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ABSTRACT

In a previous work, we described the use of starch-based microparticles as vehicles for the controlled
release of corticosteroids. The goal of the present work is to evaluate the potential of these microparticles
to incorporate and release platelet-derived growth factor (PDGF). The loading efficiency and release pro-
file were evaluated, and PDGF was incorporated into and released from the matrix of starch-based
microparticles. The release profile shows rapid release of PDGF in the first 24 h, after which there was a
slow but constant release for up to 8 weeks. The maintenance of the PDGF biological activity after incor-
poration and release was evaluated by its mitogenic effect over osteoblastic cells, and it was shown to be com-
parable to that of PDGF supplemented to the culturemedium. This proves that the incorporation and release
did not affect the biological activity of the growth factor (GF). The results clearly demonstrate that starch-
based microparticles are suitable vehicles for the incorporation and release of GFs. When combined with
previous results, these materials also suggest their ability to enhance the regenerating potential of tissue en-
gineering hybrid constructs.

INTRODUCTION

IN TISSUE ENGINEERING, there has been considerable interest

in the use of growth factors (GFs) to enhance regenera-

tion and achieve faster repair of bones.

Among GFs of potential interest is the platelet-derived

growth factor (PDGF). PDGF is a polypeptide dimer with a

molecular mass of 30,000. A well-known mitogen for cells of

mesenchymal origin,1–4 it was initially isolated from plate-

lets but subsequently found to be synthesized by a variety of

skeletal and nonskeletal cells.5 This GF has three differ-

ent isoforms, each a dimeric combination of two distinct,

but structurally related, peptide chains: AA, AB, and BB.6–8

These isoforms are differently expressed in various cell types.

They also differ in the specific binding to two cell receptors:

PDGFr-a and PDGFr-b.6–8

PDGF isoforms have been found to be mitogenic for

several cell lineages, an effect apparently mediated by the

mitogen activated protein (MAP) kinase pathway.9 Bone

regeneration and repair, like other tissue healing processes,

involve a complex cascade of events, including chemotac-

tic, proliferative, and maturational phases.2 PDGF is known

to act in the earlier phases, promoting cell chemotaxis10–12

and proliferation,5 but not in the maturation or differenti-

ation of osteoblast cells.13,14 PDGF has also been shown to

stimulate migration and to increase the proliferation rate of

osteoblasts in vitro,15,16 reduce alkaline phosphatase activ-

ity,16 and inhibit bone matrix formation.17
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The combination of scaffold materials with cells specific

for the defect site is an attractive means of creating a tissue

engineering construct capable of promoting regeneration.

The supplementation with GFs is intended to improve the

efficacy of bone formation.18 The GF incorporated within

the matrix of the scaffold serves not only as a support ma-

terial but also as a release device. Biodegradable scaffolds

are most desirable for such applications, as they serve only

temporarily, being replaced as new tissue is formed.

However, during processing of the scaffold, the bioactive

molecules may often be inactivated by solvents or processing

temperature. To avoid such limitations, we propose that a

bioactive molecule (in this case, a GF) be incorporated into

starch-based, biodegradable, micron-sized particles, produced

at room temperature and by a simple emulsion method. As

part of the new strategy, these microparticles would then be

combined with a cell population (stem/progenitor cells) to

form a 3-D structure. The GF released from these particles

would directly target the cells at the surface of the materials,

acting to enhance their proliferation and differentiation. The

biodegradable nature of the starch microparticles would

allow them to be replaced by newly formed tissue in the

in vivo location at a later stage. This strategy will be partic-

ularly useful when using cells isolated from the patient,

which are usually limited in supply.

Starch-based materials have been studied for biomedical

applications, not only as scaffolds,19–22 but also as bone

cements23,24 and microparticles.25–27 They are found to be bio-

compatible in vitro28–30 and also perform well in vivo.31,32

Previous studies have also shown that they can support cell

adhesion at their surface, as well as proliferation and expres-

sion of osteoblastic marker genes by the adhered cells.33

Therefore, in this work, we explore the capability of starch-

based microparticles to incorporate PDGF and release it

in a sustained manner. We also explore their use as carri-

ers for GFs, as starch-based microparticles have already

been shown to be bioactive through formation of a calcium-

phosphate layer in vitro;25 to release other biologically active

molecules in a sustained way;34 and to support cell adhe-

sion, proliferation, and phenotypic expression of osteoblastic

markers.33

MATERIALS AND METHODS

Materials

A blend of 50% corn starch and 50% polylactic acid

(PLA) by weight (PLA 4040 [94% L-Lactide] was obtained

from Cargill-Dow [Minneapolis, MN] and the blended ma-

terial was supplied by Novamont [Novara, Italy]), designa-

ted as starch with polylactic acid (SPLA), was used as the

raw material. Human recombinant platelet-derived growth

factor-BB (hPDGF-BB) was purchased from R&D systems

(Minneapolis, MN).

The cell line used in this work was MC3T3-E1, subclone

4, derived from fetal mouse calvaria, and was purchased

from American Tissue Cell Collection (ATCC). The cells

were cultured in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 10% fetal bovine serum (FBS)

and 1% antibiotics (penicillin and streptomycin) and cul-

tivated under standard tissue culture conditions (378C, 5%

carbon dioxide [CO2]).

Synthesis of PDGF-SPLA microparticles

Briefly, and as described earlier,25 1 g of SPLA powder

was partially dissolved in 10 mL of methylene chloride for

approximately 15 min. The SPLA–methylene chloride so-

lution was then added dropwise to 200 mL of 0.5% poly-

vinyl alcohol (PVA) solution (molecular weight: *78,000,

87–89% mol hydrolyzed; Polysciences, Warrington, PA)

and continuously stirred at a speed of 600 rpm for 3.5 h at

room temperature, in order to evaporate/extract the organic

solvent and harden the microparticles.

Microparticles incorporating PDGF were produced by

coencapsulating PDGF with bovine serum albumin (BSA)

(fraction V; Fisher Scientific, Fairlawn, NJ). BSA is com-

monly used as a carrier2 for the encapsulation and protec-

tion of bioactive molecules from the harsh organic solvents

that can inactivate the bioactive molecules. BSA and PDGF

were mixed together at a ratio of 1:20,000 (10 mg PDGF in

200 mg BSA) and added to the SPLA–methylene chloride

solution just before dropwise addition to the PVA solution.

The resultant microparticles were sieved using appropriate-

size meshes into three size ranges: <40, 40–210, and 210–

350mm. The particles were washed several times with

distilled water and freeze-dried.

Particles with size 210–350 mm were chosen for this study,

following studies in which the same size range was used for

the culture of osteoblastic cells.33 Microparticles incorpo-

rating BSA alone were also produced, to serve as controls.

Throughout this study the following controls were used:

(i) SPLA microparticles (empty, designated as SPLApart)

and (ii) SPLA microparticles incorporating only BSA

(designated as BSA-SPLApart).

Loading efficiency

The loading efficiency of PDGF was defined as the ratio of

PDGF incorporated in the SPLA microparticles to the initial

amount of PDGF. To this end, 20 mg of SPLA microparticles

incorporating PDGF (designated as PDGF-SPLApart) was

dissolved overnight in 1 N sodium hydroxide (NaOH), and

PDGF incorporation into the microparticles (i.e., loading

efficiency) was measured by enzyme-linked immunosorbent

assay (ELISA) (as described in the section ‘‘Release kinetics

and quantification’’). BSA loading efficiency in BSA-

SPLApart was determined by the Bradford method for pro-

tein quantification (Bio-Rad, Hercules, CA), by measuring the
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absorbance at 284 nm on a spectrophotometer against known

BSA concentrations.

Morphological characterization

Scanning electron microscopy ( Jeol 6300F; JEOL USA,

Peabody, MA) was performed to examine the surface mor-

phology of the microparticles. The lyophilized samples were

carbon coated, imaged at 8 kV, and viewed at magnifications

of 100� and 300�.

Release kinetics and quantification

Release kinetics studies were conducted to determine

the temporal release of PDGF from PDGF-SPLApart. Two

hundred mg of PDGF-SPLApart was placed in 15-mL con-

ical tubes in the presence of 5 mL of phosphate-buffered

solution containing 1% of a solution of antibiotics penicillin-

streptomycin (designated PBS-AB). All samples were placed

in an orbital shaker and agitated at 120 rpm at 378C.

At predetermined time points, 2.5 mL of the release su-

pernatant (PBS-AB) was withdrawn and replaced with the

same volume of fresh PBS-AB. The supernatant was stored

at �808C until analysis. The released PDGF was quantified

using an ELISA kit specific for human PDGF-BB (R&D

Systems), by comparison to a standard PDGF-BB curve, ac-

cording to the manufacturer’s instructions. All experiments

were performed at least two times.

Determination of the optimal concentration

of PDGF that has a mitogenic effect

over MC3T3-E1 cells

Before analyzing the biological activity of the PDGF re-

leased from SPLA microparticles, it was necessary to de-

termine the optimal concentration of PDGF that produced a

clear mitogenic effect over MC3T3-E1 cells.

Several concentrations of PDGF, ranging from 0 to 50 ng/

mL, were tested beforehand on an MC3T3-E1 cell culture

system. Cells were seeded in 12-well tissue culture plates

(Corning, Lowell, MA) at a density of 12,600 cells/cm2.

Twenty-four hours after cell seeding, the culture medium

was removed and replaced by fresh DMEM supplemented

with the following concentrations of PDGF: 0, 2, 4, 10, 20,

and 50 ng/mL. After 72 h, DNA levels were measured by the

PicoGreen double-stranded DNA (dsDNA) quantification

kit (Molecular Probes, Carlsbad, CA). This is an ultrasen-

sitive fluorescent nucleic acid stain for quantitating dsDNA

in solution that allows to measure cell proliferation.

At the end of the experiment, the culture medium was

removed and the monolayer was washed with 10� Tris-

EDTA (TE) buffer. Four hundred mL of 0.1 N NaOH was

added to the wells to cause the cells to release DNA into

solution. An aliquot of the DNA suspension was removed

and added to 10�TE buffer, to which was then added the

PicoGreen reagent (previously prepared in 10�TE) at a 1:1

(v/v) ratio, and fluorescence was measured in a microplate

reader at 485 and 535 nm excitation and emission wave-

lengths, respectively. Lambda (l) DNA was used as a stan-

dard. The results were obtained from three experiments.

Evaluation of the maintenance of the biological

activity of released PDGF

When a molecule is incorporated inside a release system,

it is vital that its biological activity is maintained throughout

loading, incorporation, and release. Thus, it was necessary

to determine if PDGF incorporated into the matrix of SPLA

microparticles was still active after incorporation and re-

lease. To this end it was used as a culture of MC3T3-E1

cells.

After determining the minimal concentration of PDGF

necessary to produce a mitogenic effect on MC3T3-E1 cells,

the same experimental setting was used to test the samples

and controls.

Briefly, cells were seeded in 12-well tissue culture plates

at a density of 12,600 cells/cm2. Twenty-four hours after cell

seeding, the culture medium was removed and replaced by

DMEM supplemented as described in Table 1.

After 72 and 148 h, DNA levels were measured by the

PicoGreen dsDNA quantification kit (Molecular Probes),

as described above. The results were obtained from three

experiments.

Statistics

Results are expressed as mean� standard deviation.

Differences between experimental results were analyzed

TABLE 1. CONTENT OF CULTURE MEDIUM SUPPLEMENTED TO

A MONOLAYER OF MC3T3-E1 CELLS FOR THE EVALUATION

OF THE BIOLOGICAL ACTIVITY OF RELEASED PDGF

Content of culture medium Designation

DMEM Ctrl

DMEM supplemented with release

medium PBS-AB

PBS

DMEM supplemented with release

medium from BSA-SPLA microparticles

Rel BSA

DMEM supplemented with BSA Exog BSA

DMEM containing 1mL of BSA-SPLA

microparticles

SPLA-BSA

DMEM containing 1mL of empty

SPLA microparticles

SPLApart

DMEM supplemented with 4 ng/mL

of PDGF

Exog PDGF

DMEM supplemented with release

medium from PDGF-SPLA microparticles

Rel PDGF

DMEM containing 1mL of PDGF-SPLA

microparticles

PDGF-SPLApart
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according to a Student’s t-test, with the threshold for sta-

tistical significance set at p< 0.01.

RESULTS

Loading efficiency

The loading efficiency was determined by subtracting the

amount of the incorporated molecule (either BSA or PDGF)

from the initial amount available for incorporation. Table 2

presents the values of the loading efficiencies for both BSA

and PDGF.

As observed from the table, BSA incorporation is well

correlated with the one for PDGF, confirming the effective-

ness of BSA as a carrier/adjuvant for the incorporation of

GFs, as shown elsewhere.2 The loading efficiencies were

around 17% of the initial amounts of molecules, which is a

low value when compared with the loading efficiencies of

these same microparticles with other bioactive agents (for

instance, dexamethasone). However, works in literature in-

corporating PDGF make use of 3-D porous scaffolds,35–37

using different materials and processing methods; therefore

they are inadequate for comparison purposes.

Release kinetics of PDGF-SPLA microparticles

The cumulative release profile for PDGF is shown in

Figure 1. As observed there is a burst release in the first 12 h,

which continues until 48 h, after which a plateau is reached.

This plateau is maintained until the end of the release period

(8 weeks), when small amounts of PDGF are released each

day from the matrix of the starch-based microparticles.

Postrelease morphology

In order to verify the integrity of the systems at the end

of the release period (8 weeks), the morphology of the mi-

croparticles was compared with the values prior to the onset

of the release study, as shown in Figures 2A–C.

Comparing the particles before the release period (Figure

2A) and after the 8-week release period (Figure 2B), we can

see considerable degradation after the 8-week release pe-

riod. Figure 2B shows extensive formation of pores at the

surface of the microparticles, and Figure 2C shows that the

degradation extends to the population of particles. However,

the shape of the microparticles is still maintained, with a

high-porosity matrix.

Mitogenic effect of PDGF on MC3T3-E1 cells

The biological activity of PDGF released from the mi-

croparticles was assayed through the mitogenic effect of the

bioactive agent over an osteoblastic cell line. Before eval-

uating the biological activity, it was necessary to determine

the minimal effective concentration of PDGF that stimu-

lates MC3T3-E1 cells to proliferate. Figure 3 reveals that

almost all the concentrations tested, ranging from 2 to

50 ng/mL, are capable of stimulating MC3T3-E1 prolifer-

ation, except for the 50 ng/mL concentration (0 ng/mL vs.

50 ng/mL, p¼ 0.0941). All other concentrations are able

TABLE 2. LOADING EFFICIENCIES FOR BSA AND PDGF

INCORPORATED INTO THE MATRIX OF SPLA MICROPARTICLES

Molecule Loading efficiency

BSA 19� 3%

PDGF 17� 1%

FIG. 1. Cumulative, daily release profile of PDGF up to 8 weeks

from PDGF-SPLA microparticles. A burst release is observed in

the initial (12 h) release period, after which there is a slow release

until the end of the studied 8-week period.

FIG. 2. Morphology of pre- and postrelease (8 weeks) PDGF-

SPLA microparticles. (A) Individual microparticles before the

onset of the release experiment; (B) individual microparticles after

the 8-week release period, evidencing massive degradation but

still presenting a matrix structure; and (C) overview of the mor-

phology of 8-week-release microparticles, where extensive deg-

radation is visible.
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to stimulate the proliferation of cells significantly when

compared to control conditions (0 ng/mL vs. 2 ng/mL,

p¼ 0.0003; 0 ng/mL vs. 4 ng/mL, p< 0.0001; 0 ng/mL vs.

10 ng/mL, p¼ 0.0001). The most striking effect is observed

at 4 ng/mL, with a 4-fold stimulus in proliferation compared

to control.

Based on these results, 4 ng/mL was chosen as the con-

centration for testing the biological activity of PDGF re-

leased from starch-based microparticles.

Biological activity of released PDGF

The effect of all tested conditions over MC3T3-E1 cells

was also evaluated after 3 and 6 days of culture, in order to

establish the time frame and the effect of PDGF over MC3T3-

E1 cells. Figure 4 shows the DNA content of MC3T3-E1 cells

for all tested conditions after 3 and 6 days of culture.

From the figure it is clear that the effect of PDGF over

MC3T3-E1 cells is exerted in the first 3 days, after which

all conditions attain a similar level of DNA content com-

parable to PDGF-treated cells.

Compared to cells fed with DMEM (Ctrl), both DMEM

supplemented with the release supernatant of PDGF-SPLA

microparticles (Rel PDGF) and DMEM supplemented with

PDGF (Exog PDGF) significantly stimulate proliferation of

MC3T3-E1 cells (Ctrl vs. Exog PDGF, p¼ 0.003; Ctrl vs.

Rel PDGF, p< 0.0001) after 3 days of culture. No differ-

ences are observed in DNA content between Rel PDGF and

Exog PDGF (p¼ 0.8526), confirming that biological activity

of PDGF is maintained through incorporation and release.

After 3 days of culture, all conditions containing

PDGF—Exog PDGF, Rel PDGF, and DMEM containing

PDGF-SPLA microparticles (PDGF-SPLApart)—are able

to stimulate cell proliferation by up to 4-fold compared to

control. For this time period, only the above conditions were

able to significantly stimulate and increase DNA content of

MC3T3-E1 cells (Table 3).

After 6 days of stimulation, all conditions, with the ex-

ception of DMEM containing empty SPLA microparticles

(SPLApart) and DMEM containing PDGF-SPLA micro-

particles (PDGF-SPLApart), display similar DNA contents

when compared with cells fed with DMEM (Ctrl).

FIG. 3. Proliferative response of MC3T3-E1 cells to various con-

centrations of PDGF. All concentrations showed a stimulatory effect

on cells, compared to control conditions. Except for 50 ng/mL, all

conditions were statistically different from the control conditions.

FIG. 4. DNA content at 3 and 6 days, demonstrating the effect of all conditions over MC3T3-E1 cells. At day 3 all conditions are

statistically significant (*) when compared to control (Ctrl), which consisted of cells fed with DMEM. At day 6 only cells fed with

DMEM containing empty SPLA microparticles (SPLApart) and DMEM containing SPLA microparticles incorporating PDGF (PDGF-

SPLApart) had a DNA content statistically different when compared to control conditions (**), DMEM supplemented with PDGF (Exog

PDGF [�]), and DMEM supplemented with the release supernatant of PDGF-SPLA microparticles (Rel PDGF [�]). Ctrl (cells fed with

DMEM); PBS (cells fed with DMEM supplemented with PBS-AB); Rel BSA (cells fed with DMEM supplemented with release medium

from BSA-SPLA microparticles); Exog BSA (cells fed with DMEM supplemented with BSA); SPLA-BSA (cells fed with DMEM

containing 1 mL of BSA-SPLA microparticles); SPLApart (cells fed with DMEM containing 1 mL of empty SPLA microparticles); Exog

PDGF (cells fed with DMEM supplemented with 4 ng/mL of PDGF); Rel PDGF (cells fed with DMEM supplemented with release

medium from PDGF-SPLA microparticles at a final PDGF concentration of 4 ng/mL); PDGF-SPLApart (cells fed with DMEM

containing 1 mL of PDGF-SPLA microparticles).
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These two are the only conditions that have statistically

significant differences in DNA content when compared with

control cells (Ctrl) (**) and positive controls (�), as shown in

Table 4. This result confirms that PDGF mitogenic effect is

exerted over MC3T3-E1 cells at the initial stages of the

culture (3 days), after which control cells (without PDGF

stimulation) reach similar DNA content.

DISCUSSION

In this study, we evaluated the incorporation of PDGF in

the matrix of starch-based microparticles and posterior re-

lease. We also monitored the effect of released PDGF over

cells of the osteoblastic lineage. The B isoform of PDGF

was chosen because it has a greater mitogenic and chemo-

tactic potential than PDGF-A, as well as a higher affinity to

bone matrix.4,13

The loading efficiency for PDGF (Table 2), compared

with those of other systems described in the literature, is

rather low.2,38,39 However, in many of those systems the

biological activity of the loaded GF is reduced during pro-

cessing of the material, either by the action of organic sol-

vents or by the inactivation of temperature. The system

herein has the advantage that it is processed at room tem-

perature and only a residual amount of organic solvent is

used, therefore minimizing the risk of GF inactivation. In-

corporation of PDGF into starch-based microparticles with

BSA as a protecting agent2 might increase the half-life of GF

(which is very short when injected free), thereby compen-

sating the rather low loading efficiency. Although only 17%

of the initial amount of the GF is loaded (which will be the

subject of further optimization), the amount of GF acting on

the cells can be controlled by the amount of microparticles

to be incorporated into the hybrid construct. Other systems

in literature present higher loading efficiencies; however,

when tested for their cytotoxicity, they were found to be

toxic over cells in culture, even when the cells were chal-

lenged with dilutions of leachables from the materials.40 For

other systems, microparticles made of PLGA incorporat-

ing PDGF were combined with nanofibers in an attempt to

control the release of the GF and to create a scaffold at the

same time.41 This is a very interesting strategy, and the

authors show by radioactive labeling that the biological

activity of the GF is maintained. However, they do not dem-

onstrate the same activity using a cell culture system.41

Biodegradable polymers normally display three release

phases42,43: (i) a burst or initial period of rapid diffusion of

drug located close to the surface of the polymer; (ii) a period

of slow release, during which the polymer is gradually hy-

drolyzed in bulk; and (iii) a final release phase during which

the polymer is solubilized in the aqueous environment. In

our previous work, we tested the ability of starch-based

microparticles to incorporate and release corticosteroids.34

We found that the release mechanisms for these systems are

controlled in the initial stages by penetration of water into

the structure of the microparticle, allowing the incorporated

molecule to diffuse to the solution. The water uptake profile

of these materials shows that the penetration of water and

hence the swelling of the particles reaches 350% of the

particles’ weight in a few hours of immersion.34 Therefore,

the release of the incorporated molecules is modulated in the

initial stages by the water uptake, which causes the initial

burst release observed for the first 24 h. At later stages, the

degradation of the material also plays a role in the release of

the incorporated molecule. For starch-based microparticles,

by 2 weeks the material had lost 20% of its weight,34 which

may be accountable for the release at posterior stages. In the

present work, the release profile observed for the tested time

period comprises the first two of the release phases typical

for biodegradable polymers, as evidenced by the (i) burst

release in the first 12 h and (ii) a slow release, due to polymer

degradation, as evidenced by the morphology at 8 weeks of

release. The release profile (Figure 1) shows that the release

of PDGF from starch-based microparticles is controlled by

diffusion of the GF in the initial stages. While this is con-

sidered a drawback for many controlled release applica-

TABLE 3. RESULTS OF THE STATISTICAL ANALYSIS FOR PAIRWISE

COMPARISONS AT 3 DAYS OF CULTURE

Pairwise comparison p values

Statistical significance

(99% confidence)

Ctrl vs. PBS 0.0203 No

Ctrl vs. Rel BSA 0.0049 Yes (*)

Ctrl vs. Exog BSA 0.0315 No

Ctrl vs. SPLA-BSApart 0.0007 Yes (*)

Ctrl vs. SPLApart 0.0004 Yes (*)

Ctrl vs. Exog PDGF 0.003 Yes (*)

Ctrl vs. Rel PDGF <0.0001 Yes (*)

Ctrl vs. PDGF-SPLApart <0.0013 Yes (*)

TABLE 4. RESULTS OF STATISTICAL ANALYSIS FOR PAIRWISE

COMPARISONS AT 6 DAYS OF CULTURE

Pairwise comparison p values

Statistical significance

(99% confidence)

Ctrl vs. PBS 0.1466 No

Ctrl vs. Rel BSA 0.1688 No

Ctrl vs. Exog BSA 0.0857 No

Ctrl vs. SPLA-BSApart 0.9731 No

Ctrl vs. SPLApart 0.0017 Yes (**)

Ctrl vs. Exog PDGF 0.0746 No

Ctrl vs. Rel PDGF 0.7836 No

Ctrl vs. PDGF-SPLApart 0.0022 Yes (**)

SPLApart vs. Exog PDGF 0.0023 Yes (�)
SPLApart vs. Rel PDGF 0.0017 Yes (�)
PDGF-SPLApart

vs. Exog PDGF

0.0027 Yes (�)

PDGF-SPLApart

vs. Rel PDGF

0.0021 Yes (�)
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tions, in this particular case, for PDGF in bone applica-

tions, it might be advantageous. Hsieh and Graves showed

that pulse release of PDGF enhances the formation of min-

eralized matrix in vitro, while continuous application is in-

hibitory.44 PDGF is a potent mitogen and chemotactic agent

for cells of the mesenchymal lineage, in which bone cells are

included, and since proliferation and differentiation are seen

as relatively uncoupled and sequential processes, it is con-

sidered to be the first-phase effector in bone.13 In this role it

stimulates and recruits cells to the site in the initial stages,

after which it does not seem to play a leading role in cell fate

and commitment, the latter attributed to other effectors, such

as bone morphogenetic proteins. In the light of these find-

ings, the present release system can deliver PDGF in a burst

to stimulate cells to migrate and expand in numbers to the

defect site (in vivo) or in the hybrid construct (in vitro) and

then maintain low delivery levels that will not impart the

next phase of repair (maturation/differentiation). The release

profile shows that after the burst release, starting at day 2,

reduced levels of PDGF are released from the microparti-

cles. Comparing with Figure 3, where 4 ng/mL exerts a sig-

nificant effect over MC3T3-E1 cells, the fact that low

amounts of GF are released up to 8 weeks will not impart cell

commitment to the osteoblastic lineage.

In the present study, when determining whether PDGF

incorporation in and release from starch-based microparti-

cles would have a deleterious effect on the biological ac-

tivity of the GF, it was found that the mitogenic effect of

PDGF released from PDGF-SPLA microparticles was com-

parable to that of PDGF used to supplement DMEM cul-

ture medium (Exog PDGF). BSA has been used extensively

as an adjuvant for the loading of GFs,2,18,45 to protect them

from the harsh organic environment encountered during

processing steps. In the present study, BSA as an adjuvant

protected PDGF from methylene chloride used in the pro-

duction of the microparticles. Overall, the incorporation into

starch-based microparticles together with BSA would allow

for the increase in the half-life of the GF, compared with the

one for free GF (nonincorporated).

When comparing the effect of all conditions on the DNA

content of MC3T3-E1 cells at day 3 of culture (Figure 4),

the following should be highlighted:

1. The presence of PDGF significantly stimulates an in-

crease in the DNA content when compared with the

control (cells fed with DMEM culture medium [Ctrl]).

2. All other conditions seem to stimulate to some extent

the DNA content of MC3T3-E1 cells. This effect,

however, is not as remarkable as the one observed for

PDGF-containing conditions.

3. Starch-based microparticles also seem to exert a pos-

itive effect over MC3T3-E1 cells, as evidenced by the

result for empty SPLA microparticles (SPLApart).

We have shown before that 24 h leachables from SPLA

microparticles are not toxic for MC3T3-E1 cells, as evi-

denced by the similar viability values as control conditions,

but we do not possess enough data to support the hypothesis

that degradation products from starch-based microparticles

could have a stimulatory effect over the cells. At 6 days of

culture, control cells reach similar DNA content compared

to all other conditions, except for cells fed with DMEM

culture medium containing PDGF-SPLA microparticles,

which display a statistically significant increase in DNA

content. MC3T3-E1 cells treated with empty SPLA micro-

particles (SPLApart) at day 6 of culture also present a sta-

tistically significant increase in DNA content compared to

control. Since in these conditions there is an addition of

microparticles to the DMEM culture medium fed to cells, we

hypothesize that upon quantification, leachables from the

microparticles are released into the culture medium, there-

fore interfering with the measurements of DNA content.

However, as stated before, of primary and greater impor-

tance is the mitogenic effect of PDGF over MC3T3-E1 cells

observed for 3 days of stimulation.

Cells treated with PDGF showed, besides enhanced pro-

liferation, a fibroblast-like morphology (data not shown), in

agreement to what was observed by Hsieh and Graves.44

However, the authors also report that this display of fibro-

blastic morphology does not impart the formation of a min-

eralized matrix, since cultures treated with PDGF for 3 days

and then transferred to new plastic dishes exhibited a 70%

increase in mineralized nodule area compared to controls.44

These results predict that multiple, brief exposures to PDGF

would enhance bone formation in vivo, while prolonged

exposure to PDGF, which is likely to occur in chronic in-

flammation, would inhibit differentiated osteoblast function

and limit bone regeneration.44 This being the case, the use

of this specific GF should be limited to small time periods,

up to 3 days. As such, the system presented herein might

be very useful in stimulating proliferation and expansion of

cell number for tissue engineering applications. The present

work is part of a global strategy where we aim to use this

system for multiple tasks, namely to serve as substrates for

the culture of cells (in dynamic conditions, such as those

found in a bioreactor system) but also as carriers for bio-

logically active agents that, upon release, can stimulate cells

adhered at their surface to proliferate and/or differentiate.33

As these materials have proven to be capable of support-

ing cell attachment, growth, and expression of osteoblas-

tic markers, we tested in this paper the ability of the same

microparticle systems to act as carriers for PDGF. Although

the incorporation efficiency is low, we believe that the bio-

degradable nature of starch-based materials, their biocom-

patibility (as shown in other works by our group) as well as

the defined release profile, and the fact that the GF activity is

not destroyed during the processes make this material a good

candidate as a carrier for biologically active agents.

Platelets are known reservoirs of several GFs, and among

them PDGF is predominant. GFs within the platelet-rich

plasma are believed to mediate normal bone healing and

regeneration.46 Several works have shown that platelet ex-

tracts can be applied to stimulate bone cells to proliferate.47–50
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Bearing this in mind, rather than using a purified GF (with

a high cost), an effective strategy could be to incorporate

platelet extract obtained from the patients’ own platelets

into the above proposed carriers. This could further increase

the effectiveness of the system in tissue engineering appli-

cations.

Current tissue engineering strategies involve scaffold

materials and cells. We have been proposing, in a ‘‘3-in-1’’

strategy as described above, to use starch-based micropar-

ticles to act simultaneously as (i) biodegradable scaffold

materials;27 (ii) carriers for cells;33 and, as shown in the

present work, (iii) carriers for the incorporation and release

of bioactive agents such as GFs.

CONCLUSIONS

In bone tissue engineering, the combination of materials

possessing adequate properties (such as biocompatibility,

osteoconductivity, physical and chemical properties) with

site-specific cells has the potential to become a very suc-

cessful means of repair. If these properties are coupled with

the ability to entrap and release stimulatory molecules such

as GFs with a defined temporal profile, the advantages of

such a system would be several-fold.

The ability of starch-based microparticles to incorporate,

release, and maintain the biological activity of PDGF was

described. The release of bioactive agent occurred at greater

amounts in the initial time periods (up to 3 days), when

stimulation of MC3T3-E1 cell proliferation was highest.

MC3T3-E1 cells were markedly stimulated to proliferate

upon supplementation with PDGF, both exogenous and re-

leased from starch-based microparticles, confirming the

mitogenic effect of this GF upon cells of the osteoblastic

lineage and the maintenance of its biological activity after

incorporation and release. After the release period extensive

degradation of the microparticles was observed, but they

were still able to maintain their 3-D structure.

Combined with biocompatibility, cell adhesion proper-

ties, and biological activity, the ability to release active GFs

sustains the potential of starch-based microparticle systems

to be used in bone tissue engineering applications.
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