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evaluated by measuring force required to separate AFM tip from surface by
means of AFM force-distance curves. The functional group analysis of a-
C:H/PVP interface employing Fourier transform infrared spectroscopy (FTIR)
is performed to study the blend behavior of PVP upon a-C:H direct ion beam
deposition. The changes involved in reflectance behavior of the films in
UV/VIS range are discussed.
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Resume : Amorphous carbon films have attracted particular attention
because they can provide a wide range of exceptional physical, mechanical,
optical, electrical and tribological properties that make them suitable for
numerous applications. Doping of these films is possible with different
elements or compounds: Si, SiOx, Ag, Ni, Ti, TiO2 and etc. Wide range of
film properties (mechanical, optical, tribological, etc.) depend on the
chemical composition and sp3/sp2 bond ratio in the films. The amount of 14 12
hydrogen in the film plays an important role also. In this work we present
the analysis of chemical composition (including hydrogen) determined by
Elastic recoil detection analysis of different type of amorphous carbon
deposited employing closed drift ion beam source: 1) a-C:H (made from
acetylene (C2H2) -conventional amorphous carbon); 2) a-C:H:SiOx (made
from hexamethyldisiloxane (HMDSO) with hydrogen/helium carrier gas); 3)
a-C:H:SiOx (made from HMDSO with C2H2 carrier gas). The ion beam
source energy was changed from 300 to 800 eV. The correlation of chemical
composition with the optical properties of the films is analysed. Structure of
the films was analysed employing Raman and FTIR spectroscopy. It was
determined that the chemical composition varies slightly with the change in
ion beam energy. More drastical variations in chemical composition were
observed when carrier gas was changed.
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Resume : The addition of small amount of nitrogen to a growing MeOy (Me
= Metal) film originates a new class of materials with a wide range of
different properties, where the optical, electrical and mechanical ones may
be tailored between those of the pure oxide, MeOy, and oxynitride, MeNxOy,
films, according to the particular application envisaged. The main reason for
this is related with the change in the nitride content (which can be either
metallic or even insulating-type) of the films promoted by the increasing
amounts of nitrogen that are introduced in the films. In this work thin films
of MeNxOy were produced using reactive DC magnetron sputtering, using a
metallic (Me) target and an Ar/(N2,02) gas mixture. Preliminary results
revealed that the incorporation of nitrogen in the MeOy matrix induces the
production of films with electrical and optical responses rather different than
the pure oxide that are strongly correlated with its structural arrangement,
chemical composition and morphology changes. On one hand the electrical
resistivity and temperature coefficient of resistance were found to have a
wide variation, which can be explained using a tunnel barrier conduction
mechanism for the electric charge transport through the film, with possible
applications in microelectronic devices. The particular morphology of the
films induced a broadband optical response with high optical absorption from
290 to 2500 nm, with potential applications in solar cells and thermal
photovoltaics.
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In this work a set of films of AIN,O, and two sets of the correspondent binary systems, AIN, and AlO,, were produced using reactive DC
magnetron sputtering, using an aluminium target and an Ar + (N, +/or O,) gas mixture. The discharge characteristics (target potential) and
deposition rate, chemical composition, structure, electrical and optical properties of the ternary system were compared to those of the binary
systems in order test whether the oxynitride films have a unique behaviour or is simply a transition between AIN, and AlQO,,.
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The transition from sub-stoichiometric towards close-stoichiometric films is relatively smooth in ANy, very abrupt in AlO,, and different
tendencies canbe found in AIN,O, system according to the particular zones identified.
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The Target Potential is clearly influenced by the | Fig. 5 Reflectance and transmittance of (a-i and a-ii) AIN, system and reflectance of (b) AlO, and (c) AIN,O, systems.

gas mixture partial pressure. In the AlQ, system The films indexed to zone I of the AIN, system are opaque and the typical interband absorption of aluminium at ~800 nm can be observed.
the transition from a clean target to completely | The reflectance drops from the typical Al profile towards very low values. In zone 1I, as the atomic ratio increases, the reflectance increases
poisoned is very abrupt, while in the AIN, and | again and interference fringes can be observed for higher ratios. The films become semi-transparent, ending up with a very high

AIN,Oy systems the transition is smoother. transmittance in zone III. In AIO, system, the films indexed to zone M are opague with a marked decrease of the reflectance, becoming

The deposition rate (thickness/deposition time) | transparent in zone C (as expected since the films have ALO3-type compositions). In AN, system the reflectance also drops to low values

has also distinct variations in each system. as the atomicratio increases and also a flat reflectance, as low as 5%, can be observed in the films indexedto zone Ic.
CONCLUSIONS

The composition and structure of the films are strongly dependent of the target condition and deposition characteristics. It was found that the three systems have distinct
electrical and optical responses opening the possibility to tailor the properties of the AIN,O, from those of the correspondent binary systems, according to the application
envisaged. The properties of the ternary system can be explained assuming that the films (zone Ic) are in fact a percolation network of aluminium nanoparticles embedded
in an oxide/nitride matrix. The aluminium grains can form irregularly shaped clusters with different sizes through the matrix, inducing a broadband absorption nearly
independent of the wavelength. The conductivity is also governed by the constrictions between grains that can be in contact or separated by insulating barriers (oxide/nitride
and/or voids). The barrier component of the films resistance has a negative dependence on the temperature and thus explaining the negative TCR for some films.
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