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Abstract—Although increasingly popular, Model Driven Ar-
chitecture (MDA) still lacks suitable formal foundations on top
of which rigorous methodologies for the description, analysis
and transformation of models could be built. This paper aims
to contribute in this direction: building on previous work b y
the authors on coalgebraic refinement for software components
and architectures, it discusses refactoring of models within
a coalgebraic semantic framework. Architectures are defined
through aggregation based on a coalgebraic semantics for (subsets
of) UML. On the other hand, such aggregations, no matter how
large and complex they are, can always be dealt with as coalge-
bras themselves. This paves the way to a discipline of models’
transformations which, being invariant under either behavioural
equivalence or refinement, are able to formally capture a large
number of refactoring patterns. The main ideas underlying this
research are presented through a detailed example in the context
of refactoring of UML class diagrams.

I. I NTRODUCTION

Model Driven Software Engineering (MDSE) [25] is cur-
rently a highly praised development paradigm among soft-
ware developers and researchers. Its key message: software
systems can be developed, enhanced, and maintained through
successive refinement and transformation ofmodelsat various
levels of abstraction. Therefore, rather than directly addressing
concrete programs or low-level descriptions, the primary arti-
facts in MDSE are models themselves and transformations. Its
intuitions resort to combine architectures of the model roles
with other process activities, and to use model rather than code
as the driving force of software development.

The Unified Modeling Language (UML) [22] provides a
unified notation for representation of various models, and
has been widely adopted for the representation of aspects
of distributed, web-based applications [7]. According to [22],
UML is ‘a graphical language for visualizing, specifying,
constructing, and documenting the artifacts of a software-
intensive system’. In practice, it stands for a collection of
inter-related, semi-formal design notations for softwaredevel-
opment, providing a unified notation, expressive and widely
adopted (ade factostandard). It lacks, however, a rigourous
and consensual semantic definition leading, therefore, to weak
effective support to the design of complex systems and, often,
to conflicting support tools.

A variant of MDSE is the Model Driven Architecture
(MDA) proposed by the Object Management Group (OMG)

[21]. MDA provides an enabling infrastructure with standard
specifications facilitating the definition and implementation of
model transformations.

An important issue in MDA ismodel refactoring. The term
refactoring was originally introduced in [23] in the context
of OO programming. In [6], it is defined as the process of
‘changing a software system in such a way that it does not
alter the external behaviour of the code, yet improves its
internal structure’. Later, research has shifted from program
refactoring to model refactoring [26], [27], which aims to
apply refactoring techniques at the model level instead of
program (source code) level.

According to the definition above, refactoring should pre-
serve behaviours when a model is transformed. Unfortunately,
a precise definition of behaviour is rarely provided. The
original definition of behaviour preservation in [23] states
that for the same inputs, the resulting outputs should be the
same before and after the refactoring. Such an understanding
of behaviour preservation is ensured by means of refactoring
preconditions in [23]. However, this is a rather conservative
approach which rules out many legal refactorings. Moreover,
requiring preservation of I/O behaviour is either insufficient
or excessive in many application domains.

A graph transformation approach was proposed by Mens
et al. in [19], [18] to provide formal support for refactoring.
A type checking approach is used in [28] to ensure that the
type of an entity is same before and after refactoring. These
approaches are static and mostly operate at source code level.
In [29], UML statecharts are translated into CSP processes,
and behaviour preservation in refactoring is witnessed by
failure-divergence refinement in CSP. Unfortunately, it only
deals with the statechart model, while in real application
domains, many aspects of behaviour may be relevant. Thus a
generic definition of behaviour preservation is still needed for
model refactoring. Other interesting approaches include [27]
and [11]. Reference [20] provides a comprehensive survey.

In previous work, we introduced a generic coalgebraic
semantic framework for different models in UML, including
class diagrams, use cases, statecharts and sequence diagrams
[12], [17], [15]. In such a framework, the semantics of different
kinds of models are given as coalgebras [9], [24] which encap-
sulate a state space, regarded as a black box with limited access
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via specific observers. Notions of bisimulation and refinement
capture observational equivalence and simulation preorders,
respectively. Such standard tools in coalgebra theory can form
the basis of a whole discipline of reasoning and transforming
UML designs. Actually, if the semantics of different UML
models can be presented as coalgebras for suitable functors,
we will end up with auniform settingfor tackling the diversity
of such models, their properties and inter-relations.

This paper is part of such a broad research agenda on a
generic coalgebraic semantic framework for UML descriptions
upon which we aim at addressing two main issues in model-
driven development:

• model composition, defining and investigating operators
and laws which govern the behaviour of models, and

• modelrefactoring, understood asthe process of changing
a software system in such a way that it does not alter the
external behaviour of the code, yet improves its internal
structure, to quote [23].

In both cases a precise notion ofbehaviourand a calculational
approach tobehavioural equivalenceandrefinementis the key
issue. Actually, such notions are at the kernel of coalgebra
theory, often suitably called themathematics of dynamical
systems. In particular, coalgebra theory provides a standard
notion of systems’ behaviour in terms of the bisimilarity
relation induced by the signature functor. Refinement, as
explained below, corresponds to the ability of a coalgebra to
simulate another in a quite precise, but parametric, way.

A specific contribution of the paper is the case for tak-
ing (coalgebraic) refinement [14], instead of observational
equivalence, as the basic notion capturing the intuitive idea
of ‘behaviour preservation’ under refactoring. Often, in fact,
equivalence, or in coalgebraic terms, bisimilarity, is notcoarse
enough to capture typical refactoring patterns. This will be
made clear even in the quite elementary example of a refac-
toring pattern for Class Diagrams used as a case-study in the
sequel.

The remaining of the paper is organised as follows: Section
II recalls basic concepts in coalgebra theory, with a particular
emphasis in our own approach to generic refinement as de-
tailed in [14]. Section III presents a refactoring example from
a Class Diagram of an e-business application. The next three
sections contain the basic contributions of the paper, discussing
a semantics for Class Diagrams and formalising refactoringas
(different kinds of) refinement with respect to the envisaged
semantics. Finally, section VII concludes and points out how
our results have a broader scope than just class refactoring,
underlying some issues for future work.

II. COALGEBRAS, BISIMULATION AND REFINEMENT

Given a functorT, understood as a specification of a
signature ofobservers, a T-coalgebra is simply a function
p : TU ←− U mapping elements of a state spaceU into their
observations throughT. A useful metaphor identifies functor
T with a ‘lens’ (©⌢©), providing the unique, limited way
through which the state of a system is observed. Similarly,

a coalgebrap : ©⌢©U ←− U is regarded as a formal
description of the observation process.

Alternatively, a T-coalgebrap can be thought of as a
generalisedtransition systemp←− , the shape of transitions
being determined byT according to

p←− = ∈T ·p (1)

or, introducing variables,

u′
p←− u ≡ u′ ∈T p u

where relation∈T denotes structural membership1. In this
context, the notion ofbisimulation found in automata theory
or process algebra, generalises to suchT-shaped transition
systems: a bisimulation is a relation over the state spaces of
two coalgebras,p and q, which is closedfor their dynamics,
i.e.

(x, y) ∈ R ⇒ (p x, q y) ∈ TR (2)

which, getting rid of variables, becomes the following in-
equality in the language of the (pointfree) calculus of binary
relations [1]:

R ⊆ p◦ · (TR) · q (3)

wherep◦ stands for the relational converse ofp. Applying the
shuntingrule of the calculus onp◦, this simplifies to

p · R ⊆ (TR) · q (4)

Bisimilarity is entailed by coalgebra morphisms. Actually, a
morphism from coalgebraq andp, is a function between their
state spaces with commutes with the coalgebra dynamics, i.e.,
which validates the following equation:

Th · q = p · h (5)

Again, this can be framed in terms ofT-shaped transition
systems:

h · q←− = p←− ·h (6)

A general result in coalgebra theory asserts that the exis-
tence of a morphism between two coalgebras is enough to
prove they arebisimilar, which provides us with a handy,
calculational proof principle to verify bisimilarity.

1This relation coincides with datatype membership defined in[8] by a
Galois connection. For the powerset functor,∈T amounts to standard set
membership, while for polynomial functors the following inductive definition
applies (see [14] for details):

∈Id = id

∈K = ⊥

∈T1×T2
= (∈T1

·π1) ∪ (∈T2
·π2)

∈T1+T2
= [∈T1

,∈T2
]

∈T1·T2
= ∈T2

· ∈T1

∈TK =
[

k∈K

∈T ·βk (whereβkf = f k)



Equation (6) is, in fact, a conjunction of inclusions

h · q←− ⊆ p←− ·h (7)

p←− · h ⊆ h · q←− (8)

which correspond to transitionpreservationand reflection, as
the following pointwise rendering may turn more explicit:

v′ q←− v ⇒ h v′ p←− h v

u′
p←− h v ⇒ ∃v′∈V . v′ q←− v ∧ u′ = h v′

Coalgebra morphisms preserve and reflectT-shaped tran-
sitions, a basic observation which lead the authors, in a
series of previous publications [13], [14], [2], to characterise
a notion of coalgebraicrefinementin terms of morphisms
that only preserve or reflect such transitions. Cutting short
a long story, aforward (respectively,backward) morphism is
defined, with respect to a refinement preorder≤, as a function
h : Up ←− Uq between the state spaces of the relevant
coalgebras, such that

T h · q
.

≤ p · h (9)

respectively,
p · h

.

≤ T h · q (10)

Notationf
.

≤ g equivales tof ⊆≤ ·g, i.e.,

f
.

≤ g ≡ 〈∀ x : : f x ≤ g x〉

As discussed extensively in the above mentioned references,
≤ is any preorder compatible with the membership relation,
in the sense that

∈T · ≤ ⊆ ∈T (11)

i.e., for all x1, x2,

x ∈T x1 ∧ x1 ≤ x2 ⇒ x ∈T x2

Typical refinement preorders capture reduction of non deter-
minism and/or increase of definition, but much more possibil-
ities can be considered (see [2] for a detailed catalogue and
discussion). Reference [13] proved that forward (respectively,
backward) morphisms preserve (respectively, reflect)T-shaped
transitions as well as that coalgebras and such morphisms do
possess, in both cases, the structure of a category.

A coalgebraq is a forward refinementof p, written asq 2

p, if there exists a forward morphism fromq to p. Dually,
a backward refinement, written asq 4 p, is witnessed by a
backward morphism also fromq to p.

III. A R EFACTORING EXAMPLE

This section introduces a concrete example of refactoring
over a class diagram. The original diagram is depicted in
Figure 1: a simplified model of a video renting e-business.

This model, which we believe is self-explanatory, can be
refactored according to theInline Class refactoring pattern
[6]. Consider, for example, classesMembership, Account, and
AccountItem, which represent the clients of a store, their
accounts, and the history of record items on such accounts.
Each client has an account and every account has a set of

Fig. 1. Video e-business example

account recorded items. An OCL constraint is attached to
classMembership, stating that every client’s account balance
is larger than0. ClassAccountdoes not provide any methods
of its own, being only used by classMembership. Therefore,
classesMembershipandAccountcan be joined into a unique
class. The resulting diagram is as shown in Figure 2, where
all other classes remain unchanged.

Fig. 2. Refactored class diagram

As this example shows, a refactoring is a model transfor-
mation which eventually improves its internal structure, while
preserving its external behaviour, or, understanding ‘external’



as an abbreviature forexternally observed, its observational
semantics. To formally record and reason about such model
transformations, however, entails the need for

• a precise notion ofobservational semanticsfor class
diagrams,

• a way to encode each refactoring pattern, or law, in the
semantics and, finally,

• a proof that such encoding preserves the semantics in a
stronger or weaker, but always precisely defined, way.

The rest of the paper is devoted to tackle these issues.

IV. A SEMANTICS FORCLASSES

A. Classes

In UML a class diagramcaptures the static structure of a
system, as a set of classes and relationships, calledassocia-
tions, between them. Classes may be further annotated with
constraints, i.e., properties that must hold for every object
in the class along its lifetime. Let us concentrate, for the
moment, in class declarations. The aim of a class declaration
is introduce a signature of attributes and methods. Consider,
for example, classMembership in the diagram of Fig. 1.
It introduces two attributes and a method over a state space,
identified by variableU below, which is made observable ex-
actly (and uniquely) by the attributes and methods it declares.
Concretely,

joined : Date←− U

lastHire : Date←− U

pay : U ←− U × R

These three declarations can be grouped in one through asplit
construction

〈joined, lastHire, pay〉 : Date×Date× UR ←− U

which is acoalgebrafor functor

T X = Date×Date×XR

Therefore, we write,

[[Membership]] = 〈joined, lastHire, pay〉

In general, the semantics[[c]] of a classc is given by a
specification of a coalgebra

〈at, md〉 : A× (O × U)I ←− U

whereA is the attribute domain, and each method accepts a
parameter, of typeI, and delivers both a state change and an
output value, of typeO. I.e., a coalgebra for functor

T : A× (O ×X)I ←− X (12)

Typically, I andO aresumtypes, aggregating the input-output
parameters of each declared method. On its turn,A is usually
a product type joining all attribute outputs in a way which
emphasises that each of them is available independent of the
others, and therefore always able to be accessed in parallel.

More generally, as methods are typically implemented by
partial functionsor even by arbitraryrelations, this definition
should be generalised to

〈at, md〉 : A× B(O × U)
I
←− U

where B is a strong monad2 capturing some sort of be-
havioural effect. For example,partiality (makingBX = X+1)
or non determinism(B standing for the finite powerset func-
tor). Additionally, a class may specify some initial conditions,
typically as a predicateγ : 2 ←− U which is supposed to
hold in the coalgebra initial states.

Such a coalgebraic setting provides for free a notion of
observational equivalence —T-bisimulation —which is a
fundamental tool for analysing valid refactorings. Instantiating
definition (2) to functorT, yields two class models being
bisimilar iff they provide identical observations throughat-
tributes and execution of the method’s component not only
deliver equal outputs but also makes each of them to evolve
to a pair of new states which are also bisimilar.

B. Aggregating Classes in Class Diagrams

Every class in a UML Class Diagram corresponds to a
coalgebraic specification(T, Φ, Ψ) in which T is the functor
discussed above, which represents a generic signature of
attributes and methods,Φ is a set of axioms to characterize
the properties of the class, andΨ describes the properties that
hold for newly created objects.

The semantics of a class specificationc in a UML Class
Diagram is defined as the category of coalgebras for the corre-
sponding coalgebraic specification and initial state preserving
morphisms between them and the behaviour of the objects of
classc is captured by the final coalgebra in this category. On
the other hand, inheritance relationship between two classes
in a class diagram is witnessed by a functor between the
corresponding categories of coalgebras for the superclassand
the subclass.

Such ‘theory-oriented’ view provides a right level of ab-
straction, but, on the other hand, requires some heavy machin-
ery to be handled in its full genericity. Therefore, in the sequel,
we shall concentrate into a more concrete, ‘model-oriented’
description, assuming a prototypical inhabitant of each class
specification and defining our combinators at the model level.

2A strong monad[10] is a monad〈B, η, µ〉 whereB is a strong functor
and bothη andµ strong natural transformations.B being strong means there
exist natural transformationsT(Id × −) : T × − ⇐= T × − and T(− ×
Id) : − × T ⇐= − × T called the right and left strength, respectively,
subject to certain conditions. Their effect is todistribute the free variable
values in the context “−” along functorB. Strengthτr , followed byτl maps
BI × BJ to BB(I × J), which can, then, be flattened toB(I × J) via µ.
In most cases, however, theorder of application is relevant for the outcome.
The Kleisli composition of the right with the left strength,gives rise to a
natural transformation whose component on objectsI and J is given by
δrI,J = τrI,J

•τlBI,J
Dually, δlI,J = τlI,J

•τrI,BJ
. Such transformations

specify how the monad distributes over product and, therefore, represent a sort
of sequential composition ofB-computations. Wheneverδr andδl coincide,
the monad is said to becommutativeand the unique transformation represented
by δ.



A UML Class Diagram introduces a number of class
specifications which types the object population of any cor-
responding model implementation. Typically, different ways
of putting classes together in a Class Diagram correspond to
different operators betweenT-coalgebras. In particular, one
may consider a form ofparallel aggregation, denoted by⊠,
in which methods in both classes can be called simultaneously
(as they always act upon disjoint state spaces), and a form of
interleaving, denoted by⊞, which offers a choice of which
class to call. Note that in both cases, attributes are always
available to be observed, and therefore are composed in a
multiplicative context. Initial conditions are joined by logical
conjunction. Therefore, given coalgebrasp and q, over state
spacesU and V , respectively, we define their productp ⊠ q

as 〈γp⊠q, 〈atp⊠q, mdp⊠q〉〉, where,

γp⊠q = U × V
γp×γq

// 2× 2
∧

// 2

atp⊠q = U × V
atp×atq

// A× A′

mdp⊠q = U × V × (I × I ′)
m

// (U × I)× (V × I ′)

mdp×mdq
// B(O × U)× B(O′ × V )

δ
// B((O × U)× (O′ × V ))

Bm
// B((O ×O′)× (U × V ))

wherem is an isomorphism (combining Cartesian product
commutativity and associativity), andδ is the Kleisli com-
position of left and right strengths associated to monadB.
Interleaving, orchoice, differs from ⊠ only in the methods
component. Thus,

mdp⊞q = U × V × (I + I′)
△×id

// (U × V )2 × (I + I′)

∼=
// (U × I)× V + (V × I′)× U

f
// B(O × U)× V + B(O′ × V )× U

τr×τr
// B((O × U)× V ) + B((O′ × V )× U)

∼=
// B(O × (U × V )) + B(O′ × (U × V ))

g
// B((O + O′)× U × V ) + B((O + O′)× U × V )

▽
// B((O + O′)× U × V )

wheref
abv
= mdp× id+mdq× id andg

abv
= B(ι1× id)+B(ι2×

id). On the ohter hand,△= 〈id, id〉 and ▽ = [id, id] denote,
respectively, the diagonal and co-diagonal functions (see[4]
for details on these definitions and the calculus of functions).

Finally, another tensor, denoted by�, corresponds to what
may be calledconcurrent composition. It is defined as a
combination of the⊠ and ⊞, allowing for both parallel or
interleaved method execution. Formally, the action ofp�q on

methods of classesp andq accepts either separated or tupled
inputs to deliver the result of applying eithermdp⊞q or mdp⊠q

mdp�q : B((O +O′ + O×O′)×U ×V )←− U ×V × (I + I′ + I × I′)

The reader can easily checkmdp�q is defined by

mdp�q = B(dl
◦) · δ · (mdp⊞q ×mdp⊠q) · dr

wheredl anddr stand for product left and right distribution,
respectively.

All three combinators are associative as well as commu-
tative, wheneverB is a commutative monad. As one would
expect, such properties are stated up to bisimilarity. The proof
of commutativity of⊠ below illustrates a way to reason, in a
calculational style, with coalgebraic definitions.

The basic proof technique resorts to the well-known fact
that a morphism between coalgebras entails bisimilarity. In
this example isomorphisms : V × U ←− U × V relating the
state spaces of classesp ⊠ q and q ⊠ p, is shown to be aT-
coalgebra morphism. The only non trivial part of the proof is
the one related to the methods’ component, which we detail
as follows3, in a completely pointfree style:

B(s× s) · mdp⊠q

= { definition of ⊠}

B(s× s) · Bm · δ · (mdp ×mdq) · m

= { B is a functor and routine:m · s = (s × s) · m}

B(m · s) · δ · (mdp ×mdq) · m

= { δ and s naturality entailsBs · δ = δ · s}

Bm · δ · s · (mdp ×mdq) · m

= { s naturality}

Bm · δ · (mdp ×mdq) · m · (s× s)

= { definition of ⊠}

mdp⊠q · (s× s)

Reference [5] introduces a comprehensive calculus of gen-
eralised Moore machines framed as coalgebras for a functor
similar to (12) which can, to a great extent, be adapted to the
present setting to reason about class specifications.

V. REFACTORING CLASS DIAGRAMS

The coalgebraic semantics for classes and class aggregation
introduced in the previous section has the side effect of
representing any parcel of a UML Class Diagram (from a
single class to the whole diagram) asT-coalgebra. Moreover,
the combining classes in a diagram through different tensors,
entails different semantic perspectives which may be helpful
in subsequent design stages. In this section, we propose to use
such a framework to discuss refactoring of Class Diagrams.

3Note a swap of the arguments is also necessary



A. Refactoring by Refinement

Refactoring can be discussed, in practice, both at the
specification level (in which case no particular model of
any class specification in the diagram is assumed) or at the
model level (when it is proposed with respect to a particular
design model). The former, to be discussed in subsection
V-B, is, certainly, more interesting and the one where typical
refactoring patterns, as discussed in [6], apply. In the sequel,
however, we consider a design stage where the class diagram
is already under transformation towards a concrete design.
In such a context, the most elementary refactoring situation
captures the replacement of a particular class model by one
of its refinements.

To deal with it, in our approach, is necessary to show
that the class combinators which give semantics to the whole
diagram preserve the refinement relation. As discussed above,
a typical refinement relation captures increase in definition and
reduction of non determinism — typical choices forB in T,
being themaybeor thepowersetmonad. The following result,
however, applies toany forward refinement2. Moreover, a
dual result can be proved, exactly along the same lines for
any backward refinement4.

Suppose, thus, thatc 2 c′, which means there is a forward
morphismh : c′ ←− c such thatTh · c

.

≤ c′ · h. We want to
prove that

c ⊠ d 2 c′ ⊠ d (13)

The refinement situation is witnessed by a morphism between
the relevant compositions which amounts to functionh× id :
U ′ × V ←− U × V . There are two inequations to prove:

atc⊠d

.

≤ atc′⊠d · (h× id) (14)

B((id × id)× (h× id)) · mdc⊠d

.

≤ mdc′⊠d · (h× id)× (id× id) (15)

Inequality (14) is immediate from the hypothesis. For (15)
we reason:

B((id× id)× (h× id)) · mdc⊠d

= { definition of ⊠}

B((id× id)× (h× id)) · Bm · δ · (mdc ×mdd) · m

= { δ andm naturality}

Bm · δ · (B(h× id)× B(id× id)) · (mdc ×mdd) · m

= { × is a functor}

Bm · δ · ((B(h× id) · mdc)× (B(id× id) · mdd) · m
.

≤ { hypothesis and monotonicity; identities}

Bm · δ · ((mdc′ · (h× id))× (mdd · (id× id))) · m

= { × is a functor;m naturality}

Bm · δ · (mdc′ ×mdd) · m · (h× id)× (id× id)

= { definition of ⊠}

mdc′⊠d · (h× id)× (id× id)

A similar result can be shown, along the same lines, for
⊞ and �. Finally, note that, as any morphism is a forward
morphism as well, the result is also valid when2 is replaced
by ∼, i.e., for any bisimilar refactoring.

B. Refactoring Patterns

Let us re-visit the refactoring example introduced in section
III to illustrate the Inline Class refactoringpattern which is
stated as

Law 1: Inline class refactoring allows two classes
to be merged together provided one of them has
no methods available.

As with any other refactoring pattern one would like to
consider, we proceed in two steps:

• first the pattern is encoded in the semantics;
• then, it has to be shown that the original and the new

diagram are observationally equivalent or else one is a
refinement of the other.

Back to the example at hands, our encoding is as follows:
classesMembership andAccount are replaced by a new
class Membership′ whose semantics is a new coalgebra
over the state space of[[Membership]] to which a new
attributebalance is added.

[[Membership′]] (16)

= 〈〈atMembership, atAccount〉, mdMembership〉

We are now left with the need to record how does new
classMembership′ relates to (the relevant fragment of) the
original Class Diagram, i.e.,

[[Membership]] ⊠ [[Account]]

assuming the remaining part of the diagram remains un-
changed.

Clearly, they are not bisimilar, because, at each step, the
original attributes of classesMembership and Account

are now computed over thesamestate.
For the methods’ component, note that to assert the absence

of methods declarations in classAccount is equivalent to
endow it with a unique method, with trivial argument (i.e.,
such thatI ∼= 1, where1 is the singleton set{∗}), yielding a
trivial result (i.e.,O ∼= 1) and acting as an identity over the
state space. Apart these ‘dummy’ parameters of type1, no
observable difference can be detected between the new class
Membership′ and the semantics of the original subdiagram
containing classesMembership and Account. The latter
is given by coalgebra4

[[Membership]] ⊠ [[Account]] (17)

: U × V −→ A× B(O × (U × V ))I

Clearly, projectionπ1 : U ←− U×V is abackwardmorphism
for any refinement preorder capturing increase in definition

4Actually, [[Membership]]⊠[[Account]] is from U×V to A×B((O×
1)×(U×V ))I×1, which can be transformed into (17) by the obvious natural
isomorphism.



(i.e., reduction of partiality).

[[Membership′]] · π1

.

≤ A× B(id× π1)
I

· [[Membership]] ⊠ [[Account]]

Therefore, theinline refactoring pattern is actually abackward
refinementof the new by the old diagram, i.e.,

[[Membership]] ⊠ [[Account]] 4 [[Membership′]]

VI. CONSTRAINTS AND ASSOCIATIONS

So far we have ignored completely the two other ingredients
of a UML Class Diagram, namely,constraintsand associa-
tions. The former are typically attached to class specifications
and their semantic effect is to constraint what coalgebras count
as valid implementation for the class. Such is the case, for
example, of constraint

balance > 0

attached to classMembership in our example.
Associations can also be interpreted as constraints, this time

with respect to a fragment of the diagram containing the two
associated classes. For this, one has to assume that the state
space of each class has a component recording the collection
of live instances. Anassociationbecomes a constraint over
such components of the (joint) state space. For example a
’one-to-one’ association corresponds to a predicate asserting
the existence of an injective function relating the collection of
instances of each class. Similarly, a ’one-to-many’ association
corresponds to a relation whose kernel is the identity, i.e., a
total relation whose converse is simple.

In general, constraints and associations are predicates which
are supposed to be preserved along the system life-time.
Formally, they are incorporated in the semantics asinvari-
ants. Following the approach recently proposed in [3], such
predicates, once encoded as coreflexives, i.e., fragments of the
identity, according to

y ΦP x ≡ y = x ∧ P x

can be specified as

c · ΦP ⊆ T ΦP · c (18)

When reasoning about diagram transformations, such as refac-
toring, constraints entail forproof obligations. For example,

[[balance > 0]] =

[[Membership]] · Φbalance>0 ⊆ T Φbalance>0 · [[Membership]]

needs to be discarded whenever justifying a refactoring involv-
ing classMembership.

VII. C ONCLUSIONS

As announced in the introduction, this paper is just a
first step on a broader attempt to apply the principles and
techniques of coalgebraic semantics to reason formally about
refactoring of UML models. In [17] and [15], we developed

coalgebraic models for bothstatechartsand sequence dia-
grams, respectively. The former were modelled as coalgebras
for

TX = B(X × PE)E

whereas the latter are also coalgebras for

TX = XΣ

over a universe of global configurations.
Preliminary work on refactoring of such diagrams indicate

that, in both cases,weaker (i.e., coarser, with respect to
bisimilarity) relations on the observable behaviour, namely
refinement, are in order.

Just for a brief illustration, consider statechart in Figure 3
for a copy object in the video business system, which captures
the following dynamics. When a copy is created, it is in some
store. A copy in the store can be hired and then returned back.
When hired, if the due date expires, the copy enters in an out-
of-date state, and must be returned back at some time.

Fig. 3. Statechart for Copy

When a copy is in the store, it can be held for an outstanding
reservation or put on the shelf. It is held if it is wanted, i.e.,
if there is a reservation for the video and in this store that
does not have a Hold. If a copy is held and the reservation
is cancelled, it is either reallocated to another reservation or
put in theHoldCancelledstate until checked back to the shelf.
Furthermore, statesisHired andisOD can be grouped together
to model the behaviour of a copy when it is out of the store.
With such two composite states, a refactored statechart, which
actually refines the original one with respect to the semantics
in [17], is represented in Figure 4.

Fig. 4. Refactored Statechart for Copy

In retrospect, the approach illustrated in this paper seems
promising to either to capture known refactoring patterns,or
to identify new ones, for a variety of UML models. A lot of
work, however, remains to be done. In particular, we would
like to tackle the consistency problem among different UML
view models, and to explore the relationship between model
transformations and other kinds of refinement, namely, the
notion of architectural refinement introduced in [16].
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