
Refinement via interpretation

Manuel A. Martins1, Alexandre Madeira1,2 and L. S. Barbosa2
1 Department of Mathematics, Aveiro University, Aveiro, Portugal

{martins, madeira}@ua.pt
2Department of Informatics & CCTC, Minho University, Portugal

lsb@di.uminho.pt

Abstract

Traditional notions of refinement of algebraic specifica-
tions, based on signature morphisms, are often too rigid to
capture a number of relevant transformations in the con-
text of software design, reuse and adaptation. This paper
proposes an alternative notion of specification refinement,
building on recent work on logic interpretation. The con-
cept is discussed, its theory partially developed, its use il-
lustrated through a number of examples.

Keywords: Algebraic specification, refinement, logic inter-
pretation.

1. Introduction

The industrial demand for high-assurance software
opens a window of opportunity for mathematically based
development methods, able to design complex sys-
tems at ever-increasing levels of reliability and secu-
rity. The aphorism proofs pay the rent witnesses this
change, which is re-shaping our understanding of what In-
formatics is about, after all.

Algebraic specification methods [STar, Tar03, MT92,
Wir90], having played a pioneer role in this process, con-
stitute a large and mature body of knowledge and active re-
search in the triple dimension of foundations, methodolo-
gies and applications. Central to such methods, namely to
CASL [MHST03], its landmark realisation, is the process
of stepwise refinement [ST88, BH06] through which a com-
plex design is produced by incrementally adding details and
reducing non determinism with respect to the original, high-
level specifications. This is done step-by-step until the spec-
ification becomes a precise description of a concrete model,
technically an algebra.

In the traditional framework of algebraic specification,
signature morphisms are used to translate a specification
into another one over a different signature [San00]. This
enables the possibility to rename, add, remove and group

together various signature components which is very use-
ful during the specification and development processes. In
a number of situations, however, transformations based in
signature morphisms are too rigid to be useful. This is the
case in the context of software reuse. But also the emer-
gence of new computing paradigms in which software com-
position and adaptation becomes essentially dynamic and
distributed [Fia04], entails the need for more flexible ap-
proaches to what is taken as a valid transformation of spec-
ifications (see, for example, [BSR04]).

This paper is a step in that direction. It started from
a challenge: that of looking for transformations supported
by mappings which need not to be morphisms. Multi-
functions, i.e., functions mapping an element to a set of el-
ements, seemed a natural candidate. Unfortunately, in most
cases, the price to be paid is rather high. In general it is
no more possible to define the reduct of an algebra by
these mappings, and consequently the traditional semanti-
cal treatment of the algebraic specification process does not
apply.

The alternative put forward in this paper builds on top
of recent works which apply tools and results from abstract
algebraic logic to the specification of software systems (cf.
[MP07]). The new concept of refinement proposed here, and
referred to as refinement via interpretation, is based on logic
interpretation, a central tool in the study of equivalence se-
mantics (see, e.g., [BP89, BP, BR03, Cze01]). A definition
of interpretation can be found in [BP], where it is formu-
lated, for k-logical systems, as (k − l)-mappings, translat-
ing a k-dimensional sentence into a set of l-dimensional
sentences over the same signature. A paradigmatic exam-
ple is the interpretation of the classical propositional calcu-
lus into the equational theory of boolean algebras (cf. [BP,
Example 4.1.2]).

As a result we arrive at a very simple, but still quite ex-
pressive, notion of refinement. In particular, several crucial
transformations in software development, e.g., data encap-
sulation or decomposition of operations into atomic trans-
actions, are captured in this framework. This increased flex-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55620771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ibility comes, essentially, from the possibility of mapping
an equation into a set of equations, while signature mor-
phisms map each formula into another one, preserving its
structure.

The paper introduces this new concept, develops basic
results in its theory and illustrates its relevance and appli-
cability in a number of examples. Sections 3 and 4 con-
tain the main results and examples. In order to keep exposi-
tion self-contained, section 2 provides the necessary back-
ground. This section can, naturally, be skipped by the in-
formed reader. Finally, section 5 concludes and points out a
few topics for future work.

2. Preliminaries

2.1. Universal (sorted) algebra

In this section, we recall some notions of universal
sorted algebra. A detailed presentation of these concepts
may be found in [STar] and [MT92].

Let S be a non empty set whose elements are called sorts.
A S-sorted set is a S-indexed family of sets A = (As)s∈S .
A is nonempty if As 6= ∅ for each s ∈ S. We say that a
S-sorted set A is locally finite (locally countable infinite)
if, for any s ∈ S As is a finite (countable infinite, resp.)
set, and we say that A is globally finite if A is locally fi-
nite and As = ∅ except for a finite number of sorts (ob-
serve that if S is finite, then local implies global finiteness).
The usual set operations are extended to many sorted com-
ponentwise (e.g., we say that A ⊆ B if for any s ∈ S
As ⊆ Bs). The set of all S-sorted subsets of A is denoted
by P(A) and the set of all globally finite S-sorted subsets
of A by PG(A).

Given two S-sorted sets A and B, an S-sorted mapping
from A into B is an S-sorted set f = (fs)s∈S where fs :
As → Bs; sometimes we write just f for the components
fs of f . An S − S′-sorted multi-function from a S-sorted
set A to a S′-sorted set B, denoted by τ : A → B, is an
S-family of mappings (τs : As → P(B))s∈S . τ is said to
be globally finite if for each s ∈ S and for all a ∈ A, τs(a)
is globally finite.

In the sequel, if S is clear from the context, we may omit
explicit reference to S and we just say “sorted...” instead of
“S-sorted...”.

Definition 1 (Signature) A signature Σ is a pair (S,Ω),
where:

• S is a set (of sort names);

• Ω is a (S∗ × S)-sorted set (of operation names),

where S∗ is the set of all the finite sequences of S elements.

The symbols in Ωs1...sn,s, n ≥ 1, are called operation
symbols with arguments of sort s1, ..., sn and range sort s.

The elements of Ωε,s, s ∈ S, are called constants of sort s
(ε denotes the empty sequence).

We write f : s1, . . . , sn → s ∈ Σ to mean that
s1, ..., sn, s ∈ S and f ∈ Ωs1...sn,s; s1, . . . , sn → s is
the type of f .

Definition 2 (Σ-algebra) Let Σ = (S,Ω) be a signature. A
Σ-algebra A consists of

• an S-sorted set A = (As)s∈S , where for all s ∈ S
As 6= ∅;

• for any f ∈ Ωs1...sn,s, a function fA : As1 × · · · ×
Asn → As;

A is called the carrier set of the algebra. We will denote as
usually the algebra and its carrier set with the same roman
letter.

An homomorphism between two Σ-algebras A and B is
an S-sorted mapping h : A → B between the correspon-
dent carrier sets, satisfying for each f : s1, . . . , sn → s ∈
Σ, hs(fA(a1, . . . , an)) = fB(hs1(a1), . . . , hsn(an)) for
all ai ∈ ASi , 1 ≤ i ≤ n. An injective homomorphism f
is called a monomorphism. If f is surjective, it is called an
epimorphism. We say that h is an isomorphism if it is both
an injective and a surjective homomorphism.

A set of variables for a signature Σ = (S,Ω) is a
nonempty S-sorted set X of pairwise disjoint sets. The el-
ements in Xs are called s-variables. To denote that a vari-
able x is of sort s we write x :s. Throughout the paper we
take the usual assumption that the variables and the sym-
bols in Ω have different denotations.

Definition 3 (TΣ(X)) Let Σ be a signature and X a set of
variables for Σ. The set of Σ-terms in the variablesX is the
smallest set TΣ(X) such that:

• for any sort s ∈ S, Xs ⊆ (TΣ(X))s;

• if f :→ s ∈ Σ then f ∈ (TΣ(X))s;

• if f : s1, . . . , sn → s ∈ Σ and t1 ∈
TΣ(X)s1 , . . . , tn ∈ TΣ(X)sn , then f(t1, . . . , tn) ∈
TΣ(X)s;

The elements in TΣ(X)s are called Σ-terms of sort s. We
write t(x1, . . . , xn) to mean that the variables which occur
in t are among x1, . . . , xn. The terms without variables are
called ground terms. A signature is said to be standard if
there is a ground term for every sort S.

It is well know that we can define, in a standard way, op-
erations over TΣ(X) to obtain a Σ-algebra which is called
term algebra over Σ. An endomorphism σ : TΣ(X) →
TΣ(X) is called a substitution.

Definition 4 (Assignment) Let Σ = (S,Ω) be a signa-
ture, X be a set of variables for Σ and A be a Σ-algebra.
An assignment h : X → A is a S-family of mappings

(hs : Xs → As)s∈S . Any assignment h uniquely extends
to a Σ-homomorphism h̄ : TΣ(X)→ A as follows:

• h̄s(x) =def hs(x), x ∈ Xs;

• for any f : s1, . . . , sn → s ∈ Σ, for
all t1 ∈ TΣ(X)s1 , . . . , tn ∈ TΣ(X)sn ,
h̄s(f(t1, . . . , tn)) =def f

A(h̄s1(t1), . . . , h̄sn(tn)).

In the sequel we will simply write h instead of h̄.

Given a term t(x1, . . . , xn) and a assignment h : X →
A such that h(xi) = ai, 1 ≤ i ≤ n, we denote h(t)
by tA(a1, . . . , an) (in the sequel the superscript A may be
omitted).

In the remaining of this section, Σ is a signature and X
is a set of variables for Σ. A Σ-equation of sort S over X
(equation for short, if Σ and X are clear from the context)
is a pair 〈t, t′〉, where t, t′ ∈ TΣ(X)s for some s ∈ S. Usu-
ally, we represent a Σ-equation 〈t, t′〉 by t ≈ t′. We denote
the S-sorted set of all Σ-equations (over X) by EqΣ(X).

Since the components of the family EqΣ(X) are pair-
wise disjoint, an S-sorted subset Γ of EqΣ(X) will be iden-
tified with the unsorted set

⋃
s∈S ΓS ; of course this applies

to EqΣ(X) itself.
A Σ-conditional equation over X (a conditional equa-

tion for short, if Σ andX are clear from the context) is a pair
〈Γ, e〉 where Γ is a globally finite subset of EqΣ(X) and
e ∈ EqΣ(X). A conditional equation 〈{t1 ≈ t′1, . . . , tn ≈
t′n}, t ≈ t′〉will be written as t1 ≈ t′1∧· · ·∧tn ≈ t′n → t ≈
t′. The equations in Γ are called premisses and t ≈ t′ the
conclusion. An equation may be seen as a conditional equa-
tion without premisses, hence we will identify the equation
t ≈ t′ with the conditional equation 〈∅, t ≈ t′〉. The set
of all Σ-conditional equations is denoted by CeqΣ(X) (in-
cluding equations).

Let A be a Σ-algebra, and t1 ≈ t′1 ∧ · · · ∧ tn ≈ t′n →
t ≈ t′ ∈ CeqΣ(X). The Σ-algebra A is a model of the Σ-
conditional equation t1 ≈ t′1 ∧ · · · ∧ tn ≈ t′n → t ≈ t′,
in symbols A |= t1 ≈ t′1 ∧ · · · ∧ tn ≈ t′n → t ≈ t′, if for
every valuation h : X → A, h(ti) = h(t′i) for every i ≤
n implies h(t) = h(t′). For the special case of equations,
A |= t ≈ t′ if for every valuation h : X → A h(t) = h(t′).
Given a set Φ of conditional equations, we write A |= Φ if
A |= ξ for every ξ ∈ Φ.

2.1.1. Signature morphisms Signature morphisms are
important tools on the implementation procedure of soft-
ware systems.

Definition 5 (Signature morphism) Let Σ = (S,Ω) and
Σ′ = (S′,Ω′) be signatures. A signature morphism
σ : Σ → Σ′, is a pair σ = (σsorts, σop), where
σsorts : S → S′ and σop : Ω→ Ω′ is a (S∗×S)-family of
functions respecting the sorts of operations names in Ω, that
is, σop = (σω,s : Ωω,s → Ω′σ∗sorts(ω),σsorts(s)

)ω∈S∗,s∈S

(where for ω = s1 . . . sn ∈ S∗, σ∗sorts(ω) =
σsorts(s1) . . . σsorts(sn)).

Definition 6 (Reduct Algebra) Let A′ be a Σ′-algebra,
and σ : Σ → Σ′ be a signature morphism. The σ-reduct of
A′ is the Σ-algebra A′ �σ defined as follows:

• for any s ∈ S, (A′ �σ)s = A′σ(s), and

• for all f : s1, . . . , sn → s ∈ Σ, fA
′�σ = σop(f)A

′
.

To extend signature morphisms to terms we have to take
care about the set of variables we are dealing with. Let σ :
Σ → Σ′ be a signature morphism with Σ = (S,Ω), Σ′ =
(S′,Ω′). Given a set of variables X = (Xs)s∈S for Σ, we
consider a set of variables X ′ for Σ′ such that for any s′ ∈
S′, X ′s′ =

⋃
σ(s)=s′ Xs (cf. [STar, Mar06]).

Therefore, we can extend, in an uniquely way, σ (more
precisely σ together with the inclusion on the variables) to a
homomorphism from TΣ(X) into TΣ′(X

′) that we will de-
note by σ too (see [STar]). Given a equation t ≈ t′, we write
σ(t ≈ t′) for σ(t) ≈ σ(t′).

The following well known result is the basis of the tradi-
tional refinement procedure.

Lemma 1 (Satisfaction Lemma [GB92]) Let Σ and Σ′ be
signatures, σ : Σ → Σ′ a signature morphism, A′ a Σ′-
algebra and ξ a conditional equation. Then,

A′ |= σ(ξ) iff A′ �σ|= ξ.

2.2. Specification logic

Given a signature Σ, a locally countable infinite S-sorted
set X of variables for Σ and a class K of Σ-algebras, the
equational consequence relation determined by K w.r.t X
is the relation between sets of Σ-equations and individual
Σ-equations in EqΣ(X) defined by

{ti ≈ t′i|i ∈ I} |=K t ≈ t′ if,

for all A ∈ K and every valuation α : X → A,

α(ti) = α(t′i) for every i ∈ I implies α(t) = α(t′).

The relation |=K is said to be finitary if {ti ≈ t′i|i ∈
I} |=K t ≈ t′ implies {ti ≈ t′i|i ∈ J} |=K t ≈ t′ for some
finite J ⊆ I .

Let A a Σ-algebra, and ξ = t1 ≈ t′1 ∧ · · · ∧ tn ≈ t′n →
t ≈ t′ ∈ CeqΣ(X). It is easy to see that A is a model of ξ
if {ti ≈ t′i|i ≤ n} |={A} t ≈ t′.

Note that if I is finite, {ti ≈ t′i|i ∈ I} |=K t ≈ t′ if and
only if for every A ∈ K A |= t1 ≈ t′1 ∧ · · · ∧ tn ≈ t′n →
t ≈ t′.

The relation |=K is a Tarski consequence relation on the
set of equations, that is, it satisfies the following conditions
for all Γ,∆ ⊆ EqΣ(X) and t ≈ t′ ∈ EqΣ(X)

1. t ≈ t′ ∈ Γ implies Γ |=K t ≈ t′,
2. Γ |=K t ≈ t′ and Γ ⊆ ∆ imply ∆ |=K t ≈ t′,
3. Γ |=K t ≈ t′ and ∆ |=K u ≈ u′ for every u ≈ u′ ∈ Γ

imply ∆ |=K t ≈ t′,
4. Γ |=K t ≈ t′ implies σ(Γ) |=K σ(t ≈ t′) for every

substitution σ.

It can be proved that, if K is a class of Σ-algebras ax-
iomatized by a set of Σ-conditional equations then the rela-
tion |=K is finitary (cf.[BR03] for the one-sorted case). In
this case the relation can be defined in the Hilbert style by
considering the set of Σ-equations in Φ together with the re-
flexivity axioms as the set of axioms, and the Σ-conditional
equations in Φ together with the symmetry, transitivity and
congruence rules as the inference rules. This is established
in the following proposition.

Proposition 1 [BR03] Let Γ ∪ {t ≈ t′} ⊆ EqΣ(X) and
K be the class of Σ-algebras axiomatised by Φ. We have
that Γ |=K t ≈ t′ if and only if, there is a finite sequence
of equations t1 ≈ t′1, . . . , tn ≈ t′n, called a proof of t ≈ t′

from Γ in |=K , such that tn ≈ t′n is t ≈ t′ and for every
i = 1, . . . , n one of the following conditions holds:

1. ti ≈ t′i ∈ Γ;

2. there is an axiom v ≈ v′ and a substitution σ such that
ti ≈ t′i is σ(v ≈ v′);

3. there is an inference rule v1 ≈ v′1 ∧ · · · ∧ vm ≈ v′m →
v ≈ v′, and a substitution σ such that ti ≈ t′i is σ(v ≈
v′) and {σ(vl ≈ v′l)|l < m} ⊆ {tj ≈ t′j |j < i}.

2.3. Algebraic specification

To specify a software system, we should define an ad-
equate signature, taking in account the sorts and functions
of the intended system, and we express, in an appropriated
logical system, the desired functional behaviour of the sig-
nature operations.

An algebraic specification SP is a pair 〈Σ, [[SP]]〉where
Σ is a signature, denoted by Sig(SP) and [[SP]] is a class
of Σ-algebras. This class of Σ-algebras is called the model
class of SP , and an individual Sig(SP)-algebra in [[SP]]
a model of SP . If ξ is the conditional equation 〈Γ, e〉, we
write SP |= ξ for Γ |=[[SP]] e. We say that a specifica-
tion SP is X-flat if there is a sorted set of variables X
for Σ and a set Φ ⊆ CeqΣ(X) such that [[SP]] = {A ∈
Alg(Σ)|A |= Φ}. We represent an axiomatised specifi-
cation SP = 〈Σ, [[SP]]〉 as a pair SP = 〈Σ,Φ〉 omit-
ting explicit reference to the variables X; X is assumed to
be a set of variables for Σ such that Φ ⊆ CeqΣ(X) and
[[SP]] = {A ∈ Alg(Σ)|A |= Φ}, where Alg(Σ) denotes
the call of all Σ-algebras. When Φ is a set of equations, the
specification SP = 〈Σ,Φ〉 is called an equational specifi-
cation.

2.4. Refinement

Given a specification SP of a software system, the im-
plementation process consists in building a correct realiza-
tion (a program) of SP , i.e., built an algebra P such that
P ∈ [[SP]], or at least a class of Sig(SP)-algebras SP ′

such that [[SP ′]] ⊆ [[SP]], and with SP ′ small enough for
the desired work. During this process, we enrich SP with
implementation decisions, in order to obtain a complete de-
scription of the intended program (desired algebra).

The stepwise refinement process (see [STar, ST97,
Mar06]) is the systematic process by which, from an ini-
tial abstract specification SP0 more concrete specifica-
tions are built by introducing new requirements leading
to

SP0 SP1 SP2 · · · SPn−1 SPn,

where for all 1 ≤ i ≤ n, SPi−1 SPi means [[SPi]] ⊆
[[SPi−1]]. Each step of this process is called a refinement
step or simply a refinement. Note that if SP SP ′

and SP ′ SP ′′ then SP SP ′′, since Sig(SP) =
Sig(SP ′) = Sig(SP ′′) and [[SP ′′]] ⊆ [[SP ′]] ⊆ [[SP]].
This transitivity, named vertical composition, assure that
SP0 SPn.

The introduction of new requirements mentioned above
is achieved through the specification of suitable signature
morphisms. Supported on the Satisfaction Lemma (Lemma
1), we have the following generalisation of the refinement
concept:

Definition 7 (σ-Refinement) Let σ : Σ → Σ′ be a sig-
nature morphism. The specification SP ′ over Σ′ is a σ-
refinement of SP , in symbols SP σ SP

′, if

[[SP ′]] �σ ⊆ [[SP]],

where [[SP ′]] �σ={A �σ |A ∈ [[SP ′]]}.
Note that a refinement is just a id-refinement with id

the identity morphism. Since the composition of two signa-
ture morphisms is a signature morphism, we have, by Sat-
isfaction Lemma (Lemma 1), that the vertical composition
holds. I.e., if SP0 σ1 SP1 and SP1 σ2 SP2 we have
SP0 σ2◦σ1

SP2, and for the case with n steps, we have
SP0 σn◦···◦σ1

SPn.
It follows an important characterisation of σ-

refinements.

Theorem 1 Let σ : Σ → Σ′ be a signature morphism,
SP = 〈Σ,Φ〉 a X-flat specification and SP ′ a specifica-
tions over Σ′. Then, SP σ SP

′ iff SP ′ |= σ(Φ).

3. Refinement via interpretation

This section introduces, exemplifies and discusses the
concept of refinement via interpretation — the core con-

tribution of this paper. As mentioned in the Introduction,
this new perspective on algebraic specification refinement
is based on the notion of logic interpretation, a central con-
cept in the abstract algebraic theory of deductive systems
[BP89, BP, BR03, Cze01]. In such a context, an interpre-
tation is a particular kind of translation, both notions being
discussed in the next two sub-sections. Then, sub-section
3.3 introduces our notion of refinement and illustrates its
suitability through a number of examples. Finally, its the-
ory is (partially) developed in sub-section 3.4.

3.1. Translations

A number of notions of translation between logical sys-
tems have been proposed in the literature (see, for example,
[Fei97, FD01, BP, MDT09]). In the sequel we adopt the fol-
lowing definition, assuming that all sets of variables are lo-
cally countable infinite.

Definition 8 (Translation) Let Σ = (S,Ω), Σ′ = (S′,Ω′)
be two signatures, and X and X ′ sets of variables for Σ
and Σ′ respectively. A translation from Σ to Σ′ with respect
to (w.r.t.) the set of variables X and X ′ is a globally finite
S − S′-sorted multi-function from EqΣ(X) to EqΣ′(X

′).

When Σ = Σ′ and X = X ′, we call τ a self translation
of Σ w.r.t the set of variables X . And, in this case, we say
that τ commutes with substitutions if for every substitution
s and every equation e ∈ EqΣ(X) τ(s(e)) = s(τ(e)).

We extend, in a natural way, a translation
τ : EqΣ(X) → EqΣ′(X

′) to a multi-function
τ∗ : CeqΣ(X)→ CeqΣ′(X

′) as follows:

τ∗(ξ) = {〈
⋃

t≈t′∈Γ

τ(t ≈ t′), e′〉 : e′ ∈ τ(e)}.

for any conditional equation ξ = 〈Γ, e〉. In the sequel, we
will identify τ∗ with τ . Notice how the reason for requiring
τs(x) to be global finite becomes clear from the definition
of τ∗. We may now prove the following result.

Proposition 2 Let Σ = (S,Ω) be a standard signature, X
a set of variables for Σ and τ a self translation of Σ w.r.tX .
Then the following conditions are equivalent:

1. τ commutes with substitutions.

2. There exists an S-sorted set of equations E(x, y) ⊆
EqΣ(X) such that, for any t ≈ t′ ∈ EqΣ(X)s,
τs(t ≈ t′) = Es(t, t

′).
Proof. Assume τ commutes with arbitrary substitutions. We fix
distinct variables p, q and we define E(p, q) := τ(p ≈ q). Sup-
pose Var(E(p, q)) ⊆ {p, q, r1, r2, . . . }. Let e be a substitution
such that e(p) = p, e(q) = q and e(ri) = p for all i ∈ I . By
assumption, E(p, q, p, . . .) = e(E(p, q)) = e

(
τ(p ≈ q)

)
=

τ
(
e(p) ≈ e(q)

)
= τ(p ≈ q) = E(p, q, r1, r2, . . .). Hence,

{r1, r2, . . . } ⊆ {p, q}. Thus Var(E(p, q)) ⊆ {p, q}. Now, let
ϕ ≈ ψ ∈ Eq and e a substitution such that e(p) = ϕ and
e(q) = ψ. We have that τ(ϕ ≈ ψ) = τ

(
e(p) ≈ e(q)

)
= e

(
τ(p ≈

q)
)

= e
(
E(p, q)

)
= E

(
e(p), e(q)

)
= E(ϕ,ψ).

Suppose now that 2 holds. Let α be a substitution in Σ. Then,
for any t ≈ t′ ∈ Σ,

α(τ(t ≈ t′)) =α(Es(t, t
′)) = Es(α(t), α(t′)))

= τ(α(t) ≈ α(t′)) = τ(α(t ≈ t′))
2

3.2. Interpretations

Defined as a multi-function, a translation maps a term
into a set of terms, and this is what makes translations inter-
esting to establish relationships between specification. Re-
call that, on the other hand, a signature morphism maps a
term into just another term.

Not all translations, however, are suitable to capture the
meaning of interpreting a specification into another one.
The following definition singles out the relevant ones:

Definition 9 (Interpretation) Let τ be a translation from
Σ to Σ′ w.r.t. the set of variables X and X ′. Let SP be a
specification over Σ. We say that τ interprets SP if there is a
specification SP ′ over Σ′ such that, for any ξ ∈ CeqΣ(X),
SP |= ξ if and only if SP ′ |= τ(ξ). In this case we say
that τ interprets SP in SP ′ and SP ′ is a τ -interpretation
of SP .

Example 1 The interpretation of the class HA of Heyting
algebras in the class BA of (the specification of) Boolean al-
gebras is a classical example of an interpretation. Let X be
a numerable set of variables and Σ the usual signature for
booleana algebras (and for Heyting algebras). Consider the
well known double negation (propositional) translation 1:

ι : TΣ(X) → TΣ(X)
t 7→ ι(t) = ¬¬t

Let τ be the a self translation of Σ w.r.t X defined by

τ(t ≈ t′) = {ι(t) ≈ ι(t′)}.

It can be shown that τ interprets the specificationBA of the
boolean algebras in the specification HA of the Heyting al-
gebras (cf. [BR03]).

It is not difficult to see that

1 This translation is known by Glivenko’s interpretation. It establishes
a strict relationship between classical derivability and intuitionistic
derivability, namely, ϕ is a theorem in CPC then ¬¬ϕ is a theorem
in IPC (cf. [BR03]). The result establishes the bridge between the al-
gebraic semantics of the classical propositional calculus and the alge-
braic semantics of intuitionistic propositional calculus.

Theorem 2 Let SP and SP ′ be two algebraic specifica-
tions over a signature Σ and τ a recursive self translation
of Σ w.r.t to a set of variables X that commutes with arbi-
trary substitutions and interprets SP in SP ′. If SP is de-
cidable then SP ′ is decidable.

Definition 10 (τ -model) Let τ be a translation from Σ to
Σ′ w.r.t. the set of variables X and X ′, and SP a specifi-
cation over Σ. A Σ′-algebra A′ is a τ -model of SP if for
any ξ ∈ CeqΣ(X), SP |= ξ implies A′ |= τ(ξ). We de-
fine the τ -model class of SP , denoted by Modτ (SP), as
the class of all τ -models of SP . We will denote the specifi-
cation over Σ′ whose models are Modτ (SP) by SP τ .

Observe that for all conditional equation ξ, SP |= ξ →
SP τ |= τ(ξ).

Theorem 3 Let τ be a translation from Σ to Σ′ w.r.t. the set
of variables X and X ′, and SP a specification over Σ. If τ
interprets SP , then the specification SP τ is the largest τ -
interpretation of SP , i.e., with the largest class of models.

Proof. Suppose that τ interprets SP . Let SP ′ be a specifica-
tion that is a τ -interpretation of SP . Then for any ξ ∈ CeqΣ(X),
SP |= ξ if and only if SP ′ |= τ(ξ). Hence all models of SP ′ are
τ -models of SP . Thus, [[SP ′]] ⊆ [[SP τ]].

So, we only need to prove that SP τ is a τ -interpretation of SP .
Let ξ ∈ CeqΣ(X). It is clear that SP |= ξ implies SP τ |= τ(ξ).
Suppose now that SP τ |= τ(ξ). Let SP ′ be a specification that is
a τ -interpretation of SP (it exists since τ interprets SP). Since,
[[SP ′]] ⊆ [[SP τ]], SP ′ |= τ(ξ). Since SP ′ is a τ -interpretation
of SP , SP |= ξ. 2

Next theorem states that SP τ is finitely axiomatized
whenever SP is:

Theorem 4 Let τ be a self translation of Σ w.r.t X and
SP = 〈Σ,Φ〉 be a X-flat specification. If τ commutes
with substitutions then SP τ is also X-flat and SP τ =
〈Σ′, τ(Φ)〉. Moreover, if Φ is finite then SP τ is finitely ax-
iomatisable, i.e., X-flat.

Proof. On the one hand, we have that for any A′ ∈ [[SP τ]] and
for any ξ ∈ CeqΣ(X), SP |= ξ implies A′ |= τ(ξ). In particular,
since SP |= Φ, we have that SP τ |= τ(Φ) and hence, [[SP τ]] ⊆
[[〈Σ′, τ(Φ)〉]].

On the other hand, let A ∈ 〈Σ′, τ(Φ)〉 and ξ = 〈Γ, e〉 be a
conditional equation over X such that SP |= ξ (i.e., Γ |=[[SP]] e).
Then, it can be proved by induction on the length of a proof of e
from Γ in |=[[SP]] that A |= τ(ξ). Therefore A is a τ -model of SP
and, so, [[〈Σ′, τ(Φ)〉]] ⊆ SP τ .

Clearly, if Φ is finite then τ(Φ) is also finite. Moreover, one
can prove that τ(Φ) constitutes an axiomatization for SP τ . 2

3.3. Refinement via interpretation

Logic interpretations provide the basic tool for the fol-
lowing definition:

Definition 11 (Refinement via interpretation) Let SP be
a specification over Σ and τ a translation from Σ to Σ′

w.r.t. the set of variables X and X ′ which interprets SP .
We say that a specification SP ′ over Σ′ refines the specifi-
cation SP via the interpretation τ , in symbols SP ⇁τ SP

′,
if for any ξ ∈ CeqΣ(X)

SP |= ξ ⇒ SP ′ |= τ(ξ)

Let us now discuss some examples of refinements via in-
terpretations. The first one is mainly of theoretical interest:
it shows how (a specification of) an Heyting algebra can be
regarded as a refinement of (a specification of) a Boolean
algebra.

Example 2 Consider the following specifications of
Boolean and Heyting algebras:

SPEC BOOL = enrich DIST − LATTICE by
[AX]

(1) p ∨ ¬p ≈ tt
(2) p ∧ ¬p ≈ ff
(3) p ∨ tt ≈ tt
(4) p ∧ ff ≈ ff

and

SPEC HEY TING = enrich DIST − LATTICE by
[GEN]

bool

[OP]

tt : −→ bool

ff : −→ bool

neg : bool −→ bool

∧ : bool × bool −→ bool

∨ : bool × bool −→ bool

⇒ : bool × bool −→ bool

[AX]

(1) p ∨ tt ≈ tt
(2) p ∧ ff ≈ ff
(3) p⇒ p ≈ tt
(4) p⇒ (q ∨ r) ≈ (p⇒ q)

(5) (p⇒ q) ∧ q ≈ q
(6) p ∧ (p⇒ q) ≈ p ∧ q
(7) p⇒ (q ∧ r) ≈ (p⇒ q) ∧ (p⇒ r)

(8) (p ∧ q)⇒ r ≈ (p⇒ r) ∧ (q⇒ r)

where DIST − LATTICE is the specification of the dis-
tributive lattices (cf. [BS81]).

As in Example 1, multi-function τ defined by

τ(t ≈ t′) = {¬¬t ≈ ¬¬t′}

interprets BOOL in HEY TING. To show that
BOOL ⇁τ HEY TING just observe that for any
axiom ϕ of BOOL, HEY TING |= τ(ϕ).

Our next example, although quite elementary, illustrates
a key point. It shows how refinement via interpretation is
able to capture data encapsulation, i.e., the process of hid-
ing a specific sort in a specification. This is a relevant issue
in algebraic specification, in particular when the implemen-
tation target is an object-oriented framework: hidden sorts
become the state space of object implementations, as dis-
cussed in, e.g., [Fav98, DD05]. It is interesting to have such
sort of transformations integrated in a stepwise refinement
process.

Example 3 Consider the following specification of the nat-
ural numbers:

SPEC NAT =

[SORT]

nat

[OP]

s : nat −→ nat

[AX]

(1) s(x) ≈ s(y) → x ≈ y

Consider now an alternative specification which introduces
an equality test predicate eq axiomatised with the congru-
ence property:

SPEC NATEQ = enrich BOOL by
[SORT]

nat

[OP]

s : nat −→ nat

eq : nat× nat −→ bool

[AX]

(1) eq(x, x) ≈ tt
(2) eq(x, y) ≈ tt → eq(y, x) ≈ tt
(3) eq(x, y) ≈ tt ∧ eq(y, z) ≈ tt → eq(x, z) ≈ tt
(4) eq(x, y) ≈ tt → eq(s(x), s(y)) ≈ tt
(5) eq(s(x), s(y)) ≈ tt → eq(x, y) ≈ tt

Consider multi-function τ such that

τ(x : nat ≈ y : nat) = {eq(x : nat, y : nat) ≈ tt}

NATEQ interprets NAT by τ . First note that for any
equation t ≈ t′ such that NAT |= t ≈ t′, we have that
NATEQ |= eq(t, t′) ≈ tt, since the interpretation of the
proof of NAT |= t ≈ t′ (in the sense of proposition 1)
is a proof of NATEQ |= eq(t, t′) ≈ tt. The converse
may be verified by induction on the length of the proof of
NATEQ |= eq(t, t′) ≈ tt.

The example shows how a specification of the natural
numbers is interpreted into another one axiomatised exclu-
sively by equations of sort bool. Sort nat became hidden, or
encapsulated, after refinement.

Other useful design transformations in algebraic specifi-
cation can similarly be captured as refinements. Our last ex-
ample illustrates one of them relating specifications to im-
plementations in which some operations are decomposed or
mapped to transactions, i.e., sequences of operations to be
executed atomically.

Example 4 Consider the following fragment of a specifi-
cation of a bank account management system (BaMS), in-
volving account deposits (operation deposit), withdrawals
(withdraw) and a balance query (bal). Assume variables
s : BaMS, i : AccountId and n : N, where N stands
for the natural numbers, with the usual arithmetic opera-
tors.

SPEC B1 =

[AX]

(1) bal(deposit(s, i, n)) ≈ bal(s, i) + n

(2) bal(withdraw(s, i, n)) ≈ max(bal(s, i)− n, 0)

· · · · · ·

Consider, now, an implementation B2, where all transac-
tions are previously validated (through predicate val). Its
axioms include,

(3) val(bal(val(deposit(s, i, n))))) ≈ val(bal(s, i)) + n

(4) val(bal(val(withdraw(s, i, n))))

≈ max(val(bal(s, i))− n, 0)

Interpretation

τ1 : Eq(Σ1) −→ Eq(Σ2)

= {(op(x) ≈ y) 7→ {val(op(x)) ≈ y}| op ∈ Σ1}

witnesses a refinement in which isolated calls to the opera-
tions are mapped to transactions which necessarily include
a validation step. The situation where only a given subset of
such operations (for example the ones directly affecting an
account balance) requires validation is captured by the fol-
lowing axioms in another implementation B3:

(5) bal(val(deposit(s, i, n)))) ≈ bal(s, i) + n

(6) bal(val(withdraw(s, i, n))) ≈ max(bal(s, i)− n, 0)

Clearly,

τ2 : Eq(Σ1) −→ Eq(Σ3) =

{(op(x) ≈ y) 7→ {val(op(x)) ≈ y}| op ∈ userOp}

where userOp = {deposit,withdraw}, is the required inter-
pretation. Notice, however, that multi-function

τ ′2 : Eq(Σ1) −→ Eq(Σ3) =

{(op(x) ≈ y) 7→ {val(op(x)) ≈ y, op(x) ≈ y}| op ∈ Σ1}

is not an interpretation: most of the possible translations of
(1) are not valid in B3.

Finally, the reader is invited to check that B4 is a refine-
ment of B1 through interpretation τ3:

τ3 : Eq(Σ1) −→ Eq(Σ4) =

{(op(x) ≈ y) 7→ {val(op(x)) ≈ y}| op ∈ Σ1\{withdraw}}
∪ {(withdraw(x) ≈ y) 7→{conf(val(withdraw(x))) ≈ y}}

where specificationB4 forces all operations to be validated,
but also requires for some of them a previous authorisation,
therefore decomposing such operations in three step transa-
ctions:

(7) val(bal(val(deposit(s, i, n))))) ≈ val(bal(s, i)) + n

(8) val(bal(conf(val(withdraw(s, i, n)))))

≈ max(val(bal(s, i))− n, 0)

3.4. Stepwise refinement revisited

Having illustrated some typical applications of the no-
tion of refinement put forward in this paper, it is legitimate
to ask now how does it relate to the traditional one, based
on signature morphisms.

Theorem 5 Let SP be a specifications over Σ and τ a
translation from Σ to Σ′ w.r.t. the set of variables X and
X ′ which interprets SP . Then, for every SP ′ specification
over Σ′, if SP τ SP ′ then SP ⇁τ SP

′.
Proof. Suppose SP τ SP ′, i.e., that [[SP ′]] ⊆ [[SP τ]]. Thus,
any algebra A′ ∈ [[SP ′]] is a τ -model of SP . Therefore for any
ξ ∈ CeqΣ(X), SP |= ξ implies SP ′ |= τ(ξ). I.e., SP ⇁τ SP

′.2

Theorem 6 Let SP = 〈Σ,Φ〉 be aX-flat specification and
τ a translation from Σ to Σ′ w.r.t. the set of variables X
and X ′. If τ interprets SP , then the following conditions
are equivalent:

SP ⇁τ SP
′ (1)

SP τ SP ′ (2)

Proof. Theorem 3 justifies implication (1) to (2). The converse
implication is just Theorem 5. 2

As a corollary we have:

Corollary 1 Let SP = 〈Σ,Φ〉 be a X-flat specification
and τ a translation from Σ to Σ′ w.r.t. the set of variables
X and X ′ which interprets SP . Then, SP ′ |= τ(Φ) im-
plies SP ⇁τ SP

′.

We may now try the following question: given that any
mapping f can be regarded as a multifunction, when does
a traditional refinement via signature morphism become a
refinement via interpretation? We start with the following
lemma:

Lemma 2 Let SP be a specification over Σ and σ : Σ →
Σ′ be an injective signature morphism. Let τ be the trans-
lation induced by the signature morphism σ. Then τ inter-
prets SP .

Proof. Let SP ′ be the specification over Σ′ such that [[SP ′]] =
{A′|A �σ∈ [[SP]]}. Suppose SP |= ξ. Let A′ ∈ [[SP ′]]. Since
A′ �σ∈ [[SP]] we have that A′ �σ|= ξ and, by Lemma 1, A′ |=
σ(ξ). Therefore SP ′ |= τ(ξ). Suppose now SP ′ |= τ(ξ) and let
A ∈ [[SP]]. Since σ is injective there isB ∈ [[SP ′]] suchB �σ=
A. Thus B |= τ(ξ) and, by Lemma 1, B �σ|= ξ, i.e., A |= ξ.
Hence SP |= ξ. Therefore σ interprets SP . 2

Next theorem shows that our notion actually is a gener-
alization of the standard one in the special case when the
signature morphism is injective.

Theorem 7 Let SP and SP ′ be two specifications over Σ
and Σ′ respectively, and σ : Σ→ Σ′ an injective signature
morphism. Let τ be the translation induced by the signature
morphism σ. Then, SP σ SP

′ implies SP ⇁τ SP
′.

Proof. By previous theorem τ interprets SP . Suppose SP σ

SP ′, i.e., [[SP ′]] �σ⊆ [[SP]]. Let ξ ∈ CeqΣ(X) such that SP |=
ξ. Let A′ ∈ [[SP ′]]. Then A′ �σ∈ [[SP]] and so A′ �σ|= ξ. By
Lemma 1, A′ |= σ(ξ). Hence SP ′ |= σ(ξ). Therefore SP ⇁τ

SP ′. 2

Now, we show that, in the flat case, the two concepts of re-
finement coincide:

Theorem 8 Let σ : Σ→ Σ′ be an injective signature mor-
phism, SP = 〈Σ,Φ〉 aX-flat specification and SP a speci-
fication over Σ′. Let τ be the translation induced by the sig-
nature morphism σ. Then SP σ SP

′ iff SP ⇁τ SP
′.

Proof. Suppose SP ⇁τ SP ′. By Theorem 5, SP τ SP ′.
On the other hand, since [[SP τ]] ⊆ [[〈Σ′, σ(Φ)〉]], by Theorem 1,
SP σ SP τ . Since we can vertically compose σ- refinements
we have SP σ SP

′. 2

The discussion concerning the composition of refinements
via interpretation is not straightforward. For vertical com-
position an additional property has to be imposed on the
components’ interpretations. Formally,

Theorem 9 Let SP , SP ′ and SP ′′ be three specifications
over Σ, Σ′ and Σ′′ respectively. Let τ be a translation from
Σ to Σ′ w.r.t. the set of variables X and X ′ and ρ a trans-
lation from Σ′ to Σ′′ w.r.t. the set of variables X ′ and X ′′.
Suppose that SP ⇁τ SP

′, SP ′ ⇁ρ SP
′′ and ρ interprets

SP τ . Then SP ⇁ρ◦τ SP
′′

Proof. Let ξ ∈ CeqΣ(X). Suppose SP |= ξ. Since SP ⇁τ

SP ′, SP ′ |= τ(ξ). And, from SP ′ ⇁ρ SP
′′ we have SP ′′ |=

ρ(τ(ξ)). By hypothesis, τ interprets SP and ρ interprets SP τ .
In particular: SP τ is a τ -interpretation of SP and (SP τ)ρ is a
ρ-interpretation of SP τ . Hence, for any ξ ∈ CeqΣ(X), SP |=
ξ ⇔ SP τ |= τ(ξ) and for any ζ ∈ CeqΣ(X ′), SP τ |=
ζ ⇔ (SP τ)ρ |= τ(ζ). Therefore, for any ξ ∈ CeqΣ(X),
SP |= ξ ⇔ (SP τ)ρ |= ρ(τ(ξ)). That is, ρ ◦ τ interprets SP . 2

On the other hand, horizontal composition of refine-
ments via interpretations is still a topic of current research.
To illustrate the kind of results we are investigating sup-
pose, for example, that τ interprets SP in SP ′. The chal-
lenge is to prove that τ also interprets any axiomatic exten-
sion of SP in an appropriate subspecification of SP ′ .

4. Conclusions and further work

The paper introduced a new notion of refinement and
started to setting the way towards the development of a con-
sistent algebraic theory of refinements via interpretations.
The results, characterizations and applications obtained are
promising, in the sense that a number of useful transforma-
tions of specifications become captured as refinement steps.
Although the paper raises more questions than it gives an-
swers, the path seems to be clear.

The main focus of our current work is the integration
of the refinements via interpretation within the standard re-
finement process of algebraic specifications. A first step
in this direction concerns the study of hybrid notions like
SP ⇁τ.σ SP ′ iff SP τ σ SP ′, for τ a translation and
σ a signature morphism. In this context, our τ . σ-models
would consist of algebras of the class [[SPσ]] �σ .

Another topic to explore is the equivalence of alge-
braic specification up to logical interpretations. As a start-
ing point, it would be worth to explore relation ≡ defined
as follows: SP ≡ SP ′ if there are interpretations τ and ρ
such that SP ⇁τ SP

′ and SP ′ ⇁ρ SP . It is not difficult
to see that SP |= ξ implies SP |= ρ(τ(ξ)) and SP ′ |= η
implies SP ′ |= τ(ρ(η)). More challenging seems to be a
stronger equivalence, studied in the context of equivalence
between logical systems [CG05, BP89], which requires in-
terpretations to be mutually inverse, that is inverses of one
another.

Acknowledgements. This work is funded by ERDF - Eu-
ropean Regional Development Fund through the COM-
PETE Programme (operational programme for competitive-
ness) and by National Funds through the FCT - the Por-
tuguese Foundation for Science and Technology, within
project FCOMP-01-0124-FEDER-007254, as well as un-
der contract PTDC/MAT/68723/2006 and the Unidade
de Investigação Matemática e Aplicações of University of
Aveiro.

References

[BH06] M. Bidoit and R. Hennicker. Proving behavioral re-
finements of col-specifications. In Essays Dedicated
to Joseph A. Goguen, pages 333–354, 2006.

[BP] W. Blok and D. Pigozzi. Abstract algebraic logic
and the deduction theorem. Preprint. To ap-
pear in the Bulletin of Symbolic Logic. Available at
http://www.math.iastate.edu/dpigozzi/
papers/aaldedth.pdf.

[BP89] W. Blok and D. Pigozzi. Algebraizable logics. Mem-
oirs of the American Mathematical Society, 396,
Amer. Math. Soc., Providence, 1989.

[BR03] W. Blok and J. Rebagliato. Algebraic semantics for
deductive systems. Studia Logica, 74(1-2):153–180,
2003.

[BS81] S. Burris and H. P. Sankappanavar. A course in uni-
versal algebra. Graduate Texts in Mathematics, Vol.
78. New York - Heidelberg Berlin: Springer-Verlag.,
1981.

[BSR04] Don Batory, J. N. Sarvela, and A. Rauschmayer. Scal-
ing step-wise refinement. IEEE Trans. in Sofware En-
gineering, 30(6):355–371, 2004.

[CG05] C. Caleiro and R. Gonçalves. Equipollent logi-
cal systems. In Logica Universalis, pages 99–111.
Birkhäuser, Basel, 2005.

[Cze01] J. Czelakowski. Protoalgebraic Logics. Trends in
logic, Studia Logica Library, Kluwer Academic Pub-
lishers, 2001.

[DD05] Bastian Dolle and Walter Dosch. Transforming
functional signatures of algebraic specifications into
object-oriented class signatures. In APSEC ’05: Pro-
ceedings of the 12th Asia-Pacific Software Engineer-
ing Conference, pages 323–332, Washington, DC,
USA, 2005. IEEE Computer Society.

[Fav98] Liliana Favre. Object oriented reuse through algebraic
specifications. In TOOLS ’98: Proceedings of the
Technology of Object-Oriented Languages and Sys-
tems, page 101, Washington, DC, USA, 1998. IEEE
Computer Society.

[FD01] H. A. Feitosa and I. M. L. D’Ottaviano. Conservative
translations. Ann. Pure Appl. Logic, 108(1-3):205–
227, 2001.

[Fei97] H. Feitosa. Traduções Conservativas. PhD the-
sis, Universidade Federal de Campinas,Instituto de
Filosofia e Ciências Humanas, 1997.

[Fia04] J. L. Fiadeiro. Software services: scientific challenge
or industrial hype? In K. Araki and Z. Liu, editors,
Proc. First International Colloquim on Theoretical
Aspects of Computing (ICTAC’04), Guiyang, China,
pages 1–13. Springer Lect. Notes Comp. Sci. (3407),
2004.

[GB92] J. Goguen and R. Burstall. Institutions: abstract model
theory for specification and programming. J. ACM,
39(1):95–146, 1992.

[Mar06] M. A. Martins. Behavioral institutions and refine-
ments in generalized hidden logics. Journal of Uni-
versal Computer Science, 12(8):1020–1049, 2006.

[MDT09] T. Mossakowski, R. Diaconescu, and A. Tarlecki.
What is a logic translation ? Logica Universalis,
2009.

[MHST03] Till Mossakowski, Anne Haxthausen, Donald San-
nella, and Andrzej Tarlecki. CASL: The common al-
gebraic specification language: Semantics and proof
theory. Computing and Informatics, 22:285–321,
2003.

[MP07] M. A. Martins and D. Pigozzi. Behavioural reasoning
for conditional equations. Mathematical. Structures
in Comp. Sci., 17(5):1075–1113, 2007.

[MT92] K. Meinke and J. V. Tucker. Universal algebra. In
Handbook of logic in computer science, Vol. 1, vol-
ume 1 of Handb. Log. Comput. Sci., pages 189–411.
Oxford Univ. Press, New York, 1992.

[San00] D. Sannella. Algebraic specification and program
development by stepwise refinement. (Extended ab-
stract). In Bossi, Annalisa (ed.), Logic-based program
synthesis and transformation. 9th international work-
shop, LOPSTR ’99. Venice, Italy, September 22-24,
1999. Selected papers. Berlin: Springer. Lect. Notes
Comput. Sci. 1817, pages 1–9. 2000.

[ST88] D. Sannella and A. Tarlecki. Towards Formal De-
velopment of Programs from Algebraic Specifica-
tions: Implementations Revisited. Acta Informatica,
(25):233–281, 1988.

[ST97] D. Sannella and A. Tarlecki. Essential concepts of al-
gebraic specification and program development. For-
mal Asp. Comput., 9(3):229–269, 1997.

[STar] D. Sannella and A. Tarlecki. Foundations of Alge-
braic Specifications and Formal Program Develop-
ment. Cambridge University Press, To appear.

[Tar03] A. Tarlecki. Abstract specification theory: An over-
wiew. In Models, Algebras, and Logics of Engineer-
ing Software,M. Broy, M. Pizka eds., NATO Science
Series, Computer and Systems Sciences, VOL 191,
pages 43–79. IOS Press, 2003.

[Wir90] M. Wirsing. Algebraic specification. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science (volume B), pages 673–788. Elsevier - MIT
Press, 1990.

