
A Coalgebraic Semantic Framework for Reasoning about UML Sequence
Diagrams∗

Sun Meng1 and Luı́s S. Barbosa2

1CWI, Kruislaan 413, Amsterdam, The Netherlands
2Department of Informatics, Minho University, Portugal

M.Sun@cwi.nl, lsb@di.uminho.pt

Abstract

If, as a well-known aphorism states, modelling is for rea-
soning , this paper is an attempt to define and apply a formal
semantics to UML sequence diagrams in order to enable
rigourous reasoning about them. Actually, model transfor-
mation plays a fundamental role in the process of software
development, in general, and in model driven engineering in
particular. Being a de facto standard in this area, UML is
no exception, even if the number and diversity of diagrams
expressing UML models makes it difficult to base its seman-
tics on a single framework. This paper builds on previous
attempts to base UML semantics in a coalgebraic setting
and illustrates the application of the proposed framework to
reason about composition and refactoring of sequence dia-
grams.

1. Introduction

The aphorism modelling is for reasoning which, even
if in an implicit way, underlies most research in For-
mal Methods, sums up the fundamental interconnection
between modelling and calculation. The former is under-
stood as the ability to choose the right abstractions for
a problem domain. The latter, on the other hand, con-
cerns the need for expressing such abstractions in a frame-
work whose mathematical structure is sufficiently rich
to enable rigourous reasoning either to establish mod-
els’ properties or to transform models towards effective
implementations.

Recalling such an interconnection seems particularly
appropriate with respect to the formalisation attempts of
UML. The number and diversity of diagrams expressing a

∗ The work is partially supported by a grant from the GLANCE funding
program of the Dutch National Organization for Scientific Research
(NWO), through project CooPer (600.643.000.05N12).

UML model makes it difficult to base its semantics on a sin-
gle framework. On the other hand, some of the formalisa-
tions proposed in the literature are essentially descriptive
and difficult to use.

There are, at least, two levels at which the contribution
of a formal semantics for the UML is deeply needed. One
concerns model composition (their operators and the laws
which govern their behaviour), the other model refactor-
ing, i.e., model transformations which preserve external be-
haviour while improving their internal structure.

Originally introduced by Opdyke in [21] in the context
of OO programming, refactoring has been widely used in
modern software development processes such as Rational
Unified Process [12] and eXtreme Programming [3] to sup-
port iterative software development and improve the qual-
ity of software artifacts. In [5] it is defined as “the process
of changing a software system in such a way that it does not
alter the external behavior of the code, yet improves its in-
ternal structure”. Later, interest in research shifted from the
code level to model refactoring [25, 26], which is a rather
new topic. A few references in the UML context include
[15, 26, 29], although most of them restrict themselves to
class diagrams.

This paper introduces a new, coalgebraic semantics for
UML interaction models represented, as usual, by sequence
diagrams. Moreover, a set of operators for such diagrams,
which was proposed and informally described in [20], is for-
mally characterised, therefore providing a calculus to rea-
son about them. Finally, the paper discusses how both com-
position and refactoring laws for sequence diagrams can be
dealt within the proposed framework. This extends previ-
ous work by the authors in seeking a unifying coalgebraic
semantics for UML, as reported in [16, 19]. Those refer-
ences introduced a semantics for class diagrams, use cases
and statecharts based on coalgebras [23] taken as a suit-
able mathematical structure for expressing behaviour and
state-based models. A similar approach is taken here for se-
quence diagrams. In all cases the coalgebraic point of view
puts forward a well-defined notion of behaviour, as equiva-

The Eighth International Conference on Quality Software

1550-6002/08 $25.00 © 2008 IEEE

DOI 10.1109/QSIC.2008.13

17

The Eighth International Conference on Quality Software

1550-6002/08 $25.00 © 2008 IEEE

DOI 10.1109/QSIC.2008.13

17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55620747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

lence classes for the bisimilarity relation induced by the par-
ticular functor used, upon which properties of UML models
can be formulated and checked.

The organization of this paper is as follows. Section 2
provides a brief introduction to UML sequence diagrams.
The coalgebraic semantic framework is given in section 3
and further developed in section 4 where an algebra of se-
quence diagrams’ combinators is defined. The use of this se-
mantics in reasoning about sequence diagrams is illustrated
in section 5 through the discussion of some composition and
refactoring results. Comparison with related work is made
in Section 6. Section 7 concludes with a few remarks for fu-
ture work.

2. UML sequence diagrams

This section provides a brief introduction to UML Se-
quence Diagrams, which are used to model the dynamic be-
havior of systems. Graphically, a UML sequence diagram,
abbreviated to sd in the sequel, has two dimensions: a hori-
zontal dimension representing the components participating
in the scenario, and a vertical one representing time, i.e., the
component temporal evolution or lifeline, represented by a
vertical dashed line. Actually the focus of a sequence dia-
gram lies on message interchange between a number of life-
lines during a system run.

Figure 1. Sequence diagram for a cash with-
draw scenario on an ATM

Figure 1 shows an example of a UML sequence dia-
gram, which illustrates a cash withdraw scenario in an auto-
matic teller machine (ATM). The diagram shows a possible
interaction between instances of classes CashDispenser,
CardReader, ATM and Session, when a user decides to
make a withdraw and the amount of cash is dispensed suc-
cessfully.

A message defines a particular communication between
lifelines of an interaction. It can be either asynchronous
(represented by an open arrow head) or synchronous (rep-
resented by a filled arrow head). Additionally, there are two
special kinds of messages, lost and found, with the obvi-
ous meaning, which are described by a small black circle at
the arrow head, or origin, respectively.

UML sequence diagrams may contain sub-interactions
called interaction fragments that can be structured and com-
bined using a number of so-called interaction operators.
Although the semantics of an interaction fragment depends
on the set of operators available, the precise definition of
such a set is still an open topic in UML modelling. Re-
cently, the UML superstructure specification [20] proposed
one such set and gave an informal characterisation of the as-
sociated behaviours as follows:

• The operator alt offers a choice of behavior alterna-
tives represented by its two operands. The chosen sd
must have an explicit or implicit guard expression that
evaluates to true at this point in the interaction.

• The operator opt designates a choice between the its
(sole) operand or a idle behaviour.

• The operator par stands for the parallel merge of the
behaviors of the sd acting as its operands. Event oc-
currences in the different operands can be interleaved
in any way as long as the ordering imposed inside each
sd is preserved.

• The operator seq represents a weak sequencing be-
tween the behaviors of the operands, i.e., the order-
ing of event occurrences within each of the operands
is maintained in the result, whereas event occurrences
on different lifelines in different operands may come
in any order. Event occurrences on the same lifeline in
different operands are ordered in such a way that an
event occurrence of the first operand comes before that
of the second operand.

• The operator strict represents a strict sequencing of
the behaviors: all events in the first operand are made
to occur before any event in the second.

• The loop operator specifies an iteration of strict se-
quential composition: the execution of its operand re-
peats itself on completion.

Such is the kernel of operators proposed in [20] for
which the present paper seeks a suitable semantics. It should
be stressed, however, that our purpose is essentially to show
how a coalgebraic framework may provide an interesting
semantic domain for this sort of combinators, rather than
advocating the strict adoption of this OMG particular pro-
posal. That includes, moreover, a few further operators that,
by space limitation, will be omitted here. The most relevant

1818

are a negation operator neg enforcing a diagram to repre-
sent invalid traces, an ignore operator allowing messages
to appear anywhere along the lifelines of their participants,
and a critical operator to represent a critical region in a dia-
gram and therefore forbid interleaving of its events with any
other event occurrences on the lifelines covered by the re-
gion.

3. A coalgebraic semantics

Graphically, a UML sequence diagram has two dimen-
sions: a horizontal dimension representing the participants
in the scenario, and a vertical dimension representing time.
Participants evolve along lifelines, represented by vertical
dashed lines. Interactions between participants are shown
as horizontal arrows called messages. A message is a com-
munication between two participants, and specifies both
the type of communication (synchronous or asynchronous)
and the associated sending and receiving event occurrences.
Events situated on the same lifeline are ordered in time from
top to down.

The signature of a UML sequence diagram is defined as
follows:

Definition 3.1 A sequence diagram sd is given by a tuple

(I, Loc, Locini,Mes,E,≤)

where

• I is a set of instance identifiers corresponding to the
participants in the interaction described by the dia-
gram;

• Loc is a set of locations;

• Locini ⊆ Loc is a set of initial locations;

• Mes is a set of message labels;

• E ⊆ Loc ×Mes × Loc is a relation such that tuple
(l1,m, l2) represents a message m sent from location
l1 to location l2.

• ≤⊆ Loc × Loc is a partial order capturing the rela-
tive positions of locations within each of the diagram
lifelines.

Note that in general, for an edge to represent a com-
munication between participants in a sequence diagram, its
source and target locations can not be same, i.e., the follow-
ing property is assumed:

∀(l1,m, l2) ∈ E . l1 �= l2

On the other hand, local events, which by definition are rel-
ative to a unique participant, are represented by reflexive
edges at a particular location, e.g., (l, a, l).

Within this model the following functions return the set
of locations of a particular participant and the next location
in a particular lifeline. Formally,

• loc : I → 2Loc associates to each instance a set of lo-
cations. The function satisfies the following conditions
expressing disjointness and conformity with the initial
constraints, respectively,

∀i, j ∈ I, i �= j . loc(i) ∩ loc(j) = ∅ (1)
∀i ∈ I . card(loc(i) ∩ Locini) = 1 (2)

where for a set S, card(S) returns the cardinality of S.

• next : Loc→ Loc is defined as

next(l) = l′ iff ∃i ∈ I . l, l′ ∈ loc(i) ∧ l ≤ l′ ∧
∀l′′ ∈ loc(i) . l ≤ l′′ ⇒ l′ ≤ l′′

Let l1, l2 range over Loc, and Σm be the set of communi-
cation events executed concerning messages exchanged in a
sequence diagram sd. Such events have one of the follow-
ing forms:

1. 〈l1! → l2,m〉 - l1 sends asynchronous message m to
l2,

2. 〈l1? ← l2,m〉 - l1 receives asynchronous message m
from l2,

3. 〈l1!−� l2,m〉 - l1 sends synchronous message m to l2,
and

4. 〈l1? �−l2,m〉 - l1 receives synchronous message m
from l2.

Note the cases for lost and found messages can be repre-
sented by replacing l2 by • in the first two cases. Finally,
let Στ denote the set of local actions in a sequence dia-
gram. Such actions have the form 〈l � a〉 which means
local action a happens at location l. The set of all events
in a sequence diagram will be denoted by Σ and defined as
Σ = Σm ∪ Στ .

For any event e ∈ Σ, the location at which e happens is
defined by π(e) = l iff e = 〈l(· · ·)〉. This notation gener-
alises for a set of events Σ′ ⊆ Σ as πΣ′ = {π(e) | e ∈ Σ′}.

A configuration of a sequence diagram denotes a global
state, composed of participants’ local states, together with
the current environment within which the system is sup-
posed to interact. The first component describes which
states are simultaneously active in the configuration. The
second gives the environment specified as the set of active
events.

Definition 3.2 A configuration of a sequence diagram is a
pair 〈G,ΣA〉 where

• G ∈ ∏
i∈I loc(i) is a tuple of participants’ local

states;

• ΣA ⊆ Σ denotes the current environment of active
events.

1919

For an arbitrary configuration 〈G,ΣA〉 and an event e ∈
ΣA, if π(e) ∈ G, then e can occur in the configuration and
make the system evolve 1. Otherwise, e will stay in the set
ΣA until a new configuration forcing π(e) ∈ G is reached
or e is removed from the set ΣA.

A semantics for sequence diagrams can then be defined
in terms of coalgebras for functor

T(X) = XΣ (3)

where notation XΣ stands for the set of all functions from
Σ to X .

The T-coalgebra corresponding to a particular sequence
diagram sd is defined as (C,α : C −→ CΣ), where C is
the set of sd possible configurations, together with an ini-
tial configuration c0. The latter given by the tuple of initial
locations and the set of events initially active, i.e.,

c0 = (
∏

l∈Locini

l, {e | π(e) ∈ Locini})

Let us now define α, the curried version of α, by enumer-
ating all possible transition schemes. First of all, note that,
if an event e is not active in a configuration (G,ΣA), i.e.,
e /∈ ΣA, it will not be executed until, by some other event
occurrence, e is added to the set of active events. This case
is captured by a trivial transition

α((G,ΣA), e) = (G,ΣA)

When a local action a happens at location l ∈ loc(i), the
current location of participant i is changed to next(l). Thus,
for e = 〈l � a〉 where l ∈ G,

α((G,ΣA), e) =
(G[next(l)/l],ΣA \ {e} ∪ {e′ | π(e′) = next(l)})

For synchronous messages, the events modelling both
sending and receiving occur simultaneously (i.e., in an
atomic, non interruptible way): no other event can occur in
between. So if the current configuration is (G,ΣA) and both
the sending event e = 〈l1!−� l2,m〉 and the corresponding
receiving event 〈l2? �−l1,m〉 are active, we have

α((G,ΣA), e) =
(G[next(l1)/l1, next(l2)/l2],ΣA \ {e, 〈l2? �−l1,m〉}
∪ {e′ | π(e′) = next(l1) ∨ π(e′) = next(l2)})

For asynchronous messages, however, when the send-
ing event occurs, the location of the sender will be up-
dated to the next location in its lifeline, while locations of
the other participants will remain unchanged. The sending
event is therefore removed from the set of active events. On
the other hand, the corresponding receiving event will be

1 Here π(e) ∈ G means π(e) is a location in the tuple G.

added to such set. Furthermore, the events at the next loca-
tion of the sender’s lifeline will become active in the new
configuration. If e = 〈l1! → l2,m〉 is active in configura-
tion (G,ΣA), we have

α((G,ΣA), e) =
(G[next(l1)/l1],ΣA \ {e} ∪ {〈l2?← l1,m〉}
∪ {e′ | π(e′) = next(l1)})

Dually, when an asynchronous message is received, the
receiver will change to the next location in its lifeline, while
locations of all other participants remain unchanged. For-
mally, if e = 〈l1? ← l2,m〉 is active in configuration
(G,ΣA), we have

α((G,ΣA), e) =
(G[next(l1)/l1],ΣA \ {e} ∪ {e′ | π(e′) = next(l1)})
The case of a lost message, represented by event e =

〈l! → •,m〉, is similar to the asynchronous communica-
tion: the sender updates its location and e is removed from
the set of active events. However, no corresponding receiv-
ing event becomes active. Similarly, for a found message,
when a receiving event e = 〈l? ← •,m〉 occurs, only the
location of the receiver is updated and e is removed from
the set of active events. Both cases are, therefore, handled
by

α((G,ΣA), e) =
(G[next(l)/l],ΣA \ {e} ∪ {e′ | π(e′) = next(l)})

assuming the corresponding events are enabled in configu-
ration (G,ΣA).

4. An algebra of UML sequence diagrams

In the previous section the semantics of an arbitrary se-
quence diagram sd was defined by a triple

[[sd]] = (C,α : C → CΣ, c0)

where C is the set of configurations of sd. The next step
consists of defining the denotations of the interaction oper-
ators proposed in [20] for combining UML sequence dia-
grams, as recalled in section 2. This formalises an algebra
to build new sequence diagrams from old.

In the sequel, we assume, for a sequence diagram sdi,
that [[sdi]] = (Ci, αi, c

i
0), where Ci = {(Gi,Σi

A)}. Here
Gi denotes the tuple of local states of the participants in
sdi, and Σi

A the set of current active events in sdi. More-
over, we let ci

0 = (G0
i ,Σ

i
0). For a tuple of elements t =

(e1, e2, · · · , em), we resort to projection function πi, for
i = 1, · · · ,m, to return the i-th element ei. With such nota-
tional conventions we are prepared to give the semantics of
all operators considered in section 2.

2020

Choice: alt(sd1, sd2).
Denoting an alternative form of aggregation of sequence di-
agrams, it is required that G0

1 = G0
2, and that all events

in both Σ1
0 and Σ2

0 become active in the initial configu-
ration c0. Therefore, c0 = (G0

1,Σ
1
0 ∪ Σ2

0). Furthermore,
C = {c0} ∪ (C1 \ {c1

0}) ∪ (C2 \ {c2
0}). Formally,

[[alt(sd1, sd2)]] = (C,alt(α1, α2), c0)

with alt(α1, α2) given by2

alt(α1, α2)(x, e) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x = c0 ∧ e ∈ Σi ⇒ αi(ci
0, e) for i = 1, 2

x ∈ C1 ∧ e ∈ Σ1 ⇒ α1(x, e)
x ∈ C2 ∧ e ∈ Σ2 ⇒ α2(x, e)
otherwise x

where x = (G,ΣA) is a configuration in C, and e is an
event in either Σ1 or Σ2.

Option: opt(sd1).
The purpose of opt(sd1) is to offer an alternative between
an empty scenario (in which ’nothing happens’) and the ac-
tivation of its (sole) operand, sd1. To formalise its meaning
we need to introduce a new event — skip — into the set of
events to capture absence of effective behaviour. Then

[[opt(sd1)]] = (C,opt(α1), c0)

where C = C1 \ {c1
0} ∪ {(G0

1,Σ
1
0 ∪ {skip})} and c0 =

(G0
1,Σ

1
0 ∪ {skip}). The transition structure is defined as

opt(α1)(x, e) =⎧⎪⎨
⎪⎩

e ∈ Σ1 ⇒ α1(x, e)
x = c0 ∧ e = skip⇒ (G0

1, ∅)
otherwise x

Parallel: par(sd1, sd2).
In this case we consider

C = {(G1 ×G2,Σ1
A ∪ Σ2

A) | for i = 1, 2, (Gi,Σi
A) ∈ Ci}

and

c0 = (G0
1 ×G0

2,Σ
1
0 ∪ Σ2

0)

in

[[par(sd1, sd2)]] = (C,par(α1, α2), c0)

2 To avoid an excessive notational burden, we use the same syntax for
the combinator over sequence diagrams and its denotation in the pro-
posed semantics.

where the transition structure is defined as

par(α1, α2)(x, e) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e ∈ Σ1 ⇒ let x′ = α1((π1π1x, π2x |Σ1), e) in
((π1x

′, π2π1x), π2x
′ ∪ π2x |Σ2)

e ∈ Σ2 ⇒ let x′ = α2((π2π1x, π2x |Σ2), e) in
((π1π1x, π1x

′), π2x
′ ∪ π2x |Σ1)

otherwise x

Strict sequential composition: strict(sd1, sd2).
The transition structure in

[[strict(sd1, sd2)]] = (C, strict(α1, α2), c0)

is defined over C = C1 ∪ C2 and c0 = c1
0 as follows

strict(α1, α2)(x, e) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ C1 ⇒ let x′ = α1(x, e) in
π2x

′ = ∅ ⇒ c2
0

otherwise x′

otherwise α2(x, e)

Weak sequential composition: seq(sd1, sd2).
The case for weak sequencing seq(sd1, sd2) for sdi =
(Ii, Loci, Loci

ini,Mesi, Ei,≤i), i = 1, 2 is a bit more
demanding because its definition depends on whether the
operands share a number of lifelines. If such is the case, i.e.,
if an identifier, say s, exists in I1 ∩ I2, then all the event oc-
currences on s in sd1 should happen before those on s in
sd2. However, any other events on lifelines out of the scope
of both sd1 and sd2, may occur in any order. Note that if the
operands involve disjoint sets of participants, the weak se-
quencing reduces to a parallel merge.

Assume an identifier s, such that I1∩I2 = {s}, and func-
tion loc1 and loc2 assigning locations to instances in sd1

and sd2, respectively. Let loc(s) = loc1(s) ∪ loc2(s). Fur-
thermore, and without loss of generality, let

C1 = {(G1,Σ1
A) | G1 ∈ loc1(s)× L}

and
C2 = {(G2,Σ2

A) | G2 ∈ loc2(s)×K}
be the set of configurations for sd1 and sd2 respectively,
where L =

∏
i∈I1\{s} loc1(i) and K =

∏
j∈I2\{s} loc2(j).

Then, define

[[seq(sd1, sd2)]] = (C, seq(α1, α2), c0)

with
C = {(G,ΣA) | G ∈ loc(s)× L×K

and

ΣA = Σ1
A ∪ Σ2

A \ {e | π(e) ∈ loc(s) ∧ π(e) �= π1(G)}}

2121

if there are two locations a, b ∈ loc(s) such
that ((a, π2G),Σ1

A) ∈ C1 ∧ ((b, π3G),Σ2
A) ∈

C2 ∧ (π1G = a ∨ π1G = b). Finally, define
c0 = ((π1c

1
0, π2π1c

2
0), π2c

1
0 ∪ (π2c

2
0 |−{s})). Notice

the use of notation Σ |−{s} to denote the subset of Σ ob-
tained by removing all the events occurring at some loca-
tion in loc(s), i.e.,

Σ |−{s}= {e | e ∈ Σ ∧ π(e) /∈ loc(s)}
The transition structure is given by

seq(α1, α2)(x, e) =
let {s} = I1 ∩ I2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π(e) ∈ loc(s)⇒⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ππ2(x) ∩ loc1(s) �= ∅ ⇒
let x′ = α1(x, e) in
ππ2x

′ ∩ loc1(s) = ∅ ⇒
let c2

0 = ((l, t), A) in
((l, π2π1x

′, t), π2x
′ ∪A)

otherwise x′

otherwise α2(x, e)
π(e) /∈ loc(s)⇒⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

e ∈ Σ1 ⇒
let x′ = α1((〈π1, π2〉π1(x), π2(x) |Σ1), e) in
((π1x

′, π3π1x), π2x
′ ∪ (π2x |Σ2))

e ∈ Σ2 ⇒
let x′ = α2((〈π1, π3〉π1(x), π2(x) |Σ2), e) in
((π1π1x

′, π2π1x, π2π1x
′), π2x

′ ∪ (π2x |Σ1))

The definition can be easily generalized to an arbitrary
number of shared lifelines in sd1 and sd2.

On the other hand, if I1 ∩ I2 = ∅, the definition of the
transition structure reduces to the second branch of the case
structure. By redefining the projection functions (since there
is no s in the configurations), we can find that

seq(sd1, sd2) = par(sd1, sd2) (4)

Furthermore, whenever I1 = I2, we have

seq(sd1, sd2) = strict(sd1, sd2) (5)

The above equalities are in fact bisimulation equations be-
tween the corresponding denotations, i.e., for example, for
equation (4),

[[seq(sd1, sd2)]] ∼ [[par(sd1, sd2)]]

as such is the notion of equality in a coalgebraic setting.
They are, therefore, the first illustration of a calculus of

sequence diagrams made possible by the semantic defini-
tion. The issue is further discussed in section 5.

Loop: loop(sd1).
Finally, the semantics of the iteration combinator is given
by

[[loop(sd1)]] = (C, loop(α1), c0)

over C = C1 and c0 = c1
0, and with the following transition

structure

loop(α1)(x, e) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e ∈ π2x⇒ let x′ = α1(x, e) in
π2x

′ = ∅ ⇒ c0

otherwise x′

otherwise x

5. Reasoning about sequence diagrams

5.1. Towards a calculus of diagram composition

Equations (4) and (5) above were our first examples of
properties which establish, under suitable conditions, the
equality of behaviour between expressions denoting arbi-
trary compositions of UML sequence diagrams. As men-
tioned there, such equalities are, in fact, bisimulation equa-
tions relating the coalgebras which represent the diagrams’
semantics.

In coalgebra theory [23] a bisimulation between two
coalgebras α and β is a relation R which preserves the tran-
sition structure, i.e., which is closed for the coalgebra dy-
namics. In general, for an arbitrary functor T, such a rela-
tion satisfies the following inequality

α · R ⊆ TR · β (6)

where the dot denotes relational composition and TR is
the image of relation R under functor T3. For the partic-
ular case of functor T defined in (3), however, definition (6)
boils down to

(c, d) ∈ R ⇒ ∀e∈Σ . (α(c, e), β(d, e)) ∈ R (7)

for every pair of configurations (c, d). This provides a rather
simple way of testing behavioural equivalence for (the de-
notations of) UML sequence diagrams.

Not surprisingly some simple proofs, which proceed by
the construction of a witnessing bisimulation, establish a
number of algebraic laws relating different composition pat-
terns. For example, one gets, commutativity and associativ-
ity for alt

alt(sd1, sd2) = alt(sd2, sd1) (8)
alt(alt(sd1, sd2), sd3) = alt(sd1,alt(sd2, sd3)) (9)

3 See [2] for a detailed, generic account of bisimulations and their cal-
culational properties.

2222

and, similarly, for the par and strict combinators (com-
mutativity is satisfied only by par). For illustration pur-
poses, let us prove now equation (9) and the commutativ-
ity result for parallel composition, i.e. the par version of
equation (8):

par(sd1, sd2) = par(sd2, sd1) (10)

Notice how in the second proof a quite handy technique of
coinductive reasoning is used: to establish bisimilarity it is
enough to define a coalgebra morphism connecting the two
coalgebras. Such a technique, based on the fact that coal-
gebra morphisms entail bisimulation, is used extensively in,
e.g., [1] to investigate the structure of a calculus for soft-
ware components. Recall that a coalgebra morphism is a
function h between their state spaces that preserves and re-
flects the transition structure, i.e. such that

T h · β = α · h (11)

Proof: (of equation (9)).
We have to verify that

[[alt(alt(sd1, sd2), sd3)]] ∼ [[alt(sd1,alt(sd2, sd3))]]

The set of configurations for both sides of this equation is
C = {c0} ∪

⋃
1≤i≤3(Ci \ {ci

0}), and the initial configura-
tion, also in both cases, is c0. For any x ∈ C and event e
one gets, according to the definition,

alt(alt(α1, α2), α3)(x, e)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x = c0 ∧ e ∈ Σi ⇒ αi(ci
0, e) for i = 1, 2, 3

x ∈ C1 ∧ e ∈ Σ1 ⇒ α1(x, e)
x ∈ C2 ∧ e ∈ Σ2 ⇒ α2(x, e)
x ∈ C3 ∧ e ∈ Σ3 ⇒ α3(x, e)
otherwise x

=alt(α1,alt(α2, α3))(x, e)

�

and
Proof: (of equation (10)).
Again our task is to verify the bisimulation equation

[[par(sd1, sd2)]] ∼ [[par(sd2, sd1)]]

The sets of configurations for [[par(sd1, sd2)]] and
[[par(sd2, sd1)]] are C1 = {(G1 × G2,Σ1

A ∪ Σ2
A)} and

C2 = {(G2×G1,Σ2
A∪Σ1

A)} respectively, where (Gi,Σi
A)

is a configuration of sdi for i = 1, 2. Define h : C1 → C2

as h = 〈〈π2, π1〉 · π1, π2〉. To prove the bisimulation equa-
tion, we only need to show that h is a coalgebra mor-
phism, i.e., h · par(α1, α2)(x, e) = par(α2, α1)(h(x), e)
for any configuration x and event e. According to the defi-

nition of par, for e ∈ Σ1,

par(α2, α1)(h(x), e)
=let x′ = α1((π2π1h(x), π2x |Σ1), e) in

((π1π1h(x), π1x
′), π2x

′ ∪ π2h(x) |Σ2)
=let x′ = α1((π1π1x, π2x |Σ1), e) in

((π2π1x, π1x
′), π2x

′ ∪ π2x |Σ2)
=let x′ = α1((π1π1x, π2x |Σ1), e) in

h((π1x
′, π2π1x), π2x

′ ∪ π2x |Σ2)
=h · par(α1, α2)(x, e)

Similarly, for e ∈ Σ2, we also get par(α2, α1)(h(x), e) =
h · par(α1, α2)(x, e). And for e /∈ Σ1 ∪ Σ2, the result is
obvious: h(x) = h(x). Furthermore, it is easy to obtain the
result about initial configurations h(c1

0) = c2
0. Thus the law

is proved. �

Following a similar strategy, one can prove, for exam-
ple, idempotence results, reductions and, in particular, dis-
tribution of strict sequential and parallel composition over
choice. Formally,

alt(sd, sd) = sd (12)
alt(sd, ∅Isd

) = opt (13)
strict(alt(sd1, sd2), sd3)

= alt(strict(sd1, sd3), strict(sd2, sd3)) (14)
strict(sd1,alt(sd2, sd3))

= alt(strict(sd1, sd2), strict(sd1, sd3)) (15)
par(alt(sd1, sd2), sd3)

= alt(par(sd1, sd3),par(sd2, sd3)) (16)
par(sd1,alt(sd2, sd3))

= alt(par(sd1, sd2),par(sd1, sd3)) (17)

In equation (13) we use ∅Isd
to denote the empty sequence

diagram with the same set of participants as sd, but no
events. Suppose sd is given by (I, Loc, Locini,Mes,E,≤
), then ∅Isd

= (I, Locini, Locini, ∅, ∅,=).

5.2. Refactoring

If the previous sub-section intended to illustrate how a
calculus of UML sequence diagrams operators can emerge
from the proposed semantics, we shall focus now in the
other kind of application mentioned in the Introduction to
this paper: refactoring. Again we shall not be exhaustive,
but rather suggest possible steps in this direction.

Actually, typical refactoring laws are supposed to pre-
serve behaviour and therefore they boil down to bisimula-
tion equations, as the ones considered above. Well-known
examples are laws expressing fine grained refactoring steps
such as adding, removing and moving elements in sequence
diagrams. For example,

Law 5.1 A new lifeline can be introduced into a sequence
diagram.

2323

Proof:
Suppose sd = (I, Loc, Locini,Mes,E,≤) is a se-
quence diagram. Adding a new lifeline to sd means that
a new instance identifier i is added to I . Since there
is no message exchanges between i and other par-
ticipants in the diagram, it has only one location,
i.e., the initial location li0. So the resulting diagram is
sd′ = (I ∪ {i}, Loc ∪ {li0}, Locini ∪ {li0},Mes,E,≤).
If (G,ΣA) is a configuration for sd, then (〈G, li0〉,ΣA)
is a configuration for sd′. Let h = π1 × id. This mor-
phism maps every configuration of sd′ to a configura-
tion of sd, and forms a coalgebra morphism between them,
which justifies the law. �

The very same argument justifies the corresponding law
for removing lifelines:

Law 5.2 A lifeline which does not interact with other par-
ticipants and has no local actions can be removed from a
sequence diagram.

Other refactoring laws, however, may require a sort of
weaker preservation of behaviour. Such is the case, for ex-
ample, of refactorings involving the split of a lifeline into
a set of independent lifelines representing sections of non-
interfering execution and enforcing time constraints by spe-
cific message exchange.

In the semantic framework discussed here, such weak
preservation of behaviour corresponds to relating (denota-
tions of) sequence diagrams by refinement, instead of bisim-
ilarity. Refinement for coalgebras has been studied by the
authors in [17, 18]. In brief, the idea is to replace the coal-
gebra morphism condition in (11) by

T h · β ≤ α · h (18)

where≤ is a so-called refinement preorder [18]. Function h
is said to be a forward morphism which is intended to pre-
serve transitions from the source coalgebra, but fails to re-
flect them back. Relation ≤, for functor T given in (3), is a
preorder on functions from events to configurations. A pos-
sible example would require the images of the same event e
under the semantics [[sdi]] = (Gi,Σi

A), for i = 1, 2, of dia-
grams sd1 and sd2, respectively, being related by

G1 = G2 ∧ Σ1
A ⊆ Σ2

A

which allows one of the diagrams to possess less active
events than the other in some configurations.

In the references cited above, forward morphisms are
shown to compose and enjoy a number of calculational
properties. In particular they are powerful enough (more ex-
actly, weak enough!) to capture all the refactoring situations
for sequence diagrams one can think of, as refinement re-
sults.

6. Related Work

Sequence diagrams originate from message sequence
charts (MSCs) [9]. Variants of MSCs, such as Live Se-
quence Charts (LSCs) [4], triggered MSCs [24] and tem-
plate MSCs [7], are being widely used to capture behav-
ioral requirements in Software Engineering. There is a num-
ber of approaches to formalize such scenario descriptions in
order to facilitate the analysis of requirements or specifica-
tions. Starting from MSCs, Uchitel et al. [27, 28] specified
semantics for HMSCs, and developed an approach to syn-
thesise behavioural models in the form of labelled transition
systems. Their approach aims at preserving the component
structure of the system. This causes their models to allow
for additional behaviours, which were not explicitly speci-
fied in the scenarios.

There is also a lot of research on providing semantics
to the scenario descriptions. LSC has a well-defined op-
erational semantics and a tool called Play-Engine [8] al-
lows a user to construct LSCs by playing in scenarios and
checking them through a play out mechanism. However,
the semantics and tools do not consider concurrent inter-
actions and verification. J. Küster-Filipe defines the se-
mantics of UML 2.0 sequence diagrams by using labelled
event structures, and presents a distributed concurrent logic
for reasoning about interactions in [14]. A number of ap-
proaches for synthesis of state-based models from scenario
descriptions has been developed. For example, the authors
of [13] present a state-chart synthesis algorithm, but the
approach does not support High-Level Message Sequence
Charts (HMSC), which provide a composition mechanism
very close to UML 2.0 sequence diagrams. A translation
from UML 2.0 interactions into a special class of automata
is presented in [11]. An algebraic approach for synthesizing
statecharts from UML 2.0 sequence diagrams is also dis-
cussed in [30]. Both, however, omit a number of interaction
fragments actually permitted in UML.

The semantics given here is novel and offers potential
benefits concerning reasoning behavior of UML models.
Together with our previous work, the coalgebraic frame-
work offers a unifying semantics for different UML models.
Furthermore, a coalgebraic semantics leads to a proof style
(coinduction) which provides an elegant way to check the
correctness of model transformation, i.e., behavior preser-
vation. Both bisimulation and refinement between models
can be easily established by using morphisms (and forward
morphisms).

7. Conclusion and Future Work

This paper proposes a semantic framework for UML se-
quence diagrams which is consistent with the authors’ pre-
vious work on coalgebraic semantics for other UML mod-

2424

els. The recently proposed set of combinators for sequence
diagrams is formalised in this framework. A number of laws
describing the theory underlying such combinators is also
discussed. It is argued that identical principles can be fol-
lowed to establish model refactoring as (coalgebraic) refine-
ments.

A detailed investigation and classification of possible
refactoring patterns and their formalization in this frame-
work, is our main plan for future work. Moreover, it would
be interesting to study the relationship between UML model
transformations and other sorts of refinement notions, ei-
ther proposed within a coalgebraic setting (as, for example,
in [10]), or emerging from research on software architec-
ture (as in [22] or [6]). We also hope to extend the coalge-
braic framework to deal with QoS aspects, like timing con-
straints, in UML models.

References

[1] L. S. Barbosa. Towards a calculus of state-based soft-
ware components. Journal of Universal Computer Science,
9(8):891–909, August 2003.

[2] L. S. Barbosa, J. N. Oliveira, and A. M. Silva. Calculating in-
variants as coreflexive bisimulations. In 12th Int. Conf. Alge-
braic Methods and Software Technology (AMAST). Springer
Lect. Notes Comp. Sci. (to appear), 2008.

[3] K. Beck. Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley, 2004.

[4] W. Damm and D. Harel. LSCs: Breathing Life into Message
Sequence Charts. Formal Methods in System Design, 19(0),
2001.

[5] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[6] D. Garlan. Formal modeling and analysis of software archi-
tecture: Components, connectors and events. In M. Bernardo
and P. Inverardi, editors, Third International Summer School
on Formal Methods for the Design of Computer, Communi-
cation and Software Systems: Software Architectures (SFM
2003). Springer Lect. Notes Comp. Sci, Tutorial, (2004),
Bertinoro, Italy, September 2003.

[7] B. Genest, M. Minea, A. Muscholl, and D. Peled. Specifying
and verifying partial order properties using template mscs.
In Foundations of Software Science and Computation Struc-
tures, 7th International Conference, FOSSACS 2004, volume
2987, pages 195–210. Springer, 2004.

[8] D. Harel and R. Marelly. Come, Let’s Play: Scenario-based
Programming using LSCs and the Play-Engine. Springer,
2003.

[9] ITU-TS. Recommendation Z.120(11/99) : MSC 2000, 1999.
Geneva.

[10] B. Jacobs and H. Tews. Assertional and behavioural refine-
ment in coalgebraic specification. In Electronic Notes in
Theoretical Computer Science, volume 47. Elsevier Science
Publishers, 2001.

[11] A. Knapp and J. Wuttke. Model checking of UML 2.0 in-
teractions. In T. Kühne, editor, Models in Software Engi-
neering, Workshops and Symposia at MoDELS 2006, Genoa,
Italy, October 1-6, 2006, Reports and Revised Selected Pa-
pers, volume 4364 of LNCS, pages 42–51. Springer, 2007.

[12] P. Kruchten. The Rational Unified Process: An Introduction
(3rd edition). Addison-Wesley, 2003.

[13] I. Krüger, R. Grosu, P. Scholz, and M. Broy. From MSCs to
statecharts. In Distributed and Parallel Embedded Systems,
pages 61–72. Kluwer, 1999.

[14] J. Küster-Filipe. Modelling concurrent interactions. Theo-
retical Computer Science, 351(2):203–220, 2006.

[15] S. Marković and T. Baar. Refactoring ocl annotated UML
class diagrams. In Proceedings of MoDELS 2005, number
3713 in LNCS, pages 280–294. Springer-Verlag, 2005.

[16] S. Meng, B. K. Aichernig, L. S. Barbosa, and Z. Naixiao. A
coalgebraic semantic framework for component based devel-
opment in UML. In Proceedings of CTCS’04, volume 122 of
ENTCS, pages 229–245. Elsevier Science Publishers, 2005.

[17] S. Meng and L. S. Barbosa. On refinement of generic state-
based software components. In C. Rattray, S. Maharaj, and
C. Shankland, editors, Proceedings of AMAST’04, volume
3116 of LNCS, pages 506–520. Springer, 2004.

[18] S. Meng and L. S. Barbosa. Components as coalgebras:
The refinement dimension. Theor. Comp. Sci., 351:276–294,
2006.

[19] S. Meng, Z. Naixiao, and L. S. Barbosa. On semantics and
refinement of UML statecharts: A coalgebraic view. In J. R.
Cuellar and Z. Liu, editors, SEFM2004, 2nd International
Conference on Software Engineering and Formal Methods,
pages 164–173. IEEE Computer Society, 2004.

[20] Object Management Group. Unified Modeling
Language: Superstructure - version 2.1.1, 2007.
http://www.uml.org/.

[21] W. F. Opdyke. Refactoring: A Program Restructuring Aid
in Designing Object-Oriented Application Framewoks. PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

[22] J. Philipps and B. Rumpe. Refinement of pipe-and-filter ar-
chitectures. In J. M. Wing, J. Woodcock, and J. Davies, ed-
itors, FM’99, Proceedings of the World Congress on Formal
Methods in the Development of Computing System, pages
96–115. Springer Lect. Notes Comp. Sci. (1708), 1999.

[23] J. Rutten. Universal coalgebra: a theory of systems. Theo-
retical Computer Science, 249:3–80, 2000.

[24] B. Sengupta and R. Cleaveland. Triggered Message Se-
quence Charts. In ACM SINSOFT 2002, 10th International
Symposium on the Foundations of Software Engineering,
pages 167–176, 2002.

[25] R. V. D. Straeten, V. Jonckers, and T. Mens. Supporting
model refactoring through behaviour inheritance consisten-
cies. In Thomas Baar et al., editor, UML 2004 - The Unified
Modeling Language, volume 3273 of LNCS, pages 305–319.
Springer, 2004.

[26] G. Sunyé, D. Pollet, Y. L. Traon, and J.-M. Jézéquel. Refac-
toring UML models. In M. Gogolla and C. Kobryn, editors,
Proceedings of UML 2001, volume 2185 of LNCS, pages
134–148. Springer, 2001.

2525

[27] S. Uchitel, J. Kramer, and J. Magee. Synthesis of behavioral
models from scenarios. IEEE Transactions on Software En-
gineering, 29(2):99–115, 2003.

[28] S. Uchitel, J. Kramer, and J. Magee. Incremental elaboration
of scenario-based specifications and behavior models using
implied scenarios. ACM Transactions on Software Engineer-
ing and Methodology, 13(1):37–85, 2004.

[29] A. Zawlocki, G. Marczyński, and P. Kosiuczenko. Property
preserving redesign of specifications. In J. L. Fiadeiro et al.,
editor, CALCO 2005, volume 3629 of LNCS, pages 439–455.
Springer, 2005.

[30] T. Ziadi, L. Hélouët, and J.-M. Jézéquel. Revisiting state-
chart synthesis with an algebraic approach. In Proceedings
of the 26th International Conference on Software Engineer-
ing (ICSE’04). IEEE Computer Society, 2004.

2626

