and it would 

be interesting to evaluate the reduction of the formed metal-chromate and -dichromate 

anions. Another interesting application of the system would be on the treatment of effluents 

with organic compounds/solvents and ultimately on solvent and metal contaminated 

effluents. Additionally, a test using a Cr(VI) effluent in the presence of organic matter 
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would be required to evaluate the possible interference on the reduction capacity of the A. 

viscosus bacterium. 

In terms of the reutilization of the spent Cr-containing zeolites as catalysts, the additional 

work would be directed towards the use of different ligand structures with specific 

requirements for a target reaction. In terms of future applications of the Cr-zeolite catalysts 

in environmental liquid-phase oxidation reaction, the oxidation of phenol-containing 

effluents could be a possible target reaction, as the prepared catalysts demonstrated activity 

for the reduction of secondary alcohols. 
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