
Certification of open-source software:
A role for formal methods?

Luis S. Barbosa1, Antonio Cerone2, Alexander K. Petrenko3 and Siraj A.
Shaikh4

1 CCTC & Dep. of Informatics, Minho University, Braga, Portugal
lsb@di.uminho.pt

2 International Institute for Software Technology, United Nations University,
Macau SAR China

antonio@iist.unu.edu
3 ISP RAS, Russian Federation

petrenko@ispras.ru
4 Department of Informatics and Sensors,

Cranfield University, Defence Academy of the United Kingdom
Shrivenham, SN6 8SA, United Kingdom

s.shaikh@cranfield.ac.uk

Abstract. Despite its huge success and increasing incorporation in com-
plex, industrial-strength applications, open source software, by the very
nature of its open, unconventional, distributed development model, is
hard to assess and certify in an effective, sound and independent way.
This makes its use and integration within safety or security-critical sys-
tems, a risk. And, simultaneously an opportunity and a challenge for
rigourous, mathematically based, methods which aim at pushing software
analysis and development to the level of a mature engineering discipline.
This paper discusses such a challenge and proposes a number of ways in
which open source development may benefit from the whole patrimony
of formal methods.

Keywords: Open source software certification; formal methods; software quality.

1 Introduction: The certification challenge

The answer is yes.
But could you please repeat the question?

(Woody Allen, 1985)

Proved successful over the years, Open Source Software had a global impact
on the way software systems and software-based services are developed, dis-
tributed and deployed. In particular, it has delivered some high-quality operating
systems, such as GNU/Linux and FreeBSD, middleware, such as the Sendmail
mail server, the Apache web server, the MySQL data base management system
and the Samba network protocol, as well as very popular application software,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55620775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Barbosa, Cerone, Petrenko, Shaikh

such as OpenOffice and the Mozilla browser. All of them remain, among many
other examples, as a testimony to its success and resilience.

Widely acknowledged benefits of open source software include reliability, low
development and maintenance costs, as well as rapid code turnover. Moreover,
companies become aware that integrating open source software into commercial
products, made available by liberal open source software licences, reduce devel-
opment costs while offering usually high-quality, extensively tested components.
Furthermore, Governments all over the world are becoming aware of the grow-
ing dependence on proprietary formats and software in their administration, and
regard open source software as a warranty of technological independence, which
turns out to a strategic advantage, mainly in the developing world.

However, state-of-the-art open source software, by the very nature of its
open, unconventional, distributed development model, makes software quality
assessment, let alone full certification, particularly hard to achieve and raises
important challenges both from the technical/methodological and the managerial
points of view.

This makes the use of open source software, and its integration within industrial-
strength applications, with stringent safety or security requirements, a risk. And
also a serious concern because, as recently reported in the Gartner Report [29],
spending on software related to Linux server platforms is on a compounded an-
nual growth rate of 35.7 percent from 2006 to 2011 and (...) by 2012, more than
90 percent of enterprises will use open source in direct or embedded forms.

This state of affairs has been identified either in the open source software
community (as witnessed, for example, in an increasing number of mentions
in recent editions of the IFIP Conference on open source software) and in the
formal methods communities (open source software as a target domain for for-
mal methods was recognised in recent editions of prestigious FM and SEFM
international conferences). The relevance of this problem is further emphasised
by a number of panels organised in open source software forums (eg, the OSS
Watcher) and industry oriented initiatives. Finally, a series of workshops pro-
moted by the United Nations University, with the acronym OpenCert, have
addressed specifically this challenge since 2007.

Actually, OpenCert stands for a broader initiative aiming at launching an
informal network of people from Academia and Industry interested in strengthen
the role of open source software by applying formal methods to its certification.
The possible institution of an international certification authority for open source
software, has been occasionally mentioned as a long term objective.

This paper, echoing a number of questions addressed in the OpenCert work-
shops, aims at contributing to a wider discussion on which role formal methods,
i.e. methods rooted on mathematical semantics for computing phenomena, can
play in open source software certification and in what ways can such a role be
made effective.

The relevance of formal methods for open source software is discussed in the
following section. Section 3 addresses quality models and certification of open
source software, paving the way for a more detailed discussion on three comple-



Certification of open-source software 3

mentary ways formal methods can be adopted to increase confidence on open
source software components: model-based testing, support to program under-
standing and support to system development. Each of these topics is addressed
separately in sections 4, 5 and 6, respectively.

2 Why formal methods?

The use of precise and mathematically sound techniques to design and engineer
software is advantageous for a variety of reasons. A well-defined notation allows
an expression of requirements in a manner that is both clear and comprehensive,
resulting in a formal specification. A model of the system can then be developed
and checked for correctness with respect to it. This is achieved by a variety of
means. One approach is to use theorem-proving where logical axioms and infer-
ence rules are used to construct a proof, usually in a semi-automatic procedure.
Another approach is to use model-checking whereby an exhaustive search of all
possible states of the system is performed to demonstrate whether it is correct;
one advantage of this approach is that in case the system is flawed then a counter-
example is produced, which can be helpful in determining where the flaw is in the
system. Of interest here is not only correctness, but also (usually intricate) prop-
erties of the system that need to be established. For example, system designers
are often interested to check whether a concurrent system is deadlock-free. Such
questions have to be answered before a system is implemented and operational,
and, in most cases, can only be done so if the system is modelled and designed
formally. Development of critical and dependable software therefore necessitates
a formal approach.

The software industry, by and large, so far has either failed to recognise the ef-
fectiveness of formal methods or levied criticism on the inaccessibility and cost of
using them [15,3]. Confusion also abounds on the exact role that formal methods
should play in the software development process [27]. There is emerging evidence,
however, that formal methods are being adopted in the industry and deliver on
the promise [16]. Examples of successful industrial use are available for a range
of formal techniques, from model-oriented frameworks such as VDM [14,27] to
process algebras such as CSP [26,11]. Some of the criteria for effective use in the
industry include introducing formal methods incrementally [21], at an early stage
of requirements analysis [16] and applied to selected, possibly critical, compo-
nents avoiding overuse [4,5]. The merits of good tool support and early exposure
in terms of training and curriculum have also been highlighted [14].

Recently a number of experiments of application of formal methods to open
source software have been reported in the literature. Such efforts have come with
a realisation that formal verification could significantly raise confidence in the
design of open source software. So far, however, they have target a low level of
abstraction, acting directly over source code, since all of it is available in open
source software projects, and addressing its verification against the absence of
deadlocks [7], memory access violations [8] and others [18]. While such exper-
iments would be of interest to developers, who are likely to prefer a post-hoc



4 Barbosa, Cerone, Petrenko, Shaikh

detection and correction of bugs, a range of possiblities could open up if formal
methods were introduced at the early specification and design stage: both to
help in requirements analysis and producing provably correct design. Not only
would this reduce bugs and vulnerabilities in the code produced, but also serves
to provide means for easier certification. Proposals as in [9] to encourage the
use of formal methods and integrate it in the development cycle of open source
software also highlight certification as a useful by-product. Such use could help
in certification in two main ways [33]. First, the results of formal verification
can serve as evidence to build up an assurance case for a system. Such evidence
could then be tied to varying levels of assurance requirements as part of a certi-
fication infrastructure. Second, formal development and analytical tools can be
used in the development phase to construct software correctly; this approach has
also come to be known as correctness by construction [17]. The use of such an
approach – the process – can then be mandated in a certification system.

Finally, to answer the question, we propose that open source software un-
doubtedly stands to benefit from formal methods. This will allow more rigorous
and automated support in the development process to assure safety and depend-
ability attributes. Requirements engineering, software design and development,
revision and maintenance and, documentation are all to benefit from the use of
formal methods. All this becomes even more important considering the reputa-
tion that open source software has built up over the years, which gave industry
leaders confidence that the open source community could deliver much more.
Spiralling costs of development, innovative developmental approaches, user test-
ing and feedback, and project durability and sustainability are other motivating
factors for industry leaders to look to the open source community for this pur-
pose.

3 Quality and certification for open source software

It should be clear at this point that a proper, scientific approach to software
certification has to be framed into a solid mathematical framework. Such is,
as discussed above, the rationale underlying this broad, but precise, family of
semantic-based techniques known as formal methods. The particular nature of
open source development does not make the resulting software an exception to
this rule. But, on the other hand, entails the need for a careful assessment of its
application.

This section intends to clarify at which point formal methods become essen-
tial to a certification process for open source software. Later, sections 4, 5 and
6 will address how this can be achieved.

Actually, open source software certification can be discussed at several differ-
ent, yet interrelated, levels. Since 2007, in the series of United Nations University
sponsored OpenCert workshops some of these levels have been identified and
a number of questions formulated. In particular,

– Which quality models are suitable for open source software and which sort
of certification process can assess each of them?



Certification of open-source software 5

– Which strategies for carrying-on the certification process?
– Which certification infra-structures?
– Which business model to support it?

We shall briefly address the first of them in the sequel; the remaining ones will
be tackled, in a tentative way, along the paper.

When discussing open source software certification a first distinction has to
be drawn between what counts as an object of certification: the product of a
development process or the process itself? Context certification is clearly in the
process side. Its object is the context of software production (people, process,
projects), i.e., a number of factors related to how software is developed, rather
than to the software itself. Each of them are well characterised in the literature
and often associated to specific standards and certification processes.

Context certification, quite popular in the proprietary software industry, is
hardly applicable to open source software development which is highly decen-
tralised, opposed to regulations, understood as possible curtailment of freedom,
and lacks central management which makes it difficult to define a standard that
could suggest indicators of the technical rigour used by a distributed community
of volunteers and identify the human processes involved. However, efforts to tune
context certification to open source software, lead to the inclusion in a recent
proposal of a open source software quality model [35] of so-called quality by ac-
cess (related to availability of source code from an easily accessible medium)
and quality by development (related to the efficiency of the entire development
process).

On the other end of the spectrum is product certification, which addresses
both technical quality and design quality. The former is related to factors directly
influencing maintainability, reliability and portability (seeking answers to the
question how well constructed the software is? ). Therefore, it constitutes a direct
concern for developers, rather than for end-users. As recognised in [10], technical
quality may become, in the longer term, the largest contributor to the total cost of
ownership of a software system [because] software with high technical quality can
evolve with low cost and low risk to keep meeting functional and non functional
requirements. This reference proposes a layered model for measuring and rating
technical quality of open source software in terms of norm ISO/IEC 9126, based
on source code metrics, computed automatically.

Design quality, on the other hand, is related to the certification of func-
tionality (does the software satisfy its functional requirements? ) and, in general,
to software correctness. This is the specific target of formal methods, although
application can be done with variable degrees of strictness. The following sec-
tions make the case for formal approaches to design quality certification from
model-based testing and code analysis to verification and formal development.

Finally, an increasingly important certification layer in open source software
project, which curiously, involves aspects of both technical and design quality, is
related to security. Security certification, involving compliance to the Common
Criteria (ISO/IEC 15408), is fundamental to foster open source software adop-



6 Barbosa, Cerone, Petrenko, Shaikh

tion in critical markets, such as telecommunications, and military. Reference [12]
provides an updated and extensive discussion of this issue.

4 Open source software and advanced testing techniques

Testing is perhaps the most popular framework for program analysis and, simul-
taneously one in which a fruitful connection to formal modelling can be easily
obtained. In brief, tests can be generated, in a quite effective form, from formal
models.

This section considers two questions relating testing and open source soft-
ware: whether modern testing techniques are needed by the open source software
community, and what specific value they could bring in. To bound the scope of
the discussion, we restrict ourselves to functional testing and test development
leaving out monitoring and debugging, as well as fault tolerance, performance
and security testing.

The topic is not rhetoric as lots of open source software projects utterly
ignore most software quality issues. And often the community itself puts under
question the need for testing in open source software projects. The most cited
expression of such doubts is The Cathedral and the Bazaar by Eric S. Raymond
[28]:

Given a large enough beta-tester and co-developer base, almost every
problem will be characterized quickly and the fix obvious to someone.
Or, less formally, “Given enough eyeballs, all bugs are shallow.” I dub
this: “Linus’s Law”.
My original formulation was that every problem “will be transparent
to somebody”. Linus demurred that the person who understands and
fixes the problem is not necessarily or even usually the person who first
characterizes it. “Somebody finds the problem,” he says, “and somebody
else understands it. And I’ll go on record as saying that finding it is the
bigger challenge.” (...) But the key point is that both parts of the process
(finding and fixing) tend to happen rapidly.

Nevertheless, some of the most successful open source software projects, de-
voted to the development of very complex software put a lot of their effort into
testing and quality assurance, just because of the inherent high complexity of
products to be developed. Examples of such projects are Linux Kernel [40] and
GCC [41]5. In such cases testing and quality assurance are necessary for project
evolution. Moreover, the need for advanced testing techniques is growing with
the growth of software complexity.

5 Note that the GCC project uses assertions spread throughout the code. This practice
significantly helps application of verification techniques, since a first step towards
domain formalization is already done. Formal methods can be applied with less effort
on the base of properties and requirements formalized by domain experts.



Certification of open-source software 7

Still another reason for the case of using advanced testing in open source
software projects is their decentralised environment in which traditional test-
ing and quality assurance techniques used in proprietary software development
do not work properly. Open source software projects need specific technologies
to make development and code base consistent, to check their conformance to
business requirements and standards. Without technological support for quality
assurance complex software projects cannot exist.

What values can be brought into open source software projects by advanced
testing techniques? An example of such a technique is model based testing
(MBT), sometimes almost identified to specification based testing (SBT) ap-
proaches. Both require to construct tests on the base of a formal model of the
behavior of the system. Note that 10-15 years ago formal description of a com-
plex system behavior seemed to be hardly possible. First applications of MBT
targeted only critical software and hardware components, not whole systems.
Models were represented mostly as finite state machines, labeled transition sys-
tems or Petri nets. These formalisms are useful to model simple low-level pro-
tocols, processor units, simple software modules, but become unsuitable for the
description of operating systems, database management systems or compilers,
which requires sufficiently detailed models for the construction of non-trivial
tests.

MBT also used specialized languages and notations, such as B, Lustre, Larch,
SDL, MSC. Some of these notations are textual, some graphical, and finally
some others, like SDL or EXPRESS, resort both to text and graphics. MBT
was quite successful in specific domains including telecommunication protocols,
critical parts of real-time and embedded systems. Transition to wider domains
was hindered by two reasons: poor expressivity of the modelling notation and too
complex relations between models, systems, and tests. These problems motivated
the development of more effective and powerful MBT techniques and tools. For
example, ASN.1 was introduced to describe complex data structures of protocol
messages in addition to sequences of actions described by SDL. To simplify
establishing relationships connecting models and implementations, extensions
to programming languages were suggested (e.g., ADL [34], JML [22], UniTESK
[20], Spec# [1]). Actually, it seems that complex systems can hardly be described
with the help of specific, thin scope languages. But extensions to programming
languages used in system’s source code can cope with this and may be used
successfully for modelling and test construction.

Professional testing is always targeted to assessment of some quality char-
acteristics of the system under test. We consider here only functional testing,
but functionality itself has various aspects. Interoperability tests and standard
conformance tests, sanity tests, tests based on common use cases and tests tar-
geted to “dark corners” corresponding to rarely used but rather complex cases,
are very different. The same is true for unit tests, integration tests, system tests
based on GUI or input languages like SQL for DBMS. Two main approaches exist
for test adequacy evaluation: one resorts to coverage of functional requirements
and situations of their interaction, the other is based on coverage of structural



8 Barbosa, Cerone, Petrenko, Shaikh

elements of the system up to single statements and control or data flow transi-
tions. So, test generation and test adequacy evaluation mostly use the structure
of requirements model and structure of the system itself. Knowledge on probable
or usual errors and defects (the so-called error or fault model) can be used as
additional source of quality assurance.

From the technical point of view, open source software projects can resort
to the complete spectrum of test development and execution tools. Still prac-
tice shows that even mature open source software projects have only centralized
support for basic system tests. There are several causes for this situation: im-
mature technologies capable to maintain huge test suites for rapidly evolving
software; weak rationale for resource spending on unit tests when their results
have no direct influence on the overall quality of the system. Furthermore there
is a common belief that system tests are more cost-effective while validity of this
statement is debatable.

A real-world example of an open source software project using advanced
testing technologies is the LSB Infrastructure Program [42]. This project aims
at developing and disseminating the standard called “Linux Standard Base”
(LSB), whose purpose is to increase Linux application portability across Linux
distributions, to reduce market fragmentation for Linux distribution and ap-
plication vendors, and to improve maturity and stability of the overall Linux
platform. The LSB Infrastructure Program collects data about the actual state
and trends in development of the most popular Linux libraries; the collected
information is used to add interfaces (functions, types and global variables) of
new libraries to the standard and to define a specification of each interface. Even
if early specifications incomplete and informal, at a later stage, according to the
workgroup priorities, they get more complete and, ultimately, formal. As specifi-
cations mature, so grows the quality of test suites checking conformance of Linux
distributions against the standard. At present a complete formal specification
is available for LSB Core group of libraries. Specifications and tests generated
from them are published on the web-site of the OLVER project [43], originally
supported by the Russian Ministry of Science and Education.

The OLVER project gathered a valuable experience in the practical use of
formal methods for open source software. The underlying platform is based on
UniTESK technology. Behavior of functions in LSB Core is specified in the form
of pre- and post-conditions using the specification extension of the C program-
ming language as a modelling notation. Tests are generated by the CTESK tool
based on test scenario descriptions. Usually these scenarios do not describe di-
rectly a test case. A typical test scenario describes a simplified state structure
of an abstract FSM and input iterators for SUT operations. Such description
can be used for test generation on-the-fly and allows to achieve both an effort
reduction in test design and good test coverage quality.

We shall now introduce some statistics with respect the OLVER project.
Over 1500 interfaces (C functions) were formally specified and tested. Typical
values are as follows: size of specification is 100 Kloc, size of test scenario de-
scription is 50 Kloc, size of implementation under test is 280 Kloc (taking into



Certification of open-source software 9

account only the size of glibc library and disregarding part of implementation
located in the Linux kernel). Specification and test scenario design effort (includ-
ing test debugging, documentation, publication of the testing result) is about 3
person*day per 1 interface. This project has allowed to discover over 150 errors
in standards and over 50 errors in Linux distributions (excluding a lot of errors
in mathematical functions, see details in [19]). Most of the errors detected were
published on the OLVER web site.

It is important to note that interest of practitioners, such as Linux Founda-
tion members, was raised not by its formal, strict and complete specifications
nor by the quality of tests. Actually, what distinguishes the test suite and project
infrastructure from other related projects, is the systematic approach to total
standard analysis, the elicitation of atomic requirements and their cataloguing
along with providing the necessary infrastructure for requirements traceability.
The systematic nature of the project, typical for formal methods applications,
turned out to be the key factor determining the subsequent development of the
LSB Infrastructure Program. It is worth noting that another reason for positive
acceptance of OLVER relies on the use made of a C extension for specification
purposes, relatively easy to understand. Current activities in this program go
in two direction. The purpose of the first one is to perform an initial study of
existing documentation and to elicit and collect atomic requirements. The sec-
ond direction aims at formalising requirements of the selected interfaces. Formal
specifications are used as a basis for the development of test scenarios, which
results in tests. Note that it is impossible to entirely decouple the development
of specifications from that of test scenarios, because they are debugged jointly
and usually simultaneously. Both of them, however, can be claimed correct (and
complete) only after actual test execution. Specification and test development
for complex interfaces are more error-prone than implementation development.

Verification technology and process becoming mature paves the way for es-
tablishing a certification procedure. Actually, the Linux Foundation has a re-
markable experience of a certification system deployment. The system provides
services to certify LSB conformance for both Linux distributions and Linux
applications (see [32] for details). LSB is not the only standard that can demon-
strate a positive experience of an industrial-scale formal methods application.
Reasonable candidates for formalization are Internet standards, documentation
standard (like ODF), and programming language standards. Many standards,
especially new and immature ones, contain a significant amount of errors. Even
in mature standards, as POSIX, we have detected errors. Actually, revealing
errors in standards is another important output of formal based projects.

Formalization could be well accepted beyond software — the movement for
open standards and open hardware designs (see, for instance, [39]) will eagerly
apply formal methods as soon as they get close to problems and practical needs
of the corresponding industry sectors.



10 Barbosa, Cerone, Petrenko, Shaikh

5 The ‘backward’ perspective

If rigourous modelling plays a fundamental role in test planning and generation,
ensuring higher levels of design quality entails the need for the incorporation in
the open source software lifecycle of formal methods for verifying or enforcing
software correctness with respect to some specification of its intended behaviour.
Typically, formal methods are designed to be applied during the development
phase, preferably from very early design stages. Difficulties and strategies for
proceeding this way in open source software development are addressed in the
following section. For the moment, however, we shall discuss the complemen-
tary, ‘backward’ perspective: that is, the use of such methods to assist the re-
engineering process of running code.

Actually, faced with a high risk dependence on legacy software, managers are
more and more prepared to spend resources to increase confidence on - i.e. the
level of understanding of - their code. As a research area, program understand-
ing affiliates to reverse engineering, understood as the analysis of a system in
order to identify components and behaviours to create higher level abstractions
of the system. If forward software engineering is often regarded as an almost lost
opportunity for formal methods (with notable exceptions in areas such as safety-
critical and dependable computing), its converse looks a promising area for their
application. This is due to the complexity of reverse engineering problems and
exponential costs involved. In such a setting, the same principles and calculi used
for program developing can be used, applied in the reverse direction, from con-
crete to abstract models, for understanding and documenting implementations.

Such techniques seem promising for the whole process of open source software
certification because

– they do not interfere in the development process, and therefore have no
negative impact on the community practices,

– and, on the other hand, full access to source code enables the effective ap-
plication of approaches and tools entirely based in code analysis.

In practice, the success of formal methods used this way requires a suitable
combination with other, often rather informal, techniques for code analysis. The
latter are intended to prepare the way to the former. Furthermore, the nature of
open source software entails the need for integration of techniques spanning the
‘micro’ to the ‘macro’ levels (e.g., from code slicing to architectural recovery)
and with different levels of formality (e.g. from statistical analysis based on code
metrics to the identification and formal verification of hidden invariants). Let
us briefly mention a few such techniques which could play a role in open source
software certification.

Architectural reconstruction. Current software development rely more and more
on non trivial coordination logic for combining autonomous services often run-
ning on different platforms. Open source software is no exception. As a rule, how-
ever, in typical, non trivial software systems, such a coordination layer is strongly



Certification of open-source software 11

weaved within the application at source code level. Therefore, its precise identi-
fication becomes a major methodological (and technical) problem which cannot
be overestimated along any program understanding process.

Open access to source code provides an opportunity for the development
of methods and technologies to extract, from code, the relevant coordination
information. Note that open source software applications often emerge by com-
position of multi-source, heterogeneous and previously unrelated pieces of code,
which makes architectural recovery processes both useful and challenging. More-
over, there is a need, particularly critical in open source software contexts, to
control architectural drifts, i.e., the accumulation of architectural inconsisten-
cies resulting from successive code modifications. References [31,30] report on a
technique which adapts typical program analysis algorithms, namely slicing [37],
to recover coordination information from legacy code. This is based on a notion
of coordination dependence graph, a specialisation of standard program depen-
dence graphs [13] used in classical program analysis. The recovered coordination
patterns are automatically expressed in Orc, a formal orchestration language
developed by J. Misra and W. Cook [25]. Orc specifications are amenable to
formal reasoning (e.g. to compute equivalent implementations) and can be ani-
mated to simulate such patterns and study alternative coordination policies.

Type reconstruction. Type reconstruction is useful in understanding programs
written in untyped or weakly typed languages, such as ASP, VBScript, JavaScript,
Tcl/Tk, and Perl. The approach proceeds by discovering type relations between
variables via static analysis of the program code (e.g., an assignment of a vari-
able to another may assert a subtype relation). The technique worked out for
reconstruction of types from Cobol legacy systems [38], and is also used in decom-
pilation. It has a great potential for application to heterogenous, multi-lingual
systems.

Logic mining and documentation analysis. Logic mining refers to (semi-)automatic
extraction of business rules (domain knowledge) from code to improve the re-
sults of data reverse engineering. Such rules characterise conditions in the code
and abstract them into logic properties, which are then verified as invariants to
be maintained by the application.

Documentation analysis has, however, a broader scope. It relies on the ba-
sic observation that besides source code, the fundamental source of information
about open source software lies in documentation which is usually spread over
partially completed reports, unstructured code annotations, discussions on mail-
ing lists or wikis, etc. Such documentation is typically produced and edited by
several people. Research in this area aims at developing techniques and tools to
analyse and extract information from open source software documentation and
to render it in a form useful for reconstructing program meanings.

Applying formal methods ‘backwards’ requires, however, specific ways to
smoothly integrate them into the open source software very peculiar develop-
ment process without disturbing its collaborative, distributed and heterogeneous



12 Barbosa, Cerone, Petrenko, Shaikh

character. This means to establish feedback loops in open source software devel-
opment, making publicly available a number of interrelated analysis tools which
could be used in several different ways by the open source software community.
A possibility worth to study would take the form of an online infrastructure –
a certification portal – in which independently developed analysis tools, with
different levels of sophistication, could be inserted for monitoring, assessment
and, at a later stage, certification of open source software products. Such an in-
frastructure will allow for the registration of open source software projects, their
source code visualisation and analysis at different levels, as well as the rendering
of analysis results in suitable, flexible formats to both open source software de-
velopers and users. Actually, the portal would not only provide support for open
source software analysis, but also make the evolution of open source software
projects clearly visible to the open source software community. In the long run,
it is expectable that, feedback loops made possible through it, would have some
effective impact in the overall quality of open source software products, with
minimal intrusion on the peculiar, but successful open source software develop-
ment life-cycle.

6 The ‘forward’ perspective

The success and popularity of open source software is only partly due to the
great advantage of low cost products, for which open source licences prevent
developers from charging for software distribution. In fact, open source products
often bear higher reliability, efficiency, usability, and in general a better quality
than functionally equivalent proprietary software. This is in some way surprising,
given the peculiarity of the open source development process, which counts on
a distributed community of free developers governed through a “democratic”
leadership rather than by a strictly “autocratic” central management as usual
in software industry.

The lack of central management would suggest the absence of a rigourous
verification process, based on planning and carrying out accurate review and
sophisticated testing, of software product on one hand. On the other hand, the
community involved in the open source development is very complex; it involves
not just developers but also users, reviewers and testing specialists, with major
intersection among these categories of community members.

Thereby, in his famous book The Cathedral and the Baazar [28], cited above,
Raymond suggests that the high quality of free software is partly due to the high
degree of peer review and user involvement. Although this hypothesis is based
on anecdotal rather than empirical evidence and has not been tested through
empirical data analysis, it is widely accepted in the open source community: the
high quality of software produced through a open source development is a fact
that nobody can deny, though we are still far from understanding all factors that
contribute to the emergence of such high quality in the final product [36].

Raymond’s hypothesis, however, even if it were confirmed through a rigorous
empirical analysis, would not be sufficient a guarantee for applications in domains



Certification of open-source software 13

such as industrial process control, transportation, avionics, e-commerce, health
and defence, for which security and/or safety are central issues. Government reg-
ulations and international standards actually require security- or safety-critical
software to undergo a certification process, which includes a thorough verifica-
tion where each and every functional and operational property receives rigorous
treatment. Standards more and more often include explicit recommendations for
the use of formal methods, at least in the verification of the most critical system
components [2]. However, today we lack standards and methods to be used in
a certification process to assess the quality of open source software. In fact, the
lack of central management in open source software projects [23,24] makes it
difficult to adopt an existing standard or to define a new standard that could
suggest indicators of the technical rigour used by a distributed community of
volunteers and identify the human processes involved in the project.

In this perspective, the use of rigourous review and formal verification directly
on the source code, or at a model-level through reverse engineering techniques,
as suggested in Section 5, would probably be ineffective not only due to the high
complexity of security- and safety-ctitical systems, and the cost of fixing errors
once the source code has already been produced, but also due to the complexity
and nature of the development process itself. Once, errors are found in a very
complex and critical end-product, it is not clear how to procede in fixing the
errors.

One solution could be to pass the results and the error reports produced by
the analysis back to the open source community involved in the development
and expect that the community as a whole will activate the steps needed to fix
the errors. This solution, however, appears as a big challenge. In fact, a large
coordination effort is needed by the team leader to make sure that complete
information about the nature, propagation and impact of the discovered error
is effectively communicated in an understandable way to all relevant members
in the community. Due to the great variety in backgrounds and skills among
the community members it is virtually impossible to present such information
in a format understandable to every member. In particular, it is expected that
only a small number of members (if any) have some experience with formal
methods, and this would create further problems if error reports refers to a
reverse engineered model rather than to source code.

An alternative solution could be to fix the error outside the software develop-
ment process, devoting an ad-hoc team to this purpose. Such a solution, however,
would result in a development model that is not purely open source, possibly
with a decrease in the above-mentioned quality aspects that usually emerge
through open source development. As a secondary impact, this may even result
in a decrease of trust in the product among users.

Therefore, although the use of a certification portal for open source software,
as presented in Section 5, is definitely important as the final stage of a project
and, possibly, as the final step of each product release, it must be complemented
with the use of formal methods in a more integrated and distributed way. A
possible way to achieve this goal is to incorporate within the open source devel-



14 Barbosa, Cerone, Petrenko, Shaikh

opment process formal design and verification methodologies whose successful
use could itself increase the quality of the software produced.

Cerone and Shaikh [9] propose a ’pilot’ open source project to facilitate such
an effort. The most difficult task in incorporating formal methods within the
open source software development process is to preserve the intrinsic freedom
that characterises contributions by the volunteers who join the project. In fact,
it would not be acceptable to explicitly enforce the use of a specific formal
modelling framework to be adopted by all project participants.

In order to support open participation and, consequently, bottom-up organi-
sation and parallel development, the project must introduce and present formal
methods only as a possible but not mandatory option available to the contribu-
tors. On one hand this approach may require an additional effort by the leader
team in integrating those contributions which do not make any use of formal
method. On the other hand, it is also expectable that the challenge proposed
by such an effort would attract new potential project volunteers who are keen
to reverse engineer code, produced by other actors in a traditional way, into
changes and extensions to the formal model. From this point of view we can say
that the approach proposed in Section 5 can be incorporated, at least partly,
within the forward perspective.

Therefore, the leader team should indeed propose one (or more) simple for-
mal modelling framework(s) to be used within the project. However, the basic
(extensible) model of the system should be proposed by the leader team both in
terms of its requirement, informally expressed as usual in English language, and
formally modeled using the proposed formal framework.

Critical to the success of such a pilot project is building an effective team
that could provide the expertise both across the formal methods and open source
domain. Relevant to this is also the choice of software or tool proposed. Finally,
the proposed effort needs to be monitored for its progress and effective use of
formal modelling and analysis during the development cycle.

7 Conclusions and future work

Where shall I begin, please Your Majesty?
Begin at the beginning, said the King.

(Lewis Caroll, 1865)

If, in concluding this paper, one is expected to answer the question in its
title, we would certainly be affirmative. Not only there is a role to be played
by formal methods in open source software certification, but also the concept of
certification itself makes little sense if not framed in a rigourous setting, object
of independent scientific scrutiny.

On the other hand, a lot of questions remain to be answered. A number of
them are related to the concrete ways in which formal methods can be integrated
in the open source software process: in a ‘backward’ or ‘forward’ perspective, as
discussed above, focussing test generation or correctness verification, adopting



Certification of open-source software 15

a whole range of approaches, with a ‘lighter’ (as in [6]) or more strict (as in [9])
flavours.

Other questions concern the certification process itself, if by this we under-
stand some form of automated analysis of source code performed by a trusted,
independent agency. Actually, not only several technical and methodological is-
sues remain to be tackled, but also the business model is unsolved (e.g., how
will the process be managed and supported? who requests/provides the service?
how can the certificates be trusted?, etc.)

Clearly, state-of-the-art open source software development has two main
weaknesses. First, it lacks widely consensual, objective measures to assess prod-
uct quality, let alone of effective, routine ways to compute them. Second, from
a managerial point of view, open source software projects are hard to control
and to predict due the lack of central management and defined responsibility. A
strategy leading to the establishment of an independent certification process has
potential for a long-term impact on the integration of trustworthy, open source
software components, in large, complex systems. But it would certainly involve
an effort to overcome the lack of specific certification standards to assess and
classify the quality of open source software. How far we are from defining them,
depends on building a solid understanding of the role of the open source software
movement and of what makes an open source software project a success. More
empirical studies, like those reported in [23], are needed in order to come up
with a maturity model for open source software projects.

An important issue is, however, clear enough: whatever certification mech-
anisms are to be designed, they should smoothly integrate with open source
software development, without disturbing the community and respecting its prin-
ciples. Monitoring, rather than controlling, is the key idea. If this contributes to
make evolution of open source software projects clearly visible to and traceable
by the open source software community and to introduce control and feedback
loops, supported by sound methodological principles, we will be already in right
road.

Acknowledgements. L. S. Barbosa research was partially supported by the
Cross project, under contract PTDC/EIA-CCO/108995/2008.

References

1. M. Barnett, K. R. M. Leino, and W. Schulte. The spec# programming system:
An overview. In Proceedings of CASSIS 2004, volume 3362 of Lecture Notes in
Computer Science. Springer, 2004.

2. Jonathan Bowen and Victoria Stavridou. Safety-critical systems, formal methods
and standards. Software Engineering Journal, 8(4):189–209, 1993.

3. Jonathan P. Bowen and Michael G. Hinchey. Seven more myths of formal methods.
IEEE Software, 12(4):34–41, 1995.

4. Jonathan P. Bowen and Michael G. Hinchey. Ten commandments of formal meth-
ods. IEEE Computer, 28(4):56–63, 1995.



16 Barbosa, Cerone, Petrenko, Shaikh

5. Jonathan P. Bowen and Michael G. Hinchey. Ten commandments of formal meth-
ods...ten years later. IEEE Computer, 39(1):40–48, 2006.

6. P. T. Breuer and S. Pickin. Approximate verification in an open source world.
Innovations in System and Software Engineering,, 4(1):87–105, 2008.

7. Peter T. Breuer and Marisol Garćıa-Vall. Static deadlock detection in the linux
kernel. In Albert Llamośı and Alfred Strohmeier, editors, Reliable Software Tech-
nologies - Ada-Europe 2004, 9th Ada-Europe International Conference on Reliable
Software Technologies, Palma de Mallorca, Spain, June 14-18, 2004, Proceedings,
volume 3063 of Lecture Notes in Computer Science, pages 52–64. Springer, 2004.

8. Peter T. Breuer and Simon Pickin. One million (loc) and counting: Static anal-
ysis for errors and vulnerabilities in the linux kernel source code. In Lúıs Miguel
Pinho and Michael González Harbour, editors, Reliable Software Technologies -
Ada-Europe 2006, 11th Ada-Europe International Conference on Reliable Software
Technologies, Porto, Portugal, June 5-9, 2006, Proceedings, volume 4006 of Lecture
Notes in Computer Science, pages 56–70. Springer, 2006.

9. Antonio Cerone and Siraj A. Shaikh. Incorporating formal methods in the open
source software development. In Luis Barbosa, Peter Breuer, Antonio Cerone, and
Simon Pickin, editors, International Workshop on Foundations and Techniques
bringing together Free/Libre Open Source Software and Formal Methods (FLOSS-
FM 2008) & 2nd International Workshop on Foundations and Techniques for Open
Source Certification (OpenCert 2008), pages 26–34, 2008.

10. J. P. Correia and Joost Visser. Certtification of technical quality of software prod-
ucts. In Luis Barbosa, Peter Breuer, Antonio Cerone, and Simon Pickin, edi-
tors, International Workshop on Foundations and Techniques bringing together
Free/Libre Open Source Software and Formal Methods (FLOSS-FM 2008) & 2nd
International Workshop on Foundations and Techniques for Open Source Certifi-
cation (OpenCert 2008), pages 35–51, 2008.

11. Sadie Creese. Industrial strength csp: Opportunities and challenges in model-
checking. In Ali E. Abdallah, Cliff B. Jones, and Jeff W. Sanders, editors, Com-
municating Sequential Processes: The First 25 Years, Symposium on the Occasion
of 25 Years of CSP, London, UK, July 7-8, 2004, Revised Invited Papers, volume
3525 of Lecture Notes in Computer Science, pages 292–292. Springer, 2005.

12. Ernesto Damiani, Claudio A. Ardagna, and Nabil El Ioini. Open Source Systems
Security Certification. Open Source Advances in Computer Applications. Springer
Verlag, 2008.

13. Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349,
1987.

14. John S. Fitzgerald and Peter Gorm Larsen. Balancing insight and effort: The
industrial uptake of formal methods. In Cliff B. Jones, Zhiming Liu, and Jim
Woodcock, editors, Formal Methods and Hybrid Real-Time Systems, volume 4700
of Lecture Notes in Computer Science, pages 237–254. Springer, 2007.

15. Anthony Hall. Seven myths of formal methods. IEEE Software, 7(5):11–19, 1990.
16. Anthony Hall. Realising the benefits of formal methods. Journal of Universal

Computer Science, 13(5):669–678, 2007.
17. Anthony Hall and Roderick Chapman. Correctness by construction: Developing a

commercial secure system. IEEE Software, 19(1):18–25, 2002.
18. Alexey Khoroshilov and Vadim Mutilin. Formal methods for open source compo-

nents certification. In Luis Barbosa, Peter Breuer, Antonio Cerone, and Simon
Pickin, editors, International Workshop on Foundations and Techniques bringing



Certification of open-source software 17

together Free/Libre Open Source Software and Formal Methods (FLOSS-FM 2008)
& 2nd International Workshop on Foundations and Techniques for Open Source
Certification (OpenCert 2008), pages 52–63, 2008.

19. V. Kuliamin. Test construction for mathematical functions. In K. Suzuki, T. Hi-
gashino, A. Ulrich, and T. Hasegawa, editors, Testing of Software and Communi-
cating Systems (Proceedings of TESTCOM/FATES 2008), volume 5047 of Lecture
Notes in Computer Science, pages 23–37. Springer, 2008.

20. V. V. Kuliamin, A. K. Petrenko, A. S. Kossatchev, and I. B. Burdonov. The
unitesk approach to designing test suites. Programming and Computer Software,
29(6):310–322, 2003.

21. Peter Gorm Larsen, John Fitzgerald, and Tom Brookes. Applying formal specifi-
cation in industry. IEEE Software, 13(3):48–56, 1996.

22. G. T. Leavens, A. L. Baker, and Clyde Ruby. Jml: A notation for detailed de-
sign. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors, Behavioral
Specifications of Businesses and Systems, pages 175–188. Kluwer, 1999.

23. Martin Michlmayr. Quality improvement in volunteer free software projects: Ex-
ploring the impact of release management. In Marco Scotto and Giancarlo Succi,
editors, Proceedings of the First International Conference on Open Source Systems,
pages 309–310, Genova, Italy, 2005.

24. Martin Michlmayr, Francis Hunt, and David Probert. Quality practices and prob-
lems in free software projects. In Marco Scotto and Giancarlo Succi, editors,
Proceedings of the First International Conference on Open Source Systems, pages
24–28, Genova, Italy, 2005.

25. Jayadev Misra and William R. Cook. Computation orchestration: A basis for
wide-area computing. Jour. of Software and Systems Modeling, 6(1):83–110, 2007.

26. Jan Peleska. Applied formal methods - from csp to executable hybrid specifications.
In Ali E. Abdallah, Cliff B. Jones, and Jeff W. Sanders, editors, Communicating
Sequential Processes: The First 25 Years, Symposium on the Occasion of 25 Years
of CSP, London, UK, July 7-8, 2004, Revised Invited Papers, volume 3525 of Lec-
ture Notes in Computer Science, pages 293–320. Springer, 2005.

27. Nico Plat, Jan van Katwijk, and Hans Toetenel. Application and benefits of formal
methods in software development. Software Engineering Journal, 7(5):335–346,
1992.

28. E. S. Raymond. The Cathedral and the Bazar. O’Reilly and Associates, 1999.
29. Gartner Report. The state of open source - 2008. Technical report, 2008.
30. Nuno F. Rodrigues and Lúıs S. Barbosa. Coordinspector a tool for extracting

coordination data from legacy code. In SCAM ’08: Proc. Eighth IEEE International
Working Conference on Source Code Analysis and Manipulation. IEEE Computer
Society, 2008.

31. Nuno F. Rodrigues and Lúıs S. Barbosa. On the discovery of business processes
orchestration patterns. In 2008 IEEE Congress on Services, pages 391–398, Wash-
ington, DC, USA, July 2008. IEEE Computer Society, IEEE Computer Society
Press.

32. V. Rubanov. Automatic analysis of applications for portability across linux dis-
tributions. In Luis Barbosa, Antonio Cerone, and Siraj A. Shaikh, editors, 3nd
International Workshop on Foundations and Techniques for Open Source Certi-
fication (OpenCert 2009), Electronic Communications of the EASST, volume 20,
2009.

33. John Rushby. What use is verified software? In 12th IEEE International Conference
on the Engineering of Complex Computer Systems (ICECCS), pages 270–276, 2007.



18 Barbosa, Cerone, Petrenko, Shaikh

34. S. Sankar and R. Hayes. ADL - an interface definition language for specifying
and testing software. In K. Suzuki, T. Higashino, A. Ulrich, and T. Hasegawa,
editors, Proceedings of the workshop on Interface Definition Languages, pages 13–
21. Portland, Oregon, US, 1994.

35. Siraj A. Shaikh and Antonio Cerone. Towards a quality model for open source
software. In Bernhard Aichernig and Luis S. Barbosa, editors, First International
Workshop on Foundations and Techniques for Open Source Certification (OpenCert
2007). UNU-IIST, Macau, 2007.

36. Siraj A. Shaikh and Antonio Cerone. Towards a metrics for open source software
quality. In Luis Barbosa, Antonio Cerone, and Siraj A. Shaikh, editors, 3nd Inter-
national Workshop on Foundations and Techniques for Open Source Certification
(OpenCert 2009), Electronic Communications of the EASST, volume 20, 2009.

37. F. Tip. A survey of program slicing techniques. Journal of programming languages,
3:121–189, 1995.

38. Arie van Deursen and Leon Moonen. An empirical study into cobol type inferenc-
ing. Science of Computer Programming, 40(2–3):189–211, July 2001.

39. http://www.opencores.org/.
40. http://kernel.org/.
41. http://gcc.gnu.org/.
42. http://linuxfoundation.org/navigator/.
43. http://linuxtesting.org/.


