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Abstract Research in formal methods emphasizes a funda-
mental interconnection between modeling, calculation and
prototyping, made possible by a common unambiguous,
mathematical semantics. This paper, building on a broader
research agenda on coalgebraic semantics for Unified Model-
ing Language diagrams, concentrates on class diagrams and
discusses how such a coalgebraic perspective can be of use
not only for formalizing their specification, but also as a basis
for prototyping.

Keywords UML class diagrams · Coalgebraic modeling

1 Introduction

The Unified Modeling Language (UML) is defined, by [9], as
‘a graphical language for visualizing, specifying, construct-
ing, and documenting the artifacts of a software-intensive
system’. In practice, it encompasses a collection of inter-
related, semi-formal design notations for software develop-
ment, providing a unified, expressive and widely adopted
framework—a de facto standard. It lacks, however, a rigor-
ous and consensual semantic definition leading, therefore, to
weak effective support to the design of complex systems and,
often, to partially conflicting support tools.

On the other hand, most research in Formal Methods
emphasizes a fundamental interconnection between model-
ing, calculation and prototyping, made possible by a common
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unambiguous, mathematical semantics. In this context
modeling refers to the ability to choose the right abstrac-
tions for a problem domain, and calculation stresses the
need for expressing such abstractions in a framework whose
mathematical structure is sufficiently rich to enable rigorous
reasoning. On the other hand, prototyping is related to the
execution of abstract models to simulate systems’ behavior
and gather empirical evidence about their properties.

Such an interconnection seems particularly appropriate
with respect to the formalization of UML. However, the
number and diversity of diagrams expressing a UML model
makes it difficult to base its semantics on a single framework,
which must be expressive enough to interpret different lan-
guages capturing both static and dynamic aspects of systems.
On the other hand, some of the formalizations proposed in
the literature are essentially descriptive and difficult to use
for either verification or prototyping.

As a contribution to face this challenge, the authors intro-
duced, in a series of previous publications, a generic coal-
gebraic semantic framework for different models in UML,
including class diagrams, use cases, statecharts and sequence
diagrams [3,11,13,14]. In such a framework, the semantics
of different kinds of models are given as coalgebras [7,10]
which encapsulate a state space, regarded as a black box with
limited access via specific observers. Notions of bisimulation
and refinement capture observational equivalence and simu-
lation preorders, respectively. Such standard tools in coal-
gebra theory can form the basis of a whole discipline of
reasoning and transforming UML designs. Actually, if the
semantics of different UML models can be presented as coal-
gebras for suitable functors, we will end up with a uniform
setting for tackling the diversity of such models, their prop-
erties and inter-relations.

This paper is part of this broad research agenda. It
concentrates on class diagrams and discusses how a
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92 L. S. Barbosa, S. Meng

coalgebraic perspective can be of use not only for formal-
izing their specification, but also as a basis for prototyping.

Recall that a UML class diagram captures the static struc-
ture of a system, as a set of classes and relationships, called
associations, between them. Classes may be further anno-
tated with constraints, i.e., properties that must hold for every
class instance (or object) along its lifetime. In our approach
the dynamics of individual classes, their aggregations and the
whole diagram (populated with class instances) are expressed
coalgebraically. Each coalgebra corresponds to some sort of
transition machine, therefore enabling an interface for pro-
totyping by directly invoking the coalgebra operations. As
a proof of concept the prototyping setting described in the
paper has been implemented in Haskell.

The remaining of the paper is organized as follows:
Section 2 discusses coalgebraic models for classes, their
composition and prototyping. A few elementary concepts in
coalgebra theory are briefly recalled. Sections 3 and 4 deal
with constraints and associations in a class diagram, respec-
tively. Section 4 also introduces the diagram engine, a coal-
gebraic structure to cope with the global diagram dynamics.
Finally, Sect. 5 concludes and points out some issues for
future work.

2 Classes

2.1 A coalgebraic perspective

A class declaration in UML class diagram introduces a signa-
ture of attributes and methods, acting as a type for its possible
instances. Such a definition, as discussed below, has a lot in
common with the specification of the type of a coalgebra;
technically a functor which captures the interface through
which its state space can be observed and modified.

Recall that, given such a functor T, understood as a spec-
ification of a signature of observers, a T-coalgebra is simply
a function p : TU ←− U mapping elements of a state space
U into their observations through T. A useful metaphor iden-
tifies functor T with a ‘lens’ , providing the unique, limited
way through which the state of a system is observed. Sim-
ilarly, a coalgebra p : T U ←− U is regarded as a formal
description of the observation process.

Alternatively, a T-coalgebra p can be thought of as a gen-
eralized transition system p ←− , the shape of transitions
being determined by T according to

p←− = ∈T ·p (1)

or, introducing variables,

u′ p←− u ≡ u′ ∈T p u

where relation ∈T denotes structural membership. Relation
∈T coincides with datatype membership defined in [6] by a

Fig. 1 An example

Galois connection. For the powerset functor, ∈T amounts to
standard set membership, while for polynomial functors the
following inductive definition applies (see [12] for details):

∈Id= id

∈K = ⊥
∈T1×T2 = (∈T1 ·π1) ∪ (∈T2 ·π2)

∈T1+T2 = [∈T1 ,∈T2 ]
∈T1·T2 =∈T2 · ∈T1

∈T K =
⋃

k∈K

∈T ·βk (where βk f = f k)

Redirecting our attention to UML, consider now the example
class diagram depicted in Fig. 1, which is a simplified model
of a video renting e-business. Consider, in particular, class
Membership, to which an OCL constraint is attached, stating
that every client’s account balance is larger than 0. This class
declares three attributes and a method over a state space, iden-
tified by variable U below, which is made observable exactly
(and uniquely) by the attributes and methods it declares.
Concretely,

joined : Date←− U

lastHire : Date←− U

balance : R←− U

pay : U ←− U × R

These four declarations can be grouped in one through a
split construction

〈joined, lastHire, balance, pay〉 : Date×Date×R×UR ←− U

which is a coalgebra for functor

T X = Date × Date × R× XR
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Bringing class diagrams to life 93

Therefore, we write,

[[Membership]] = 〈joined, lastHire, balance, pay〉
In general, the semantics [[c]] of a class c is given by a spec-
ification of a coalgebra

〈at, md〉 : A × (O ×U )I ←− U

where A is the attribute domain, and each method accepts a
parameter, of type I , and delivers both a state change and an
output value, of type O . I.e., a coalgebra for functor

T X = A × (O × X)I (2)

Typically, I and O are sum types, aggregating the input-
output parameters of each declared method. On its turn, A is
usually a product type joining all attribute outputs in a way
which emphasizes that each of them is available independent
of the others, and therefore always able to be accessed in
parallel.

More generally, as methods are typically implemented by
partial functions or even by arbitrary relations, a more accu-
rate definition of functor T would be

T X = A × ((O × X)+ 1)I (3)

T X = A ×P(O × X)I (4)

respectively. Both cases (3) and (4), and many more (for
example involving methods whose outcome follows a proba-
bilistic distribution), are subsumed by the following
definition

〈at, md〉 : A × B(O ×U )I ←− U (5)

where functor T is parametric in a strong monad B1 captur-
ing some sort of behavioral effect. For example, partiality
(making BX = X + 1) or non determinism (B standing for
the finite powerset functor). Additionally, a class may specify
some initial conditions, typically as a predicate γ : 2←− U
which is supposed to hold in the coalgebra initial states.

1 A strong monad [8] is a monad 〈B, η, µ〉 where B is a strong functor
and both η and µ strong natural transformations. B being strong means
there exist natural transformations T(Id × −) : T × − ⇐
 T × −
and T(− × Id) : − × T ⇐
 − × T called the right and left strength,
respectively, subject to certain conditions. Their effect is to distribute
the free variable values in the context “−” along functor B. Strength
τr , followed by τl maps BI × BJ to BB(I × J ), which can, then,
be flattened to B(I × J ) via µ. In most cases, however, the order of
application is relevant for the outcome. The Kleisli composition of the
right with the left strength, gives rise to a natural transformation whose
component on objects I and J is given by δrI,J = τrI,J • τlBI,J Dually,
δlI,J = τlI,J • τrI,BJ . Such transformations specify how the monad dis-
tributes over product and, therefore, represent a sort of sequential com-
position of B-computations. Whenever δr and δl coincide, the monad
is said to be commutative and the unique transformation represented
by δ.

Such a coalgebraic setting provides for free a notion of
observational equivalence—T-bisimulation, which general-
izes to T-shaped transition systems the notion of bisimulation
found in automata theory or process algebra: a bisimulation
is a relation over the state spaces of two coalgebras, p and q,
which is closed for their dynamics, i.e.

(x, y) ∈ R ⇒ (p x, q y) ∈ TR (6)

which, getting rid of variables, becomes the following
inequality in the language of the (pointfree) calculus of binary
relations [1]:

R ⊆ p◦ · (TR) · q (7)

where p◦ stands for the relational converse of p. Applying the
shunting rule of the calculus2 known as the shunting rules [4]
on p◦, this simplifies to

p · R ⊆ (TR) · q (10)

Instantiating definition (6) to functor T, yields two class
models being bisimilar iff they provide identical observations
through attributes and execution of the method’s component
not only deliver equal outputs but also makes each of them
to evolve to a pair of new states which are also bisimilar.

Formally, given p and q over state spaces U and V , for
any u ∈ U , v ∈ V ,

u ∼ v ⇔ π1 p u = π1q v ∧
∀i∈I let(r, u′) = (π2 p u)i, (t, v′) = (π2q v)i

in r = t ∧ u′ ∼ v

2.2 Bringing classes to life

Instances of class specifications, being coalgebras for func-
tor T, can be prototyped as transition machines with shape
given by the specification of T implicit in definition (5), i.e.,

TX = A × B(O × X)I (11)

Our prototyping framework provides a mechanism for regis-
tering and selecting class instances; interaction with each
specific instance is done, in a step-by-step mode, through
activation of the corresponding 〈at, md〉 operation.

But what if one wants to prototype not a single class but
a fragment of the whole Class Diagram? In such a case it
would be nice to follow a similar mechanism, activating a
pair 〈at, md〉 combining the dynamics of possible instances
of all the classes considered in the fragment of interest. In
simpler words, we would like to look at (an instance of) a
fragment of a Class Diagram as a coalgebra itself.

2 There are two shunting rules [4] as follows

f · R ⊆ S ≡ R ⊆ f ◦ · S (8)
R · f ◦ ⊆ S ≡ R ⊆ S · f. (9)
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94 L. S. Barbosa, S. Meng

This entails the need for specific composition strategies
for T-coalgebras. In the sequel we discuss three such strate-
gies formalized as combinators over T-coalgebras, borrow-
ing from the authors’ previous work on coalgebraic calculi.
Reference [5], in particular, introduces a comprehensive cal-
culus of generalized Moore machines framed as coalgebras
for a functor similar to (11) which can, to a great extent, be
adapted to the present setting to reason about class specifi-
cations.

There are two basic ways for combining (instances of)
class specifications: parallel aggregation, denoted by �, in
which methods in both classes are called simultaneously (as
they always act upon disjoint state spaces), and interleav-
ing, denoted by �, which offers a choice of which class to
call. In both cases, however, attributes are always available to
be observed, and therefore are composed in a multiplicative
context. Initial conditions are joined by logical conjunction.

Therefore, given coalgebras p and q, over state spaces U
and V , respectively, we define their product p � q as

〈γp�q , 〈atp�q , mdp�q〉〉, (12)

where

γp�q = U × V
γp×γq �� 2× 2

∧ �� 2

atp�q = U × V
atp×atq �� A × A′

mdp�q = U × V × (I × I ′) m �� (U × I )× (V × I ′)
mdp×mdq �� B(O ×U )× B(O ′ × V )

δ �� B((O ×U )× (O ′ × V ))

Bm �� B((O × O ′)× (U × V ))

where m is an isomorphism (combining Cartesian product
commutativity and associativity), and δ is the Kleisli com-
position of left and right strengths associated to monad B.
Interleaving, or choice, differs from � only in the methods
component. Thus,

mdp�q = U × V × (I + I ′) �×id �� (U × V )2 × (I + I ′)
∼= �� (U × I )× V + (V × I ′)×U

f �� B(O ×U )× V + B(O ′ × V )×U

τr×τr �� B((O ×U )× V )+ B((O ′ × V )×U )

∼= �� B(O × (U × V ))+ B(O ′ × (U × V ))

g �� B((O+O ′)×U×V )+B((O+O ′)×U×V )

� �� B((O + O ′)×U×V )

where f
abv= mdp×id+mdq×id and g

abv= B(ι1×id)+B(ι2×
id). On the other hand, �= 〈id, id〉 and �= [id, id] denote,
respectively, the diagonal and co-diagonal functions (see [4]
for details on these definitions and the calculus of functions).

Finally, another tensor, denoted by �, corresponds to what
may be called concurrent composition. It is defined as a
combination of the � and �, allowing for both parallel or
interleaved method execution. Formally, the action of p � q
on methods of classes p and q accepts either separated or
tupled inputs to deliver the result of applying either mdp�q

or mdp�q :

mdp�q : B((O+O ′+O×O ′)×U×V )←− U×V×(I+ I ′+ I× I ′)

The reader can easily check mdp�q is defined by

mdp�q = B(dl◦) · δ · (mdp�q ×mdp�q ) · dr

where dl and dr stand for product left and right distribution,
respectively.

A wrapping mechanism is also in order to adapt methods’
input/output interfaces. This may be useful, when prototyp-
ing a class diagram, for re-arranging arguments or results of
the methods declared in the class according to a certain order
or to cast or transform such values. Wrapping has no effect on
the attribute component. For the methods’ component, how-
ever, it corresponds to the pre- and post-composition with
functions.

Formally, let p be the diagram model whose combined
methods’ input (respectively, output) interface is I (respec-
tively, O). and consider functions f : I ←− I ′ and g :
O ′ ←− O . Model p wrapped by f and g is denoted by
p[ f, g] and defined by input pre-composition with f and
output post-composition with g. Clearly,

mdp[ f,g] = Up × I ′ id× f−−−−→ Up × I
mdp−−−−→ B(Up × O)

B(id×g)−−−−→ B(Up × O ′)
The combinator enjoy the usual properties of a wrapper.

For example, for functions f : I ←− I ′, f ′ : I ′ ←− J ,
g : O ′ ←− O and g′ : R←− O ′,

(p[ f, g]) [ f ′, g′] ∼ p
[

f · f ′, g′ · g]
(13)

because

md(p[ f,g])[ f ′,g′]
∼ { wrapping definition }

B(id× g′) ·mdp[ f,g] · (id× f ′)
∼ { wrapping definition }

B(id× g′) · B(id× g′) ·mdp · (id× f ) · (id× f ′)
∼ { × is a functor }

B(id× g′ · g) ·mdp · (id× f · f ′)
∼ { wrapping definition }

mdp[ f · f ′,g′·g]
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Bringing class diagrams to life 95

On the other hand, all three forms of composition (cor-
responding to �, � and �), combinators are associative as
well as commutative, whenever B is a commutative monad.
As one would expect, such properties are stated up to bisim-
ilarity.

The proof of commutativity of � below illustrates a way
to reason, in a calculational style, with coalgebraic defini-
tions. The basic proof technique resorts to the well-known
fact that a morphism between coalgebras entails bisimilarity.
In this example isomorphism s : V × U ←− U × V relat-
ing the state spaces of classes p � q and q � p, is shown to
be a T-coalgebra morphism. The only non trivial part of the
proof is the one related to the methods’ component, which
we detail as follows in a completely pointfree style. Note a
swap of the arguments is also necessary, which is achieved
by a suitable wrapping:

aq�p[s,s] · (s× id)

= { � and wrapping definition }
B(id× s) · Bm · δl · (aq × ap) ·m · (id× s) · (s× id)

= { s natural and s ·m = m · (s× s) }
B(id× s) · Bm · δl · s · (ap × aq) ·m
= { δl , δr interchangeable }

B(id× s) · Bm · Bs · δr · (ap × aq) ·m
= { routine: m · s = (s× s) ·m }

B(id× s) · B(s× s) · Bm · δr · (ap × aq) ·m
= { B commutative }

B(id× s) · B(s× s) · Bm · δl · (ap × aq) ·m
= { s = s◦ , � and wrapping definition }

B(s× id) · ap�q

3 Constraints

Constraints are another essential ingredient of class dia-
grams. Their semantic effect is to constraint what coalgebras
count as valid instances for the class. Consider, for example,
constraint

balance > 0

attached to class Membership in our example.
Constraints are predicates which should be preserved

along the life-time of each instance of the corresponding
class. Formally, they can be seen as invariants. Following
the approach recently proposed in [2], such predicates are
first encoded as coreflexives, i.e., as fragments of the iden-
tity relation, according to

y �P x ≡ y = x ∧ P x

Invariance, with respect to coalgebra p, is then expressed as

p ·�P⊆T �P · p (14)

Applying shunting (8) to (14) leads to

�P ⊆ p◦ · (T�P ) · p︸ ︷︷ ︸
©p�P

(15)

which brings about a sort of “next time” modal operator,
holding for those states whose all immediate successors, if
any, satisfy �P . Therefore, assertion

�P ⊆ ©p�P (16)

is an alternative statement of “�P in an invariant” for coal-
gebra p.

When reasoning about diagram transformations con-
straints entail proof obligations. For example,

[[balance > 0]] =
[[Membership]] ·�balance>0

⊆ T �balance>0 · [[Membership]]
needs to be discarded whenever justifying a transformation
involving class Membership.

Proof obligation (14), once instantiated to functor (2),
reads

〈at, md〉 ·�P ⊆ A × B(O ×�P )I · 〈at, md〉 (17)

which reduces, by split fusion and absorption (cf., laws in
[4]), to

〈at ·�P , md ·�P 〉 ⊆ 〈at, B(O ×�P )I ·md〉
which, by structural equality, is equivalent to the following
two conditions:

at ·�P⊆at (18)

md ·�P⊆B(O ×�P )I ·md (19)

On the other hand, constraints should also be satisfied by
the initial conditions, i.e.,

∀u∈U . γ u⇒ P u

which can be expressed in a point-free format as the inclusion
of the corresponding coreflexive relations:

�γ ⊆ �P (20)

What needs to be proved, however, is that constraints
are preserved by the aggregation combinators, �, � and �.
Clearly, for all cases, (20) holds trivially: the effect of each
combinator on the initial conditions is their conjunction. Ver-
ification of proof obligation (14) is shown for combinator �,
the other cases being similar. Consider, thus, two T-coalge-
bras p = 〈atp, mdp〉 and q = 〈atq , mdq〉, over state spaces
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96 L. S. Barbosa, S. Meng

U and V , respectively. Suppose they correspond to two clas-
ses in a Class Diagram whose constraints are specified by
predicates P and P ′, respectively. Conditions (18) and (19)
instantiates to

atp�q ·�(P×P ′) ⊆ atp�q

mdp�q ·�(P×P ′) ⊆ B((O × O ′)×�(P×P ′))
I×I ′ ·mdp�q

The first inequality holds because �(P×P ′) is a coreflex-
ive. To prove the second one we reason

mdp�q · (�(P×P ′) × (id× id))

= { definition of � and �
(P×P ′) = �P ×�P ′ }

Bm · δ · (mdp ×mdq) ·m · ((�P ×�P ′)× (id× id))

= { m is a natural transformation}
Bm · δ · (mdp ×mdq) · ((�P × id)× (id×�P ′)) ·m
= {× is a functor}

Bm · δ · ((mdp · (�P × id))× (mdq · (id×�P ′))) ·m
⊆ { p (resp., q) preserves P (resp., P ′)}

Bm · δ · ((B(O ×�P ) ·mdp)×(B(O ′×�P ′) ·mdq)) ·m
= { δ is a natural transformation and× is a functor}

Bm · B((O ×�P )× (O ′ ×�P ′)) · δ · (mdp ×mdq) ·m
= { m is a natural transformation}

B((O × O ′)× (�P ×�P ′)) · Bm · δ · (mdp ×mdq) ·m
= { definition of �}

B((O × O ′)× (�P ×�P ′)) ·mdp�q

4 Associations and the diagram engine

4.1 Associations

In a UML class diagram associations are recorded as arrows
with annotations of multiplicities, representing relationships
between sets of instances of the involved classes. Being prop-
erties of relationships, they can be regarded as their types and
as invariants over a coalgebra representing the whole set of
instances of a class diagram. Such a coalgebra, referred in the
sequel as the diagram engine, is defined over a state space
Pop× Assocs where

Pop =P(Ref)ClassId

Assocs =P(Assoc)AId

Assoc = ClassId× ClassId×P(Ref × Ref)

where P denotes the finite powerset functor. We assume
classes, class instances and associations have unique identi-
fiers (of types ClassId, Ref and AId, respectively).

A first property common to all associations in a class dia-
gram is the fact of being total with respect to the actual sets
of instances of the classes involved. That is: no instance can

be left out of an association in which its class participates.
How can this be expressed?

Actually, many useful properties of relations have simple
algebraic formulations,3 namely resorting to the kernel and
image operators, given by

kerR = R◦ · R
imgR = R · R◦

where R◦ denotes the converse of relation R. The totality
property we are looking for is specified through the require-
ment that the identity relation is contained in ker R. There-
fore, let S = (ρ, α) be the state space of the diagram engine
coalgebra as indicated above (note the type of this coalgebra
is still to be discussed). Thus, for all association identifier a,
let α(a) = (c, d, r). The association is total iff

idρ(c) ⊆ ker r (21)

Now, the different types of associations can be characterized
similarly:

– one-to-one: ker r ⊆ idρ(c), which charaterizes injectivi-
ty, and img r ⊆ idρ(d) which specifies r as a simple (i.e.,
functional) relation. Combining with (21) yields

ker r = idρ(c) ∧ img r ⊆ idρ(d) (22)

– many-to-one: img r ⊆ idρ(d), which combined with (21)
specifies r as a (total) function.

– one-to-many: img r◦ ⊆ idρ(c) which is equivalent, by
duality, to ker r ⊆ idρ(c). Together with (21) yields

ker r = idρ(c) (23)

– many-to-many: any relation does the job.

A little more contrived is the specification of a m to n associ-
ation. Multiplicity at most m in the source class is captured
by

∀p∈dom r . #(r · {p}) ≤ m (24)

Similarly, multiplicity at most n in the target class is
expressed by

∀q∈rng r . #({q} · r) ≤ n (25)

where dom and rng are coreflexive relations obtained by
intersecting with the identity relation ker and img, respec-
tively. Note that, as p is a coreflexive pair, composition r ·{p}
corresponds to relation {(y, π1 p)| (y, π1 p) ∈ r}.

3 See [1] for a detailed account of the pointfree calculus of binary rela-
tions.
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Bringing class diagrams to life 97

4.2 The diagram engine

We have characterized associations in a class diagram as
properties of binary relations between class instances. This
entailed the need for referring explicitly to the sets of class
instances as well as to the actual relations between instances.
Such sets, indexed by class and association identifiers, as
mentioned above, form the state space of a coalgebra—the
diagram engine—which represents the dynamics of the
whole class diagram. In a sense the properties of associa-
tions should be regarded as invariants for such a coalgebra.

But what is its shape? As usual, this is determined by the
signature of operations available upon it. In other words, the
operations which allow us to prototype the diagram and test
its behavior. Let U abbreviate type Pop× Assocs. At least
the following operations must be considered:

– create new instances:
new : U × Ref←− U × ClassId

– remove instances:
del : U ←− U × Ref

– connect a class instance to another in the context of a
declared association:
connect : U ←− U × AId× (ClassId× Ref)2

– disconnect a class instance from an association:
disconnect : U ←− U × Ref × AId

which leads to the definition of the diagram engine as a coal-
gebra

(U, δ : (Ref + 1)×U )I P ←− U ) (26)

where

I P = ClassId+ Ref + (AId×ClassId×Ref)2

+ (Ref×AId)

represents the input parameters for the four operations. Even-
tually, initial conditions can be specified to characterize δ

initial valid states (for example, forcing initially all sets of
instances to be empty).

Note that properties of associations, as discussed in the
previous section, can be given as invariants for coalgebra
δ. In rigor, however, there are a number of unstable states
in δ which may fail to verify such properties: for example,
after the creation of a new instance and before its addition to
the relevant associations. From a prototyping point of view,
this is achieved by forcing the diagram engine to execute
from a state which violates such almost invariants, until it
comes to a state in which they hold. This basically means
that on creating or removing a class instance, the coalgebra
is not observed until the associated operations of connecting
or disconnecting terminate. Such is the strategy adopted in
our Haskell proof-of-concept implementation.

5 Conclusions

In this paper we define a comprehensive coalgebraic seman-
tic model for UML class diagrams coping with classes, their
composition, constraints and associations. A diagram engine
to capture the global diagram dynamics is also framed
coalgebraically. A number of combinators are defined corre-
sponding to different ways of combining class specifications.
Constraints, as well as associations, are formally character-
ized as invariants over a coalgebra representing the corre-
sponding class or class diagram specifications. Furthermore,
such invariants are shown to be preserved by the combinators.
The coalgebraic specification of a class diagram is captured
by the diagram engine, which has been instantiated in a pro-
totype developed in Haskell.

Prospects for future work include the investigation of other
features present in class diagrams, such as generalization, as
well as the planning of significative case studies to assess
empirically the merits of the approach proposed here. We
are also interested in simulation of system model behavior.
In addition, another natural follow up of this paper concerns
refinement of class diagrams, extending previous work (e.g.,
in [3,12]) to take into account constraints and associations.
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