
Prediction of the mechanical behaviour of the Oporto granite using Data Mining Techniques 
 

Francisco F. Martins
a
, Arlindo Begonha

b
, M. Amália Sequeira Braga

c
 

 
 

 

Abstract 

 

The determination of mechanical properties of granitic rocks has a great importance to solve many engineering 

problems. Tunnelling, mining and excavations are some examples of these problems. The purpose of this paper is 

to apply Data Mining (DM) techniques such as multiple regressions (MR), artificial neural networks (ANN) and 

support vector machines (SVM), to predict the uniaxial compressive strength and the deformation modulus of the 

Oporto granite. This rock is a light grey, two-mica, medium-grained, hypidiomorphic granite and is located in 

Oporto (Portugal) and surrounding areas. Begonha (1997) and Begonha et al. (2002) studied this granite in terms of 

chemical, mineralogical, physical and mechanical properties. Among other things, like the weathering features, 

those authors applied correlation analysis to investigate the relationships between two properties either physical or 

mechanical or physical and mechanical. This study took the data published by those authors to build a database 

containing 55 rock sample records. Each record contains the free porosity (N48), the dry bulk density (d), the 

ultrasonic velocity (v), the uniaxial compressive strength (σc) and the modulus of elasticity (E). It was concluded 

that all the models obtained from DM techniques have good performances. Nevertheless, the best forecasting 

capacity was obtained with the SVM model with N48 and v as input parameters. 
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1. Introduction 

 

Uniaxial compressive strength and modulus of elasticity are very important parameters in the analyses of rock 

masses behaviour. These parameters are used to study underground and surface mining, slope stability, drilling and 

blasting and mechanical rock engineering (Tiryaki, 2008). Furthermore, they assume great importance in analytical 

and numerical solutions. 

To take into account the many factors that affect the strength and deformability of rock masses, large scale in situ 

tests should be performed. Because such tests are very expensive and consume a lot of time, the unconfined 

compressive lab tests are an alternative to them. However, even the latter tests require a heavy frame and a careful 

preparation of the rock cores and continue to be more expensive and time consuming than other tests based on 

index properties. These easier and faster tests have been performed to obtain index properties that can be correlated 

both with uniaxial compressive strength (σc) and modulus of elasticity (E). 

Irfan and Dearman (1978) presented correlations for granites between the uniaxial compressive strength and 

density, the effective porosity and the uniaxial compressive strength, the Young’s modulus and effective porosity 

and the Young’s modulus and sonic velocity.  Christaras et al. (1994) compared dynamic methods for the 

determination of modulus of elasticity with direct static methods for different types of French rocks. They used the 

mechanical resonance frequency and ultrasonic velocity techniques and concluded that these non-destructive 

methods are suitable for the determination of static modulus of elasticity. Kahraman (2001) presented correlation 

between uniaxial compressive strength values and the corresponding results of point load, Schmidt hammer, sound 

velocity and impact strength tests. He presented a non-linear relationship between sound velocity and uniaxial 

compressive strength with a coefficient of correlation of 0.83. However he advised that the prediction is more 
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reliable at low strength than at higher strength because the points are more dispersed at higher values. Begonha 

(1997) and Begonha et al. (2002) studied the mineralogical, chemical and geotechnical features of the granitic 

residual soils of the Oporto granite, the physical properties of the granitic rock, as well as the weathering effect in 

the geotechnical and physical properties. Those authors showed that all the properties of the Oporto granite are 

strongly affected by the weathering process. Arel and Tuğrul (2001) studied the weathering and its relation to 

geomechanical properties of granitic rocks from Turkey. They present several correlations between point load 

index, uniaxial compressive strength, slake durability, porosity, loss on ignition, dry and saturated unit weight and 

water properties. Tuğrul (2004) studied the changes in pore characteristics of different types of rock from Turkey 

due to weathering and presented relationships between both total and effective porosity and other engineering 

properties. Sharma and Singh (2007) presented a table with many relationships between P-wave velocity and 

uniaxial compressive strength reported by several researchers with coefficients of correlation (r) between 0.531 and 

0.880. They also presented their own empirical relation for seven types of rocks with a coefficient of correlation of 

0.9022. They concluded that P-wave velocity is a reliable method for estimating not only σc but also impact 

strength index and slake durability index. Kiliç and Teymen (2008) used non-destructive and indirect methods to 

estimate the mechanical properties of rocks by statistical equations. They tested nineteen different rock types and 

pointed out satisfactory correlations between shore hardness, point load index, sound velocity, Schmidt hardness 

and porosity and uniaxial compressive strength, indirect tensile strength and abrasion resistance. They presented 

non-linear correlations between σc and Vp (R
2
=0.94) and uniaxial compressive strength and the porosity (R

2
=0.93). 

However, the authors advertised that equations may not be suitable for rocks with very low porosity (<2%).  

The use of correlations like those mentioned above, should many times lead to unsatisfactory forecasts. To 

overcome this problem, artificial intelligent tools such as Data Mining techniques can be useful to build more 

accurate predictive models. The Data Mining is a step in the overall process of discovering useful knowledge from 

databases and consists in the application of suitable algorithms or techniques to extract knowledge from data and 

obtain a pattern or model. Neural networks and support vector machines are examples of DM algorithms. The ANN 

technique is the most widely used technique in the rock engineering domain. It has been used to build models to 

identify probable failure on rock masses (Guo et al., 2003), for rock classification (Millar and Hudson, 1994), for 

prediction of uniaxial compressive strength (Singh et al., 2001; Zorlu et al., 2008; Dehghan et al., 2010), tensile 

strength (Singh et al., 2001), modulus of elasticity of rocks (Majdi and Beiki, 2010; Dehghan et al., 2010; Miranda 

et al., 2011), the weathering degrees of rocks (Gokceoglu et al., 2009; Dagdelenler et al., 2011), etc. This technique 

is based on the functioning of the human nervous system and can handle data with complex relationships that can 

be strongly non linear. Support vector machines are alternative techniques to the ANN but scarce applied in rock 

engineering. Like the ANN, the SVM has a high degree of complexity. These DM techniques and the traditional 

multiple regression were used in this study to build models to forecast the σc and E of granitic rocks from Oporto, 

Portugal. As far as we know, SVM has not yet been applied to predict both σc and E of granitic or other rocks. 

 

 

2. Materials and methods  

 

2.1 Petrographic characterization 

  

The studied rock, named the Oporto granite, is a light grey, two-mica, medium-grained, hypidiomorphic granite 

and is located in Oporto and surrounding areas. It is composed by quartz, microcline (k-feldspar), plagioclase 

muscovite and biotite. Muscovite is the dominant mica and microcline is frequently perthitic. Apatite, zircon and 

rutile are the accessory minerals. The fresh rock was submitted to a late post-magmatic alteration, being 

characterized by several generations of dioctahedral micas, chlorite, rare chlorite-smectite mixed-layer minerals 

and a pure smectite phase (Begonha, 1997; Begonha et al., 2002). 

Climatic conditions of NW Portugal favour the granite weathering and its outcrops often display different degrees 

of weathering. Total weathering profile depths frequently exceed 20 to 30 m and granitic saprolites can be more 

than 10 m thick. 

Clay minerals and associated minerals that characterize the bulk weathered rock and granitic saprolites are 

kaolinite, gibbsite, and chlorite-vermiculite mixed-layer (Begonha, 1997; Begonha et al., 2002). According to these 

authors the amount of plagioclase is significantly reduced at the very beginning of the weathering process 

(weathered rock). On the contrary, the relative increase of the microcline at the earlier stages of the weathering 

process and the decrease in later ones, indicate its higher resistance to weathering compared to plagioclase. 

 

2.2 Granite weathering effects in physical properties 

 

In this paper some of the more significant works on the Oporto granite (Begonha, 1997; Begonha et al., 2002) will 

be reviewed, from the particular context of the weathering effect in the physical properties of the granite.  

The granite weathering was studied in order to obtain a physical property to be used as an index of the degree of 

weathering and to estimate other properties. Several tests were performed in order to obtain total porosity (NT), free 



porosity (N48), dry bulk density (d), ultrasonic velocity (v), uniaxial compressive strength (σc), modulus of elasticity 

(E) and strain in rupture (ε). Table 1 presents the results published by Begonha (1997) that were used in this study 

and Table 2 shows the statistical assessments of the parameters of the Table 1. 

The ISRM (1978) classification was used and rocks were classified as fresh (W1) to moderately-highly weathered 

(W3-W4) (Table 1). As it can be seen, most of the rocks are moderately weathered with less than half of the rock 

decomposed (W3). 

Table 2 shows that the free porosity (N48 ) presents the higher coefficient of variation and the dry bulk density (d) 

the lower. Therefore, N48 presents the greater variability and d the lower variability. The other parameters present 

similar variability.  

Among several non linear relationships between two physical parameters carried out by Begonha (1997) only σc 

and E (engineering properties) will be treated in this study (Table 3). This study aimed to build more accurate 

models based on powerful techniques to forecast σc and E from other physical properties. To achieve this goal, DM 

techniques such as ANN, SVM and MR were used. 

Figures 1 and 2 show the histograms of the uniaxial compressive strength and of the modulus of elasticity, 

respectively. It can be seen that most of the data have values of σc between 60 and 120 MPa and values of E 

between 6 and 12 GPa. 

 
Fig. 1. Histogram of the uniaxial compressive strength. 

 

 
Fig. 2. Histogram of the modulus of elasticity. 

 

 

 

 



 

2.3 Data Mining 

 

In this study the data mining process was applied to predict the uniaxial compressive strength and the modulus of 

elasticity. Artificial neural networks, support vector machines and multiple regressions were applied. It was used 

the environment R (R Development Core Team, 2010) with the RMiner library developed by Cortez (2010) and 

some available packages. The library RMiner presents a set of functions that make easier the use of DM algorithms 

both in classification and regression tasks. Both tasks require a supervised learning where there is a model fitting to 

a dataset of examples each composed by input variables and one output variable. The problems studied here are 

regression problems. 

The ANN technique is based on the architecture of the human brain. The way the artificial neurons are linked each 

other defines the adopted architecture. The neurons communicate each other sending signals through the links. 

Each liaison has an associated weight, wi,j (i and j are neurons or nodes), and each neuron has an activation function 

that introduces a non-linear component. This study used a logistic activation function f given by 1/(1+e
-x

) and the 

following general equation: 
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where xi are the input parameters or nodes, I is the number of input parameters and o is the output parameter. 

The multilayer perceptron (feed forward network) architecture (Haykin, 1999) with one hidden layer of HN hidden 

nodes was adopted in this research (Fig. 3). The grid search of the number of hidden nodes HN was 

{0,2,4,6,8,10,12,14,16,18,20}. 

      

 

 
Fig. 3. Example of a multilayer perceptron. 

 

The SVM technique was initially developed to classification problems by Cortes and Vapnik (1995). This method 

uses a non linear mapping to transform the input data into a multidimensional feature space (Fig. 4). 

 
Fig. 4. Example of a SVM transformation. 

 

 

After this transformation the SVM finds the best hyperplane inside the feature space. The non linear mapping 

depends on a kernel function k(x,x’). This work uses the following kernel function: 
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The performance of the regression is affected by the kernel parameter, γ, a penalty parameter, C, and the width of 

the ε-insensitive zone. To limit the searching space, C was considered equal 3 and it was used a heuristic for ε 

(Cortez, 2010). Therefore, the search space was limited to the input values of γ which in this study were { 2
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To test the predictive capacity of the data mining techniques the dataset was divided in two subsets. One, composed 

by 45 registers, was used to train the model, and other, composed by the remaining 10 registers, to test the model. 

With the training set it was used a 5-fold cross validation where the data was divided in five subsets of equal size. 

Four subsets were used to adjust the model whereas the remaining subset was used to test the model. This process 

was repeated until all the subsets have been tested. Ten runs of this process were carried on this study. 

The model with the best performance in the training process was fitted with all the training dataset and was tested 

using the testing dataset composed by 10 register not used in the training process. 

The performance of the models was assessed using the coefficient of determination R
2
 and the root mean square 

error RMSE (Equation 3).  
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Where yi is the measured value, ŷi is the predicted value and N is the number of samples. 

 

The higher the R
2
 the better is the performance of the model. R

2
 equal 1 corresponds to an excellent performance. 

In relation to RMSE, the performance of the model increases as its value decreases. 

 

 

3. Results and Discussion 

 

3.1 Uniaxial compressive strength 

 

The data mining models were tested using a single input variable and combinations of two or three variables (N48, d 

and v). The mean values of the root mean square error (RMSE) and the coefficient of determination (R
2
) obtained 

during the training process are presented in Tables 4 and 5. According to Johnson (1984), correlation coefficient 

values (R) higher than ±0.8 are considered statistically significant at 95% confidence. This corresponds to R
2
 equal 

0.64. It can be seen that all the values presented in Table 5 are greater than 0.64, which confirms the good 

predictive capacity of the models. 

From the analysis of Tables 4 and 5 it can be seen that the best results for most of the combinations of input 

parameters were obtained with the SVM technique. When d is used alone the MR model gave better results than the 

other models. The MR and SVM models had similar behaviour when all the input parameters are used. In relation 

to v&d the SVM and MR had similar coefficient of determination but the SVM model had rather lower RMSE.  

Among all the combinations and models, the best performance was obtained with the SVM model using N48 and v 

as input variables. This model was fitted with all the training set and the result is graphically presented in Fig. 5 

which also presents the values obtained with the testing set. Table 6 presents both RMSE and R
2
 obtained in the 

correlations presented by Begonha (1997) (Table 3) and with the built SVM models using only one input parameter 

and the best combination (N48&v) with all the training set. It can be seen that using all the training set all the SVM 

models gave better results than the equations presented by Begonha (1997) and Begonha et al. (2002). 

 



 
Fig. 5. Performance of the SVM model using the combination N48 and v in the prediction of σc. 
 

The results presented in Table 7, obtained with the testing set confirm the best performance of the SVM model with 

the combination N48 and v. When the input parameter is v the equation presented by Begonha (1997) and Begonha 

et al. (2002) gave better results. 

It must be stressed that the testing set is unknown for the DM models and all the dataset was used to obtain the 

equations presented by Begonha (1997) and Begonha et al. (2002). 

 

 

3.2 Modulus of Elasticity 

 

In relation to the modulus of elasticity similar analyses to those applied in relation to uniaxial compressive strength 

were performed. The results are presented in Tables 8 to 11. 

From the analysis of Tables 8 and 9 it can be seen that the best results for most of the combinations of input 

parameters were obtained with the SVM technique. Only for the combination N48&d the ANN model gave better 

results. 

Among all the combinations and models, the best performance was obtained with the SVM model using N48 and v 

as input variables. This model was fitted with all the training set and the result is graphically presented in Fig. 6 

which also presents the values obtained with the testing set. Table 10 presents both RMSE and R
2
 obtained in the 

correlations presented by Begonha (1997) (Table 3) and with the built SVM models using all the training set. It can 

be seen that using all the training set all the SVM models gave better results than the equations presented by 

Begonha (1997) and Begonha et al. (2002). 



 
Fig. 6. Performance of the SVM model using the combination N48 and v in the prediction of E. 
 

The results presented in Table 11, obtained with the testing set confirm the best performance of the SVM model 

with the combination N48 and v and that all the SVM models have a better predictive capacity than the equations 

provided by Begonha (1997) and Begonha et al. (2002).  

 

 

4. Conclusions 

 

Free porosity (N48), dry bulk density (d) and ultrasonic velocity (v) were used as input variables in multiple 

regression analysis, artificial neural networks and support vector machines in order to predict the uniaxial 

compressive strength (σc) and the modulus of elasticity (E) of granitic rocks. These DM techniques were used to 

improve the predictive capacity of E and σc in relation to the equations presented by Begonha (1997) and Begonha 

et al. (2002) that include only one input variable each time. 

It was concluded that in general, when the SVM models were used, the results were better than those obtained with 

the Begonha’s equations and the other models. The best results were obtained using N48 and v as input variables 

with the SVM model. 

Both ANN and SVM models have the ability to capture the non linear features. However, the advantage of the 

SVM model over the ANN model is the absence of local minimum in the learning phase. Perhaps this advantage 

had led to its superiority over the ANN model. 

It must be emphasize that Begonha’s equations have been built with all the dataset whereas the results obtained 

with the DM techniques only used part of the dataset. This stress the quality of the results obtained with the DM 

techniques. Nevertheless, it must be emphasize that the DM techniques demand a great amount of data to extract 

knowledge. In this study only 45 registers were used in the training phase and 10 registers in the testing phase. 

Therefore, in spite of the good predictive capacity presented by the DM models, it is necessary to perform more 

tests to increase the dataset and perform more analyses to have a more consistent conclusion about the best model 

to apply. 
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Table 1 
Experimental results of tests for determining E and σc (Begonha, 1997). 

No. N48 (%)  D V (m/s) σc (MPa) E (GPa) Weathering 

1 2.75 2.57 2960 78.8 8.41 W3 

2 2.45 2.58 3030 103.9 9.81 W3 

3 2.59 2.57 3320 87.6 8.77 W3 

4 3.1 2.56 2090 97.3 9.48 W3 

5 3 2.57 2360 95 8.37 W3 

6 2.98 2.55 2310 98.4 8.51 W3 

7 4.33 2.52 2550 77.5 6.3 W3 

8 3.6 2.54 2800 105.7 9.11 W3 

9 3.68 2.55 2870 86.8 7.53 W3 

10 4.18 2.52 2730 79.8 6.85 W3 

11 9.11 2.37 1400 20.2 1.04 W3-W4 

12 8.46 2.39 1540 23.7 1.35 W3-W4 

13 8.92 2.37 1390 22.4 1.15 W3-W4 

14 8.34 2.4 1500 23.3 1.28 W3-W4 

15 9.2 2.37 1340 21.3 1.1 W3-W4 

16 7.79 2.41 1690 29.4 1.74 W3-W4 

17 7.93 2.41 1640 29 1.68 W3-W4 

18 4.6 2.5 2460 60 6.01 W3 

19 4.85 2.5 2260 61.5 5.03 W3 

20 4.38 2.51 2590 71.8 6.81 W3 

21 3.89 2.53 2780 73.2 7.49 W3 

22 4.47 2.51 2520 78.5 7.55 W3 

23 4.64 2.49 2400 72.7 6.88 W3 

24 2.99 2.56 3570 108 11.16 W3 

25 2.89 2.55 3760 92.6 10.11 W3 

26 2.94 2.56 3750 111.2 10.83 W3 

27 2.95 2.56 3610 118.1 10.46 W3 

28 3.27 2.54 3460 107 10.45 W3 

29 3.01 2.56 3530 90.9 9.07 W3 

30 3.69 2.54 2680 75.6 7.77 W3 

31 3.61 2.55 2310 83.5 7.9 W3 

32 3.43 2.55 2450 89.7 8.88 W3 

33 3.65 2.55 2550 89.3 8.96 W3 

34 3.4 2.55 2160 90.4 7.96 W3 

35 2.41 2.58 3980 123.2 12.05 W3 

36 2.72 2.56 3610 120.9 11.81 W3 

37 2.64 2.57 3750 135.2 12.89 W3 

38 3.78 2.53 3080 90.7 8.66 W3 

39 2.36 2.59 3600 101 10.79 W3 

40 2.32 2.58 3590 75.6 9.17 W3 

41 2.49 2.59 3700 90.3 9.48 W3 

42 2.12 2.58 3620 113.6 10.35 W3 

43 2.32 2.58 3370 109.5 10.95 W3 

44 2.32 2.59 3590 105.8 11.05 W3 

45 0.61 2.62 5740 157 16.94 W1 

46 0.61 2.64 5610 141.7 16.73 W1 

47 0.61 2.63 5700 153.5 16.77 W1 

48 0.52 2.65 5690 130.6 14.67 W1 

49 0.63 2.63 5370 153 16.05 W1 

50 2.24 2.58 3400 103.5 10.37 W3 

51 2.19 2.59 3540 104 10.12 W3 

52 2.21 2.59 3440 110.3 11.24 W3 

53 1.6 2.61 3670 96.6 10.38 W2 

54 1.62 2.61 3680 100.3 9.96 W2 

55 1.6 2.61 3810 132.7 12.45 W2 



 

 

 

 

 

 

 

 
Table 2 
Basic descriptive statistics of the rock properties used in database. 

Symbol Minimum Mean Maximu

m 

Standard 

Deviation  

Coefficient of 

variation 

N48(%) 0.52 3.55 9.20 2.20 61.94 

d  2.37 2.54 2.65 0.07 2.72 

v (m/s) 1340 3125.46 5740 1084.82 34.71 

σc (MPa) 20.20 90.97 157.00 33.72 37.07 

E (GPa) 1.04 8.89 16.94 3.89 43.76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table 3 

Correlations developed by Begonha (1997) related to engineering properties. 

Correlations R
2
 

48N
c 7952.09028.184   0.931 

9721.176
c d102830.4    0.910 

vln8524.857097.594c   0.835 

48N
7262.02826.23E   0.930 

2266.2510 d105065.4E    0.933 

vln0114.119227.78E   0.880 

3646.1
σ0183.0E   

0.982 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 
Table 4 

Mean values of RMSE obtained in the cross-validation scheme for different combination of input parameters. 

 M1   M2   M3 

 N48  v  d N48&v v&d N48&d N48&v&d 

ANN 13.69 14.74 14.98 11.31 11.77 13.09 11.49 

SVM 12.52 14.17 14.73 10.75 11.53 13.01 11.12 

MR 13.13 16.11 14.19 10.87 12.27 13.05 11.09 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 5 
Mean values of R

2
 obtained in the cross-validation scheme for different combination of input parameters. 

 M1   M2   M3 

 N48  v  d N48&v v&d N48&d N48&v&d 

ANN 0.842 0.819 0.811 0.892 0.883 0.858 0.888 

SVM 0.868 0.831 0.819 0.904 0.887 0.859 0.896 

MR 0.854 0.781 0.830 0.900 0.892 0.858 0.896 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 
Table 6 
RMSE and R

2
 values using all the training set. 

 Begonha 

1997 

  SVM    

 N48 v d N48&v N48 v d 

RMSE 12.16 13.03 13.54 10.43 11.10 10.86 11.56 

R
2
 0.881 0.857 0.850 0.910 0.896 0.903 0.887 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 
Table 7 
RMSE and R

2
 values using all the testing set. 

 Begonha 

1997 

  SVM    

 N48 v d N48&v N48 v d 

RMSE 19.28 15.80 22.57 14.87 16.28 17.74 16.15 

R
2
 0.713 0.727 0.676 0.792 0.763 0.700 0.716 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 8 

Mean values of RMSE obtained in the cross-validation scheme for different combination of input parameters. 

 M1   M2   M3 

 N48 v  d N48&v v&d N48&d N48&v&d 

ANN 1.192 1.482 2.016 0.930 1.022 1.127 0.905 

SVM 1.138 1.307 1.425 0.850 0.920 1.209 0.894 

MR 1.457 1.442 1.574 0.908 0.931 1.451 0.941 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9  
Mean values of R

2
 obtained in the cross-validation scheme for different combination of input parameters. 

 M1   M2   M3 

 N48 v  d N48&v v&d N48&d N48&v&d 

ANN 0.909 0.861 0.819 0.945 0.934 0.920 0.948 

SVM 0.918 0.891 0.874 0.954 0.947 0.908 0.949 

MR 0.866 0.868 0.843 0.948 0.945 0.867 0.944 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 10  
RMSE and R

2
 values using all the training set 

 Begonha 

(1997) 

  SVM    

 N48 v d N48&v N48 v d 

RMSE 1.476 1.224 1.566 0.728 0.965 0.922 1.463 

R
2
 0.900 0.907 0.871 0.966 0.941 0.946 0.880 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 11 
 RMSE and R

2
 values using all the testing set 

 Begonha 

(1997) 

  SVM    

 N48 v d N48&v N48 v d 

RMSE 2.222 1.274 2.865 1.012 1.265 1.245 1.094 

R
2
 0.851 0.898 0.822 0.951 0.932 0.904 0.906 

 

 

 


