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Articular cartilage damage is a persistent and increasing problem with the aging population, 

and treatments to achieve biological repair remain a challenge. The lack of efficient modalities of 

treatments has prompted research into tissue engineering (TE). TE approaches are a promising 

strategy for improving the rate of repair of articular cartilage lesions by combining cells, 

biomaterials and microenvironmental factors. The work developed at this thesis was aimed to study 

the potential of nanostructured scaffolds based on layer-by-layer (LbL) methodology to be used in 

articular cartilage TE. The polyelectrolytes used for producing these structures were two 

polysaccharides: chitosan (polycation) and chondroitin sulphate (polyanion). These polyelectrolytes 

were chosen due to its biocompatibility and positive influence on cartilage. 

The sequential combination of these polyelectrolytes led to a decrease in frequency and 

increase in dissipation as seen using quartz microbalance (QCM), indicating the development of a 

multilayered film. For the proof of concept, biological assays were first performed in multilayered 

surfaces with bovine chondrocytes (bch). No cytotoxic effects of the film were found. Thus, the 

formation of a nanostructured film was transposed to a three-dimensional (3D) level combining LbL 

and leaching of spherical sacrificial templates. The homogenous distribution of polysaccharides in 

the scaffolds was confirmed by Fourier transformed infrared spectroscopy (FTIR). Morphological 

analysis of the scaffolds was based on scanning electron microscope (SEM), optical microscopy, 

and histology. The results showed a high porosity, which leads to swollen structure when immersed 

in phosphate buffered saline (PBS). The enzymatic degradation tests, using PBS and enzymatic 

solution with lysozyme and hyaluronidase, showed that the scaffold has a gradual degradation, and 

as expected the rate of degradation was higher in the enzymatic solution. Mechanical properties of 

the scaffold were evaluated using dynamic mechanical analysis (DMA). The results revealed that 

scaffold exhibit viscoelastic behaviour which corroborates the results obtained at QCM. 

The applicability of the nanostructured scaffold for cartilage was evaluated in cellular assays 

with bch and human mesenchymal cells (hMSCs). Tests of cell viability, SEM and quantification of 

DNA revealed that scaffolds promote cell adhesion and proliferation. Differentiation studies 

demonstrated the production of glycosaminoglycans (GAGs) by both cells. These results confirmed 

the maintenance of phenotype of bch and the chondrogenic differentiation of hMSCs. Thus, we 

believe the scaffolds developed may have potential use in cartilage TE approaches. 

 

 

ABSTRACT 
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Os danos da cartilagem articular são um problema persistente e crescente com o 

envelhecimento da população, pelo que os tratamentos para obter a reparação biológica 

continuam a ser um desafio. A falta de tratamentos eficientes impulsionou a investigação de 

estratégias de engenharia de Tecidos (TE), as quais são estratégias promissoras para melhorar a 

taxa de reparação de lesões da cartilagem articular, combinando células, biomateriais e factores 

microambientais. O trabalho desenvolvido nesta tese teve como objectivo estudar o potencial de 

“scaffolds” nanoestruturados baseados na metodologia de “layer-by-layer” (LbL) para estratégias 

de TE da cartilagem articular. Os materiais utilizados para a produção destas estruturas foram dois 

polissacarídeos: o quitosano (policatião) e o sulfato de condroítina (polianião). Estes foram 

seleccionados devido à sua biocompatibilidade e influência positiva na cartilagem. 

A combinação sequencial destes polielectrólitos leva a uma diminuição da frequência e 

aumento da dissipação na microbalança de quartzo (QCM), indicando o desenvolvimento de um 

filme com multicamadas. Para comprovar a aplicabilidade destas estruturas, primeiramente foram 

realizados ensaios biológicos em superfícies com multicamadas, utilizando condrócitos bovinos 

(bch). O filme produzido não apresentou qualquer efeito citotóxico. Assim, a formação de um filme 

nanoestruturado foi transposta para o nível tridimensional (3D) combinando LbL com lixiviação de 

partículas de sacrifício esféricas. A presença dos polissacarídeos nos “scaffolds” foi confirmada 

pela espectroscopia de infravermelhos por transformadas de Fourier (FTIR). A análise morfológica 

dos “scaffolds” foi baseada em microscopia electrónica de varrimento (SEM), microscopia óptica, 

bem como cortes histológicos. Os resultados obtidos demonstraram uma elevada porosidade, o que 

leva à dilatação da estrutura quando imersa em tampão fosfato salino (PBS). Os testes de 

degradação enzimática realizados, usando PBS e uma solução enzimática composta por lisozima e 

hialuronidase, demonstraram que a degradação dos “scaffolds” ocorreu de forma gradual e tal como 

esperado foi mais acentuada na solução enzimática. As propriedades mecânicas dos “scaffolds” 

foram avaliadas usando análise dinâmica mecânica (DMA). Os resultados revelaram que os 

“scaffolds” exibem um comportamento viscoelástico o que corrobora os resultados obtidos na QCM. 

A aplicabilidade destas estruturas para a cartilagem avaliou-se em ensaios celulares com bch 

e células humanas mesenquimais (hMSCs). Os testes de viabilidade celular, SEM e quantificação 

de DNA revelaram que os “scaffolds” promovem a adesão celular e proliferação. Estudos de 

diferenciação demonstraram a produção de glucosaminoglicanos (GAGs) de ambas as células. 

Estes resultados confirmam a manutenção de fenótipo dos bch e a diferenciação condrogénica de 

hMSCs. Desta forma, acreditamos que os “scaffolds” desenvolvidos terão uma potencial utilização 

em estratégias de TE para a cartilagem. 

RESUMO 
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Chapter I 

Chapter I -  General Introduction 

I-1. MOTIVATION AND OUTLINE 

Every year millions of people suffer from cartilage damage which is normally associated with 

sports and progressive ageing [1-3]. Owing to specific properties of cartilage, such as low capacity 

of self-repair, available treatments are not completely successful, so new challenges are required 

[4, 5]. The ideal cartilage treatment would provide the integration of hyaline cartilage with the 

surrounding tissue, would also reproduce the unique zonal architecture of cartilage, would be cost-

effective, and would be accomplished with one surgery. Several cartilage regeneration techniques 

are available and may satisfy many of the characteristics of an ideal cartilage repair method. 

However, the future of cartilage repair seems to be intimately associated with tissue engineering 

(TE) approaches, such as various types of scaffolds, has been demonstrated to own promising 

therapeutic advantages in restoring both the structure and function of the damaged articular 

cartilage [6, 7]. Thus, besides some promising results, new approaches are still need to be 

clinically accepted. 

The goal of this work is to process three-dimensional (3D) porous structures based on layer-

by-layer (LbL) methodology for cartilage TE. The polyelectrolytes selected were chitosan, natural 

abundant, and chondroitin sulphate present in articular cartilage. Chitosan was chosen due to its 

cationic nature that allows the interactions with anionic species, such as glucosaminoglycans 

(GAGs). The choice of chondroitin sulphate was related with its highly negative charge density 

which together with gives rises to the compressive behaviour of cartilage. 

Structures based on chitosan and chondroitin sulphate share the advantage of these two 

polysaccharides and thereby the hypothesis of this work is the positive influence of this 

combination in structured based on LbL for cartilage TE applications. 
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I-2. CARTILAGE TISSUE ORGANIZATION 

Cartilage is a connective tissue that comprises most of the embryonic skeleton [8, 9]. Three 

different types of cartilage have been distinguished based on their histological and biomechanical 

properties: fibrous, elastic and hyaline cartilage[8]. The most prevalent type is hyaline cartilage that 

covers articulating surface and protects against the damage due to repetitive load and friction 

associated with joint movement [10, 11]. Articular cartilage and nasal septal cartilage are examples 

of hyaline cartilage [8]. 

Articular cartilage is an avascular, aneural, alymphatic, anisotropic and acellular (low amount 

of chondrocytes) tissue [2, 12]. This tissue is mainly composed of fluid, comprising up to 80 % of 

the total weight, while solid matrix contribute only with 20 % [13-15]. The fluid content is composed 

by water, gases, metabolites and a large amount of cations to balance the negatively charge GAGs 

in the extracellular matrix (ECM). The solid matrix is mostly composed by collagen type II fibrils, 

smaller amount of type IX, X, XI, V and VI collagen molecules, noncollagenous proteins 

(glicoproteins) and proteoglycans molecules [13, 15, 16]. Proteoglycans are large molecules 

composed of a protein core with polysaccharide side chains attached. The primary proteoglycan in 

articular cartilage is aggrecan which consist of a core protein that is heavily glycosylated with 

negatively charge GAGs, like chondroitin sulphate and keratin sulphate. Aggrecan molecules have 

the ability to interact with hyaluronic acid to form large proteoglycans aggregates via link proteins 

[5, 15, 17]. As a result, the proteoglycans network can be thought as a mesh that is interlaced 

within the more organized collagen structure. The collagen structure gives tissue tensile strength 

and hinders expansion of the aggrecan molecules [17]. Other proteoglycans essential for articular 

cartilage are: biglycans, decorin and fibromodulin [1]. Glicoproteins have a small amount of 

oligosaccharide associated with protein core. This polypeptide is responsible to stabilize the ECM 

matrix and aid in chondrocytes matrix interaction [8, 15].  

In articular cartilage four zones can be distinguished by differences in water and proteoglycans 

concentrations, gene expression, levels of oxygen, cell size, cell shape, metabolic activity, collagen 

fibril diameter and orientation (Figure I-1)[6, 18]. The first zone is the superficial that has two 

distinct layers: an acellular sheet of predominantly collagen fibres and a second layer composed of 

flattened chondrocytes. This zone plays important role for compressive strength of the tissue and 

possibly in isolation of cartilage from immune systems. The second zone is the middle or 

transitional that is composed of spherical chondrocytes randomly oriented on collagen. The third 
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zone is the deep or radial zone that has the largest diameter collagen fibrils, the higher 

concentration of proteoglycans and the least concentration of water. The last zone (calcified) is a 

zone of mineralized tissue, hypertrophic and with circular chondrocytes. This zone lies closest to 

the subchondral bone and act as a transition from soft hyaline cartilage to bone [15, 19]. 

 

Figure I-1: Zonal organization in normal articular cartilage: superficial zone (SZ), middle zone 

(MZ), Deep zone (DZ), and Calcified zone (CZ) bellow which is the subchondral bone 

SB). Each zone is distinct in cell morphology (A), GAGs distribution (B), Collagen 

organization (C) and changes in oxygen levels (D)[ adapted from [6, 18]]. 

I-3. ARTICULAR CARTILAGE ASSOCIATED DISEASES  

Traumatic injury and age-related degenerative diseases associated with cartilage are one of 

the most common health problems worldwide [20, 21]. Age-related diseases occur due to changes 

in the composition of ECM and organization of chondrocytes. With increasing of age there are 

changes in the zonal distribution of chondrocytes and as result the deeper layers have an 

increased number of cells when compared with the superficial layers. Other change is a decrease 

in the hydration of the matrix with a corresponding increase in compressive stiffness. The size of 

proteoglycans aggregates also decreases with the age [1]. 

The poor regeneration of adult articular cartilage is intrinsically associated with the limited 

number of chondrocytes, reduced repairs elements, absence of blood supply and innervations [22, 

23]. In contrast to the adult cartilage, young cartilage has capacity to accelerate synthesis of ECM. 
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Spontaneous repair in adult cartilage usually results in primarily fibrous tissue at the superficial 

layers and fibrocartilage (mechanically and chemically inferior to hyaline cartilage). These repair 

tissues are unable to withstand the higher compressive loads during sports practice or even normal 

gaits and the predilection for the development of degeneration diseases (e.g. osteoarthritis) [14, 

24, 25]. 

There are three main types of articular cartilage injury: matrix disruption, osteochondral or full 

thickness defects and chondral or partial thickness defects [26, 27]. Matrix disruption occurs from 

blunt trauma or age related matrix and it is responsible for ECM damaged. Full-thickness defects 

extend through the cartilage layer and penetrate the subchondral bone. As a result, the defects are 

filled within a fibrin clot. On the other hand, partial thickness defects do not penetrate the 

subchondral bone and immediately following the injury nearby cells begin to proliferate. This type of 

defect is not easily repaired as the full thickness defects because spontaneous repair is only achieved 

when the defects penetrates the subchondral bones, probably triggering a response from the 

mesenchymal stem cells (MSCs) presents in the marrow (Figure I-2) [14, 27, 28]. 

 

Figure I-2: Comparison between partial thickness defects and full thickness defects [28]. 

I-4. ARTICULAR CARTILAGE REPAIR THERAPIES 

Millions of people require treatment to repair damaged cartilage due to limitation of its natural 

self-repair [29]. The therapies for articular cartilage defects can be divided into two major 
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categories: conservative treatments and surgical procedures. The conservative treatments include 

physical therapies (e.g.: ice, supply of orthothesis) and/or drug administration. Nevertheless, these 

treatments only can modify and improve symptoms nevertheless none of these can heal cartilage 

defects. Conversely, the surgical procedures can reconstruct the surface of articular cartilage and 

there are several different types available. Surgical procedures include arthroscopy techniques 

(e.g.: bone marrow stimulating procedure, osteotomy, chondral shaving, debridement, lavage, 

abrasion arthoplasty, osteochondral drilling, microfracture, total joint arthoplasty, distraction of 

joints) and procedures that follow autogenic and allogenic tissue transplantation principles 

(osteochondral transplantation- mosaicplasty, perichondral / periosteal grafting) [2, 30, 31]. 

A wide range of clinical options emerged to repair focal lesions and damage to the articular 

cartilage. These approaches reduce the pain increase the immobility but present a limited extent 

and a short-term period. Thus, TE strategies are a significant clinical option in the treatment of 

damaged or diseased cartilage [13, 15, 32]. The principles of TE rely on the use of cells, 

biomaterials and microenvironmental factors, alone or in combination [33-35]. 

The advantages of TE approaches is the use of scaffolds that can provide the initial structure 

support and retain cells in the defective area which is follow degraded when the cells secrete their 

own ECM. General TE approaches for cartilage repair require some steps that are represented in 

Figure I-3. Briefly, cells are firstly isolated via biopsy from patient and then in order to obtain a large 

amount of cells bi-dimensional (2D) expansion is required. Due to the de-differentiation process 

and cartilage complex three-dimensional (3D) geometry isolated cells are reintroduced into a 3D 

environment, namely scaffold. Bioactive, biomechanical and chemical factors, as well as 

bioreactors, can be used to stimulate cartilage regeneration. Two basic methodologies are normally 

applied in cartilage TE approaches: ex vivo TE and in vivo TE. In ex vivo TE strategy the tissue is 

completely generated in vitro while in vivo TE strategies the construct is implanted with or without 

prior in vitro cultivation and allowed to mature in vivo [4, 36]. 
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Figure I-3: General scheme representing cartilage TE approaches: in ex vivo TE and in vivo TE (adapted 

from [36]). 

I-5. CELL SOURCE 

The optimal source for cartilage TE approaches is still being identified. As a result, wide 

ranges of cells have been already tested such as chondrocytes, stem cells and genetically modified 

cells [4, 7, 37, 38]. Chondrocytes are the most obvious choice, because they are found in native 

cartilage and are responsible for secretion of the ECM. The sources normally used for cartilage 

repair are: auricular cartilage, articular cartilage, nasoseptal cartilage and costal cartilage. These 

cells, like the others, reside, proliferate and differentiate inside the body within a complex 3D 

environment. However, in contrast with other cell types, the isolated chondrocytes in 2D culture 

lose their differentiated phenotype [4, 5, 39]. The de-differentiation process is accompanied by 

morphological/cytoskeletal changes, different ECM synthesis and cell surface receptors profile 

(Figure I-4). The de-differentiation process can be limited when chondrocytes are cultured in a 3D 

environment [5, 38]. 
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Figure I-4: Chondrocytes phenotype shift during dedifferentiation [adapted from table [38]]. 

MSCs are a promising strategy for articular cartilage due to their easy availability and 

multilineage differentiation capacity. These cells can differentiate into different cell types when 

stimulated by microenvironmental factors that are the driving motor for its differentiation [4, 5, 39-

46]. The chondrogenic differentiation involves a 3D structure, growth and environmental factors. 

However, MSCs also have some limitations associated with in vitro expansion due to the potential 

loss of differentiation potential. Moreover, other potential obstacles exist, including cellular 

senescence and death, hypertrophy, and graft integration [44]. The most challenging problem in 

cartilage TE using MSCs is the terminal differentiation to hypertrophy, characterized by high levels 

expression of alkaline phosphatase and collagen type X [44]. 

I-6. MICROENVIRONMENTAL FACTORS 

The microenvironmental factors are namely composed of mechanical and signalling molecules 

[47]. The signalling molecules should try to reproduce the natural sequence of signals guiding 

spontaneous tissue repair and cells. These molecules involved the use of bioactive molecules, 

generally represented by growth factors (GFs) and cytokines [48].  

GFs are polypeptides secreted by a wide range of cells and play a role in either stimulating or 

inhibiting transmission of signals. The signals transmitted regulate cellular activities, such as 

migration, differentiation, proliferation and gene expression. These polypeptides elicit cellular action 

by binding to specific cellular receptors present on the surface of target cells that initiate a cascade 

of biological events to stimulate the regenerative process [48-52]. Cytokines are molecules 

secreted by immune cells to act on damaged or infected tissue. For cartilage regenerative process 

it has been shown that there are several essential GFs and cytokines that provide regulatory effects 
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on chondrocytes or stem cells involved in chondrocytes maturation and cartilage formation [50-57]. 

The GFs and cytokines for cartilage applications include: TGF-β superfamily, IGF, FGF, BMP, 

platelet derived growth factor (PDGF), epidermal growth factor (EGF), interleukins (ILs) and tumor 

necrosis factor (TNF-α) (Table I-1). 

Table I-1: Regulatory effects of GFs and cytokines in articular cartilage 

GFs and cytokines Function 

TGF-β 

superfamily 

Increase proteoglycans synthesis (TGF-β1); Prevent ECM degradation (TGF-β1); Induce 

inhibition of matrix metalloproteinase(MMP) (TGF-β1); Stimulate chondrogenic differentiation of 

progenitor cells (TGF-β1), chondrocyte proliferation (TGF-β1) and maturation (TGF-β3); Induce 

chemotaxis of inflammatory cells [36, 50, 58]. 

IGF - 1 

Promote chondrocyte proliferation; Prevent apoptosis; Induce chondrogenic differentiation of 

progenitor cells; Stimulate chondrocyte proliferation; Prevent ECM degradation (inhibition of 

MMP) [36, 48, 59]. 

FGF 

Promote chondrocyte proliferation; Stimulate deoxyribonucleic acid (DNA) and ribonucleic 

acids (RNA) synthesis; Promote ossification; Induce chemotaxis of inflammatory cells; 

Stimulate MMP and matrix degradation; Augment neovascularization [4, 36, 40, 51]. 

BMP 

Stimulate prechondrogenic condensation and differentiation into chondrocytes (BMP-2, 4, 5, 6, 

7); Induce the matrix synthesis (BMP-2, 4, 6, and 7) and sometimes degradation (BMP-2); 

Promote ossification (BMP-2) [4, 36, 40, 51]. 

PDGF 
Up-regulated the number of IL-1 per chondrocytes growth and differentiation of MSCs; 

Stimulate MMP and ECM degradation; Promote ossification [4, 36, 40, 51]. 

EGF Induce chondrocytes proliferation; Induce matrix degradation [51]. 

ILs 
Induce MMP inhibition (IL-4, 6) and stimulation (IL-1 , 17, 18); Induce matrix degradation (IL-

1 , 18) [4, 36, 40, 51]. 

TNF-  Stimulate MMP and matrix degradation [4, 36, 40, 51]. 

 

The mechanical factors applied to cartilage cultured in vitro may affect the synthesis and 

organization of components of articular cartilage. These factors stimuli cellular functions and may 

be transmitted to cells by forces affecting the cellular microenvironment. The mechanical factors 

normally applied are: oxygen tension and mechanical loading (deformation, hydrostatic pressure, 

fluid flow, shear stress and dynamic compression) [4, 5, 56]. 
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I-6.1. Scaffold requirements for cartilage tissue engineering 

Scaffolds provide the 3D environment that guides the differentiation and the development of the 

cartilaginous tissue. Such constructs should be designed with the adequate mechanical and physical-

chemical characteristics, in order to mimic the native ECM structure and function [60-62]. As a result 

a number of requirements are necessary to be full filled and illustrated on Table I-2. 

Table I-2: Scaffolds requirement for TE. 

Scaffold Requirements Biological and material basis 

Porosity 
Promote the integration of cells into the scaffolds which allow them to generate their 

own ECM; Enhance implant fixation; Affect mechanical properties [60, 61, 63]. 

Pore size 
Affect cell infiltration, migration and distribution; Improve ECM deposition and 

distribution [61, 64, 65]. 

Interconnectivity 

Promotes cell migration throughout all the volume of the construct; Influence the 

diffusion of physiological nutrients and gases to cells and the removal of metabolic 

waste from cells [60, 61, 64]. 

Surface characteristics 

(topography, chemistry, 

surface energy or 

wettability) 

Affect protein adsorption and cell adhesion; Increase the interaction with the 

surrounding environment; Control cell migration, phenotype maintenance and 

intracellular signalling; Improve the recruitment of cells and the healing at the tissue-

scaffold interface [66-69]. 

Biocompatibility 
Prevents inflammatory or immunologic reactions that comprise the host tissue; 

Support cell adhesion and proliferation [60, 70]. 

Appropriate mechanical 

properties 

Prevent leakage or extrusion after implantation; Support mechanical loading; Provide 

the correct stress environment for the neo-tissue [71]. 

Structural anisotropy Promotes native anisotropic tissue structure [60, 72]. 

Cell adhesiveness 
Improve cell seeding for delivery and retention of cells; Promote maintenance of 

chondrogenic phenotype [60]. 

Bioactivity Act as delivery vehicles for biologics included: cells, genes, peptides and GFs [73]. 

Controlled degradation 

rate 

Promote new tissue ingrowth and remodelling of the ECM; Match healing of new 

tissue assuring the initial strength of the scaffold [67, 74]. 

Geometry and architecture 
Support 3D tissue growth; Control the morphological of the growing tissue; Support 

cell proliferation and differentiation [75]. 

 

Ideally, scaffold should fulfill, a serie of requirements (Table I-2) to promote matrix synthesis 

and optimal chondrocytes homing. The ability of scaffold to bond and integrate with native tissue is 

critical for obtain an homogeneous and functional repair [76]. 
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Among the scaffolds requirements the porous network is a driving parameter in their design 

because is intimately connected to their mechanical properties (e.g: an increase in porosity results 

in a more flexible structure). The scaffolds should ideally mimic the mechanical properties of the 

native tissue. However this can result in a scaffold with low porosity and a decrease in nutreints 

diffusion, which can lead to possible necrosis. As a result, a balance between mechanical 

properties and porosity must be found.  [67, 70, 76]. 

A wide range of scaffolds were already used, such as hydrogels, sponges, membranes, foams, 

fibrous meshes (microfiber and nanofiber-biomimetic the ECM, agglomerate particles, 

microspheres or composite of these materials [70, 77-83]. For all these scaffolds macro and 

micro-structural properties affect the cell survivor, signaling growth, propagation and reorganization 

[35, 65]. So far none currently available scaffolds fulfills all of the requirements and consequently a 

highly variable effects were already related in the growth, differentiation and maintenance of cells 

[36]. 

I-7. SCAFFOLD PROCESSING TECHNIQUES FOR CARTILAGE APPLICATIONS 

Scaffolds are central element to TE strategies and a wide range of fabrication technologies 

have been developed to prepare them. Manufacturing processes should assure a high level of 

control over macro and micro-structural properties [84-86]. 

The different technologies used in scaffolds production dictates the type of structure and also 

affects some characteristics such as: mechanical properties, degradation behaviour, 

biocompatibility and surface properties [84-86]. The techniques normally used for scaffold 

production in TE approaches are presented in Table I-3 and Table I-4. 
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Table I-3: Overview of techniques to prepare scaffolds for TE 

Technique Characteristics 

Melt based process: 

Compression moulding, 

injection moulding and 

extrusion 
 

Production of complex 3D shapes; High reproducibility; High-

throughput; Difficult to control porosity and pore size; Difficult to 

obtain high porosities and interconnectivities [87, 88]. 

Solvent casting and 

particle leaching 

 

Very simple method; High porous structure; High surface area-to-

volume ratios; Interconnectivity can be prevented; Easily and 

independent control of porosity and pore size; Solvent is often 

toxic and is not always possible to assure total removal [84, 89]. 

Electrospinning 

 

Generate fibers that mimic the nanometer scale of fiber that 

compose ECM; Combine nano and micro fibers; Enhancement 

of surface area; Difficult for cell proliferate towards the interior of 

scaffolds [90, 91]. 

Fiber bonding 

 

Large surface area for control cell attachment; Good 

interconnectivity among pores; Difficult to control porosity; 

Increase the mechanical properties of scaffolds when compared 

with the non-woven technologies [84, 85, 92, 93]. 

Woven fabric: Braiding 

and Knitting. 

 

Insufficient mechanical properties [19, 94, 95]. 

Non- woven fabric 

 

High porosity; Insufficient mechanical properties [19]. 

Precipitation and 

particle aggregation 

 

High adhesion between particles; High interconnectivity; Obtain 

scaffolds with mean pores varying between 100 to 400 µm; 

Possible release of GF; Porosity can be easily controlled by 

microsphere diameter; Low porosity [96]. 

Supercritical fluid 

technology: Gas 

foaming, gas foaming + 

particle leaching and 

phase inversion  

Obtain dry porous structures without residual solvent; High 

porosity; Partially interconnected pores; Highly pure materials 

ideal for medical application; Only few types of polymers can be 

used; Low solubility of proteins in SCO2; Avoid high temperature 

and organic solvent, allowing to incorporate the incorporation of 

bioactive agents [97-99]. 
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Table I-4: Overview of techniques to prepare scaffolds for TE (continuation) 

Technique Characteristics 

Freeze drying 

 

Simplicity of operation; Large porosity (91-95 %); Small median 

pore size (13-35 µm); Usually low interconnectivities; Difficulty 

ensure structural stability and adequate mechanical properties 

after subsequent hydration [100, 101]. 

Membrane lamination 

 

Irregular pore size; Tedious process [102]. 

Hydrocarbon 

templating 

 

Allows incorporation of proteins; Control over interconnectivity 

[103]. 

Layer by layer 

(LbL)methodology 

 

Generally associated with surface modification; Allows a 

production of a porous structure with highly interconnectivity 

[104, 105]. 

Rapid Prototyping and 

its subdivision 

 

More precision than the conventional techniques; Ability to 

produce complex shaped objects; incorporation of GF is possibly; 

Well-defined internal and external architecture; Porosity is low; 

Mechanical properties need to be improved [8, 106]. 

I-7.1. Layer-by-layer methodology 

The design of a thin solid film at the molecular level has been first reported in 20 th century 

and two techniques dominated this field: Langmuir-Blodget (LB) and self-assembled monolayers 

(SAMs). However, both present some drawbacks, which limited their application in biological field 

as represented in Figure I-5 [104]. 
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Figure I-5: Schematic representation of drawbacks associated with LB and SAMs [adapted from 

[104, 107]]. 

A new technology called layer-by-layer, LbL, was developed by Decher and co-workers in 

1992. LbL emerged as a simple technique to build films on a solid substrate with precise control of 

thickness and surface charge. As a result in comparison with LB technique, LbL is more simple 

and faster and result in more stable films while in comparison with SAM allows higher loadings of 

biological interesting species [104, 107-109]. 

LbL consists in alternately deposition of polyanions and polycations or bipolar amphiphlies 

that self-assembled and self-organize on the material surface leading to the formation of 

polyelectrolyte multilayer films (PEMs). The deposition of PEMs by LbL has emerged as promising 

technique because only requires a charged substrate and allows the functionalization of it. The 

substrate can range from planar to non-planar templates, such as colloids or microcapsules [110-

114]. 

The driving forces of this process include electrostatic as well as non-electrostatic interactions, 

namely: hydrophobic interactions, van der Waals forces and charge transfer [115-117]. This 

technique is not only applicable for polyelectrolyte/ polyelectrolyte systems, but it can be expanded 

to almost any type of charged species, including inorganic molecules clusters, nanoparticles, 

nanotubes, nanowires, nanoplates, organic dyes, dendrimers, porphyrins, biological 

polyssacharides, polypeptides, RNA and DNA, proteins and viruses [104]. 

LbL have been applied in various areas including TE such as in biomimetic coatings, drug 

delivery, protein adsorption, bioactive coatings, biosensors and the coating of living cells [104, 117-

124]. 

Thin solid films 

LB 

 Expensive  instrumentation; 

Long fabrication periods; 

Limited  types of molecules 
can be embedded. 

SAMs 

 Low loading of  biological 
components; 

Limited number of substrates; 

Limited stability under 
physiological conditions; 
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I-7.1.1. Parameters 

LbL methodology allow  the production of tuned PEMs by varying several parameters, as 

represented in Table I-5 [114]. 

Table I-5: Examples of parameters varied in LbL technique and their influence on final structure 

of film 

Parameters Influence on final structure 

Decrease of ionic strength 
Decrease of mass deposition, swelling, smoothing and stiffness 

[116, 125]. 

Decrease of molecular weight 
Influence the viscoelastic properties; Increase of the thickness; 

Increase the diffusion [112, 116, 125]. 

Increase of number of layers 
Increase the thickness of the film and mechanical properties [124, 

126]. 

Composition 
Influence physic-chemical, mechanical properties and biological 

properties [104, 114]. 

Increase of charge density Decrease of thickness; Increase the ion paring [112]. 

pH Affect the porosity, roughness and thickness [114, 127]. 

Sterical and thermodynamical 

parameters 
Limited the diffusion ability [117]. 

Strength of polyelectrolytes Decrease the hydration and thickness of layers[128]. 

Hydrophilicity of polyelectrolytes Affect the swelling ability and thickness. 

Increase of ion pairing 
Increase stiffness; Decrease mobility, degradation rate and swelling 

ability [128]. 

Increase of film hydration Increase the delivery of active compounds [117]. 

Cross-link Increase the mechanical properties [129]. 

Terminal layer 
Affect biological properties such as cellular behaviour and the 

surface energy [104, 114, 117]. 

Increase of Temperature The exponential growth becomes dominant [117]. 

Topography: Roughness; Presence of 

microstructures. 
Affect cellular adhesion [130]. 
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LbL normally is used as a technique for surface modification, production of microcapsules and 

reservoirs for loading bioactive molecules. However, in 2011 Praveen et al. developed a technology 

for produced nanostructured 3D constructs combining LbL technology and 3D template leaching 

[105]. This thesis will mainly focus on such methodology in order to produce highly porous aimed 

to be used in cartilage TE. 

I-8. POLYMERIC MATERIAL USED IN ARTICULAR CARTILAGE TISSUE ENGINEERING 

The selection of material for scaffolds still remains a fundamental key for the design and 

development of tissue engineering constructs. A wide variety of materials, both synthetic and 

natural, have been used in cartilage application taking account the need of avoiding any adverse 

foreign host response (Table I-6) [67, 131, 132]. As a result, the scaffold can be natural, synthetic 

or hybrid (natural and synthetic). 

Table I-6: Materials already used for articular cartilage TE 

Categories of 
biomaterials 

Polymers used 

Synthetic polymers 

Carbon fibers [3]; Poly (ethylene glycol) (PEG) [5]; Poly (vinyl alcohol) (PVA) [133]; 

Poly (L-lactic acid) (PLLA) [5, 42]; Poly (D-lactic acid) (PDLA) [5, 42]; Poly (D,L-

lactic acid) (PDLLA) [5, 42]; Poly (butyl acrylate) (PBA) [54]; Poly (methyl 

methacrylate) (PMMA) [134]; Poly (ethyl methacrylate) (PEMA) [42]; 

Poly (ethylene) (PE) [135]; Poly (tetrafluoroethylene) (PTFE) [42]; Poly (ε-

caprolactone) (PCL) [75]; Poly (urethane) (PU) [42]; Poly (N-isopropylacrylamide) 

(PNiPAAM) [4]; Poly (glycol acid) (PGA) [54]; Poly (ethylene glycol/oxide) (PEO); 

Poly (lactic-co-glycolic acid) (PLGA) [42]; Poly (ethylene) (PET) [54]; 

Poly (propylene fumarate) (PFP) [136]; Poly (butylene terephthalate) (PBT) [135]. 

Natural 

polymers 

Protein-based 

materials 

Fibrin [5, 42, 133]; Laminin [5, 42, 133]; Gelatin [5, 42, 133]; Collagen [5, 42, 

133]; Silk fibroin [4]. 

Polysaccharide-

based 

materials 

Hyaluronic acid [42, 137]; Chitosan [138]; Agarose [42, 133]. 

Alginate [42, 133]; Cellulose [42, 133]; chondroitin sulphate [139]; Dermatan 

sulphate [140], Gellam gum [141]. 

Bacterial 

polyesters 

PHA (Poly (hydroxyalkanoate)):Poly (3-hydroxybutyrate-co-3-hydroxyvaluate) 

(PHBV) [142]; Poly (hydroxybutyrate) (PHB) [143]. 
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I-8.1. Synthetic polymers 

Synthetic polymers have been widely used for TE because they are more controllable and 

predictable than naturally derived polymers, whereas chemicals and physicals properties of the 

polymer can be tailored to match specific mechanical and degradation characteristics [4, 48]. 

Moreover, risks like toxicity, immunogenicity and infection are much lower for pure synthetic 

polymers. However, they have a lack of biological cues because these materials do not benefit from 

direct cell-scaffold interactions that could promote the desired cell response. In addition, some 

degradation products may be toxic or elicit an inflammatory response due to their accumulation 

and decrease of local pH derived of acidic products [48, 144]. 

I-8.2. Natural polymers 

The growing interests in natural-based polymers relies on  their economic and environmental 

aspects, as well as biocompatibility, biodegradability, low toxicity, low manufacture costs, low 

disposal costs and renewability [48, 145]. In addition, these polymers offer the advantage of being 

similar to biological macromolecules providing biological signalling, cell adhesion, cell responsive 

degradation and re-modelling [146-149]. Living organisms are able to synthesize natural polymers 

during the growth cycles. The synthesis is typically formed within cells by complexes metabolic 

processes, generally included enzyme-catalysed, chain growth polymerization reactions of activated 

monomers. Natural polymers can be divided into three major classes: polysaccharides, proteins 

and bacterials polyesters, such as PHAs (PHB and PHBV) [34, 145, 148]. 

Polysaccharides derive from virtually any renewable resources, namely wood, plants, animals 

and microorganisms. Biochemically, these materials consist of monosaccharides linked by O-

glycosidic linkages [34, 145, 148]. They may be linear or branched, and may have single or mixed 

linkage between monosaccharides units. Differences between the monosaccharides, linkage types, 

chain shapes and molecular weight, dictate their physical properties, such as solubility, gelation 

capability and surface properties. The interest of polysaccharides as a material used for TE are 

related with non-toxicity, renewability, water solubility, stability to pH variations and their capacity to 

be chemical modified in order to achieve high swelling in water. However, they have low 

mechanical, thermal and chemical stability. They also cannot be processed alone using melt-base 

techniques and are usually shaped by solvent-based methodologies. Natural-based polymers may 
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be combined with synthetic polymers to be processed using extrusion, injection moulding and 

compression moulding [34, 145, 146, 148, 150]. 

I-8.2.1. Chitosan 

Among naturally derived polymers, chitin is one of the most abundant natural polymer that 

can be found in shells from crustaceous, cuticles insects and cell walls of fungi. The most 

important derivative of it is chitosan [151, 152]. Chitosan has been found as an excellent 

candidate in a broad spectrum of TE applications due to its characteristics, namely, 

biocompatibility, biodegradability, non-toxicity, remarkable affinity to proteins, along antitumoral, 

antibacterial, anticholesteremic, fungistatic and haemostatic properties [153-155]. This 

polysaccharide is obtained by a partial deacetylation of chitin under alkaline treatment 

(concentrated sodium hydroxide - NaOH) or by enzymatic hydrolysis in the presence of chitin 

deacetylase (Figure I-6) [138, 153, 155]. 

 

Figure I-6: Chemical structure of chitin and chitosan[adapted from [138]. 

Chitosan in solid state is a semicrystalline polymer with a high elastic modulus in the dry state 

owing to the high glass transition temperature [156, 157]. Structurally is a linear copolymer 

composed of glucosamine (deacetylated unit) and N -acetyl glucosamine (acetylated unit) units 

linked by β (1→ 4) glycosidc bonds and it is normally insoluble in aqueous solutions above pH=7. 

However, in dilute acids (pH below 6), the free amine groups are protonated and the molecule 

becomes soluble [158-160]. Generally, chitosan has three types of reactive functional groups, an 

amino group (C [2] position), a primary (C [3] position) and secondary (C [6] position) hydroxyl 

groups. These groups allow modifications, such as covalent ionic or graft copolymerization, which 

is very useful for TE applications [153, 155, 161]. 

The degree of deacetylation (DD) measures the ratio between glucosamine and N-acetyl 

glucosamine in polymeric chains. Depending on the source and preparation procedure, chitosan 

molecular weight may range from 300 to over 1000 kDa with a DD from 30 % to 95 % [155, 162]. 
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The DD influences physicochemical properties, such as solubility, crystallinity, biodegradability, 

swelling behaviour and biological properties [155, 162, 163]. The degradation of chitosan in 

human body has been reported to be carried out by enzymatic hydrolysis with lysozyme. Lysozyme 

is a primary enzyme responsible for in vivo degradation of chitosan which appear to target 

acetylated residues [138, 164]. Studies have demonstrated that chitosan and its degraded 

products are involved in the synthesis of the articular components, including chondroitin sulphate, 

dermatan sulphate, hyaluronic acid, keratan sulphate, and type II collagen [165]. The degradation 

kinetic of this material appears to be inversely related to DD, as it occurs for crystallinity [47, 163, 

164]. 

For articular cartilage TE the ideal cell-carrier substance should mimic the natural environment 

in the articular cartilage ECM [166]. Most of the potential of chitosan for this application is its 

structural similarity with cartilage-specific ECM components such as GAGs [47, 138]. Moreover, 

chitosan cationic nature and high charge density in solution allows electrostatic interactions with 

anionic species, such as GAGs and proteoglycans [47, 138, 156]. Consequently, numerous studies 

in vitro and in vivo have been demonstrated a positive influence of chitosan on chondrocyte 

behaviour. In vitro studies developed by Malafaya et al. showed that human adipose derived MSCs 

seeded onto chitosan particles agglomerated scaffolds had a capacity to differentiate the 

chondrogenic lineage [78]. In vivo performance of chitosan-glycerophosphate gels were evaluated 

by Chenite et al. by mixing them with primary culture bovine chondrocytes (bch) and implanting 

subcutaneously in athymic mice. The implant area revealed several areas of remodelling 

chondrocytes secreting a matrix characteristic of normal cartilage [167]. Lu et al. has also 

demonstrated that chitosan solution injected into the knee articular cavity of rats led to significant 

increase in chondrocytes density [168]. Mattioli-Belmonte et al. showed that BMP-7 associated with 

N-dicarboxylmethyl chitosan induces or facilities the repair of articular cartilage lesions in rabbits 

[169]. 

I-8.2.2. Chondroitin sulphate 

Chondroitin sulphate is a linear, complex, sulphated unbranched polysaccharide belonging to 

the class of macromolecules known as GAGs [170-173]. It is composed of repeating dissacharide 

units of D-glucuronic acid and N-acetylgalactosamine linked by β-(13) bonds. Like other natural 

polysaccharides, chondroitin sulphate derives from animal sources by extraction and purification 
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processes [170]. The animal sources generally used are chicken, porcine, bovine and cartilaginous 

fish such as sharks and skate [170, 174]. As a result chondroitin sulphate is a heterogeneous 

polysaccharide in terms of charge densities due to sulphate groups in varying amounts and linked 

in different positions, molecular masses, polydispersivity, chemical properties, biological and 

pharmacological activities [175, 176]. 

 

Figure I-7: Structures of disaccharides forming chondroitin sulphate. Different groups on R1, R2 

and R3 give rise to different types of CS: R1=R2=R3=H non-sulphated chondroitin, 

R1=[   
 ]and R2=R3= H chondroitin-4-sulphate; R2=[   

 ]and R1=R3=H chondroitin-

6-sulphate; R2=R3=[   
 ]and R1=H chondroitin-2,6-disulphate; R1=R2=[   

 ]and 

R3=H chondroitin-4,6-disulphate; R1=R3= =[   
 ] and R2=H chondroitin-2,4-

disulphate; R1=R2=R3==[   
 ] trisulphated chondroitin [175]. 

For cartilaginous tissues, this molecule (chondroitin-4-sulphate and chondroitin-6-sulphate) is 

an important structural component [177-180]. The tightly packed and highly charged sulphate 

groups of chondroitin sulphate generate electrostatic repulsion that provides much of the 

resistance of cartilage to compression and also cooperates in the shock absorbing capacity of 

aggrecans [47, 181]. Consequently, this polysaccharide with anionic nature enables efficient 

interaction with cationic molecules to form interesting structures [182, 183]. However, the major 

drawback of chondroitin sulphate is the high solubility in water, which limits its use alone in the 

solid state for biomedical applications, being frequently cross-linked or combined with other 

polymers, such as chitosan, hyaluronic acid, PVA, PLGA, PLLA, PCL, collagen, cellulose and gelatin 

[47, 177, 184-188]  

Chondroitin sulphate is currently used as an ingredient in dietary supplements with the 

ultimate goal of relieving some of the pain and disability of patients with musculoskeletal 

pathologies, namely osteoarthritis [186, 189]. The benefits of chondroitin sulphate for the 

treatment of osteoarthritis are related with the stimulation of ECM production by chondrocytes, 

suppression of inflammatory mediators and inhibition of cartilage degeneration [190]. Thus, due to 

its nature, chondroitin sulphate has been used in the development of supports for cartilage TE 
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applications due to its chondroprotective ability and increased ECM synthesis [47, 191]. A number 

of recent studies have reported that chondroitin sulphate stimulates proliferation and matrix 

component production of seeded chondrocytes in collagen-GAG matrices in vitro [139, 192, 193]. 

Yan et al. reported in vitro and in vivo studies of a tri-copolymer matrix (collagen-chondroitin 

sulphate-chitosan). In vitro studies showed that chondrocytes adhered to the scaffold, where they 

proliferated and secreted ECM, filling the space within the scaffold. In vivo studies performed with 

subcutaneous implantation in nude mice demonstrated a homogeneous cartilaginous tissue similar 

to those of natural cartilage, when chondrocytes were seeded in collagen-chondroitin sulphate-

chitosan matrix after implant of 12 weeks [194]. Collagen-GAG matrices were also used as a 

reservoir to GFs, namely IGF-I, and this combination demonstrate the increase of proteoglycan 

production in vitro.[195]. Fan et al. used PLGA–gelatin-chondroitin sulphate-hyaluronate hybrid 

scaffold and showed their capacity to induce differentiation of MSCs cells [196]. This material was 

also used in LbL methodology as polyanion and according to Gong et al. LbL assembly of 

chondroitin sulphate and collagen on aminolyzed PLLA porous scaffolds enhances their 

chondrogenesis [197]. 

I-8.2.3. Combination of chitosan and chondroitin sulphate 

Several studies reported the combination between chitosan and chondroitin sulphate in 

various areas of TE, such as controlled release of drugs, conventional scaffolds, and surface 

modification with techniques like LbL methodology [47, 198-200]. Chitosan and chondroitin 

sulphate have analogous structures and this suggest that chitosan also can have specific 

interactions with GFs, receptors and adhesion proteins. However chitosan has poor mechanical 

strength limiting its application as biomaterial. Consequently combinations between this material 

and others became recurrent [191, 199, 201]. The combination with chondroitin sulphate occurs 

due to ionic interactions between the positively charged of chitosan and negatively charged of 

chondroitin sulphate. In 1976 this combination was called a film-like complex, due to their 

electrostatic interactions [202]. According to Denuziere et al. chitosan when associated with 

various polyelectrolytes has a protective effect against GAGs hydrolysis by their specific enzymes 

[191, 202]. 

For cartilage TE, the combination of chitosan with other materials, namely GAGs, reveals 

determinant due to the lack of other bioactive ECM components. The use of GAGs enhances the 
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chondrocytes differentiation and tissue formation. Chondroitin sulphate has been reported as 

beneficial to chondrocytes because it has chondroprotective ability and stimulate ECM synthesis 

[191, 201]. As a result the combination between this material and chitosan, according to Yuan et 

al., enhance the hydrophilicity, biological compatibility and mechanical strength [201]. Sechriest et 

al produced a chondroitin sulphate-chitosan support for chondrogenesis where bovine articular 

chondrocytes were seeded. The results show that chondrocytes establish focal adhesions 

maintaining a phenotype of differentiated chondrocytes with collagen type II and proteoglycan 

production [203]. Chen et al. also related that the use of composite chondroitin-6-sulphate-

dermatan sulphate-chitosan scaffolds for cartilage TE is beneficial for ECM production [140]. 

I-9. CONCLUSION AND FUTURE PERSPECTIVES  

Cartilage diseases generally derived from joint and systemic disorders affect millions of people 

worldwide with economic impact in the healthcare system. The scarcity of treatment modalities has 

motivated attempts for the cartilage TE approaches that can meet the functional demands of this 

tissue in vivo [31, 204]. Cartilage TE has key elements like cells, scaffolds and microenvironmental 

factors that can be used together or alone [9, 14, 35]. Each one of these elements is continuously 

being developed to achieve an adequate compromise between known biomaterials chemistry and 

structure as well as cell source, mechanical loadings, bioreactors and stimulation factors [4, 5, 7]. 

Despite the number of patented and applying products for FDA approval, extensive research 

will be needed to determine whether the results can be extended to the human situations. Thus, 

the goal of investigators working on this field is to develop a system with ability to promote the 

production of cartilage tissue and mimics native tissue properties, accelerating the restoration of 

this tissue function and its clinically applicability [7]. This is an ambitious goal, but significant 

progress and important advances have been made in recent years. 
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Chapter II 

Chapter II -  Materials and methods 

The main aim of this Chapter is to describe in more detail the experimental work that was 

employed throughout the thesis. In this Chapter each technique and experimental details used will 

be highlighted. 

II-1. MATERIALS 

Chitosan (CHT) of medium molecular weight (MW 190.000-310.000 Da, 75-85 % degree of 

deacetylation (DD), viscosity 200-800 cps) and chondroitin-4-sulphate (CS) (Mw 50.000 to 

100.000 Da) were purchased from Sigma Aldrich. Before being used chitosan was purified by 

recrystallization. The first step was dissolved it in 1 % (w/v) acetic acid solution and then filtered 

into a Buckner flask under vacuum through porous membranes (Whatman® ashes filter paper, 20-

25 μm). The pH of solution was adjusted to 8 by adding a solution of sodium hydroxide that 

caused flocculation due to deprotonation and insolubility of the polymer at neutral pH. The polymer 

solution was then neutralized until the pH was equal to that of distilled water. Samples were frozen 

at - 80°C and lyophilized. 

The paraffin wax spheres were purchased from Jojoba Desert Whale (Tucson, USA) and then 

modified with polyethylene imine (PEI) (Sigma- Aldrich). 

The glass coverslips with 13 mm (L4097-3) were purchased from Agar Scientific. 

Lysozyme from chicken egg white (lyophilized powder   10000 U/mg stored at 4°C) and 

hyaluronidase from bovine tests (Type VIII, 300 U/mg stored at -20°C) were purchased from 

Sigma- Aldrich. 
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II-2. METHODS 

II-2.1. Layer-by-layer assembly in 2D surfaces 

The CHT/CS polyelectrolytes multilayers (PEMs) were constructed onto glass coverslips. The 

glass coverslips were placed in 70 % (v/v) ethanol during 2 hours and then immersed in 0.15 M 

sodium chloride (NaCl) for 10 minutes. Then the glass coverslips were dried using nitrogen flow. 

For the layer-by-layer (LbL) coating CHT solution at 0.15 % (w/v) was dissolved in a 1 % acetic acid 

with 0.15 M (NaCl). The pH of solution was adjusted at 5.5. CS at the same concentration was 

dissolved in 0.15 M NaCl and the pH of solution was also adjusted to 5.5. 

The multilayered film build-up started by immersing first the substrate in CHT over 10 min 

followed by immersion in 0.15 M NaCl solution during 5 min. Then the coverslips were dipped in 

CS solution for 10 min, followed by immersion in 0.15 M NaCl during 5 min (Figure II-1). After 

these four steps one double layer (dL) had been assembled. The process was repeated until 10 dL. 

 

Figure II-1: Diagram illustrating the sequential step to prepare surfaces coated with chitosan and 

chondroitin sulphate. 1) First glass coverslips were immersed into a polycationic 

solution of chitosan solution. 2) The coverglasses are subsequent immersed in 

washing solution with NaCl. 3) Immersion in polyanionic solution of chondroitin 

sulphate solution. 4) Immersion in NaCl solution. These sequential steps have been 

repeated until reach 10 double layers (dL). 
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II-2.2. Scaffolds production by layer-by-layer 

The PEMs was constructed onto free-packet paraffin spheres previously modified with PEI. 

Paraffin spheres modified with PEI (200 µm) were chosen as porogen and 150 mg of them placed 

into modified cylindrical containers with a porous base. Drop wise addition of polyelectrolytes and 

washing solutions over the top of assembly was done to form 10 dL of CHT and CS. The coated 

structure was placed in dichloromethane (DCM) to leach out the paraffin. After the leaching the 

samples were freeze dried. 

 

Figure II-2: Schematic diagram of the produced scaffolds. A) Paraffin wax spheres coated with 

PEI, B) Addition of polyelectrolytes, C) Leaching with DCM and freeze dried process. 

II-2.3. Physicochemical characterization of scaffolds and surfaces 

II-2.3.1. Build-up Mechanism for film constructed 

The build-up process of the CHT and CS multilayers was followed in situ by quartz crystal 

microbalance (QCM-Dissipation, Q-Sense, Sweden). This technique consists in measuring the 

resonance frequency and dissipation changes (∆f and ∆D, respectively) of quartz crystal induced 

by polyelectrolyte adsorption on the AT cut quartz crystal. This crystal can be excited at its 

fundamental frequency (5 MHz) and at several overtones [1-3]. 

The crystals were cleaned in an ultrasound bath at 30°C using successively acetone, ethanol 

and isopropanol. Adsorption took place at pH 5.5 and at a constant flow rate of 50 μL min-1. The 

polycationic solution (chitosan) was injected standing for 10 min to allow the adsorption 

equilibrium at the crystal surface to be reached. Subsequently, the rinsing step was carried out by 

1 2 3

LbL

Leaching

in DCM
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the injection of 0.15 M NaCl adjusted at pH 5.5 during 10 min. The same procedure was followed 

for the deposition of chondroitin sulphate. The steps were repeated to the desire number of layers. 

The frequency and dissipation were monitored in real time. The thickness of the film was estimated 

using the Voigt model through the Q-Tools Software, from Q-Sense. 

II-2.3.2. Morphology 

II-2.3.2.1. Optical microscope 

The morphology of the scaffolds, after the leaching, was assessed immersing them in DCM, 

using transmitted light of Axioplan Imager Z1 microscope (Zeiss). 

II-2.3.2.2. Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) has been routinely applied for the morphological analysis 

of structures developed for tissue engineering (TE) purposes. In SEM the specimen is scanned 

point by point with an electron beam, and secondary electrons that are emitted by the sample 

surface on irradiation with the electron beam are detected. In this way, a 3-D impression of the 

structures in the sample, or of their surface, respectively, is obtained [4]. 

After the freeze-dried process scaffolds morphology was performed in Philips XL 30 ESEM-FEG 

operated at 15 KV accelerating voltage and 250 x and 1000 x magnifications. Surface morphology 

was also assessed using the same equipment at 7.5 kV accelerating voltage and 250 x 

magnifications. All the samples were coated with a gold sputter (Cressington) for 40 s at a current 

of 40 mA. 

II-2.3.3. Fourier transform infrared spectroscopy 

The Fourier transform infrared spectroscopy (FTIR) is a conventional way to infer about the 

miscibility of polymers via a detailed structural analysis provided by active vibrational transitions. 

This is performed analysing the shifts of the characteristic bands of components. FTIR analysis can 

operate separately in transmission, reflection or attenuated reflection (ATR) mode, however in this 

case the surface has to be flat [5, 6]. FTIR measurements were recorded using an IRPrestige-21 
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spectrophotometer as the average of 34 individual scan over the range 4400 cm-1 to 400 cm-1. The 

samples were combined with potassium bromide (KBr) to produce discs. 

II-2.3.4. Swelling test 

The water uptake ability of the scaffolds with known weight was determined by soaking them 

in phosphate buffered saline solution (PBS, Gibco) at pH=7.4 up to 3 days at 37°C. The swollen 

scaffolds were removed at predetermined time points ( t=15 min, 30 min, 1 h, 2 h, 3 h, 4 h, 5 h, 

1 day, 2 days and 3 days). The excess of water of each scaffold was removed using a filter paper 

(Whatman Pergamyn Paper) and then they were weighted with an analytical balance (Scaltec, 

Germany). The water uptake was calculated using Equation II-1, where Ww and Wd are the weights 

of swollen and dried scaffold, respectively. 

                 
     

  
     

Equation II-1: Determination of water uptake. 

II-2.3.5. Enzymatic Degradation 

The enzymatic degradation test is normally performed to evaluate the degradation rate of the 

scaffolds produced in simulated physiological environments. Scaffolds were placed at 37°C in PBS 

solution (pH=7.4) or at enzymatic solution containing 2 mg/ml of lysozyme and 0.33 mg/ml of 

hyaluronidase (pH=7.4) [7]. PBS and enzymatic solution were changed every third day. At 

predetermined time intervals t=3, 7 and 14 days the scaffolds were washed with distilled water to 

remove the salts. Then the scaffolds were immersed in ethanol 100 % and dried for 1 day at room 

temperature. The percentage of weight loss (WL) was calculated according to the following 

equation (Equation II-2), where Wi and Wf are the weights of dry scaffold and after incubation in 

PBS or enzymatic solution, respectively. 
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Equation II-2: Determination of WL (%) 

II-2.3.6. Mechanical Properties 

Dynamical mechanical analysis (DMA) is common tool used in the laboratory for monitoring 

relaxation events, measurements of elastic modulus and damping factor and the analysis of 

interfacial phenomena, such as in composites and immiscible blends. In this technique, an 

oscillating force is applied to a sample and the material’s response it will be a deformation. The 

deformation is measured as a function of time or/and temperature. From these measurements it 

is possible to calculate the storage modulus (E’) and the loss factor (tan δ) versus time or 

temperature for one or more frequencies [8]. 

For this study, compression tests were carried out by dynamic mechanical analysis (DMA) 

using a Tritec 2000B equipment (Triton Technology, UK) in order to characterize the mechanical 

properties of cylindrical scaffolds in both dry and wet states. The sizes of samples were measured 

using a digital micrometer with precision of 0.001 mm. For the wet state, prior to any 

measurements the scaffolds were immersed in PBS until equilibrium was reached. The 

measurement was carried out at 37°C under full immersion of the sample in liquid bath (PBS) 

placed in a Teflon® reservoir. Experiments were carried out in compression mode following cycles 

of increasing frequency ranging from 0.1 to 15 Hz, with constant strain amplitude of 30 μm. The 

frequency range chosen covers the characteristic timescales of the periodic loads felt by the 

scaffold in vivo (e.g. typically frequency of skeletal movement and passage of blood, among 

others). The high frequency limit used in this study should provide information about the 

viscoelastic properties for the equivalent of short times (e.g. equivalent to a shock or sudden 

impact felt by the construct). Moreover, the frequency range used is within the typical frequency 

interval employed in DMA studies [9]. 
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II-2.4. Cellular assays 

II-2.4.1. Bovine articular chondrocytes and human mesenchymal stem cells 

culture 

Two different cell types were used in this study, the bovine chondrocytes (bch) and human 

mesenchymal stem cells (hMSCs). Bch cells were isolated f by 0.2 % collagenase rom freshly 

collected cartilage of a calf knee .hMSCs were selected by adherence from the bone marrow of 

human donors undergoing total hip replacement. Ethical approval has been obtained from the 

Almelo and Enschede hospital. 

The isolated bch were washed, centrifuged and re-suspended in chondrocytes proliferation 

medium containing dulbecco’s modified eagle medium (DMEM, Invitrogen, USA), fetal bovine 

serum (FBS, 10 %, Sigma-Aldrich), non-essential aminoacids (0.1 mM, Sigma-Aldrich), 

penicillin/streptomycin (100 U/100 μg/mL, Invitrogen), proline (0.4 mM, Sigma-Aldrich) and 

Ascorbic acid 2-phosphate (ASAC, 0.2 mM, Invitrogen) in a humidified atmosphere with 5 % CO2 

and at 37°C. hMSCs were also washed, centrifuged and re-suspended in MSCs proliferation 

medium containing alpha modified eagle’s medium (α-MEM, Invitrogen, USA), fetal bovine serum 

(FBS, 10 % Sigma-Aldrich), penicillin/streptomycin (100 U/100 μg/mL, Invitrogen), Glutamine 

(2 mM, Sigma-Aldrich), basic fibroblast growth factor (bFGF, 1 ng/mL, Sigma Aldrich) and ASAC 

(0.2 mM, Invitrogen) in a humidified atmosphere with 5 % CO2 and at 37°C. bch and hMSCs were 

seeded in tissue culture flasks and the medium was change every third day until cells achieved 

80 % of confluence. bch were used at passage 2 and hMSCs at passage 3. 

Prior to cell seeding scaffolds were sterilized with 70 % (v/v) ethanol overnight and then rinsed 

three times in PBS, whereas surfaces were treated with ultraviolet (UV) light for 10 min to avoid the 

damage of the coating. Scaffolds and flat surfaces were then immersed for 4 hours in the medium 

appropriate for each cell type. For the scaffolds the seeding was performed by applying the cell 

suspension, with a concentration of 0.5x106 cells in 25 μL of medium (per scaffold). For surfaces 

the cell concentration was adjusted to 1.32x104 cells in 25 μL of medium (per surface). 

After cell attachment for 2 hours (37°C in a 5 % CO2), chondrocytes proliferation medium, 

MSCs proliferation medium or differentiation medium (DMEM, 2 mM glutamine (Gibco), 0.2 mM 

ASAC (Invitrogen), 100 μg/mL penicillin/Streptomycin (Invitrogen), 0.4 mM proline (Sigma-
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Aldrich), 100 μg/mL sodium pyruvate (Sigma-Aldrich) and 50 mg/mL insulin-Transferrin-selenite 

(ITS+premix, BD biosciences), 10 ng/mL TGFβ-3 (R&D systems) and 0.1 μM dexamethasone 

(Sigma-Aldrich)) was added. 

II-2.4.2. Cell viability and morphology 

The cell viability and morphology were assessed with live/dead, MTT assay and SEM. The 

scaffolds were cut in half in order to perform live dead and MTT at 1, 3, 14 and 21 days. Scaffolds 

were further observed by SEM. For the surfaces live dead assay was performed at 1, 3, 7, 14 and 

21 days, followed by SEM visualization. Medium was changed every third day to maintain an 

adequate supply of cell nutrients. 

II-2.4.2.1. Live/dead assay 

To perform this assay the medium was aspirated from the scaffolds and surfaces. The 

scaffolds and surfaces were then incubated with ethidium homodimer-1 (4 μM) and calcein-AM 

(2 μM) in PBS for 30 min at 37°C in a 5 % CO2 atmosphere incubator. After 30 min the samples 

were immediately examined in an inverted fluorescent microscope (Nikon Eclipse E600) using 

Fluorescein isothiocyanate (FITC) and Texas Red Filter, as well as the NIS element- F.30 software. 

The live/dead assay pictures obtained with surfaces were used to average the percentage of 

surface area covered with cells. The program used was Image J. 

Calcein-AM is only capable of entering the cell membrane of living cells where it will be cleaved by 

esterases and produces green fluorescence. On the other side, ethidum homodimer-1 is only able to 

enter dead cells and bind to fragmented nucleic acid, emitting a red fluorescence [10]. 

II-2.4.2.2. MTT assay 

The scaffolds were incubated in 900 μL of proliferation medium and 100 μL of MTT solution 

(5 mg/mL) per well for 2 hours at 37°C in 5 % CO2. The MTT assay measures the metabolic 

activity of viable cells, once that  the dissolved MTT can be converted to an insoluble purple 

formazan by dehydrogenase enzymes that catalyse the cleavage of the tetrazolium ring in MTT [11-

14] Images were captured using a stereomicroscope with colour camera (Nikon SMZ-10A) and the 

Qcapture software. 
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II-2.4.2.3. SEM 

Scaffolds and surfaces with cells were fixed in formalin 10 % and dehydrated using serial 

concentrations of ethanol [ 70 %, 80 %, 90 %, 96 % and 100 % (v/v), 30 min in each], before 

preforming critical point drying (Balzers CPD 030). Finally, scaffolds and surfaces were mounted 

and gold sputtered. The analysis was performed in Philips XL 30 ESEM-FEG operated at 7.5-15 kV 

accelerating voltage and 1000 x-2500 x magnification 

II-2.4.3. DNA quantification 

Scaffolds seeded with bch and hMSCS in differentiation medium at 1, 14 and 35 days were 

washed with PBS and frozen at - 80°C before proteinase K (Sigma Aldrich) digestion. Then the 

scaffolds were digested with 1 mg/mL of proteinase K in tris (hydroxymethyl) aminomethane 

ethylenediaminetetraacetic (Tris\EDTA) buffer (pH=7.6) containing 18.5 μg/mL idoacetamide and 

1 μg/mL pepstatin A (Sigma Aldrich) at 56°C for 20 hours. Quantification of total DNA in each 

sample was determined with CyQuant DNA kit according to manufacturer description (Molecular 

probes, Eugene, Orgeon, USA), using a spectrofluorometer (Victor3, Perkin-Elmer, USA) at an 

emission wavelength of 520 nm and an excitation wavelength of 480 nm. 

II-2.4.4. Histology 

Haematoxylin & eosin (H&E) and alcian blue stainings methods were used to analyse cell 

distribution and cartilage tissue formation, respectively. Scaffolds were fixed overnight in 10 % 

formalin, and then dehydrated using sequential ethanol series [70 %, 80 %, 90 %, 96 %, and 100 % 

(v/v), 30 min in each]. Once dehydrated, they were incubated in butanol overnight at 4°C. 

Ultimately, the scaffolds were incubated paraffin overnight at 56°C and then embedded in paraffin. 

Sections with 4.5 μm of thickness were cut using a microtome (MicroM HM355S). After 

deparaffinization with xylene and rehydration using a graded ethanol series [from 100 % to 70 % 

(v/v)], the samples were stained using the automatic stainer (MicroM HMS740). For H&E staining 

samples were stained with haemotoxylin for 1 min and rinse up to 6 min before being stained with 

eosin for 30 s. For alcian blue staining the samples were placed in alcian blue solution (0.5%, 

pH=1) for 30 min and rinsed with tap water or distilled water for 4 min. In the last step nuclear fast 

red was added for 5 min before dehydratation. Slides were assembled with resinous medium and 
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mounted slides were examined under a light of Axioplan Imager Z1 microscope (Zeiss). 

Representative images were captured using a digital camera (AxioCAM MRCE) and Axiovision 

software. Each assay was performed at 1, 14, 21 and 35 days of culture. 

II-3. STATISTICAL ANALYSIS 

The experiences developed were carried out in triplicate otherwise specified. The results were 

presented as mean ± standard deviation (SD). Statistical analysis was performed using one way 

ANOVA analysis followed by Turkey test (Graph Pad Prism 5.0 for Windows). Statistical significance 

was set to p-value (p) <0.05 (*) and p<0.01 (**). 
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ABSTRACT  

Nanostructured 3D constructs combining layer-by-layer technology (LbL) and template leaching 

were processed and evaluated as possible support structures for articular cartilage. Chitosan (CHT) and 

chondroitin sulphate (CS) were used as polyelectrolytes and their ability to form multilayers was verified 

by Quartz crystal microbalance (QCM). The biological performance of 2D flat CHT/CS multilayers was 

first investigated, in which the viability, adhesion, morphology and proliferation of bovine chondrocytes 

(bch) were studied. The polymeric film was found to be non-cytotoxic and allowed the proliferation of 

bch. The technology was transpose to the 3D level by LbL coating followed by leaching of free-packet 

paraffin spheres. The obtained nanostructured 3D constructs has a high porosity and water uptake 

capability of about 300 %. Dynamical mechanical analysis (DMA) showed a clear viscoelastic nature of 

the scaffolds in which the storage modulus (E’) is about one order of magnitude lower in the hydrated 

state when compared with the dry condition. Moreover enzymatic tests demonstrate that the structure 

could lose about 15 % of the initial weight after 15 days. To test the ability of these scaffolds as supports 

for cartilage TE, cellular tests were performed with the culture of bch and human mesenchymal stem 

cells (hMSCs) up to 21 days. SEM analysis, viability tests and DNA quantification showed that cells 

attached, proliferated and were metabolically active. Cartilaginous ECM formation was assessed and 

results showed that matrix production occurred indicating the maintenance of the chondrogenic 

phenotype and the chondrogenic differentiation of hMSCs. 

Keywords: Layer-by-layer, chitosan, chondroitin sulphate, chondrocytes, human mesenchymal 

stem cells, cartilage tissue engineering. 
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III-1. INTRODUCTION 

Articular cartilage is an avascular, alymphatic, aneural, anisotropic tissue with low mitotic and 

limited capacity to regenerate [1, 2]. It is known that due to articular cartilage properties, millions of 

people which suffer from traumatic injuries and degenerative diseases require treatments [3]. 

However, the current treatments present some limitations and fail to produce long-lasting repair, 

leading in some case to fibrocartilage formation instead of hyaline cartilage [4, 5]. 

Tissue Engineering (TE) has appeared as a new methodology which offers advantages when 

compared with current treatments [4, 6, 7]. Scaffolds play an important role in TE strategies 

because they provide the initial structure support, guiding the differentiation and development of 

the cartilaginous tissue [8-10]. Typically native tissues exhibit an hierarchical organization from the 

nano- to the macro-scale levels. The control from the nano-sizes of scaffold offers the possibility of 

develop structures with further capabilities, including the control of cell behaviour at the nano-level, 

the fabrication of hierarchical-organized devices, the inclusion of other functionalities, such as the 

possibility of incorporate bioactive molecules, or tune the mechanical and degradation behaviour of 

the scaffold. In this work we propose the use of bottom-up approaches to produce three-

dimensional (3D) porous scaffolds with a nanostructured organization adequate to support cells 

development in context of articular cartilage. The layer-by-layer (LbL) methodology is a versatile 

technique that permits to fabricate layers nanostructured multilayered films using a variety of 

polyelectrolytes [11-13]. The principle of this technique is based on alternate deposition of 

polyelectrolytes that will self-organize on the material surface [11-14]. The main application of LbL 

is the build-up of polyelectrolytes multilayers (PEMs) onto flat surfaces [11-13]. Just a few works 

reported the use of LbL to fabricate scaffolds. Such technique may be used to coat free-packet 

leachable  spherical templates [15] or to agglomerate beads [16], leading in both cases to porous 

structures. 

A wide range of materials have been explored to cartilage tissue engineering approaches, 

among which polysaccharides based materials [7, 17]. Chitosan (CHT) is obtained by a partial 

deacetylation of chitin that has structural characteristics similar to glycosaminoglycan’s (GAGs) 

[18]. Chondroitin sulphate (CS) is the major GAG component of native cartilage tissue and it is 
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responsible to generate electrostatic repulsion which provides much of the resistance to 

compression, and also cooperate in the shock absorbing capacity of aggrecans [14, 19]. 

The aim of this work is to prepare nanostructured 3D constructs, based on the LbL 

methodology, studying its effect on cartilage TE. For the proof of concept the build-up of CHT/CS 

PEMs onto flat surfaces were firstly characterized using quartz crystal microbalance (QCM) and its 

biological performance evaluated with a primary culture of bovine chondrocytes (bch), that are the 

cells present in the articular cartilage tissue. The biological performance of highly porous 

nanostructured 3D scaffolds was also evaluated using bch and cells with multilineage 

differentiation capacity, human mesenchymal stem cells (hMSCs). The maintenance of 

chondrogenic phenotype and the differentiation of hMSCs were also investigated. 

III-2. MATERIALS AND METHODS 

III-2.1. Materials 

Chitosan (CHT) of medium molecular weight (Mw 190.000 - 310.000 Da, 75 – 85 % Degree of 

deacetylation, viscosity 200 - 800 cps) and chondroitin-4-sulphate (CS) (Mw 50.000 - 100.000 Da) 

were purchased from Sigma Aldrich. Before being used chitosan was purified by recrystallization. 

Paraffin wax spheres with 200 μm were purchased from Jojoba Desert Whale (Tucson, USA) and 

then modified with polyethylene imine (PEI) (Sigma- Aldrich). Glass coverslips with 13 mm (L4097-

3) were purchased from Agar Scientific. Lysozyme from chicken egg white (lyophilized powder 

≈10000 U/mg stored at 4°C) and hyaluronidase from bovine tests (Type VIII, 300 U/mg stored at 

-20°C) were purchased from Sigma- Aldrich. 

III-2.2. Methods 

III-2.2.1. Build-up Mechanism for film constructed 

The build-up process of CHT/CS PEMs was followed in situ by quartz crystal microbalance 

(QCM-Dissipation, Q-Sense, Sweden), using gold coated sensor excited at a fundamental frequency 

of 5 MHz and at seventh overtone (35 MHz). The crystals were cleaned in an ultrasound bath at 
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30°C using successively acetone, ethanol and isopropanol. Adsorption took with a constant flow 

rate of 50 μL min-1. 

A 0.15 % (w/v) CHT solution was prepared in a 1 % acetic acid with 0.15 M NaCl. The pH of 

solution was adjusted at 5.5. CS at the same concentration was dissolved in 0.15 M NaCl and the 

pH of solution was also adjusted to 5.5. The CHT solution was injected standing for 10 min to 

allow the adsorption equilibrium at the crystal surface to be reached. Subsequently, the rinsing 

step was carried out by the injection of 0.15 M NaCl adjusted during 10 min. The same procedure 

was followed for the deposition of CS. The steps were repeated to the desire number of layers. The 

frequency and dissipation were monitored in real time. The thickness of the film was estimated 

using the Voigt model through the Q-Tools Software, from Q-Sense. 

III-2.2.2. LbL assembly in 2D surfaces 

The CHT/CS PEMs were constructed onto glass coverslips. The glass coverslips were placed 

in 70 % (v/v) ethanol during 2 hours and then immersed in 0.15 M sodium chloride (NaCl) for 

10 min. After these two steps the glass coverslips were dried using nitrogen flow. The multilayered 

film build-up started by immersing first the substrate in CHT during 10 min followed by the 

immersion in 0.15 M NaCl solution during 5 min. Then the coverslips were dipped in CS solution for 

10 min, followed by immersion in 0.15 M NaCl over 5 min. These four steps allowed the assembling 

of one double layer (dL). The process was repeated until 10 dL. 

III-2.2.3. Scaffolds production by LbL 

The PEMs was constructed onto free-packet paraffin spheres previously modified with PEI. 

Paraffin spheres modified with PEI were chosen as the porogen and 150 mg of them placed into a 

modified cylindrical container, with a porous base. CHT was used to make the initial coating. Drop 

wise addition of polyelectrolyte solutions and washing solutions over the top of assembly was done 

to form 10 dL of CS and CHT. The coated structure was placed in dichloromethane (DCM) to leach 

out the paraffin. After the leaching the samples were freeze dried. 
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III-2.2.4. Physicochemical characterization 

III-2.2.4.1. Morphology 

The morphology of the scaffolds after the leaching process and immersed in DCM was 

assessed by optical microscopy, using the Axioplan Imager Z1 microscope (Zeiss). Freeze-dried 

scaffolds were also observed by scanning electronic microscopy (SEM), using a Philips XL 30 

ESEM-FEG operated at 15 kV accelerating voltage. Surface morphology of the glass coverslips was 

also performed using the same equipment at 7.5 kV accelerating voltage. All the samples were 

sputtered with a conductive gold layer, using a sputter coater (Cressington) for 40s at a current of 

40 mA. 

III-2.2.4.2. Fourier transform infrared (FTIR) spectroscopy 

FTIR measurements were recorded using an IRPrestige-21 spectrophotometer, by averaging 

34 individual scans over the range 4400 cm-1 to 400 cm-1. The samples were prepared in 

potassium bromide (KBr) discs. 

III-2.2.4.3. Swelling test 

The water uptake ability of the scaffolds with known weight was determined by soaking them in 

phosphate buffered saline solution (PBS, Gibco) at pH=7.4 up to 3 days at 37°C. The swollen scaffolds 

were removed at predetermined time points ( t=15 min, 30 min, 1 h, 2 h, 3 h, 4 h, 5 h, 1 day, 2 days 

and 3 days). After removing the excess of water using a filter paper (Whatman Pergamyn Paper), the 

scaffolds were weighted with an analytical balance (Scaltec, Germany). The water uptake was calculated 

using Equation III-1, where Ww and Wd are the weights of swollen and dried scaffold, respectively. 

              
     

  
     

Equation III-1: Determination of water uptake. 

III-2.2.4.4. Enzymatic Degradation 

The enzymatic degradation test is normally performed to evaluate the degradation profile of 

the scaffolds produced in simulated physiological environments. Scaffolds were placed at 37°C in 

PBS solution (pH=7.4) or at enzymatic solution containing 2 mg/ml of lysozyme and 0.33 mg/ml 
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of hyaluronidase (pH=7.4) [20]. PBS and enzymatic solution were changed every third day [20]. At 

predetermined time intervals t=3, 7 and 14 days the scaffolds were washed with distilled water to 

remove the salts. Then the scaffolds were immersed in ethanol 100 % and dried for 1 day at room 

temperature. The percentage of weight loss (WL) was calculated according to the Equation III-2, where 

Wi and Wf are the weights of dry scaffold and after incubation in PBS or enzymatic solution, respectively. 

   
     

  
     

Equation III-2: Determination of WL (%) 

III-2.2.4.5. Mechanical Test 

Compression tests were carried out by dynamic mechanical analysis (DMA), using a Tritec 

2000B equipment (Triton Technology, UK) to characterize the mechanical properties of cylindrical 

scaffolds in both the dry and wet states. The sizes of the samples were measured using a digital 

micrometer with precision of 0.001 mm. Prior to any measurements in the wet state the scaffolds 

were immersed in PBS until equilibrium was reached. The measurement was carried out at 37 °C 

under full immersion of the sample in liquid bath (PBS) placed in a Teflon® reservoir. Experiments 

were carried out in compression mode following cycles of increasing frequency ranging from 0.1 to 

15 Hz, with constant strain amplitude of 30 μm. The frequency range chosen covers the 

characteristic timescales of the periodic loads felt by the scaffold in vivo (e.g. typical frequency of 

skeletal movement). The high frequency limit used in this study should provide information about 

the viscoelastic properties for the equivalent of short times (e.g. equivalent to a shock or sudden 

impact felt by the construct) [21]. 

III-2.3. Cellular assays 

III-2.3.1. Bovine articular chondrocytes and human mesenchymal stem cells 

culture 

Two different cell types were used in this study: the bovine chondrocytes (bch) and human 

mesenchymal stem cells (hMSCs). Bch cells were isolated by 0.2% collagenase overnight digestion 

from freshly collected cartilage of a calf knee. hMSCs were selected by adherence from the bone 

marrow of human donors undergoing total hip replacement. Ethical approval has been obtained 
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from the Almelo and Enschede hospital. The isolated bch were washed, centrifuged and re-

suspended in chondrocytes proliferation medium containing dulbecco’s modified eagle medium 

(DMEM, Invitrogen, USA), fetal bovine serum (FBS, 10 %, Sigma-Aldrich), non-essential aminoacids 

(0.1 mM, Sigma-Aldrich), penicillin/streptomycin (100 U/100 μg/mL, Invitrogen), proline 

(0.4 mM, Sigma-Aldrich) and Ascorbic acid 2-phosphate (ASAC, 0.2 mM, Invitrogen) in a 

humidified atmosphere with 5 % CO2 and at 37°C. hMSCs were also washed, centrifuged and re-

suspended in MSCs proliferation medium containing alpha modified eagle’s medium (α-MEM, 

Invitrogen, USA), fetal bovine serum (FBS, 10 % Sigma-Aldrich), penicillin/streptomycin 

(100 U/100 μg/mL, Invitrogen), Glutamine (2 mM, Sigma-Aldrich), basic fibroblast growth factor 

(bFGF, 1 ng/mL, Sigma Aldrich) and ASAC (0.2 mM, Invitrogen) in a humidified atmosphere with 

5 % CO2 and at 37°C. bch and hMSCs were seeded in tissue culture flasks and the medium was 

change every third day until cells achieved 80 % of confluence. bch were used at passage 2 and 

hMSCs at passage 3. Prior to cell seeding scaffolds were sterilized with 70 % (v/v) ethanol 

overnight and then rinsed three times in PBS, whereas surfaces were treated with ultraviolet (UV) 

light for 10 min to avoid the damage of the coating. Scaffolds and flat surfaces were then 

immersed for 4 hours in the medium appropriate for each cell type. For the scaffolds the seeding 

was performed by applying the cell suspension, with a concentration of 0.5x106 cells in 25 μL of 

medium (per scaffold). For surfaces the cell concentration was adjusted to 1.32x104 cells in 25 μL 

of medium (per glass coverslips). After cell attachment for 2 hours (37°C in a 5 % CO2), 

chondrocytes proliferation medium, MSCs proliferation medium or differentiation medium (DMEM, 

2 mM glutamine (Gibco), 0.2 mM ASAC (Invitrogen), 100 μg/mL penicillin/Streptomycin 

(Invitrogen), 0.4 mM proline (Sigma-Aldrich), 100 μg/mL sodium pyruvate (Sigma-Aldrich) and 

50 mg/mL insulin-Transferrin-selenite (ITS+premix, BD biosciences), 10 ng/mL TGFβ-3 (R&D 

systems) and 0.1 μM dexamethasone (Sigma-Aldrich)) was added. 

III-2.3.2. Cell viability 

The cell viability and morphology were assessed with live/dead assay, MTT assay and SEM 

analysis. The scaffolds were cut in half in order to perform live/dead and MTT at 1, 3, 14 and 

21 days. Scaffolds were further observed by SEM. For the surfaces live dead assay was performed 

at 1, 3, 7, 14 and 21 days followed by SEM visualization. Medium was changed every third day to 

maintain an adequate supply of cell nutrients. 
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III-2.3.2.1. Live /dead assay 

To perform this assay the proliferation medium was aspirated from the wells where scaffolds 

and surfaces were deposited. The scaffolds and surfaces were then incubated with ethidium 

homodimer-1 (4 μM) and calcein-AM (2 μM) in PBS for 30 min at 37°C in a 5 % CO2 atmosphere 

incubator. After 30 min the samples were immediately examined in an inverted fluorescent 

microscope (Nikon Eclipse E600) using Fluorescein isothiocyanate (FITC) and Texas Red Filter, as 

well as the NIS element-F.30 software. Calcein-AM is only capable of permeating into plasma 

membrane of living cells where it will be cleaved by esterases and produces green fluorescence. 

On the other side, ethidum homodimer-1 is only able to enter dead cells and bind to fragmented 

nucleic acid, emitting a red fluorescence. The live/dead assay pictures were analysed using 

Image J. to average the percentage of the surface area covered with cells. 

III-2.3.2.2. MTT assay 

The scaffolds were incubated in 900 μL of proliferation medium and 100 μL of MTT solution 

(5 mg/mL) per well for 2 h at 37°C in 5 % CO2. The MTT assay measures the metabolic activity of 

viable cells once that dissolved MTT can be converted to an insoluble purple formazan by 

dehydrogenase enzymes that catalyse the cleavage of the tetrazolium ring in MTT. Images were 

captured using a stereomicroscope with colour camera (Nikon SMZ-10A) and the Qcapture software. 

III-2.3.2.3. Scanning electron microscopy observation 

The structures with cells were fixed in formalin 10 % and dehydrated using serial 

concentrations of ethanol [ 70 %, 80 %, 90 %, 96 % and 100 % (v/v), 30 min in each], before 

preforming critical point drying (Balzers CPD 030). The surfaces of the materials were then coated 

with a conductive layer. The SEM observations were performed in a Philips XL 30 ESEM-FEG 

operated at 7.5-15 kV accelerating voltage. 

III-2.3.3. DNA quantification 

Scaffolds seeded with bch and hMSCS in differentiation medium at 1, 14 and 35 days were 

washed with PBS and frozen at - 80°C before proteinase K (Sigma Aldrich) digestion. Then the 

scaffolds were digested with 1 mg/mL of proteinase K in tris (hydroxymethyl) aminomethane 
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ethylenediaminetetraacetic (Tris\EDTA) buffer (pH 7.6) containing 18.5 μg/mL idoacetamide and 

1 μg/mL pepstatin A (Sigma Aldrich) at 56°C for 20 hours. Quantification of total DNA in each 

sample was determined with CyQuant DNA kit according to manufacturer description (Molecular 

probes, Eugene, Orgeon, USA), using a spectrofluorometer (Victor3, Perkin-Elmer, USA) at an 

emission wavelength of 520 nm and an excitation wavelength of 480 nm. 

III-2.3.4. Histology 

Haematoxylin & eosin (H&E) and alcian blue stainings methods were used to analyse cell 

distribution and cartilage tissue formation, respectively.  For histology analysis, scaffolds were fixed 

overnight in 10 % formalin, and then dehydrated using sequential ethanol series [70 %, 80 %, 90 %, 

96 %, and 100 % (v/v), 30 min in each]. Once dehydrated, they were incubated in butanol 

overnight at 4°C and then in a solution of paraffin at 56°C for 12 hours. Sections with 4.5 μm of 

thickness were cut using a microtome (MicroM HM355S). After deparaffinization with xylene and 

rehydration using a graded ethanol series [from 100 % to 70 % (v/v)], the samples were stained 

using an automatic stainer (MicroM HMS740). For H&E staining samples were stained with 

haemotoxylin for 1 min and rinse up to 6 min before being stained with eosin for 30 s. For alcian 

blue staining the samples were placed in alcian blue solution (0.5%, pH=1) for 30 min and rinsed 

with tap water or distilled water for 4 min. In the last step nuclear fast red was added for 5 min 

before dehydratation. Slides were assembled with resinous medium and mounted slides were 

examined under a light of Axioplan Imager Z1 microscope (Zeiss). Representative images were 

captured using a digital camera (AxioCAM MRCE) and treated using Axiovision software. Each 

assay was performed at 1, 14, 21 and 35 days of culture. 

III-3. STATISTICAL ANALYSIS 

The experiences developed were carried out in triplicate otherwise specified. The results were 

presented as mean ± standard deviation (SD). Statistical analysis was performed using one way 

ANOVA analysis followed by Turkey test (Graph Pad Prism 5.0 for Windows). Statistical significance 

was set to p <0.05 (*) and p<0.01 (**). 
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III-4. RESULTS AND DISCUSSION 

III-4.1. Build-up Mechanism for film constructed 

The build-up mechanism of the polymeric multilayered films made of CS and CHT was 

assessed in situ with QCM-D. This technique detects the adsorbed mass of polyelectrolytes and 

measures the viscoelastic properties of the surface [22, 23]. Figure III-1-A shows the build-up of 10 

layers of CHT and CS in terms of variations on normalized frequency, ∆fn/n (where n is the 

frequency overtone) and dissipation, ∆D7. As expected, the normalized frequency decreases with 

each CHT and CS solutions injection, reflecting the increase of mass over the gold sensor. The 

increase of ∆D7 is due to the non-rigid adsorbed layer structure of the deposited film. During the 

washing step that follows the injection of each polyelectrolyte, the change of both ∆f7/7 and ∆D7 

were small relatively to the total frequency variation associated to the adsorption of the respective 

polymer. This indicates a strong association of the layers on the surface of the crystal. 

  

Figure III-1: Build-up monitoring of the CHT/CS polyelectrolyte multilayered using QCM for film 

constructed: A) Normalized frequency (∆f7/7) and dissipation changes (∆D7) obtain 

at 35 MHz, 1) deposition of CHT, 2) washing step and 3) deposition of CS; B) 

Estimated thickness (th) evolution and SEM micrographs of the multilayer surface 

with 10 dL (inset image). 

The combination of ∆f7/7 and ∆D7 gives information about the adsorbed amount and the 

variations of the viscoelastic properties [22, 24, 25]. The thickness (th) of the film was estimated 

using the Voigt Model [26]. Figure III-1-B shows the th variation along the deposition of 10 layers 

[22, 25]. The results revealed a decrease of th from the first layer to the second one, which can be 

explained due to changes in water absorption [27]. The absorption of water occurs owing to the 

presence of some groups in the polysaccharides (hydroxyl, carboxyl and sulphate groups) that 
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interact favourably with water molecules [27]. When the second layer is adsorbed the presence of 

opposite charge leads to electrostatic interactions between them and the counterion-polymer. 

Consequently, water-polymer bonds are disrupted, resulting in an effective decrease of the 

hydrated film th [24, 27, 28]. The trend was observed during the first three pairs of layers. After 

the first three dL, this trend was no longer observed: there was an increase of th with the addition 

of CS. The SEM microphotography of the multilayered surface revealed a homogenous coating 

along the 2D flat surface - see inset image of Figure III-1B. Moreover, the texture of the surface 

presented a rough texture and some granularity, with characteristic sizes around 2 μm. 

The results obtained through QCM measurements and SEM demonstrates that CS can be 

used successfully with CHT to conceive a homogeneous viscoelastic polymeric self-assembled 

coating using the LbL approach. 

III-4.2. Multilayer surface 

Using LbL methodology it is possible the production of surfaces with tuned properties [11-13] 

.In this work, multilayers of chitosan and chondroitin sulphate have been prepared in glass 

coverslips by using the LbL methodology, obtaining assemblies with 10 dL. 

III-4.2.1. Cell behaviour in multilayers  

In order to assess the cell viability in the surfaces, live/dead assay was performed – see 

Figure III-2 A, C, E, G and I. The results showed a large amount of living cells and low number of  

dead cells in any of the time points indicating that the film has no cytotoxic effects. 

The cell adhesion/morphology was also studied using SEM - see micrographs in Figure III-2 B, 

D, F and H. The results revealed that the bch were attached to the surface in the earliest time 

points. Attachment, adhesion and spreading belong to the first phase of cell/material interaction 

and the quality of this stage influence the capacity of cells to proliferate and differentiate itself on 

contact with the implant[29, 30]. With increasing culture time, ECM production also increase and 

cells start to spread out along the surface, losing their round phenotype. After 7 days of culture a 

huge surface area was already covered and consequently a large amount of proliferation occurred. 

At 14 days a cellular confluence was achieved. 
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Figure III-2:  Live/dead assay and SEM micrographs of bch seeded on glass coverslips coated with 

chitosan and chondroitin sulphate at day 1 (A, B), 3 (C, D), 7 (E, F), 14 (G, H) and 21 

(I, J) of culture in proliferation medium.  
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The cell proliferation onto the CHT/CS multilayered film could be also observed in the live/dead 

assay images. The percentage of area coverage with the cells was measured using the 

calcein/ethidhium positive staining and Image J software (Figure III-3). The results showed a high 

amount of living cells and low amount of dead cells.  

Among day 1 and 3 no significant differences occurred which can be explained with the 

natural lag-phase of cells after seeding into a new environment. At 7 days of culture, a vast area 

(      of surface was already covered and the cell number increase with the increase of culture 

time which is characteristic of the exponential growth phase of cells. Furthermore, between 

14 days and 21 days no differences were achieved in cell proliferation, cells reached the 

confluence. The results showed no cytotoxic effects from the film and an increase in cell number. 

Consequently, CHT and CS were used as polyelectrolytes for the fabrication of the 3D 

nanostructure. 
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Figure III-3: Percentage of surface area coverage with cells at 1, 3, 7, 14 and 21 days of culture. 

Significant differences for p<0.01(**) were found. 
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III-4.3.  Nanostructured Scaffolds: Physicochemical characterization 

III-4.3.1. Scaffold preparation and morphology 

The use of bottom-up approaches to produce 3D porous structures is particular relevant due 

to the hierarchical organization of the native tissues. It has been hypothesized that an 

interconnected 3D porous structure could be prepared combining LbL with leaching of free-packet 

paraffin spheres. A dropwise addition method of PEMS over the 3D template formed by free-packet 

paraffin spheres was applied. This technique allows the formation of a 3D lattice arrangement from 

a randomly placed paraffin spheres. After the coating the paraffin template was leached out and 

void spaces were created. Thus, the remaining material should be entirely composed by the 

CHT/CS multilayers - see Figure III-4-A. 

The morphology of the obtained scaffolds after the leaching was seen by optical microscopy. 

The results clearly reveal a soap-bubble-like morphology with geometry and pore sizes consistent 

with the paraffin spheres used as the template – see Figure III-4B. The interconnectivity should be 

assured by the existence of physical contact points between the neighbouring paraffin beads that 

will result in a passage point between the two pores after the leaching process (see red arrow in 

Figure III-4A). Further structural information was obtained by SEM - see Figure III-4-C. SEM images 

of freeze-dried scaffolds revealed a noticeable hollow imprint of the porous spherical wax template 

morphology. This concept allows the production of highly porous structure with controlled pore size 

and interconnectivity. Consequently, this type of scaffolds should allow the diffusion of substances 

as well as the integration of cells, namely its infiltration, migration and distribution in the entire 

volume of the scaffold. The histological cross-sections of the freeze-dried scaffold stained by alcian 

blue (Figure III 4-D) and eosin (Figure III 4-E) showed a homogeneous distribution of the 

polysaccharides. Moreover the size of the pores is again consistent with the paraffin template used. 

Alcian blue stained chondroitin sulphate [31] and eosin chitosan due to the high ability of this 

polysaccharide to adsorb anionic dyes [32]. 
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Figure III-4: Scaffold characterization: A) Production steps of scaffolds: LbL and leaching of free-

packet paraffin spheres, B) Optical Microscopy image of the scaffolds after the 

leaching of the core material, C) SEM micrographs of cross-sections (two different 

magnifications) and Histological cross-sections of the scaffolds after staining with 

alcian blue (E) and eosin (D). 

III-4.3.2. Fourier transform infrared spectroscopy 

FTIR measurements (Figure III-5A) were performed on the scaffold produced, as well as on 

both CHT and CS powders in order to identify the presence of both polysaccharides in the entire 

scaffold. The spectra of CHT and CS are very similar, as expected, reflecting the similarities in the 

chemical structure of both materials. As a result, they share some common peaks near around 
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3400 cm-1 corresponding to –OH and N-H bond stretching vibrations, and the peaks around 

2900 cm-1 corresponding to C-H stretching. Between 1020 cm-1 and 1080 cm-1 the peaks 

associated with the stretching of C-O bonds could be also observed. Moreover, the amide groups 

appeared at 1648 cm-1 [33, 34]. 

In the CHT spectrum the amine group bonds, characteristic of this polysaccharide, appeared 

at 1570 cm-1 [35] The representative peak of chondroitin sulphate was detected at 1250 cm-1 

corresponding to the stretching in the S=O bond (   
  ) [33, 34]. The spectrum of the scaffold 

shows globally the absorption peaks arising from both CHT and CS which is indicative of the 

presence of both raw materials in the final structure. 

  

 

Figure III-5: Physicochemical characterization of scaffolds: A) FTIR measurements of CHT/CS 

scaffolds and pure polysaccharides (CHT and CS), B) Swelling test up to 3 days (The 

inset graphic expands the water uptake for the first 5 hours), C) Weight loss of the 

scaffolds in PBS (▲) and in an enzymatic solution at 37°C (■). 
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III-4.3.3. Swelling ability 

Water uptake is particularly important for implantable materials because it allows the diffusion 

and exchange of nutrients and waste to the entire scaffold; moreover water uptake ability also 

influence the mechanical performance of the biomaterial [8]. The materials used in the scaffold 

have abundant number of hydrophilic groups, such as hydroxyl, amino, sulphate and carboxyl 

groups, which can promote the swollen state of the scaffold [36]. The swelling ability was evaluated 

by soaking scaffolds in PBS (pH=7.4) at 37°C for 3 days – see Figure III-5B. The results showed 

that the water uptake increase mainly in the first hour and then tends to remain stable, reaching 

the equilibrium after 5 h (water uptake=280 %). This results can be explained due to the existence 

of hydrophilic groups, mainly hydroxyl groups, but mostly to CS charge, as a result of the fully 

ionization of its diprotic anionic functional groups, carboxyl groups (–COOH) and sulphate groups 

(   
  ) under neutral or low ionic strength media [37, 38]. The high density of charge increases 

the difference in osmotic pressure between the scaffold network and medium resulting in a swollen 

scaffold. 

III-4.3.4. Enzymatic degradation 

The biodegradability profile of scaffolds will dictate the changes of many properties of the 

structure that will occur upon the implantation. Enzymatic activity plays a fundamental role in the 

degradation of polysaccharides in vivo [39]. In vitro enzymatic degradation tests were performed 

with lysozyme and hyaluronidase solution and compared with weight loss in PBS (control). These 

two enzymes were chosen because they are present in the synovial fluid and they have as well the 

ability to cleave the polysaccharides used in this study [40, 41]. Lysozyme is able to degrade CHT 

and hyaluronidase has also the ability to degrade both CHT and CS [41-44]. The weight loss as a 

function of time is presented in Figure III-5C. 

The results showed that the scaffolds are degradable in the presence of the selected enzymes, 

showing weight losses of ca. 40 % after 14 days. The degradation of scaffolds in the presence of 

enzymatic solution is facilitated by the high porosity and interconnectivity of the structures allowing 

the easy access of the enzyme to their substrate. Moreover, the high hidrophilicity of CS (revealed by 

the high water uptake) can increase the interaction of scaffolds with the enzymatic solution, 

promoting the weight loss. The scaffolds placed in PBS also suffer some weight loss ca. 15 % after 14 
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days. In this case the weight loss may be the result of some disaggregation of the multilayered 

structure, as the polyelectrolytes are self-assembled through electrostatic interactions. The ions 

present in PBS may interact to the structure and promote partial detachment between the 

macromolecules resulting in their release to the medium. 

III-4.3.5. Mechanical Properties 

The viscoelastic/mechanical properties of an implantable device are fundamental for its 

performance in vivo [21]. Dynamical mechanical analysis (DMA) is an adequate non-destructive 

tool to characterize the mechanical and viscoelastic properties of polymeric materials [45, 46]. 

Since articular cartilage often bears a dynamic compression force, DMA experiments performed in 

a hydrated environment and at 37°C allow the assessment of scaffolds in more realistic conditions 

[21]. The storage modulus (E’) and loss factor (tan δ) as a function of frequency of the developed 

scaffolds, in the dry and wet state are presented in Figure III-6. The results for the hydrated scaffold 

showed a slightly increase in both E’ and tan δ with increasing frequency. In the dry state the 

values of E’ are about one order of magnitude higher when compared with the wet state. Such 

result is consistent with the high water uptake ability of the scaffolds and the plasticization effect of 

water molecules in such kind of polysaccharides that increases their molecular mobility and 

decreases the stiffness of the material. A similar loss of the stiffness due to the effect of water was 

observed in CHT membranes [47]. In both cases no evident variation of E’ along the frequency axis 

are seen, indicating that no relaxation phenomena takes place in the scaffolds within the time scale 

covered by the experiments. The tan δ of the dry sample decreases slightly with an increasing of 

frequency. However an opposite trend was observed when the samples were immersed in PBS. 

tan δ is higher in the wet samples, indicating that some dragging of entrapped water can 

participate in energy loss for the hydrated structure [48]. The DMA results demonstrated a 

viscoelastic behaviour of the scaffold which is particularly relevant for cartilage TE approaches 

owing to the viscoelastic nature of this tissue [49]. Moreover, the E’ values obtained are similar to 

ones of the mandibular condylar cartilage which ranges from 0.1 MPa to almost 1.5 MPa in the 

range of 0.01 – 10 Hz [50]. 
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Figure III-6: Variations of (A) Storage modulus (E’) and (b) loss factor (tanδ) of the CHT/CS 

scaffolds obtained by LbL methodology. Experiments are reported for dry samples (■) 

and hydrated samples in PBS at 37°C (●). 

III-4.4. Cells behaviour in nanostructured scaffolds 

III-4.4.1. Cell viability and adhesion\morphology 

The cell viability tests with bch (Figure III-7 A, D, G and J) showed a large amount of live cells 

(green) and almost no dead cells (red), consistent with the results obtained in the flat surfaces 

indicate, these results indicate that the scaffolds have also no cytotoxic effects to bch cells. After 

1 day it is possible to see that the cells tend to aggregate. Furthermore, the results obtained with 

MTT assay (Figure III-7 B, E, H and K) suggest an increase in cell number and metabolic due to the 

increase in dark purple staining over time. The results of live/dead assay for hMSCs (Figure III-8 A, 

D, G and J) also show low amount of dead cells, which indicate the absence of cytotoxic effects 

also for these types of cells. MTT results (Figure III-8 B, E, H and K) also shown metabolically 

active cells represented by the dark purple formazan precipitate, evidencing also an increase in the 

staining intensity with increasing time culture. 

Cell adhesion and morphology was further studied by SEM – see Figure III-7 C, F, I and L. The 

results obtained for bch at day 1 showed that cells were attached to the surface, displaying a round 

shape. After 3 days of culture the adherent cells might start the deposition of their own ECM which 

leads to further and faster cell spreading in the following time points. It was also possible to verify 

that some cell agglomeration occurred after 3 days inside the scaffold. In the latest time point the 

cells are more adhered and an increase in ECM deposition occurred. The bch presented a round 
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shape in all time points which is an indication of phenotype retention and essential for matrix 

deposition [51]. The results for hMSCs (Figure III-8 C, F, I and L) revealed that the cells were 

attached to the surfaces and presented a more stretched morphology. After 1 day, cells started to 

adhere and an increase in ECM deposition occurred in the inner areas of the scaffolds (t=14 days).  
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Figure III-7: Live/dead assay, MTT assay and cross-section SEM micrographs of Bch seeded on 

scaffold at day 1(A, B, C), 3(D, E, F), 14 (G, H, I) and 21(J, K, L) of culture in 

proliferation medium. 
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Figure III-8: Live/dead assay, MTT assay and cross-section SEM micrographs of HMSCs seeded on 

scaffold at day 1(A, B, C), 3(D, E, F), 14 (G, H, I) and 21(J, K, L) of culture in 

proliferation medium.  

III-4.4.2. Cell proliferation 

Cell proliferation in differentiation medium was evaluated using DNA assay (Figure III-9). The 

result obtained for the two types of cell showed that the number of both types of cells increased 
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proliferation even after long time culture. Thus, it is possible that new cells might migrate and 

populate areas of the scaffold in outside the regions of initial cell seeding. 
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Figure III-9: DNA assay on the scaffolds seeded with bch and hMSCs in differentiation medium. 

Significant differences between each cell type at different time points were found for 

p 0.05(*) and p<0.01(**). 

III-4.5. Histology 

Cell distribution and matrix production in differentiation medium was evaluated using histology 

cross-sections stained with H&E and alcian blue (Figure III-10, Figure III-11). 

The H&E staining of scaffold seeded with bch showed the round morphology of cells. 

Moreover, the abundance of cells per section is increased, which indicates again the occurrence of 

cell proliferation. At day 1, cells start to attach to the walls forming small aggregates. At day 14 the 

size of bch agglomerates increased. During the followed weeks, the cells presented a higher 

dispersion and distribution in the scaffolds. Sulphated GAGs, indicating new cartilage matrix 

formation, were stained by alcian blue. CS, which gives as well a positive staining for GAGs, can be 

distinguished from newly deposited matrix by comparing alcian blue staining at day 1 with later 

times. Secretion of GAGs by bch was seen at 14 days of culture. GAGs production increased during 

subsequent weeks. Lacunae formation was also seen in the matrix surrounding bch, namely at day 

21 and 35. The maintenance of chondrogenic phenotype is indicated by the round shape of the 

cells by the matrix production. 
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The scaffolds seeded with hMSCs were also stained with H&E. At day 1 it is possible to see 

some agglomerate cells and after 2 weeks the size of this agglomerates increased. During the 

following times of in vitro culture the hMSCs were more spread out throughout the scaffold. The 

GAGs secretion was also assessed and at day 14 a small amount of secretion could be seen. The 

amount of secretion increased during the next weeks. The secretion of GAGs by hMSCs indicates 

the chondrogenic differentiation of these cells. The driving force for differentiation in this assay 

have been TGF-β , however CS might also has a positive influence on chondrogenic differentiation , 

as reported before [31]. 

 

Figure III-10: Histological cross-sections of scaffolds seeded with bch stained by H&E and Alcian 

blue at different days of culture in differentiation medium. 
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Figure III-11: Histological cross-sections of scaffolds seeded with hMSCs stained by H&E and Alcian 

blue at different days of culture in differentiation medium. 

III-5. CONCLUSION 

Flat CHT/CS PEMs prepared using LbL did not elicit any cytotoxic effects to bch cells. It was 

possible to use LbL combined with spherical template leaching to produce CHT/CS 3D structures 

with high porosity and interconnectivity, just composed by self-assembled multilayers of these 

polyelectrolytes. Both bch and hMSCs could adhere and proliferate in these scaffolds, 

demonstrating the potential of their use in cartilage TE. Production of cartilage matrix production 

was observed upon culture in chondrogenic differentiation medium indicating that chondrogenic 

phenotype was maintained and hMSCs differentiation. Our results suggest that the nanostructured 

scaffolds of chitosan and chondroitin sulphate could have potential use in TE approaches for 

cartilage. 
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Chapter IV 

Chapter IV -  General Conclusion and Future Perspectives 

The objective of this dissertation was the development and characterization of 2D and 3D 

structures based on LbL methodology. Porous 3D structures can be useful for cartilage TE 

approaches. To accomplish this aim, two polyelectrolytes were selected: CHT and chondroitin CS. 

Herein a summary of major achievements will be given. 

IV-1. GENERAL CONCLUSIONS 

A novel type of nanostructured scaffolds based on CHT and CS was obtained, combining LbL 

and leaching of spherical templates. The potential of these structures for cartilage TE was 

evaluated. 

For the proof of concept, biological assays were first performed in multilayer surfaces with 

bovine chondrocytes (bch) and no cytotoxic effects of the film were found. Thus, PEMs was 

transposed to 3D level and originated a structure with a soap-bubble-like morphology, as proven by 

optical microscopy after the leaching of the all core material. Moreover, the scaffolds present a 

high porosity and interconnectivity, owning to the leaching of all the paraffin and physical contact 

points between the original paraffin beads. After the freeze drying, SEM images revealed a 

noticeable hollow imprint of the porous spherical wax templates geometry. The histological cross-

sections of the freeze dried scaffolds showed a pore size consistent with the paraffin template and 

a homogeneous distribution of the both polysaccharides, as proven with FTIR.  

Swelling test and enzymatic degradation demonstrated a structure with ability to diffuse 

substances and gradual degradation. Mechanical tests performed with DMA revealed the 

viscoelastic properties of the scaffolds which corroborate the results obtained at QCM (an increase 

of dissipation (ΔD) in each polyelectrolyte injection).  

The applicability of the nanostructured scaffold for cartilage TE approaches was evaluated in 

cellular assays with bch and human mesenchymal stem cells (hMSCs). The cells were viable, 

metabolically active and proliferate during 35 days of in vitro studies, as live dead/MTT assay, SEM 
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analysis and DNA quantification showed. Histological cross-sections revealed the maintenance of 

chondrocyte phenotype and chondogenic differentiation of hMSCs. The physicochemical and 

biological advantages presented in this study will make it probably possible to apply the current 

scaffolds to cartilaginous lesions. 

IV-2. FUTURE PERSPECTIVES 

A number of valuable results were obtained in this research project which will hopefully be of 

utility in future investigations. The usefulness of nanostructured 3D constructs based on CHT and 

CS multilayers for cartilage TE approaches are the most significant contributions of this thesis. The 

next steps may include the following studies: 

 

1. The production of structures with gradients of porosity, using different size of paraffin wax 

spheres; 

 

2. Increase the mechanical properties of the constructs using for that a high number of 

layers, crosslinking or fillers; 

 

3. Evaluate the behaviour of cells with different number of layers; 

 

4. Assess gene expression with polymeric chain reaction (PCR); 

 

5. Study the effect of chondroitin sulphate in chondrogenic differentiation. 
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