
Revisiting context-aware component interconnection
Luis S. Barbosa

DI-CCTC, Universidade do Minho
4710-057 Braga, Portugal
Email: lsb@di.uminho.pt

Marco A. C. Barbosa
Universidade de Cruz Alta

Brazil
Email: marco.cb@gmail.com

César J. Rodrigues
DI-CCTC, Universidade do Minho

4710-057 Braga, Portugal
Email: cjr@di.uminho.pt

Abstract—Software connectors are external coordination de-
vices which ensure the flow of data and enforce synchronization
constraints within a component’s network. The specification of
software connectors through which context dependent behaviour
is correctly propagated remains an open, non trivial issue in their
semantics. This paper, building on previous work by the authors,
revisits this problem and introduces a model in which context
awareness is suitably handled.

I. INTRODUCTION

The design of loosely-coupled, highly distributed software
systems places new requirements on components’ composi-
tion. A main issue, actually not new but increasingly relevant,
concerns decoupling of specific loci of computation from the
protocols that govern their interaction to achieve common
tasks.

Typically, such loci of computation, referred to as compo-
nents in the sequel, are regarded as black-boxes, and charac-
terized by a set of ports through which data values are sent
or received. Ports have a polarity (either input or output) and,
in most cases, a type to classify the admissible values. The
underlying coordination discipline is exogenous in the precise
sense that each component is unaware of which other compo-
nents it is connected to and under which protocols. Component
coordination becomes the purpose of special devices intended
to regulate the flow of data and enforce synchronization
constraints: such is the role of software connectors [11], [17].

REO [1], [2] is a well-known example of an exogenous
coordination language built around a notion of connectors as
a first class citizen, but by no means the only one. ORC [12],
and, in general, high-level composition abstractions proposed
for what is known as world-programming languages [10],
often inspired by the process algebra legacy, also fall into this
category.

An issue which is clearly non trivial in the semantics
software connectors is known as context awareness. The
expression refers to the ability to capture behaviours which
include non-monotonic choices determined by the way their
environments, consisting of pending activity on their ports,
changes. The big challenge is to ensure the correct propagation
of such context-dependent behaviour.

This notion, even if in general is difficult to formalise, is
regarded as fundamental in exogenous coordination research
and as such is considered in the informal semantics of REO
as presented in its foundational papers [1], [2]. Even though,
and in the context of REO the problem was not solved in the

two main formal semantics proposed for the language based
on timed data streams [3] and constraint automata [4]. A
partial solution was put forward in the so-called connector-
coulouring semantics [8], which is highly operational and
admits degenerated behaviour in a number of cases. Formal
semantics for REO context-aware connectors were proposed
quite recently in [7] and [9], independently of each other.

In [6] the authors proposed a model in which a connec-
tor’s model is decomposed into two distinct specifications:
a typed binary relation to capture the flow of data, and
a behavioural pattern to describe its interface. The latter
amounts to a specification of which, when and under what
conditions connector’s ports become activated (i.e., ready to
deliver or consume a datum). The specification of connectors’
behavioural patterns resorts to a process calculus parametric
on the communication discipline fully developed in [15]. In
[6] the same language is also used to describe component
interfaces, i.e. the business protocols they implement, enabling
local and global, compositional reasoning over applications.

Connector construction in this approach is compositional:
new connectors are built out of old, through six specific
connectives: parallel and concurrent aggregation, interleaving,
left and right port join and hook, the latter corresponding to a
sort of feedback mechanism.

The propagation of context-dependent behaviour through a
composite connector was only partially handled in the model
proposed in [6]. This paper is, therefore, an attempt to further
develop this approach to express context dependency, retaining
the calculational, essentially equational reasoning style which
is the main distinguished characteristic of [6] with respect to
automata-based approaches used in other semantical models
for REO.

The new model is introduced in the next two sections.
Section IV discusses its suitability to correctly deal with
context awareness. The model at work is illustrated in section
V. Finally, section VI concludes and highlights some topics
for further research.

II. MODELLING CONNECTORS

A. Connectors

In loosely-coupled systems components cooperate through
specific connectors which abstract the idea of intermediate
glue code to handle interaction. This section tackles the
question what connectors are and how do they compose,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55620779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

proposing a model which improves on the one underlying [6]
to cater, in an effective way, context-awareness.

As usual, connectors have ports, i.e., interface points
through which messages flow. Each port has an interaction
polarity, either input or output, but, in general, connectors are
blind with respect to the data values flowing through them.
Formally, let C be a connector with m input and n output
ports. Assume M is a generic type of messages and P a set of
(unique) port identifiers. In a number of cases it is necessary to
consider a default value in D to represent absence of messages,
for example to describe a transition in a connector’s state in
which a particular port is not involved. Therefore, the type of
data D flowing through connectors is defined as

D , M + 1 (1)

where 1 is the singleton set whose unique element is repre-
sented, by convention, as ⊥.

Elementary connectors are stateless, but to introduce asyn-
chrony, e.g., through a buffered channel, internal states might
be considered. Let U stand for a generic type of state spaces,
typically given as a functorial expression in D. For example
U may be defined as a sequence of data (U = D∗) or,
as in the specification of a one-fifo buffer below, simply
as U = D. Default value ⊥ stands now for absence of
stored information in the connectors memory. Formally, the
behaviour of a connector is defined as follows

Definition 1: The specification of a connector C is given
by a relation

data.[[C]] : Dn × U←− Dm × U (2)

which records the flow of data, and a process expression

port.[[C]] ∈ Bhv (3)

which gives the behavioural pattern for port activation.
Bhv is the process language generated according to the

following grammar:

P ::= 0 | a · P | P + P | P � P | P � P | P � P | fix (X = P)

where a is an element of A. In a first approximation the set
A, of actions, is defined as A = P (P ∪ {τ}), i.e., as sets
of connectors’ ends plus a special symbol, τ , to represent
any unobservable action. The introduction of τ is technically
entailed by the semantics of the hook combinator, as explained
below. Regarded as an action, a port identifier a asserts the
activation of the corresponding port, i.e., the fact that a datum
crosses its boundaries. Note that choosing A as a set of port
identifiers allows for the synchronous activation of several
ports in a single computational step.

B. Behavioural patterns

The semantics of Bhv expressions used to capture connec-
tors behaviour or interaction protocol, is fairly standard, but for
the parametrization of all forms of parallel composition (i.e.,
� and �) by an interaction discipline as discussed below. The
remaining combinators have the usual meaning as in, e.g. CCS
[14].

The idea of using behaviour-annotated interfaces for con-
nectors is not new, but common to most modern architectural
description languages. Process algebra provides an expressive
setting for representing behavioural patterns and establish or
verify their properties in a compositional way. Each process
algebra introduces a number of combinators for processes
(or behaviours) and an interaction discipline, for example
synchronisation of complementary labels in CCS [14]. In the
context of component coordination, however, sticking to a
fixed interaction discipline is a severe limitation: as shown in
[6], different such disciplines can be used, at the same time,
to capture different aspects of component coordination.

To meet this goal, which entails the need for a generic way
to design process algebras, we built on top of our previous
work [5], [15]. There processes are identified with inhabi-
tants of a final coalgebra and their combinators defined by
coinductive extension [16] of ’one-step’ behaviour generator
functions 1.

A typical example is the interleaving � : ν ←− ν × ν
combinator, an interaction-free form of parallel composition.
Its definition, in Fig. 1, captures the intuition that global
observations correspond to all possible interleavings of local
observations. Morphisms τr and τl stand for, respectively, the
right and left strength [13] associated to functor P (A× Id),
whose effect amounts to a distributive law.

The synchronous product models the simultaneous execu-
tion of two processes, which, in each step, interact through
the actions they realize. Let us, for the moment, represent
such interaction by a function θ : A × A ←− A. The formal
definition is given, again, in Fig. 1, where function sel filters
out all synchronisation failures and δr is given by

δr 〈c1, c2〉 = {〈a′ θ a, 〈p, p′〉〉| 〈a, p〉 ∈ c1 ∧ 〈a′, p′〉 ∈ c2}

Defined over A, θ captures the envisaged interaction disci-
pline, endowing A with the structure of an Abelian positive
monoid 〈A; θ, 1〉 with a zero element 0. The intuition is that θ
determines the interaction discipline whereas 0 represents the
absence of interaction: for all a ∈ A, aθ0 = 0.

Synchronous product depends in a crucial way on the
interaction structure adopted. For example its commutativity
depends only on the commutativity of the underlying θ. Such
is also the case of parallel composition which combines
the effects of both � and �. Note, however, that such a
combination is performed at the genes level, as shown again
in Fig. 1.

C. Examples

We consider now a few examples of (REO-based) software
connectors.
Synchronous channel. The synchronous channel has two
ports of opposite polarity. This connector forces input and

1Technically, this amounts to the systematic use of the universal property
which characterizes coinductive extensions. Recall that, for a functor T and
an arbitrary coalgebra 〈U, p : TU ←− U〉 , its coinductive extension,
represented by [(p)], is the unique morphism from p to the final coalgebra
ωT : T νT ←− νT.

� = [(α�)] where α� = ν × ν M // (ν × ν)× (ν × ν)
(ω×id)×(id×ω) // (P (A× ν)× ν)× (ν × P (A× ν))

τr×τl // P (A× (ν × ν))× P (A× (ν × ν)) ∪ // P (A× (ν × ν))

� = [(α�)] where α� = ν × ν
(ω×ω) // P (A× ν)× P (A× ν)

sel·δr // P (A× (ν × ν))
� = [(α�)] where α� = ∪ ·(α� × α�)· M

Fig. 1. Definition of �, � and � by coinductive extension.

output to become mutually blocking, in the sense that any
of them must wait for the other to be completed.

data.[[a // b]] = IdD×U

port.[[a // b]] = fix (X = ab ·X)

Here, as well as in the next three cases, state information is
irrelevant. Therefore, U = 1. Its relational, data semantics is
simply the identity relation on data domain D and its behaviour
is captured by the simultaneous activation of its two ports.
Drain. A drain has two input, but no output, ports. Therefore,
it looses any data item crossing its boundaries. Formally,

data.[[a � �
b]] = (D× U)× (D× U)

port.[[a � �
b]] = fix (X = ab ·X)

Note the relational, data semantics is the universal relation:
any combination of input or output values is allowed (and
irrelevant).
Fifo1. This is a channel with a buffer of a single position.
Thus U = D

data.[[a �
� // b]] = R�

port.[[a �
� // b]] = fix (X = a · b ·X)

where R� is given by the following clauses, for all d, u ∈ D,

(⊥, d) R� (d,⊥) and (u,⊥) R� (⊥, u)

The first clause corresponds to the effect of an input at port a,
whereas the second captures output at port b, which requires
the presence of a datum in the internal state.
Lossy channel. In a number of practical situations component
orchestration depends not only on port activation, but also
on the absence of service requests at particular ports in
configuration. A typical example is provided by one of the
basic channels in REO: the lossy channel, which acts as a
synchronous one if both an input and an output requests are
pending on its source and sink ends, respectively. However,
it looses any data item on input on the absence of an output
request in the other end. This behaviour is distinct from that
of an unreliable channel, loosing data non deterministically.

To handle these cases we enrich the specification of the
set of actions A to include negative port activations, or more
rigorously stated, absence of port requests, denoted, for each
port p, by p̃. Technically, actions are given by datatype

A = P (P ∪ {τ})× P P (4)

subject to the following invariant

disjoint〈pos, neg〉 = (pos ∩ neg = ∅) (5)

Moreover, absence of port information is only relevant to
output ports, which may carry, or not, a request for receiving
information. Therefore, if a is an input port, a = ã.
Values of type A are represented according to the following
abbreviation

〈{a, b, c}, {d, f}〉 abv
= abcd̃f (6)

Therefore, the specification of a lossy channel becomes

data.[[• // •]] ⊆ IdD (7)

port.[[• // •]] = fix(X = ab ·X + ab̃ ·X) (8)

where b̃ corresponds to an absence of a reading request at
port b. A lossy channel only transmits if a potential receiver
is asking for the data item sent. Otherwise, data is lost.

III. COMPOSING CONNECTORS

Connectors can be composed through a set of six combina-
tors: parallel and concurrent composition, hook, interleaving,
left join and right join. This set of combinators was already
introduced in [6]. In the sequel, however, the specifications of
the first three are modified to correctly capture general context-
awareness; the remaining are repeated for completeness of ex-
position and fully understanding of the propagation examples
in section IV.

1) Aggregation: There are three combinators, denoted by
�, � and �, whose effect is to place their arguments side-
by-side. The distinction is related to the way they combine
the behavioural patterns: through parallel composition or
interleaving, respectively. Formally,

port.[[C1 � C2]] = port.[[C1]] � port.[[C2]]

port.[[C1 � C2]] = port.[[C1]] � port.[[C2]]

port.[[C1 � C2]] = port.[[C1]] � port.[[C2]]

taking, in the first two cases, θ = ∪ to capture the envisaged
interaction discipline.

At data level all combinators behave as a relational product.
Formally, for � = �,�,�,

data.[[C1 � C2]] = data.[[C1]] × data.[[C2]]

where

((~d′, ~e′),(u′, v′)) R×S ((~d,~e), (u, v))

≡ (~d′, u′) R (~d, u) ∧ (~e′, v′) S (~e, v)

Combinators � and � admit strong versions in order to
propagate negative information. They are denoted by ⊗ and
�, respectively.

Let us consider first ⊗, the strong synchronous product.
The intuition underlying the definition of P ⊗Q is as follows:
whenever a term in the expansion of P has a negative port
p̃ (and recall that by (??) p has an output polarity), it must
be multiplied by P̃ to prepare the grounds for propagating
the associated negative information. This may, in particular,
turn negative an output port in P which may represent the
propagation of negative information. Examples will be given
soon after the introduction of the hook combinator. Formally,
let Υ(P) denote the immediate expansion of behavioural
expression P , i.e.,

Υ(P) =
∑

i∈{1,··· ,m}

ωi · Pi (9)

such that P ∼ Υ(P), where ∼ stands for bisimilarity. Each
summand F in Υ(P) is said to be a factor of P , a fact we
represent by F ← Υ(P). Let F = ω ·R such that

ω ·R← Υ(P) and ω ∩ Ã 6= ∅

In this case F is said to be a factor of P with negated ports
and represented by F ← Υn(P). Now define ⊗ as

⊗ = [(α⊗)] (10)

with

α⊗ (P,Q) = α� (P,Q) ∪
⋃

ω·P ′←Υn(P)
j∈{1,··· ,n}

(ω ∪ ω̃j , (P ′, Qj))

∪
⋃

ω·Q′←Υn(Q)
i∈{1,··· ,m}

(ω̃i ∪ ω, (Pi, Q′))

for Υ(P) =
∑
i∈{1,··· ,m} ωi·Pi and Υ(Q) =

∑
j∈{1,··· ,n} ωj ·

Qj .
Note that (10) corresponds to the following explicitly recur-

sive definition:

P ⊗Q = P �Q +
∑

ω·P ′←Υn(P)
j∈{1,··· ,n}

(ω ∪ ω̃j) · (P ′ ⊗Qj) (11)

+
∑

ω·Q′←Υn(Q)
i∈{1,··· ,m}

(ω̃i ∪ ω) · (Pi ⊗Q′)

Clearly, if neither P nor Q have negative factors P ⊗ Q =
P �Q.

The strong version of parallel composition is defined by
combining, at the genes level, the effects of both � and ⊗,
just as � combines � and �. Formally,

� = [(α�)]

where

α� = ν × ν
∪·(α�×α⊗)·M // P (A× (ν × ν))

2) Hook: This combinator encodes a feedback mechanism,
drawing a direct connection between an output and an input
port. This has a double consequence: the connected ports
must be activated simultaneously and become externally non
observable. Formally, such conditions must be expressed in
port.[[C �ji]] and their specification requires some care.

The crucial issue is the suitable definition of a new combi-
nator for behaviours, hide c, parametric on a set c ⊆ A−{0},
whose effect is to prune its argument according to the follow-
ing rules:
• all computations exhibiting occurrences of non empty

strict subsets of c must be removed, because ports in c
have be activated simultaneously;

• there is, however, an exception to the rule above: if
a computation exhibits a non empty strict subset c′ of
c such that c′ only contains negative output ports, a
property denoted by negfac(c′), then such a computation
is not removed.

The intuition for the last rule is that if the only occurrence of
an output port which the hook combinator aims to internalise,
is negative, i.e., has, in the computation considered, no pending
output request, it can be ignored: there is no matching input
port, but also no information to be transmitted.

The combinator then hides all references to c in the remain-
ing computations, either by removing them when occurring in
a strictly larger context or by mapping them to an unobservable
action τ when occurring isolated. It is defined as

hide c = [(αhide c)] (12)

where

αhide c = ν
ω // P (A× ν)

hc // P (A× ν)

and

hc s = {〈a \ c, u〉 | 〈a, u〉 ∈ s ∧
((a ∩ c 6= ∅) → (c ⊂ a ∨ negfac(a ∩ c)))}
∪ {〈τ, u〉| 〈c, u〉 ∈ s}

Thus, let i, respectively j, be an output, respectively, input,
port in connector C. The hook combinator links i to j
according to the following definition:

port.[[C �ji]] = hide {i, j} hide {̃i, j̃} port.[[C]]

If data.[[C]] : Dn × U ←− Dm × U , the effect of hook on the
data flow relation is modelled by relation

data.[[C �ji]] : Dn−1 × U ←− Dm−1 × U

t′|j (data.[[C �ji]]) t|i iff t′ (data.[[C]]) t ∧ t′#j = t#i

Example 1: Let us illustrate the hook combinator through
an elementary example, which does not involve negative
information. More complex examples are discussed in next
section, in which it is shown the suitability of this combinator
to handle composition of context-aware connectors. For the
moment, consider connectors C and F, both with an input and
an output port, named a, a′ in the first case, and b, b′ in the
second. Let us analyse composition (C � F) �ba′ . At the data
level, one gets

(y, (u′, v′)) data.[[(C� F) �ba′]] (x, (u, v))

= { unfolding definitions }
∃z . ((z, y), (u′, v′)) data.[[C� F]] (x, z), (u, v))

= { unfolding definitions }
∃z . (z, u′) data.[[C]] (x, u) ∧ (y, v′) data.[[F]] (z, v)

which shows that the hook combinator encodes a form of
relational composition which is partial in the sense that only
part of the output is fed back as new input. For the behavioural
part, consider C and F as synchronous channels. Then,

port.[[(C� F) �ba′]] = fix (x = ab′.x)

because the other two terms in the expansion fix (x = aa′.x+
bb′.x+aa′bb′.x) contain strict subsets of c = {a′, b}. Note that
the synchronous channel always acts as the identity for hook.
Suppose, now, that F is defined as a Fifo1 channel. Thus,
and adopting, in the sequel, the convention which abbreviates
port.[[C]] to C,

port.[[(C� F) �ba′]]

∼ { hook definition and expansion law}

aa′b · (C� b′ · F) �ba′ +aa′ · (C� F) �ba′

+b · (C� F) �ba′

∼ { hide definition }

a · (C� b′ · F) �ba′

∼ { expansion law }

a · (aa′ · (C� b′ · F) �ba′ +b′ · (C� F) �ba′

+aa′b′ · (C� F) �ba′)

∼ { hide definition }

a · b′ · (C� F) �ba′

∼ { introducing fix }
fix (x = a · b′ · x)

Hint expansion law used in the derivation above refers to
a basic result in process algebra, although often presented
in different formulations: a process is bisimilar to the non
deterministic choice of its immediate derivatives.

3) Join: The last combinator considered here is called
join and its effect is to plug ports with identical polarity.
The aggregation of output ports is done by a right join
(C i

j > z), where C is a connector, i and j are ports and z
is a fresh name used to identify the new port. Port z receives

asynchronously messages sent by either i or j. When messages
are sent at same time the combinator chooses one of them non
deterministically.

On the other hand, aggregation of input ports resorts to a
left join (z <ij C). This behaves like a broadcaster sending
synchronously messages from z to both i and j. Formally,
for data.[[C]] : Dn × U ←− Dm × U , we define

Right join:
The data flow relation data.[[C i

j > z]] : Dn−1×U ←− Dm×U
for this operator is given by r (data.[[C i

j > z]]) t iff

t′ (data.[[C]]) t ∧ r|z = t′|i,j ∧ (r#z = t′#i ∨ r#z = t′#j)

Notation t#i stands for the component of data tuple t corres-
ponding to port i. On the other hand, t|i as a tuple identical
to t from which component t#i has been deleted. At the
behavioural level, its effect is that of a renaming operation

port.[[(C i
j > z)]] = {z ← i, z ← j} port.[[C]]

Example 2: The merger connector depicted in Figure 2 is
obtained by a right join of the sink end of two interleaved
synchronous channels.

M , (a // a′ � b // b′) a′

b′ > w =

a
��
w

b
@@

Fig. 2. A merger.

Its behavioural pattern is

port.[[M]] = fix (x = aw.x+ bw.x)

because,

port.[[M]]

∼ { definition of right join and synchronous channel }
{w ← a′, w ← b′} (fix (x = aa′ · x) � fix (x = bb′ · x))

∼ { definition of interleaving and expansion law }
{w ← a′, w ← b′} (fix (x = aa′ · x + bb′ · x))

∼ { substitution }
fix (x = aw.x+ bw.x)

Left join:
The behaviour of a left join is a little more complex: before
renaming, all computations of C in which ports i and j are
activated independently of each other must be removed. Again
this is specified by a new process combinator force c which
forces the joint activation of a set c of ports. Formally,

force c = [(αforce c)] (13)

where

αforce c = ν
ω // P (A× ν)

fc // P (A× ν)

fc s = {〈a, u〉 ∈ s| a ∩ c ⊆ {∅, c}}

Thus

port.[[(z <ij C)]] = {z ← i, z ← j} force {i, j} port.[[C]]

On the other hand, the data flow specification is given by
t′ (data.[[z <ij C]]) r iff

t′ (data.[[C]]) t ∧ r|z = t|i,j ∧ r#z = t#i = t#j

IV. PROPAGATION OF CONTEXT DEPENDENT BEHAVIOUR

The study of context dependent behaviour, and its propaga-
tion by composition, in exogenous coordination models was
motivated by the behaviour of channels which react differently
depending on the presence or absence of information at their
ports. The prototypical case is the REO lossy channel defined,
in our formalism, by (7) and (8). In this section we show that
the proposed model, with negative information, is able the
pass two tests which constitute the hallmark of propagation
of context dependent behaviour. They are concerned with
the behaviour of a lossy channel composed either with a
synchronous channel or an empty fifo1. We formulate then
as two lemmas to sustain our claim.

Lemma 1: Whenever a lossy channel is composed (via �
and hook) with a synchronous channel, on either side, the
result must be again a lossy channel, i.e.

(a // a′ � b′
� // b) �b

′

a′ = a // b (14)

(a � // a′ � b′ // b) �b
′

a′ = a // b (15)

Proof. We concentrate on the behaviour part. For the data
component of the definition just observe that the identity
relation is always the identity for relational composition. Thus,
for (14),

port.[[(a // a′ � b′
� // b) �b

′

a′]]

∼ { definition of � and hook}

fix (X = aa′ ·X + aã′ ·X + aa′bb′ ·X + aã′bb′ ·X
+bb′ ·X + aã′b̃b̃′ ·X)

∼ { definition of hide }

fix (X = ab ·X + ab̃ ·X)

∼ { definition of a lossy channel}

port.[[a // b]]

Similarly, for (15),

port.[[(a � // a′ � b′ // b) �b
′

a′]]

∼ { definition of � and hook, expansion law}

fix (X = aa′ ·X + bb′ ·X + b̃b′ ·X + aa′bb′ ·X
+aa′b̃b′ ·X + ãã′bb̃′ ·X)

∼ { definition of hide }

fix (X = ab ·X + ab̃ ·X + ãb ·X)

∼ { property (??), + idempotent}

fix (X = ab ·X + ab̃ ·X)

∼ { definition of a lossy channel}

port.[[a // b]]

�

Lemma 2: Whenever a fifo1 is composed on the right with a
lossy channel data must flow through the latter to the former as
the input port of an empty fifo1 is always presenting a reading
request. Therefore, no data is lost. Formally,

(a // a′ � b′
�
� // b) �b

′

a′ = a �
� // b (16)

Proof. Let L = port.[[a // a′]] and F =

port.[[b′
�
� // b]]. Then

port.[[(a // a′ � b′
�
� // b) �b

′

a′]]

∼ { definition of channels, � and hook, expansion law}

aa′ · (L� F) �b
′

a′ +aã′ · (L� F) �b
′

a′ +

b′ · (L� b · F) �b
′

a′ +aa′b′ · (L� b · F) �b
′

a′

+aã′b′ · (L� b · F) �b
′

a′ +aã′b̃′ · (L� b · F) �b
′

a′

∼ { property (??), + idempotent}

aa′ · (L� F) �b
′

a′ +aã′ · (L� F) �b
′

a′ +

b′ · (L� b · F) �b
′

a′ +aa′b′ · (L� b · F) �b
′

a′ +

+aã′b̃′ · (L� b · F) �b
′

a′

∼ { definition of hide }

a · (L� b · F) �b
′

a′ +a · (L� b · F) �b
′

a′

∼ { + idempotent}

a · (L� b · F) �b
′

a′

∼ { definition of channels, � and hook, expansion law}

a · (aa′ · (L� F) �b
′

a′ +aã′ · (L� F) �b
′

a′ +

b · (L� F) �b
′

a′ +aã′b · (L� F) �b
′

a′ +

aã′b̃ · (L� F) �b
′

a′)

∼ { definition of hide }

a · b · (L� F) �b
′

a′

∼ { introducing fix}
fix (X = a · b ·X)

∼ { definition of a fifo1 channel}

port.[[a �
� // b]]

For the data component notice that, once the lossy channel
never looses any data, as just shown, its static semantics, in
this particular composition, is the identity relation. Therefore

data.[[a // a′ � b′
�
� // b) �b

′

a′]] = data.[[a �
� // b]]

�

Lemmas 1 and 2 establish the adequacy of this model
to propagate context dependent behaviour. It is also instruc-
tive to compute the joint behaviour of a fifo1 with a lossy
channel. This yields, for F = port.[[a �

� // a′]] and L =

port.[[b′ // b]],

a

��
•_

_�� ��
•

��

// • •

��

oo

b c

Fig. 3. XR — The exclusive router connector.

port.[[(a �
� // a′ � b′ // b) �b

′

a′]]

∼ { definition of channels, � and hook, expansion law}

a · (a′ · F � L) �b
′

a′ +bb′ · (F � L) �b
′

a′ +

b̃b′ · (F � L) �b
′

a′ +abb′ · (F � L) �b
′

a′ +

ab̃b′ · (F � L) �b
′

a′ +ãb̃b′ · (F � L) �b
′

a′

∼ { definition of hide }

a · (a′ · F � L) �b
′

a′

∼ { definition of channels, � and hook, expansion law}

a · (a′ · (F � L) �b
′

a′ +bb′ · (a′ · F � L) �b
′

a′ +

b̃b′ · (a′ · F � L) �b
′

a′ +a′bb′ · (F � L) �b
′

a′ +

a′b̃b′ · (F � L) �b
′

a′ +ã′bb′ · (F � L) �b
′

a′ +

ã′b̃b′ · (F � L) �b
′

a′)

∼ { property (??) and definition of hide }

a · (b · (F � L) �b
′

a′ +b̃ · (F � L) �b
′

a′ +

b · (F � L) �b
′

a′ +b̃ · (F � L) �b
′

a′)

∼ { + idempotent}

a · (b · (F � L) �b
′

a′ +b̃ · (F � L) �b
′

a′)

∼ { introducing fix}

fix (X = a · (b ·X + b̃ ·X))

V. A PARADIGMATIC EXAMPLE

To provide a ’flavour’ of how the the emergent behaviour
of a composed connector is computed, consider the exclusive
router connector depicted in Fig. 3.

The intended behaviour for this connector is to transmit
either in b or c, but not in both, whatever receives in a.

One component of XR, depicted in the lower part of the
diagram, is the right join by e′ and d′ mapping to new port
z, of two broadcasters composed by �. Each broadcaster is
obtained by left joining the relevant synchronous channels.
The assembly process of XR1 is represented as

b′e

��

// e′d′ dc′

��

oo

b c

 w1

��

// z w2

��

oo

b c

The computed behavioural pattern is

port.[[XR1]] ∼ fix (X = bzw1 ·X + czw2 ·X)

The other component, XR2 is a left join of two lossy channels
and a drain, mapping their source ports, h, g and f , to w,
sequentially composed with a synchronous channel from a to
a′, i.e.,

a

��
w_

_�� ��
h′ f ′ g′

Its behavioural pattern is computed in Fig. 4.
Finally, connector XR is assembled as

XR , (XR1 ⊗ XR2) �w1,w2,f
′

h′,g′,w (17)

leading, as expected, to

port.[[XR]]

∼ { by (17)}
hide{h′, g′, w, w1, w2, f

′} (port.[[XR1]]⊗ port.[[XR2]])

∼ { computed above}
hide{h′, g′, w, w1, w2, f

′}
(fix (X = bzw1 ·X + czw2 ·X) ⊗

fix (X = ah′f ′g′ ·X + ah̃′f ′g′ ·X + ah′f ′g̃′ ·X +

af ′h̃′g̃′ ·X))

∼ { definition of ⊗; expansion law}
hide{h′, g′, w, w1, w2, f

′}
fix (X = bzw1ah

′f ′g′ ·X + bzw1ah̃′f
′g′ ·X +

bzw1ah
′f ′g̃′ ·X + bzw1af

′h̃′g̃′ ·X +

czw2ah
′f ′g′ ·X + czw2ah̃′f

′g′ ·X +

czw2ah
′f ′g̃′ ·X + czw2af

′h̃′g̃′ ·X +

b̃z̃w̃1ah̃′f
′g′ ·X + b̃z̃w̃1ah

′f ′g̃′ ·X +

b̃z̃w̃1af
′h̃′g̃′ ·X + c̃z̃w̃2ah̃′f

′g′ ·X +

c̃z̃w̃2ah
′f ′g̃′ ·X + c̃z̃w̃2af

′h̃′g̃′ ·X)

∼ { definition of hide}
fix (X = ab ·X + ab ·X + ac ·X + ac ·X +

ab̃ ·X + ab̃ ·X + ac̃ ·X + ac̃ ·X)

∼ { + idempotent}

fix (X = ab ·X + ac ·X + ab̃ ·X + ac̃ ·X)

Notice that the application of hide in the calculation above
made use of the possibility of keeping terms where the
intersection of their prefix set of ports with the argument of
hide reduce to a negated output port (cases of h̃′ and g̃′).

port.[[XR2]]

∼ { definiton of XR2}

port.[[(a // a � w <fr r <hg (h // h′ ⊗ f
� �

f ′ ⊗ g // g′)) �wa′]]

∼ { definitions of channels, ⊗, left join and hook; expansion law (??)}
hide{a′, w} (fix (X = aa′ ·X) �

fix (X = wh′f ′g′ ·X + wh̃′f ′g′ ·X + wh′f ′g̃′ ·X + wf ′h̃′g̃′ ·X))

∼ { definition of �}

hide{a′, w} fix (X = aa′ ·X + wh′f ′g′ ·X + wh̃′f ′g′ ·X + wh′f ′g̃′ ·X + wf ′h̃′g̃′ ·X
+ aa′wh′f ′g′ ·X + aa′wh̃′f ′g′ ·X + aa′wh′f ′g̃′ ·X + aa′wf ′h̃′g̃′ ·X
+ ãã′wh′f ′g′ ·X + ãã′wh̃′f ′g′ ·X + ãã′wh′f ′g̃′ ·X + ãã′wf ′h̃′g̃′ ·X)

∼ { definition of hide}

fix (X = ah′f ′g′ ·X + ah̃′f ′g′ ·X + ah′f ′g̃′ ·X + af ′h̃′g̃′ ·X)

Fig. 4. Computing the behaviour of XR2 .

VI. CONCLUSION

A model for context-aware software connectors was pro-
posed, improving on [6], and checked against typical context
propagation requirements. The model is based on separate data
and behaviour specifications, the later resorting to a ’tailor-
made’ process algebra.

Although the notion of a software connector used in this
paper was borrowed from REO, the underlying semantic
principles are largely independent of a particular coordination
language. With respect to the former, however, it should be
noted that the explicit use of combinators provides a structural
alternative to composition through graph manipulation, used in
mainstream REO literature. It also entails proofs by standard
equational reasoning, even avoiding the explicit construction
of bisimulations.

Of course, a lot of work remains to be done. In particular we
are working on developing notions of connector equivalence
and refinement on top of which a basis for a connector calculus
could be studied.

REFERENCES

[1] F. Arbab. Abstract Behavior Types: A Foundation Model for Compo-
nents and Their Composition. In F. S. de Boer, M. M. Bonsangue,
S. Graf, and W.-P. de Roever, editors, Formal Methods for Components
and Objects: First International Symposium, FMCO 2002, Leiden, The
Netherlands, November 2002, Revised Lectures, volume 2852 of LNCS,
pages 33–70. Springer, 2003.

[2] F. Arbab. Reo: A Channel-based Coordination Model for Component
Composition. Mathematical Structures in Computer Science, 14(3):329–
366, 2004.

[3] F. Arbab and J. J. M. M. Rutten. A coinductive calculus of component
connectors. In M. Wirsing, D. Pattinson, and R. Hennicker, editors,
Recent Trends in Algebraic Development Techniques, 16th Inter. Work-
shop, WADT 2002, Revised Selected Papers, pages 34–55. Springer Lect.
Notes Comp. Sci. (2755), 2003.

[4] C. Baier, M. Sirjani, F. Arbab, and J. J. M. M. Rutten. Modeling
component connectors in reo by constraint automata. Science of
Computer Programming, 61(2):75–113, 2006.

[5] L. S. Barbosa. Process calculi à la Bird-Meertens. In M. L. Andrea Cor-
radini and U. Montanari, editors, CMCS’01, volume 44.4, pages 47–66,
Genova, April 2001. Elect. Notes in Theor. Comp. Sci., Elsevier.

[6] M. A. Barbosa and L. S. Barbosa. A perspective on service orchestration.
Science of Computer Programming, 74(9):671–687, 2009.

[7] M. Bonsangue, D. Clarke, and A. Silva. Automata for context-dependent
connectors. In J. Field and V. Vasconcelos, editors, Proc. Coordiantion
2009, volume 5521 of Lecture Notes in Computer Science, pages 184–
203. Springer Verlag, 2009.

[8] D. Clarke, D. Costa, and F. Arbab. Connector colouring I: Synchro-
nisation and context dependency. Science of Computer Programming,
66(3):205–225, 2007.

[9] D. Costa. Formal models for context dependent connectors for dis-
tributed software components and services (forthcoming PhD thesis).
PhD thesis, Vrije Universiteit Amsterdam, 2010.

[10] J. L. Fiadeiro. Software services: scientific challenge or industrial hype?
In K. Araki and Z. Liu, editors, Proc. First International Colloquim on
Theoretical Aspects of Computing (ICTAC’04), Guiyang, China, pages
1–13. Springer Lect. Notes Comp. Sci. (3407), 2004.

[11] J. L. Fiadeiro and A. Lopes. Semantics of Architectural Connectors.
In M. Bidoit and M. Dauchet, editors, TAPSOFT’97: Theory and
Practice of Software Development, 7th International Joint Conference
CAAP/FASE, Lille, France, April 14-18, 1997, Proceedings, volume
1214 of LNCS, pages 505–519. Springer-Verlag, 1997.

[12] D. Kitchin, W. R. Cook, and J. Misra. A language for task orchestration
and its semantic properties. In C. Baier and H. Hermanns, editors, Proc.
17th Inter. Conf. Concurrency Theory, CONCUR 2006, Bonn, Germany,
August 27-30, pages 477–491. Springer Lect. Notes Comp. Sci. (4137),
2006.

[13] A. Kock. Strong functors and monoidal monads. Archiv für Mathematik,
23:113–120, 1972.

[14] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[15] P. Ribeiro, M. A. Barbosa, and L. S. Barbosa. Generic process algebra:

A programming challenge. Journal of Universal Computer Science,
12(7):922–937, 2006.

[16] J. Rutten. Universal coalgebra: a theory of systems. Theoretical
Computer Science, 249:3–80, 2000.

[17] S. Stephen Kell. Rethinking software connectors. In SYANCO ’07: Inter.
on Synthesis and Analysis of Component Connectors, pages 1–12, New
York, NY, USA, 2007. ACM.

