Fluorescence studies of 2-quinolinones and coumarins including peptide derivatives in solution and in lipid membranes

A. S. Abreu^{a,b}, E. M. S. Castanheira^a, M.-J.R.P. Queiroz^b, P.M.T. Ferreira^b

^aCentro de Física (CFUM) and ^bCentro de Química (CQ/UM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal anabreu@quimica.uminho.pt

Coumarins and quinolinones, are important heteroaromatic compounds that have demonstrated a broad range of biological activities [1]. Coumarin and quinolinone derivatives are also known as systems with excellent fluorescence properties [2]. In this work, the photophysical properties (absorption and fluorescence) of a 3amino-4-phenylquinolin-2-one **1**, a 3-(*tert*-butoxycarbonyl)amino-4-phenylcoumarin **2**, a *tert*-butyl 3-methyl-1-(4-methyl-2-oxo-1,2-dihydroquinolin-3-ylamino)-1-oxobutan-2-ylcarbamate 3 and a tert-butyl 2-(4-methyl-2oxo-2*H*-chromen-3-ylamino)-2-oxoethylcarbamate 4 (Figure 1), previously synthesized by us [3], were studied (Table 1, Figure 2).

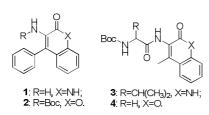


Figure 1

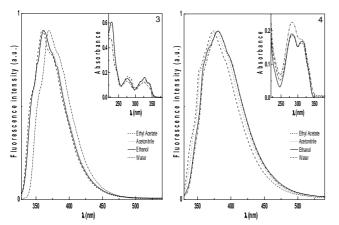


Figure 2. Normalized fluorescence emission spectra of compound 3 and 4 (Inset: absorption spectra):

Solvent	$\Phi_{ m F}$					
	1	2	3	4		
Ethyl Acetate	0.053	0.075	0.062	0.018		
Acetonitrile	0.059	0.038	0.049	0.017		
Ethanol	0.150	0.013	0.067	0.026		
Water	0.200	0.001	0.083	0.035		

Table 1.Fluorescence quantum yields (Φ_F) for compound 1-4 in several solvents.

Table 2. Steady-state fluorescence anisotropy (r) values and maximum emission wavelengths (λ_{em}) of compounds 1 and 2 incorporated in lipid membranes. Anisotropy values in glycerol at 25 °C is also shown for comparison

	1		2	
	λ_{em} (nm)	r	$\lambda_{em} (nm)$	r
egg-PC	398	0.088	399	0.216
DPPC (25 °C)	398 398	0.059	400	0.164
DPPC (50 °C)	376	0.045	400	0.149
DPPC/DPPG (1:1) (25 °C)	394 394	0.023	400	0.146
DPPC/DPPG (1:1) (50 °C)	374	0.012	398	0.119
DPPG (25 °C)	394 399	0.025	397	0.177
DPPG (50 °C)	399	0.012	396	0.157
Glycerol	394	0.297	393	0.311

Compounds 1 and 2 were incorporated in lipid vesicles of egg lecithin (egg-PC), neat DPPC (dipalmitoylphosphatidylcholine), neat DPPG (dipalmitoylphosphatidylglycerol), mixture of DPPC/DPPG (1:1) and their fluorescence emission and anisotropy were determined (Table 2). The results show that compound 1 feels a hydrated and fluid environment, while the opposite is observed for compound 2 which is located deeper in the hydrophobic region.

The fluorescence quantum yields of the dipeptides 3 and 4, which contain in their skeleton the quinolinone and coumarin, were maintained (Table 1). These studies indicate that quinolinone 1 and coumarin 2 may be used as fluorescent probes for peptides and lipid membranes.

Acknowledgements: FCT and FEDER for financial support to the Research Centres, CFUM [PEst-C/FIS/UI0607/2011 (F-COMP-01-0124-FEDER-022711)] and CQ/UM [PEst-C/QUI/UI0686/2011 (FCOMP-01-0124-FEDER-022716)] and to the research project PTDC/QUI/81238/2006 (FCOMP-01-0124-FEDER-007467). A.S. Abreu also thanks her post-doctoral grant (SFRH/BPD/24548/2005) to FCT, POPH-QREN, FSE.

References:

- [1] L.A. Mitscher Chemical Reviews, 105 (2005), 559.
- [2] G. Kokotos, C. Tzougraki Int. J. Peptide Protein Research, 28 (1986) 186.
- [3] M.-J.R.P. Queiroz, A.S. Abreu, R.C. Calhelha, M.S.D. Carvalho, P.M.T. Ferreira Tetrahedron, 64 (2008) 5139.