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Abstract

The aim of this note is to study a set of paravector
valued homogeneous monogenic polynomials that can
be used for a construction of sequences of generalized
Appell polynomials in the context of Clifford analysis.
Therefore, we admit a general form of the vector part
of the first degree polynomial in the Appell sequence.
This approach is different from the one presented in re-
cent papers on this subject. We show that in the case
of paravector valued polynomials of three real variables,
there exist essentially two different types of such poly-
nomials together with two other trivial types of polyno-
mials. The proof indicates a way of obtaining analogous
results in the case of polynomials of more than three
variables.

1 Introduction

1.1 Historical remarks

During November 2005 Jaime Keller visited the University of Aveiro to give a course The Geometric Formu-
lation of Physics from the view point of his START theory. Besides graduate and post-graduate physics and
mathematics students, also members of our research group on Complex and Hypercomplex Analysis attended
his lively and inspiring lectures. His dedicated teaching and long discussions after the lectures allowed the
participants to get new and different insights into the historical developments of the World of Physics. The
first author remembers very well Jaime’s pride about his personal encounter as a young scientist with Paul
Dirac and Eugene Wigner. Maybe this was one of the moments in his life which contributed to his never-
resting enthusiasm for the foundation of this journal, which now is being published by Birkhäuser. Also, on
the occasion of meetings in Mexico and Greece as well as during his last stay in Aveiro in May 2010 when
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Jaime delivered a talk on Matter and Space Time, the historical aspects of the interaction of Mathematics
and Physics played a dominant role in our discussions.

For this reason, in this paper dedicated to the memory of Jaime Keller, we have chosen a problem connected
with an old idea of R. Fueter. Fueter discussed it in detail in one of his first papers on analytic functions of
a quaternionic variable in 1932 [12] after having announced his work on this subject already in 1928 at the
IMU congress in Bologna [11]. In Section 3 of [12] entitled Zusammenhang mit den analytischen Funktionen
einer komplexen Variablen (Connection with Analytic Functions of One Complex Variable), Fueter tried to
relate his hypercomplex function theory to the theory of complex holomorphic functions by using them as
generating functions (in general sense, not in the sense of formal power series) for regular quaternion-valued
functions (H-holomorphic functions in [14]). Without explicitly mentioning the fact that an integer power of
a quaternionic variable z is not regular, he used basically the property of w = ∆zn, n ∈ N, being a solution
of ∆∆zn = 0 (the title of his paper makes an indirect reference to this property). Since the square of the
Laplace operator ∆∆ can be factored by the generalized Cauchy-Riemann operator in H, Fueter was successful
in reaching his objective and in his approach to transforming a holomorphic function of a complex variable
into one of a quaternionic variable (this is now called the Fueter transform [14]).

It was only about 60 years later when H. Leutwiler, motivated mainly by his desire to overcome the problem
of the non regular integer powers of a quaternionic variable z without its implicit use in the form of w = ∆zn,
created his “Modified Clifford Analysis” [18]. His leading idea was to change from the Euclidean metric to the
hyperbolic metric because the power function is the conjugate gradient of a harmonic function defined with
respect to the hyperbolic metric of the upper half plane.

Some years later, G. Laville and I. Ramadanoff in [17] solved the same problem, namely, the determination
of a function class containing the power function, by another method. By doing so, they introduced a class of
holomorphic Cliffordian functions. Instead of changing the metric, they changed the order of the differential
equation to a higher one according to the number of real variables used. This way they succeeded in including
the power functions in the kernel of their hypercomplex Cauchy-Riemann type operator of odd order.

A third way of overcoming the same problem while staying within the class of ordinary monogenic functions
and without metric changes or increasing order, was realized by constructing polynomials with a behavior of
power-like functions under hypercomplex differentiation in a series of articles by the authors of this paper
[10, 23, 6]. Their ideas, based on Appell’s concept of power-like polynomials [1], have allowed recently to
develop a systematic study of Appell sequences as tools for other applied problems, like quasi-conformal
mappings [21] or construction of classes of generalized classical polynomials [4, 5]. Since the construction
of power-like monogenic functions was of general interest in Clifford analysis, the study of sets of Appell
polynomials has developed meanwhile in several directions and has been realized with different methods and
by different authors. We mention, for instance, [2] or [16]. Of particular interest remains to us the fact that in
[16] a far reaching general representation theoretical method, based on Gelfand-Tsetlin bases, was developed.

Our aim in the present paper is to study Appell sequences from the view point of paravector valued homo-
geneous monogenic polynomials with binomial expansion. In this way we will show that we can, apart from
trivial cases, distinguish between two different types of those polynomials with totally different structure.

1.2 Basic notations

As usual, let {e1, e2, . . . , en} be an orthonormal basis of the Euclidean vector space Rn with a non-commutative
product according to the multiplication rules

ekel + elek = −2δkl, k, l = 1, . . . , n,

where δkl is the Kronecker symbol. The set {eA : A ⊆ {1, . . . , n}} with

eA = eh1eh2 · · · ehr , 1 ≤ h1 < · · · < hr ≤ n, e∅ = e0 = 1,

forms a basis of the 2n-dimensional Clifford algebra C`0,n over R. Let Rn+1 be embedded in C`0,n by
identifying (x0, x1, . . . , xn) ∈ Rn+1 with

x = x0 + x ∈ A := spanR{1, e1, . . . , en} ⊂ C`0,n.
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Here, x0 = Sc(x) and x = Vec(x) = e1x1 + · · · + enxn are, the so-called, scalar and vector parts of the

paravector x ∈ A. The conjugate of x is given by x̄ = x0 − x and its norm by |x| = (xx̄)
1
2 = (x2

0 + x2
1 +

· · ·+ x2
n)

1
2 .

To call attention to its relation to the complex Wirtinger derivatives, we use the following notation for a
generalized Cauchy-Riemann operator in Rn+1, n ≥ 1:

∂ :=
1
2
(∂0 + ∂x), ∂0 :=

∂

∂x0
, ∂x := e1

∂

∂x1
+ · · ·+ en

∂

∂xn
.

C1-functions f satisfying the equation ∂f = 0 (resp. f∂ = 0) are called left monogenic (resp. right
monogenic). We suppose that f is hypercomplex-differentiable in Ω in the sense of [13, 19], that is, it has
a uniquely defined areolar derivative f ′ in each point of Ω (see also [20]). Then, f is real-differentiable
and f ′ can be expressed by real partial derivatives as f ′ = ∂f where, analogously to the generalized Cauchy-
Riemann operator, we use ∂ := 1

2 (∂0−∂x) for the conjugate Cauchy-Riemann operator. Since a hypercomplex

differentiable function belongs to the kernel of ∂, it follows that, in fact, f ′ = ∂0f = −∂xf which is similar
to the complex case.

In general, C`0,n-valued functions defined in some open subset Ω ⊂ Rn+1 are of the form f(z) =∑
A fA(z)eA with real valued fA(z). However, in several applied problems it is very useful to construct

A-valued monogenic functions as functions of a paravector with special properties, particularly if we study
expansions of C`0,n-valued functions in terms of special polynomial bases defined in Rn+1. In this case we
have

f(x0, x) =
n∑

j=0

fj(x0, x)ej

and left monogenic (∂f = 0) functions are also right monogenic functions (f∂ = 0), a fact which follows
easily by direct inspection of the corresponding real system of first order partial differential equations. In [24]
such system was called a generalized Riesz system. In the case n = 2, the system has the form

∂

∂x0
f0 −

∂

∂x1
f1 −

∂

∂x2
f2 = 0,

∂

∂x0
f1 +

∂

∂x1
f0 = 0,

∂

∂x0
f2 +

∂

∂x2
f0 = 0,

∂

∂x1
f2 −

∂

∂x2
f1 = 0. (1.1)

We use also the classical definition of sequences of Appell polynomials [1] adapted to the hypercomplex
case.

Definition 1.1. A sequence of monogenic polynomials (Fk)k≥0 of exact degree k is called a generalized
Appell sequence with respect to ∂ if

1. F0(x) ≡ 1,

2. ∂Fk = kFk−1, k = 1, 2, . . . .

Of course, the second condition is the essential one while the first condition is the usually applied normal-
ization condition which can be changed to any constant different from zero.

1.3 Some remarks on a special generalized Appell sequence in the context of
Clifford Analysis

The motivation for writing present paper came from some elementary but sometimes overlooked or superficially
interpreted properties of already known homogeneous polynomials. Therefore, we finish our introduction with
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a subsection on the binomial expansion of a paravector valued homogeneous monogenic polynomial of degree
k and arbitrary n. This expansion was obtained in connection with the first construction of a generalized
Appell sequence in the context of Clifford analysis in short notes by the authors some years ago [9, 10, 22, 23].
The binomial expansion under consideration is

Pn
k (x) =

k∑
s=0

(
k

s

)
cs(n) xk−s

0 xs (1.2)

with c0(n) ≡ 1 for arbitrary n ≥ 0. A suitable choice of the coefficients cs(n) for s ≥ 1 guarantees that the
sequence P := (Pn

k )k∈N is an Appell sequence. For a general relationship between binomial expansions and
Appell sequences we refer to [7].

Let us consider some interesting special cases of (1.2). In the general formula, the lower dimensional (and
commutative) cases of a single real variable x = x0, i.e., n = 0, and a complex variable x = x0 + e1x1, i.e.,
n = 1 with e1 as imaginary unit, are both included and characterized by

cs(0) = cs(1) ≡ 1, s = 1, 2, . . . .

However, since the real case means that x ≡ 0, the sum in (1.2) contains in this case only the term xk−0
0 = xk

0 .
In the complex case we have x = e1x1 and (1.2) ranges from c0(1)xk

0 to ck(1)xk or, more concretely, the
polynomials are given by

P1
k(x) =

k∑
s=0

(
k

s

)
xk−s

0 xs = (x0 + x1e1)k, (1.3)

which are, as it should be expected, the usual powers of the holomorphic variable z = x0 + e1x1.
We notice also a remarkable fact that for the first noncommutative case when n = 2 and x = x1e1 +x2e2,

the coefficients cs(2) are the generalized central binomial coefficients with weight 1
2s , i.e.,

cs(2) =
1
2s

(
s

b s
2c

)
, s = 0, 1, . . . , k,

where b ·c is the floor function. In this connection it seems worthwhile to remember Catalan numbers which
are the usual central binomial coefficients with s = 2m but with weight 1

m+1 . Whereas in our case the weight
divides the generalized central binomial coefficients by the sum of all binomial coefficients of degree s, the
Catalan numbers weight divides by the number of all binomial coefficients of degree m.

The general formula for cs(n) when n ≥ 1 and s = 1, 2, . . . can be written in a compact form as

cs(n) =

{
s!!(n−2)!!
(n+s−1)!! , if s is odd;

cs−1(n), if s is even,
(1.4)

where, as usual, we define (−1)!! = 0!! = 1.
In the case n = 3 with x = x1e1 + x2e2 + x3e3, corresponding to the quaternionic case, this formula

reveals also some special values for cs(3), namely, the reciprocal values of all odd integers. That is, we have
c0(3) = 1 and

cs(3) = 1
s+2 = cs+1(3) for s = 1, 3, 5, . . . .

Two relations follow immediately from formula (1.2). They characterize the behavior of Pn
k (x) through

its restriction to the real line x = 0 and to the hyperplane x0 = 0.

Property 1.1. Pn
k (x0) = Pn

k (x)|x=0 = xk
0 for all x0 ∈ R, n ≥ 0.

Property 1.2. Pn
k (x) = Pn

k (x)|x0=0 = ck(n)xk, n ≥ 1.

These properties lead to a second binomial representation of Pn
k (x) in terms of its restrictions to the real

line and the hyperplane x0 = 0, namely,

Pn
k (x) =

k∑
s=0

(
k

s

)
Pn

k−s(x0)Pn
s (x). (1.5)
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The first property guarantees that by restricting to x = 0 we obtain the classical and most simple real Appell
sequence since Pn

k (x0) = xk
0 for arbitrary n ≥ 0. The other interpretation of this property is to say that

the considered Appell sequence P := (Pn
k )k∈N is a hypercomplex continuation of the ordinary real Appell

sequence F :=
(
xk

0

)
k∈N into Rn+1, n ≥ 1.

For n = 1, the second property characterizes the ordinary complex Appell sequence P1
k(z) = zk =

(x0 + x1e1)k through its restriction to the values on the imaginary line by P1
k(x1e1) = ck(1)xk = xk as

we should expect. We could also say that the complex Appell sequence F :=
(
zk

)
k∈N is the Cauchy-

Kovalevskaya continuation from the imaginary line into the complex plane C. Needless to say, this is dual to
the usual situation where we consider the continuation from the real line to the complex plane.

The second property shows also clearly the difference in higher dimensional cases when n ≥ 2 because in
those cases the values of ck(n) are different from 1 for k ≥ 1. From another point of view, it shows that
Pn

k (x) is the Cauchy-Kovalevskaya continuation of ck(n)xk discussed in [3] but not of xk . This explains some
difficulties in the justification of the hypercomplex continuations of holomorphic functions based formally on
the integer powers of the vector part as in Pn

k (x) = xk and not really on ck(n)xk or the complex case with
P1

k(z) = zk (see also [5]).

2 The exclusive role of two types of homogeneous monogenic poly-
nomials with binomial expansion

The binomial expansion(1.5) contains Pn
k (x) = ck(n)xk , n ≥ 0, as a natural generalization of the integer

power of the imaginary part (x1e1)k compared with (1.3). The coefficients ck(n) 6= 0 for n ≥ 1 obviously
reflect the deviation from the complex case in correspondence to the number n of components in the vector
part x. But why should the restriction to the hyperplane x0 = 0 of the polynomials Pn

k (x) of an Appell
sequence only be of the form expressed in Property 1.2?

To answer this question and to obtain a better understanding of all possible paravector valued homogeneous
monogenic polynomials that can be used for the construction of sequences of generalized Appell polynomials
in the context of Clifford Analysis, we admit now a more general form of the vector part of the first degree
polynomial in the Appell sequence. This means that instead of x =

∑n
j=1 xjej we choose now n linear

functions Xj = Xj(x1, . . . , xn) as part of X =
∑n

j=1 Xj(x1, . . . , xn)ej and look for the conditions that

Pn
k (x0, x̂) =

k∑
s=0

(
k

s

)
ds(n)xk−s

0 Xs =
k∑

s=0

(
k

s

)
Pn

k−s(x0)Pn
s (X), (2.1)

with some suitably chosen real coefficients ds(n), form a sequence of Appell polynomials. The preserved
separation of the variable x0 is again motivated by the intention of keeping the ordinary real Appell sequence
as the restriction on the real line where X ≡ 0 as a consequence of being a degree one homogeneous (linear)
polynomial.

It is trivial to recognize that these polynomials are really paravector valued homogeneous monogenic
polynomials of degree k since all even integer powers of the pure vector valued first degree homogeneous
function X are real valued and, as a consequence of this, all odd powers of X are pure vectors. For normalizing
reasons we suppose also that d0(n) ≡ 1, n ≥ 0. It is also evident how the Pk(x0, x̂) maintain in an analogous
form Properties 1.1 and 1.2 of Pn

k (x) as described in the last subsection.
We study now in detail the case of paravector valued polynomials of three real variables with binomial

expansion of the form (2.1). More precisely, we consider homogeneous monogenic polynomials P2
k(x0, x̂) :=

Pk(x0, x̂) with the binomial expansion of the form

Pk(x0, x̂) =
k∑

s=0

(
k

s

)
ds xk−s

0 (X1(x1, x2)e1 + X2(x1, x2)e2)s, (2.2)

where Xj = Xj(x1, x2), j = 1, 2, are two real valued linear functions and d0 = 1.

Theorem 2.1. For polynomials of the form (2.2), we consider the following two different situations:
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Case 1 ∂1X1 · ∂2X2 = 0
This case corresponds to the trivial Appell polynomials,

Pk(x0, x2) =
k∑

s=0

(
k

s

)
xk−s

0 (x2e2)s = (x0 + x2e2)k (2.3)

and

Pk(x0, x1) =
k∑

s=0

(
k

s

)
xk−s

0 (x1e1)s = (x0 + x1e1)k (2.4)

associated to ∂1X1 = 0 and ∂2X2 = 0, respectively.

Case 2 ∂1X1 · ∂2X2 6= 0
In this case, there are exactly two different types of non-trivial Appell polynomials, namely

1. The Appell polynomials (1.2),

Pk(x0, x̂) = P2
k(x0, x) =

k∑
s=0

(
k

s

)
cs(2)xk−s

0 (x1e1 + x2e2)s, (2.5)

corresponding to the case ∂1X2 = ∂2X1 = 0.

2. The polynomials isomorphic to the complex integer powers of z,

Pk(x0, x̂) =
k∑

s=0

(
k

s

)
xk−s

0 ((i1x1 + i2x2)(i1e1 + i2e2))s

= (x0 + (i1x1 + i2x2)(i1e1 + i2e2))k, (2.6)

with a real unit parameter-vector (i1, i2), i.e., with i21 + i22 = 1, when ∂1X2 = ∂2X1 6= 0.

Proof. The first degree polynomial in the sequence (2.2) has the form

P1(x0, x̂) = P1(x0) + P1(X) = x0 + d1(X1(x1, x2)e1 + X2(x1, x2)e2).

Since its vector components are first degree homogeneous functions, it is clear that they can be written
explicitly in the form

Xj(x1, x2) = aj1x1 + aj2x2, j = 1, 2,

with some real ajm, j, m = 1, 2. Moreover, as a consequence of the last equation in the Riesz system (1.1)
(the compatibility condition ∂1X2 = ∂2X1), functions Xj are in fact of the form

X1(x1, x2) = a11x1 + λx2 and X2(x1, x2) = λx1 + a22x2, (2.7)

for some real λ. Therefore,

P1(x0, x̂) = x0 + d1((a11x1 + λx2)e1 + (λx1 + a22x2)e2) (2.8)

is a monogenic polynomial assuming

∂P1(x0, x̂) = 1
2 (1− d1(a11 + a22)) = 0.

Last relation holds provided
a11 + a22 6= 0 (2.9)

and
d1 = 1

a11+a22
. (2.10)
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Now we consider

P2(x0, x̂) = x2
0 + 2x0d1((a11x1 + λx2)e1 + (λx1 + a22x2)e2)

+ d2((a11x1 + λx2)e1 + (λx1 + a22x2)e2)2 (2.11)

and check under what condition ∂P2(x0, x̂) = 0. By a straightforward computation we obtain

∂P2(x0, x̂) = ((d1a11 − d2a
2
11 − d2λ

2)x1 + (d1 − d2a11 − d2a22)λx2)e1

+ ((d1 − d2a11 − d2a22)λx1 + (d1a22 − d2a
2
22 − d2λ

2)x2)e2.

The right choice of the coefficient d2 must now guarantee that P2(x0, x̂) is monogenic. Using (2.10), this
problem is equivalent to the solution of the system(

a11
a11+a22

− d2(a2
11 + λ2)

)
x1 +

(
1

a11+a22
− d2(a11 + a22)

)
λx2 = 0,(

1
a11+a22

− d2(a11 + a22)
)

λx1 +
(

a22
a11+a22

− d2(a2
22 + λ2)

)
x2 = 0,

which in turn is equivalent, for independent x1, x2, to the following system

a11
a11+a22

− d2(a2
11 + λ2) = 0,(

1
a11+a22

− d2(a11 + a22)
)

λ = 0,

a22
a11+a22

− d2(a2
22 + λ2) = 0. (2.12)

We consider now several different situations:

(i) When a11 = 0, we get from (2.9) that a22 6= 0 and, therefore,

λ = 0 and d2 = 1
a2
22

= d2
1.

The final form of the monogenic polynomials P1(x0, x̂) in (2.8) and P2(x0, x̂) in (2.11) are as follows

P1(x0, x̂) = x0 + x2e2,

P2(x0, x̂) = x2
0 + 2x0x2e2 − x2

2 = (x0 + x2e2)2. (2.13)

Repeating again the same process, we get dk = 1
ak
22

, k = 1, 2 . . . , with the effect that

Pk(x0, x̂) = (P1(x0, x̂))k,

which can be confirmed by the particular cases (2.13). Relation (2.3) is proved since a11 = ∂1X1,
a22 = ∂2X2, and λ = ∂1X2 = ∂2X1.

(ii) The case a22 = 0, leading to (2.4), is obviously of the same nature and we skip the proof. Both cases
lead to Appell sequences isomorphic to the complex integer power sequence zk .

Of course, the result is evident and it could have been guessed directly if only we had recalled that
the generalized Cauchy-Riemann operator ∂ acts on functions defined in the hyperplane x1 = 0 like
the complex Wirtinger operator ∂z̄ = 1

2 (∂0 + e2∂2) and the hypercomplex derivative reduces to the
corresponding complex derivative.

(iii) If a11a22 6= 0 and λ = 0 then we have from (2.12)

1
a11+a22

= d2a11 and 1
a11+a22

= d2a22

and, therefore, a11 = a22 = a. The consequence for P1(x0, x̂) in view of (2.8) is

P1(x0, x̂) = x0 +
1
2a

(ax1e1 + ax2e2)

= x0 +
1
2
(x1e1 + x2e2) = P1(x0, x).

As we can see, this case corresponds to the well studied sequence of Appell polynomials (1.2) and this
proves relation (2.5).



8 Homogeneous Polynomials with Binomial Expansion

(iv) If a11a22 6= 0 and λ 6= 0, we obtain from (2.12) the following system:

a11
a11+a22

− d2(a2
11 + λ2) = 0,

1
a11+a22

− d2(a11 + a22) = 0,

a22
a11+a22

− d2(a2
22 + λ2) = 0, (2.14)

and the second equation of (2.14) yields d2 = 1
(a11+a22)2

. In addition, this value of d2 helps now to

establish an important relationship between λ and the other coefficients, namely,

a11(a11 + a22)− (a2
11 + λ2) = 0,

a22(a11 + a22)− (a2
22 + λ2) = 0. (2.15)

This means in both cases that the product of a11 and a22 must be positive since (2.15) simplifies to

a11a22 = λ2. (2.16)

Some elementary observations are now needed for the last step of the proof. Since a positive product of
two real numbers is only possible, if both are of the same sign, it is true that all three numbers a11, a22,
and a11 + a22 are of the same sign. Therefore it is also true that their quotients a11

a11+a22
and a22

a11+a22
are positive and can be written as squares of their roots i1 and i2 in the form

i21 := a11
a11+a22

and i22 := a22
a11+a22

. (2.17)

Using both expressions together with (2.15), we recognize that

i21i
2
2 = a11a22

(a11+a22)2
= λ2

(a11+a22)2
. (2.18)

In the last step of the proof we apply now the aforementioned relations for substituting the coefficients
in P1(x0, x̂) by a chosen pair of those roots i1 and i2 as defined in (2.17). Thus, we have from (2.8):

P1(x0, x̂)

= x0 +
(

a11
a11+a22

x1 + λ
a11+a22

x2

)
e1 +

(
λ

a11+a22
x1 + a22

a11+a22
x2

)
e2

= x0 +
(
i21x1 + i1i2x2

)
e1 +

(
i1i2x1 + i22x2

)
e2

= x0 + (i1x1 + i2x2) i1e1 + (i1x1 + i2x2) i2e2

= x0 + (i1x1 + i2x2) (i1e1 + i2e2) .

Notice that from (2.17) we obtain i21 + i22 = 1. In this case it follows immediately that

(i1e1 + i2e2)2 = −(i21 + i22) = −1. (2.19)

The latter shows the isomorphism of the structure of Pk(x0, x̂) with zk and it implies also that
Pk(x0, x̂) = (P1(x0, x̂))k.

3 Concluding remarks

First of all, we would like to mention that Case 2.2 as well as Case 2.1 of the well studied Appell polynomials
Pn

k (x0, x) admits a direct generalization to arbitrary dimension if, instead of (i1, i2), a general unit parameter
vector (i1, . . . , in) is used and so (2.19) generalizes to

(i1e1 + · · ·+ inen)2 = −(i21 + · · · i2n) = −1.

The proof that these polynomials and Pn
k (x0, x) are the only possible non trivial extension of zk can follow

the line described in the case of n = 2. The requirement of being monogenic and, at the same time, satisfying
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the Appell sequence property was here the key step. This approach also works for n > 2 but then it needs
more advanced algebraic tools.

The possibility to generate monogenic functions from holomorphic functions by using generalized powers

Pk(x0, x̂) = (x0 + (i1x1 + i2x2)(i1e1 + i2e2))k

was first mentioned in [8]. It was extended later by using several hypercomplex variables in [6]. The result
presented here confirms our feeling about the exclusive role of both approaches. Moreover, Case 2.2 seems to
be more flexible than Case 2.1 which only gives axially symmetric polynomials. Results of ongoing research in
applications of monogenic Appell sequences confirm this fact.

The paper [15] discussed the construction of Pn
k (x0, x) but only for an odd integer n by the so-called

Fueter-Sce mapping where an essential ingredient (already considered by Fueter in [12]) was the use of a
variable imaginary unit given by ω(x) = x

|x| . Case 2.2 shows that also (and independently from the dimension)

the constant imaginary vector ı̂ = (i1e1+· · ·+inen) serves very well in the construction of an Appell sequence.
Whereas the behavior of Pn

k (x0, x) is that of a non commutative construction expressed by Pn
k (x0, x) 6=

(Pn
1 (x0, x))k, we see that the property Pk(x0, x̂) = (P1(x0, x̂))k reveals the commutative character of Case

2.2.
If one uses, instead of the classical Appell sequence property F0(x) ≡ 1 from Definition 1.1, a generalized

constant monogenic polynomial as an initial value like it was done in [2], then the set of Pn
k (x0, x) can also

be extended and used in several applications, for instance in elasticity problems.
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