
Diogo Pereira Ribeiro

Implementation of an API for
Distributed Communication Between
Processes in Closed Contexts

Di
og

o
Pe

re
ira

 R
ib

eir
o

Junho de 2012UM
in

ho
 |

 2
01

2
Im

pl
em

en
ta

tio
n

of
 a

n
AP

I f
or

 D
is

tr
ib

ut
ed

C
om

m
un

ic
at

io
n

Be
tw

ee
n

Pr
oc

es
se

s
in

 C
lo

se
d

C
on

te
xt

s

Universidade do Minho
Escola de Engenharia

Junho de 2012

Dissertação de Mestrado
Ciclo de Estudos Integrados Conducentes ao
Grau de Mestre em Engenharia de Comunicações

Trabalho efectuado sob a orientação do
Professor Doutor Bruno Alexandre Fernandes Dias

Diogo Pereira Ribeiro

Implementation of an API for
Distributed Communication Between
Processes in Closed Contexts

Universidade do Minho
Escola de Engenharia

Acknowledgements

This dissertation is the product of many hours of e�ort and dedication
and it represents the turning point of a goal in my life I had long hoped
to achieve. This would have been next to impossible without the help and
support from many people, namely:

My family, and my parents in particular, whose support and sacri�ce
made this a possibility.

My supervisor, Bruno Dias, for his knowledge, readiness and dedication
towards helping me achieve my objectives.

My friends and colleagues, whose presence, care and patience kept me
motivated and going through some less easy times.

Everyone else not mentioned and who contributed, directly or not, to
the development of this dissertation.

I would like to express my sincere gratitude towards everyone mentioned

above, whom without this work wouldn't either be possible or as thorough as

it is.

iii

Abstrato

Existem atualmente diversas Application Programming Interfaces (APIs)
que ajudam na programação de aplicações distribuídas. Na maior parte dos
casos, estas utilizam de forma in�exível um único tipo de protocolo aplicacio-
nal e interface, �cando dependente dos protocolos de transporte já existentes
e do sistema operativo. Para o programador, a stack de protocolos e o tipo
de interface têm que ser decididos explicitamente antes do estabelecimento
da comunicação entre os processos.

Algumas APIs facilitam a programação ocultando alguns aspetos espe-
cí�cos dos mecanismos e protocolos de comunicação utilizados, disponibili-
zando uma interface mais homogeneizada. No entanto, a programação con-
tinua a não ser totalmente transparente e independente dos protocolos de
comunicação utilizados, dos sistemas operativos e da localização relativa dos
processos comunicantes. Além disso, estas APIs não tomam decisões sobre
o mecanismo de comunicação a utilizar quando existem várias alternativas
possíveis, sendo esta decisão da responsabilidade do programador.

Num contexto de implementação de simuladores distribuídos e modula-
res para protocolos de redes de computadores e sistemas de comunicação,
seria vantajoso poder-se utilizar uma API para comunicação dos processos
de simulação que disponibilizasse apenas um único interface de programação
e que decidisse de forma transparente o mecanismo ou protocolo comunica-
cional mais e�ciente, tendo em conta a localização relativa dos processos.

Nesta dissertação são abordadas as soluções semelhantes já existentes e
é estudada uma API que pretende preencher estas lacunas. A arquitetura
desta API será depois apresentada, assim como uma solução com base na
investigação realizada. Por �m, os resultados dos testes serão analizados e a
conclusão apresentada.

Esta dissertação foi desenvolvida no contexto do projeto RoutUM, um
simulador de redes de computadores atualmente a ser desenvolvido pela Uni-
versidade do Minho.

Palavras-chave: Computação distribuída, Comunicação inter-processos,
Simulação de redes, API, RoutUM

iv

Abstract

There are several Application Programming Interfaces (APIs) available to
simplify the development of distributed applications. In most cases, they in-
variably use one type of application protocol and interface, being dependent
of the existing transport protocols and operating system. To the program-
mer, the protocol stack and the type of interface must be explicitly chosen
before initiating communication between processes.

Some APIs simplify programming by hiding some speci�c aspects about
the communication protocols and mechanisms, revealing a more homoge-
nized interface. However, the programming is still not completely trans-
parent and independent from the communication protocols, the operating
system and the relative location of the communicating processes. Also, they
are unable to decide which communication mechanism to be used when there
are several available possibilities, leaving that responsibility to the program-
mer.

On the context of implementation of distributed and modular simulators
for network protocols and communication systems, it would be desirable to
be able to use an API that would allow communication between the processes
while providing only one programming interface. It would then transparently
decide the most e�cient mechanism or communication protocol from the rel-
ative location of the communicating processes.

This dissertation will present and discuss the currently available solu-
tions and the problems associated with the development of an API which
attempts to �ll the missing features indicated above. The API's architecture
will then be shown and developed into a solution based on the results from
the investigation. In the end, this solution will be tested and the �nal results
will be presented.

This dissertation was developed in the context of the RoutUM project,
a network simulator being currently developed in the University of Minho.

Keywords: Distributed Computing, Inter-Process Communication, Net-
work Simulation, API, RoutUM

v

vi

Contents

List of Figures xiii

List of Tables xv

Glossary xvii

Acronyms xxi

1 Introduction 1
1.1 Motivation . 1

1.2 Overview . 1

1.3 Objectives . 2

1.4 Restrictions . 3

1.5 Dissertation Structure . 3

2 Background and Related Work 5
2.1 Distributed Computing . 5

2.1.1 De�nition . 6

2.1.2 Types of Distributed Systems 6

2.1.3 Characteristics and Design Challenges 11

2.1.4 Implementations . 15

2.1.5 Related Work . 16

2.2 Inter-Process Communication Mechanisms 24

2.2.1 IPC Mechanisms on Linux Systems 25

2.2.2 Summary . 37

2.3 Network Simulation . 38

2.3.1 Network Simulation and Emulation 38

2.3.2 Basics of Computer Network Simulation 39

2.3.3 Related Work . 43

2.4 RoutUM . 47

2.4.1 Goals . 49

2.4.2 Architecture . 49

2.4.3 Parallelization of the Simulation 56

vii

3 Research 57
3.1 Objectives . 57

3.2 General Architecture . 58

3.3 Programming Language . 59

3.4 Inter-process Communication Mechanisms 60

3.4.1 Selection Criteria . 60

3.4.2 Local IPC . 61

3.4.3 Remote IPC . 74

3.5 Security . 76

3.5.1 Central Server Access 77

3.5.2 Inter-Process Access 77

3.5.3 Implementation . 77

3.5.4 Further Development 78

3.6 Resource Identi�cation . 79

3.7 Central Server . 79

4 Implementation 81
4.1 Tools . 81

4.2 Architecture Overview . 81

4.3 Implementation Details . 86

4.3.1 Project Structure . 87

4.3.2 Limitations . 89

4.3.3 Database . 89

4.3.4 Transmission and Authentication Protocols 90

4.3.5 Database Management API 92

4.3.6 Database Management Application 93

4.3.7 Central Server's Daemon 95

4.3.8 Peer API . 95

4.3.9 Peer API Test Application 106

4.3.10 Building and Executing the Project 107

4.4 Adding/Replacing modules 108

4.4.1 Database API . 108

4.4.2 Peer API . 108

4.5 Deployment . 109

4.6 Conclusion . 109

5 Evaluation 113
5.1 Resources . 113

5.2 Functional Tests . 116

5.2.1 API's Functions . 116

5.3 Stability . 127

5.4 Peer-to-Peer Throughput Tests 130

5.4.1 Local Test Results . 130

5.4.2 Remote Test Results 132

viii

CONTENTS

5.5 Scalability Tests . 133
5.5.1 Local Scalability Tests 133
5.5.2 Remote Scalability Tests 135

5.6 Multiple Simultaneous IPC Mechanisms 135
5.7 Conclusion . 137

6 Conclusion 139
6.1 Future Work . 141

Bibliography 144

A Code Headers 145
A.1 Database API . 145
A.2 Peer API . 146
A.3 Shared . 153
A.4 Server . 156

ix

CONTENTS

x

List of Figures

2.1 Example of a cluster computer 8

2.2 Distinction between parallel and distributed systems 9

2.3 Architectural example of a grid computing system 10

2.4 Cloud computing conceptual diagram 11

2.5 Cloud computing stack detail 12

2.6 BOINC's system architecture 17

2.7 BOINC's client architecture 19

2.8 Screenshot of boinc-manager 20

2.9 Fold@home screensaver visualization 22

2.10 Globus Toolkit's three pyramids 22

2.11 Globus Toolkit system components 24

2.12 Simulation state advance in time-driven simulation 41

2.13 Simulation state advance in event-driven simulation 41

2.14 Logical process of a network simulation 43

2.15 Basic architecture of NS2 . 44

2.16 Graphical representation of a network in NAM 45

2.17 OMNeT++'s Graphical User Interface 46

2.18 OMNeT++'s Tkenv Graphical Runtime Environment 48

2.19 OMNeT++'s Result Analysis Tool 48

2.20 OMNeT++'s Sequence Diagram example 49

2.21 RoutUM's general architecture 50

2.22 RoutUM's initialization procedure 51

2.23 RoutUM's module hierarchy (example) 52

2.24 RoutUM's internal module structure 52

2.25 RoutUM's simulation contexts 53

3.1 General architecture of the API 58

3.2 Reference A: Throughput for POSIX pipe 63

3.3 Reference A: Throughput for POSIX FIFO queue 63

3.4 Reference A: Throughput for System V messages 64

3.5 Reference A: Throughput for System V shared memory (with
semaphores) . 64

3.6 Reference A: Throughput for UNIX domain sockets 64

xi

LIST OF FIGURES

3.7 Reference A: Average throughput by mechanism for Linux ker-
nel 2.2.5-15 . 65

3.8 Reference B: Benchmark 1 results 66

3.9 Reference B: Benchmark 2 results 67

3.10 Transmission protocol header structure 68

3.11 Bu�er size test - 128 bytes . 69

3.12 Bu�er size test - 1024 bytes 70

3.13 Bu�er size test - 16384 bytes 70

3.14 Use cases diagram for the central server 80

4.1 Implementation overview . 82

4.2 Peer initialization sequence 84

4.3 Peer-to-peer interface information update sequence 85

4.4 Architectural redundancy scenarios 86

4.5 File diagram for shared �les of the RDC API 88

4.6 Database structure . 89

4.7 Peer-to-peer transmission protocol structure 90

4.8 Payload structure of a regular/urgent message 91

4.9 Payload structure of an interface update message 92

4.10 Payload structure of authentication messages 93

4.11 File diagram of the database management and server daemon
�les of the RDC API . 94

4.12 File diagram for peer API . 96

4.13 Event handling in peer API 99

4.14 Peer-to-peer authentication state diagram 101

4.15 Peer to peer message transmission �owchart 102

4.16 Peer to peer message reception �owchart 103

5.1 Network topology used for testing 115

5.2 Creating a new database . 117

5.3 Adding a context, a peer and a membership to the database . 117

5.4 Message transmission from peer_1 to peer_2 (message queue
interface) . 120

5.5 Message reception from peer_1 to peer_2 (message queue
interface) . 120

5.6 Message transmission from peer_1 to peer_2 (TCP/IP inter-
face) . 121

5.7 Message reception from peer_1 to peer_2 (TCP/IP interface) 121

5.8 Database changes performed while peer_1 was waiting for input126

5.9 Memory usage at the start of the stability test 129

5.10 Memory usage after a couple of minutes into the stability test 129

5.11 RDC API's local scalability test results (128 Bytes) 134

5.12 RDC API's local scalability test results (1024 Bytes) 134

5.13 RDC API's local scalability test results (16384 Bytes) 135

xii

LIST OF FIGURES

5.14 RDC API's remote scalability test results 136
5.15 RDC API's single vs multiple IPC mechanisms 136

xiii

LIST OF FIGURES

xiv

List of Tables

2.1 Feature comparison of IPC mechanisms in Linux (1 of 2) . . . 37
2.2 Feature comparison of IPC mechanisms in Linux (2 of 2) . . . 38

3.1 Reference A: Time needed to create and destroy 10.000 IPC
resources (in ms) . 65

3.2 IPC test results (1 of 2) . 71
3.3 IPC test results (2 of 2) . 72

4.1 Event types in the peer API 100
4.2 Return codes of the RDC API 105

5.1 Local IPC test results for RDC API 131
5.2 Remote IPC test results for RDC API 132

xv

LIST OF TABLES

xvi

Glossary

AVL binary tree An AVL tree is a self-balancing binary search tree. In
an AVL tree, the heights of the two child subtrees of any node di�er
by at most one. Lookup, insertion, and deletion all take O(log n) time
in both the average and worst cases, where n is the number of nodes
in the tree prior to the operation. 87, 97

Base64 An encoding standard to store (binary) data in ASCII format, using
only a printable sub-set of the 7-Bit characters that ASCII comprises.
90

bash A shell, or command language interpreter, for the GNU operating
system. It was written by Brian Fox for the GNU Project. 26, 27

CPU scavenging A technique to create a computing grid from the unused
resources in a network of computers. Typically this technique uses
desktop computer instruction cycles that would otherwise be wasted
when it is idling. In practice, these computers also donate some sup-
porting amount of disk storage space, RAM, and network bandwidth,
in addition to raw CPU power. 9, 21

daemon A a computer program that runs as a background process, rather
than being under the direct control of an interactive user. 18, 81,
83�85, 88, 107

deadlock A a situation which occurs when a process enters a waiting state
because a resource requested by it is being held by another waiting
process, which in turn is waiting for another resource. If a process is
unable to change its state inde�nitely because the resources requested
by it are being used by other waiting process, then the system is said
to be in a deadlock. 15

Di�Serv Di�erentiated Services (or Di�Serv) is a computer networking ar-
chitecture that speci�es a simple, scalable and coarse-grained mecha-
nism for classifying and managing network tra�c and providing Qual-
ity of Service (QoS) on modern IP networks. Di�Serv can, for example,

xvii

Glossary

be used to provide low-latency to critical network tra�c such as voice
or streaming media while providing simple best-e�ort service to non-
critical services such as web tra�c or �le transfers.. 75

hash table A data structure that uses a hash function to map identifying
values, known as keys, to their associated values. In other words, a
hash table implements an associative array. The hash function is used
to transform the key into the index (the hash) of an array element (the
slot or bucket) where the corresponding value is to be sought. 51

IPsec Internet Protocol Security (IPsec) is a protocol suite for securing In-
ternet Protocol (IP) communications by authenticating and encrypting
each IP packet of a communication session. IPsec also includes pro-
tocols for establishing mutual authentication between agents at the
beginning of the session and negotiation of cryptographic keys to be
used during the session. 78

microkernel In computer science, a microkernel is the near-minimum amount
of software that can provide the mechanisms needed to implement an
operating system (OS). These include low-level address space manage-
ment, inter-process communication and thread management. 25

mutex In concurrent programming, mutual exclusion algorithms (abbrevi-
ated to mutex) are used to avoid the simultaneous use of a common
resource (such as a variable) by pieces of computer code called critical
sections. A critical section is a piece of code in which a process or
thread accesses the resource in common. 103, 104, 110

node In computer networking, a node is an active device attached to a com-
puter network or other telecommunications network, such as a com-
puter or a switch, or a point in a network topology at which lines
intersect or branch. 8�10

process An instance of a computer program that is being executed. It
contains the program code and its current activity. Its working memory
is isolated from other processes and it contains an arbitrary number of
threads. Communication between processes is only possible through
IPC mechanisms. 1, 2, 12, 14, 15, 24, 26, 27, 43, 57, 68, 69

resource starvation A multitasking-related problem, where a process is
perpetually denied necessary resources. Without those resources, the
program can never �nish its task. 15

xviii

Glossary

software library In computer science, a library is a collection of resources
used to develop software. These may include pre-written code and
subroutines, classes, values or type speci�cations. Libraries contain
code and data that provide services to independent programs. This
encourages the sharing and changing of code and data in a modular
fashion, and eases the distribution of the code and data. Another
advantage is that the executables are typically smaller in size, since
a portion of their code is contained in the library itself. Executables
and libraries make references known as links to each other through the
process known as linking, which is typically done by a linker. 107

syslog A standard for logging program messages. It allows separation of
the software that generates messages, the system that stores them and
the software that reports and analyzes them. It also provides devices
which would otherwise be unable to communicate a means to notify
administrators of problems or performance. Because of this, syslog can
be used to integrate log data from many di�erent types of systems into
a central repository. 83, 95, 108

System V Unix System V is one of the �rst commercial versions of the Unix
operating system. It was originally developed by American Telephone
& Telegraph (AT&T) and �rst released in 1983. During the period
of the Unix wars System V was known for being the primary choice
of manufacturers of large multiuser systems, in opposition to BSD's
dominance of desktop workstations. With standardization e�orts such
as POSIX and the commercial success of Linux, this generalization is
no longer as accurate as it once was. 32, 36, 62�64

thread A thread of execution is the smallest unit of processing that can be
scheduled by an operating system. The implementation of threads and
processes di�ers from one operating system to another, but in most
cases a thread is contained inside a process. Multiple threads can exist
within the same process and share resources such as memory, while
di�erent processes do not. 36

X.509 In cryptography, X.509 is a standard for a public key infrastructure
(PKI) for single sign-on (SSO) and Privilege Management Infrastruc-
ture (PMI). X.509 speci�es, amongst other things, standard formats for
public key certi�cates, certi�cate revocation lists, attribute certi�cates,
and a certi�cation path validation algorithm. 80

xix

Glossary

xx

Acronyms

ACL Access Control List. 78

API Application Programming Interface. iv, v, 1�3, 13, 16, 30, 36, 37,
57�60, 62, 73�85, 87�93, 95�99, 101, 103�111, 113, 116, 119, 120, 125,
127�131, 133, 135�137, 139�141

CLI Command-Line Interface. 26, 62, 82, 93, 95, 96

CORBA Common Object Request Broker Architecture. 37

CPU Central Processing Unit. 9, 33, 34, 43, 55, 61, 69�71, 130, 132, 133,
137, 140

DBMS Database Management System. 82, 85, 89, 90, 92, 108

DNS Domain Name Service. 13, 85, 97

DoS Denial-of-Service. 13

FIFO First In, First Out. 27, 43, 62, 63, 67, 73, 87, 102

GCC GNU C Compiler. 68

GSI Grid Security Infrastructure. 23

GUI Graphical User Interface. 19, 46

IDE Integrated Development Environment. 46, 81

IP Internet Protocol. 13, 20, 28, 29, 65, 66, 68, 74�76, 83, 85, 87, 90, 95,
97�99, 121, 128, 130�135

IPC Inter-process communication. 2, 3, 5, 6, 12, 13, 24, 25, 28�30, 32�37,
47�49, 55�66, 68, 70, 73�76, 79, 83, 84, 87, 90, 92, 97�99, 101, 105,
107�110, 119, 121, 128, 130, 132�135, 137, 140�142

LAN Local Area Network. 75

xxi

Acronyms

LDAP Lightweight Directory Access Protocol. 23, 92

LP Logical Process. 43, 53

MAC Medium Access Control. 79

NAT Network Address Translation. 75

NED NEtwork Description. 47

NIC Network Interface Controller. 79

OMG Object Management Group. 37

OS Operating System. 79

OSI Open Systems Interconnection. 29

OTcl Object Tool Command Language. 44

PDES Parallel Discrete Event Simulation. 42

PDU Protocol Data Unit. 55, 140

PKI Public Key Infrastructure. 77, 83

POSIX Portable Operating System Interface for Unix. 26, 32, 34, 36, 60�
63, 67, 68

QoS Quality of Service. 75

RAM Random-Access Memory. 33

RDC RoutUM's Distributed Computing. 81, 88, 90, 91, 95, 97, 106�109,
116, 130, 133, 135, 137, 140

RMI Remote Method Invocation. 37

RNG Random Number Generator. 40, 45

RPC Remote Procedure Call. 13, 37

SDK Software Development Kit. 16, 37

SMP Symmetric multiprocessing. 110

SOAP Simple Object Access Protocol. 37

SQL Structured Query Language. 82

xxii

Acronyms

SSL Secure Sockets Layer. 78, 83

SVID System V Interface De�nition. 61

Tcl Tool Command Language. 44, 45

TclCl Tcl with classes. 44

TCP Transmission Control Protocol. 13, 20, 29, 65, 66, 68, 75, 76, 83, 87,
90, 95, 97�99, 121, 128, 130�135

UDP User Datagram Protocol. 66, 70, 71, 75, 76, 137

UID Unique Identi�er. 79, 80

UML Uni�ed Modeling Language. 88

VLAN Virtual Local Area Network. 115

WAN Wide Area Network. 75

XML Extensible Markup Language. 37

xxiii

Acronyms

xxiv

Chapter 1

Introduction

1.1 Motivation

There are several APIs currently available to simplify the development
of distributed applications. In the majority of cases, they invariably use
only one type of applicational protocol and interface, becoming dependent
from the already existing transport protocols and operating system. To the
programmer, the protocol stack and the type of interface must be explicitly
decided before initializing the communication between processes.

Some APIs simplify programming by hiding some speci�c aspects about
the communication protocols and mechanisms, revealing a more homoge-
nized interface. However, the programming is still not completely trans-
parent and independent from the communication protocols being used, the
operating systems and the relative location of the communicating processes.
Also, these APIs are unable to decide between the communication mecha-
nism to use when there are several available possibilities, turning the respon-
sibility towards the programmer to make an anticipated and conscious choice.

In the context of the implementation of distributed and modular simula-
tors for network protocols and communication systems, it would be desirable
to be able to use an API that could allow the communication between the
simulation's processes while providing only one programming interface and
transparently deciding the most e�cient mechanism or communication pro-
tocol, having in consideration the relative location of the communicating
processes.

1.2 Overview

This dissertation attempts to create a feasible solution for the problems
posed above. In other words, it should be able to transparently decide be-

1

1.3 Objectives

tween the most e�cient communication mechanism and/or protocol when
there is more than one available. This should be accomplished by having in
consideration the overall performance of the transmission medium and the
relative location of the communicating processes. All the speci�cs related to
the transmission method (e.g. the address) or operating system should be
hidden away from the programmer.

In theory, these features should result in an easy, transparent and ho-
mogenous programming interface. Also, the clear division between the com-
munication subsystem and all of the other parts of an application should
increase the modularization of the code and simplify the creation and mainte-
nance of distributed applications. If properly developed, another advantage
should arise from the increased performance, through dynamically choos-
ing the best available method for communication (fastest, less error-prone,
etc). This is a particularly important feature to have in distributed appli-
cations working in closed contexts, where seemingly minimal performance
gains might come to have a severe impact on long lasting, computationally
intensive and complex practical scenarios.

This dissertation was developed in the context of RoutUM, a network
simulator currently being developed on the University of Minho. Some par-
ticular functionality might be implemented in order to satisfy the needs of
this system. It should be noted, however, that this additional functionality
should not compromise the versatility of the API, being purely optional.

1.3 Objectives

The work in this dissertation is split into three phases: investigation,
development and testing.

The �rst phase consists of the state-of-the-art research and an analysis
of existing implementations.

The second phase involves the investigation of the major problems
posed by the API. These include:

• Choosing a programming language which allows the best possible per-
formance in the context of distributed systems. Cross-platform support
is preferable;

• Choosing between several Inter-process communication (IPC) mech-
anisms and/or associated protocols for the ones which o�er the best
performance. This phase is further split between local and remote
mechanisms;

• Speci�cation of an application-level communication protocol;

• Speci�cation of a central database server responsible for the storage
and distribution of information relative to processes, communication

2

Introduction

interfaces, contexts, etc;

• Identi�cation of the security and access policy needs and its respective
application to all the communication modules;

• De�nition of methods and metrics for performance testing of the API;

• Speci�cation of an API that provides a normalized interface for connec-
tion-oriented communications, maximizing performance and reliability
in a transparent and dynamic way to the programmer.

The third phase consists on the implementation and evaluation of the
API. This also includes the development of a test application, in order to
ensure the correct working of the API and to assess its reliability and per-
formance.

1.4 Restrictions

Due to time limitations and the potential extensibility of this dissertation,
the investigative and developmental phases need to be restricted. Therefore,
only two types of interfaces will be taken into account for the API (one local
and one remote IPC mechanism), with only one type of protocol (if appli-
cable) for each interface type. Only Linux or similar UNIX-based operating
systems will be supported by the API's prototype. However, it is still de-
sirable to be taken into consideration the modularization and portability of
the code.

1.5 Dissertation Structure

This document contains a total of six chapters.
The �rst chapter is dedicated to the introduction, indicating the mo-

tivation and the goals of this dissertation.
The second chapter describes the current state-of-the-art in the most

relevant areas for this dissertation. A theoretical background of distributed
systems, IPC mechanisms, and network simulators (RoutUM in particular)
is presented.

The third chapter contains the identi�cation and resolution of the
main problems behind the development of an API which attempts to attain
the established goals.

The fourth chapter describes an implementation based on the knowl-
edge acquired from the previous chapter. A test program is also included, in
order to test the resulting API.

The �fth chapter presents some tests and evaluations made to the
aforementioned API.

3

1.5 Dissertation Structure

The sixth chapter states the �nal conclusions taken from this disser-
tation.

4

Chapter 2

Background and Related Work

2.1 Distributed Computing

The use of distributed systems has its roots in IPC mechanisms stud-
ied during the development of operating system architectures in the 1960s.
These technologies were further developed and expanded during the 1970s
to include di�erent computers through local area networks, such as ethernet.
[3] Distributed computing allows to overcome some fundamental limitations
associated with the traditional (centralized) model of computing, such as:

• The ability to solve a given problem that requires more resources than
those available on a single machine (e.g., storage, memory or processing
limitations).

• Reducing the time needed to solve a given problem, which would oth-
erwise be impractical with traditional solutions (e.g. distributed ren-
dering in computer graphics).

• The use of several interconnected computers in order to provide redun-
dancy and high availability of a given service (e.g. electronic aircraft
control systems).

• The integration of several geographically dispersed services and sys-
tems (e.g. the Word Wide Web).

With the widespread use of the internet, distributed systems became part
of everyday computing experience. Some popular websites such as Facebook
or YouTube can only exist due to the presence of mechanisms that enable
the distribution of load and storage demands between hundreds, or even
thousands of machines that communicate with each other. The constant
increase in software complexity also demands an increased level of integra-
tion between di�erent service providers and/or middleware. Enterprises are
witnessing an increased demand for collaboration and data sharing among

5

2.1 Distributed Computing

di�erent entities. Some enterprises use and outsource some of their services
in order to simplify and increase pro�t to their business. In conclusion,
the computing world nowadays is progressing towards ubiquity of services,
through the concept of distributed computing.

2.1.1 De�nition

The concept of a distributed system has broadened over the years. While
there isn't a single, commonly accepted de�nition of what a distributed sys-
tem is, there are some basic characteristics shared between them:

• A distributed system consists of multiple autonomous computational
entities.

• All of these entities interact with each other through IPC mechanisms.

• These entities work together in order to achieve a common goal.

[4] also includes the following properties in the de�nition:

• Heterogeneity: A key characteristic of distributed systems is the het-
erogeneous nature of the entities involved. The heterogeneity may lie
in the type of system or user, underlying policies and/or the data/re-
sources that the underlying subsystems consume. The heterogeneity
of distributed systems can be best observed in the Internet, where
multitudes of systems, protocols, policies and environments interact to
create a scalable infrastructure.

• Concurrency: Another important characteristic that distinguishes
any distributed system from a centralized one is concurrency. Di�er-
ent components of distributed systems may run concurrently as the
components may be loosely coupled. Therefore, there is a need to
understand potential synchronization issues during the design of dis-
tributed systems.

• Resource sharing: Sharing of resources is another key characteristic
of distributed systems.

2.1.2 Types of Distributed Systems

There are several major types of distributed systems. A distributed sys-
tem may possess properties from more than one type of system.

Cluster computing

A cluster consists of several computers connected to each other, usually
(but not always) over fast local area networks. Functionally, this is the closest

6

Background and Related Work

distributed equivalent of a single computer. This type of systems have very
little geographical dispersion, are more homogeneous and tend to work in
closed contexts. They are usually deployed to improve performance and/or
availability over that of a single computer, while being typically cheaper than
a single computer of comparable speed or availability. There are several types
of cluster computing:

• High-availability clusters - This type of clusters are usually em-
ployed to increase the availability of a given service. They operate by
having redundant nodes, which can be used to provide service when
one or more nodes fail.

• Load-balancing clusters - This type of clusters are used to distribute
the workload through several machines on a network, making it viable
to provide a service which otherwise would be impossible with a sin-
gle machine due to lack of computational resources. To achieve this,
multiple computers are linked together and virtually work as a single
computer.

• Compute clusters - This kind of clusters are the closest functional
equivalent to a single computer. They are typically employed to work
with very heavy workloads (which would otherwise be impractical for
a single machine), and tend to use internode communication very in-
tensively (sometimes through specialized computer buses). Some uses
for compute clusters include weather prediction, rendering farms and
simulations.

Figure 2.1 shows an example of a distributed cluster system.1

Parallel computing

Since the 1950s, parallelism has been employed mainly in high perfor-
mance computing. Interest in the area has grown lately due to the domi-
nance of multicore processors in consumer level hardware, as a consequence
of physical constraints preventing further frequency scaling.

As with a distributed system, there is no general consensus as to what
de�nes a parallel system. [2] describes parallel computing as "a form of com-

putation in which many calculations are carried out simultaneously, operating

on the principle that large problems can often be divided into smaller ones,

which are then solved concurrently ("in parallel")." Parallel computing can
be implemented at several di�erent levels: bit, instruction, data, and task
level.

There also isn't a clear distinction between parallel and distributed com-
puting. Both types of systems might inherit characteristics from each other.

1http://www.nas.nasa.gov/About/Projects/Columbia/columbia.html

7

http://www.nas.nasa.gov/About/Projects/Columbia/columbia.html

2.1 Distributed Computing

Figure 2.1: Example of a cluster computer: Supercomputer Columbia.

For instance, a given problem might be split into smaller parts and solved in
parallel through the use of several computers connected by a network. Such
system would �t in the de�nition of parallel and distributed system.

[20] distinguishes these two computing paradigms in the following way:

• In parallel computing, all processors have access to a shared memory.
Shared memory can be used to exchange information between proces-
sors.

• In distributed computing, each processor has its own private memory
(distributed memory). Information is exchanged by passing messages
between the processors.

Figure 2.2 shows a graphic representation of this distinction.2

Grid computing

The term grid computing originated in the early 1990s as a metaphor
for making computer power as easy to access to as an electrical power grid.
[8] In simple terms, the Grid can be though of as a distributed system with
non-interactive workload that involves a large number of �les. In comparison
to cluster computing, it can be seen as a more heterogenous, geographically
dispersed and loosely coupled form of distributed computing.

The nodes which a Grid is built upon tend to be complete computers

2http://en.wikipedia.org/wiki/File:Distributed-parallel.svg

8

http://en.wikipedia.org/wiki/File:Distributed-parallel.svg

Background and Related Work

Processor

Memory

Processor

Memory

Processor

Memory

Processor

Memory

Processor

Memory

Processor Processor

(a)

(b)

(c)

Figure 2.2: Distinction between parallel and distributed systems: (a)-(b)
represents a distributed system; (c) represents a parallel system.

(with Central Processing Unit (CPU), storage, power supplies, network in-
terfaces, etc) based on simple commodity hardware. Unlike some types of
computer clusters, these computers are connected using conventional net-
work interfaces (such as Ethernet interfaces). One of the main advantages
from using this type of hardware is that it o�ers equivalent performance of a
supercomputer at a fraction of the price. On the other hand, the relatively
low speed of the network interfaces makes grid computing more appropriate
for applications where multiple parallel computations can take place inde-
pendently, without the need to communicate intermediate results between
nodes. For the same reason, grid computing o�ers the highest degree of scal-
ability between all types of distributed systems.

An example of a grid computing system is shown in Figure 2.3.3 A more
in-depth example is analyzed in Section 2.1.5.

There are some well-known public projects based on Grid computing,
such as SETI@Home4 or Folding@Home.5 These exploit the concepts of vol-
unteer computing and CPU scavenging, allowing anyone with a relatively

3http://www.maxi-pedia.com/Grid+computing+distributed+computing
4http://folding.stanford.edu/
5http://setiathome.ssl.berkeley.edu/

9

http://www.maxi-pedia.com/Grid+computing+distributed+computing
http://folding.stanford.edu/
http://setiathome.ssl.berkeley.edu/

2.1 Distributed Computing

Figure 2.3: Architectural example of a grid computing system

modern computer and a working internet connection to join a virtual "su-
percomputer". By downloading a proprietary program, one can "donate"
unused cycles from the idle time of their computers, which would otherwise
be wasted. In theory, the combined processing power from all the nodes of a
grid computing system can surpass even the fastest cluster supercomputers
in existence.6

Cloud computing

Cloud computing can be seen as a web-based shift of the traditional
client-server paradigm, as a consequence of the popularization of internet,
the introduction of always-on broadband access and the improvement of web
technologies (also coined by the term Web 2.0). It's a web-based type of
distributed computing, whereby shared resources, information and software
are provided by the cloud to computers and other devices (the clients) on
demand. Figure 2.4 shows a conceptual diagram of cloud computing7 and
Figure 2.5 shows a detail of the stack that comprises a cloud service8.

There are three types of cloud services that can be provided to the end-
user:

• Infrastructure as a service - The service provider bears all the cost
of servers, networking equipment, storage, and back-ups. The clients

6http://www.museumstuff.com/learn/topics/GRID_computing::sub::Fastest_

Virtual_Supercomputers
7http://www.incose.org/chesapek/mailings/2011/2011_05_Feature.html
8http://andromida.hubpages.com/hub/cloud-computing-architecture

10

http://www.museumstuff.com/learn/topics/GRID_computing::sub::Fastest_Virtual_Supercomputers
http://www.museumstuff.com/learn/topics/GRID_computing::sub::Fastest_Virtual_Supercomputers
http://www.incose.org/chesapek/mailings/2011/2011_05_Feature.html
http://andromida.hubpages.com/hub/cloud-computing-architecture

Background and Related Work

Figure 2.4: Cloud computing conceptual diagram

pay to use the computing service and they build their own application
software on top of it. Example: Amazon's Elastic Compute Cloud
(Amazon EC2).9

• Platform as a service - Here the service provider only provides the
platform or a stack of solutions for its clients, thus helping them to save
the investment on hardware and software. Example: Force.com.10

• Software as a service - The service provider o�ers its clients the use
of their software, especially any type of application software. Example:
Google Docs.11

2.1.3 Characteristics and Design Challenges

This section presents characteristics and the challenges that should be
taken into account during the design of distributed systems. Due to the
extensibility of this subject, only the relevant topics for this dissertation are

9http://aws.amazon.com/ec2/
10http://www.salesforce.com/platform/
11http://docs.google.com/

11

http://aws.amazon.com/ec2/
http://www.salesforce.com/platform/
http://docs.google.com/

2.1 Distributed Computing

Figure 2.5: Cloud computing stack detail

addressed here.
Note that the word "process" is used here to refer to an instance of

a computer program that is being executed on a machine. A process can
communicate with others through local or remote IPC mechanisms. Section
2.2 further discusses the latter subject.

Security

Distributed systems introduce some additional security threats and vul-
nerabilities, in addition to the existing host and application-level threats
inherited from local application design (such as viruses, spyware and other
types of malicious software). [4] identi�es the common security issues and
technologies as:

• Authentication - Making sure that the individual/entity is indeed
who he/she/it claims.

• Authorization - Providing di�erent levels of access (e.g. deny and
permit) to di�erent parts of or operations in a computing system, dic-
tated by the identity of the person or entity requesting the access.

• Data integrity -Making sure a piece of data arrives at the target des-
tination without having been tampered with, during its transmission
from one location to another.

• Con�dentiality - Restricting access of information to authorized per-
sons only, and preventing others from having access to that informa-
tion.

• Availability - Ensuring that a piece of information is available to
authorized users when they need it.

12

Background and Related Work

• Trust - Trust has always been one of the most signi�cant in�uences on
customer con�dence in services, systems, products and brands. Gener-
ally an entity can be said to trust a second entity when the �rst entity
makes the assumption that the second entity will behave exactly as the
�rst one expects.

• Privacy - A broader issue than con�dentiality, it is about the provi-
sion for any person, or any piece of data, to keep information about
themselves from others, revealing selectively.

• Identity management - This is a process in which every person or
resource is provided with unique identifying credentials, which are used
to identify that entity uniquely.

Infrastructure-level threats and vulnerabilities such as Denial-of-Service
(DoS) and Domain Name Service (DNS) attacks also need to be taken into
account, as well as application-level threats particular to this type of systems
(such as cross-site scripting or code injection).

Fault tolerance

Distributed systems tend to involve a large number of software, hardware,
other physical components and sometimes even users. As such, it is to be
expected a higher probability of failure at some point in the system by any of
these entities. Issues such as buggy software, wear of hardware components,
user error, unreliability of power supplies and data networks, all account for
a higher probability of service failure. Because of this, it is imperative to
introduce fault detection and recovery mechanisms on these systems. Fault
detection mechanisms are justi�ed due to the complexity of the systems and
the increased di�culty in isolating errors, while both types of mechanisms
are justi�ed by the reduction of down time of the service in the event of a
failure.

There are several di�erent mechanisms that can be used to provide fault-
tolerance to a system. Some of these include process resilience, reliable
communication, distributed commits, checkpointing and recovery, agreement
and consensus, failure detection and self-stabilization.

Communication

Appropriate IPC mechanisms must be used (or designed) for data com-
munication in distributed systems. These is generally done over high-level
APIs built over primitive IPC mechanisms and protocols, such as Trans-
mission Control Protocol (TCP)/Internet Protocol (IP) sockets or message
queues. Some examples include Remote Procedure Calls (RPCs) and Re-
mote Object Invocation (ROI).

13

2.1 Distributed Computing

Network limitations

Besides being unreliable and insecure, computer networks introduce ad-
ditional concerns to distributed systems. These include:

• Limited bandwidth - On a purely local system, the exchange of
data between processes occurs through the local bus. On a distributed
system, the use of an external computer network almost always trans-
late to a much narrower bandwidth available. This can be particu-
larly problematic for highly parallel/cluster systems, since they need
to transmit an high amount of data between machines.

• Latency - The latency is constituted by the processing, transmis-
sion and propagation times involved with the transmission of a mes-
sage. In a two-way communication, this introduces a performance hit
when a distributed application awaits for data. Latency is particularly
problematic with applications that exchanges data with high frequency
(particularly in a request-reply scenario).

• Jitter - Variation of latency over time introduces problems related
with predictability of performance (and synchronization mechanisms)
for distributed applications. Just like latency, this is a problem that
becomes more visible as the frequency of the exchanges of data is in-
creased.

• Heterogeneity - A computer network almost always consists of a dif-
ferent combination of transmission mechanisms, protocols, networking
devices (such as routers and switches) and topologies. Some of these
entities can even change as the system is running (dynamic topol-
ogy), thus making the distributed system less reliable and predictable
performance-wise.

Naming

Devising easy to use and robust schemes for names, identi�ers and ad-
dresses is essential to be able to locate resources and processes in a transpar-
ent and scalable manner. Naming in mobile systems introduces additional
challenges because it cannot easily be tied to a static geographical topology.

Synchronization

Due to the parallel and unsynchronized nature of distributed systems,
multiple forms of synchronization or coordination among the processes or
machines are essential. Mutual exclusion, leader election, physical clock
synchronization or global state recording algorithms are some of the mech-
anisms that take part in establishing the correct synchronization between

14

Background and Related Work

resources and processes.
The implementation of synchronization mechanisms adds complexity to

the system and introduces some potential problems, such as deadlocks and
resource starvation. As a general rule, more processes on a system also means
an increase in synchronization-related overhead.

Load balancing

The goal of load balancing is to achieve an higher throughput and reduce
the user perceived latency. Load balancing may be necessary because of a
variety of factors such as high network tra�c, high request rate (causing
the network connection to become a bottleneck) or an high computational
load. A common situation where load balancing is used in are server farms,
where the priority is to service incoming client requests with the shortest
turnaround time.

Scalability and modularity

Scalability and modularity refers to a system's expansibility and its abil-
ity to handle growing amounts of work. To achieve this, the algorithms,
resources (data) and services must be as distributed as possible. Various
techniques such as replication, caching, and asynchronous processing help to
achieve an high degree of scalability.

Consistency and replication

To avoid bottlenecks, fast access to data and scalable replication of data
objects is highly desirable. This leads to issues of managing the replicas and
dealing with consistency among the replicas/caches on a distributed setting.
An example of this issue is deciding the level of granularity (i.e., size) of data
access.

Debugging of distributed applications

Debugging distributed applications can be a very complex task due to
concurrency and the uncertainty that comes from the large number of possi-
ble sequences of execution. Adequate debugging mechanisms and tools need
to be used to meet this challenge.

2.1.4 Implementations

There are three level of implementations of distributed applications:

• Operating system - A cluster-unaware application can be converted
to a distributed one through the use of a specialized operating sys-
tem. This works by providing an abstraction layer from the cluster's

15

2.1 Distributed Computing

hardware, in which the application is only aware of being run in a
multi-processor computer. The operating system's kernel is responsible
to replicate and synchronize the application's memory space between
computers. The main downside of this approach is that it usually in-
volves a very high amount of network and computational overhead.
This solution is generally used only when there is no access to the
source code of an application, or for some other reason it cannot be
modi�ed. An example of such operating system is Mosix12 (for com-
pute clusters).

• Compiler/Linker - This is a somewhat identical implementation to
the one above, except that it requires re-linking to specialized libraries
or a recompilation of the application through specialized, distributed-
aware compilers and/or Software Development Kits (SDKs). In this
case, the presence of a specialized, distributed-aware kernel is not re-
quired. [16] describes a possible approach to this problem.

• Application/Source code - This is the "native" method used to im-
plement a distributed system. Here, the application is truly distributed-
aware since it implies the integration from the source code (APIs are
often used to achieve this). When properly designed, this is the most
e�cient type of implementation of a distributed system.

2.1.5 Related Work

Berkeley Open Infrastructure for Network Computing (BOINC)

The Berkeley Open Infrastructure for Network Computing13 (BOINC) is
an open-source middleware system for volunteer and grid computing. It was
originally developed in 2002 as an improvement of the original SETI@home
project, which, at the time, was su�ering from several security breaches.
Since then, the BOINC project has matured and nowadays is used to power
several grid and volunteer computing projects in various science �elds. A full
list of projects and related statistics can be found in http://boincstats.

com.

General architecture

The BOINC project is based on a client-server architecture. It provides
three di�erent software components:

• Libraries allowing the development of applications that will run on
volunteers' computers;

12http://www.mosix.org/
13http://boinc.berkeley.edu/

16

http://boincstats.com
http://boincstats.com
http://www.mosix.org/
http://boinc.berkeley.edu/

Background and Related Work

• Client software that allows volunteers to join projects, download
work units, run them and upload the results;

• Server software that allows the distribution of work to clients and
the collection the results.

There are three types of entities de�ned in the BOINC's system: the
BOINC system core, the computing projects, and the participant volunteers.
Figure 2.6 shows BOINC's architecture and how these entities relate to each
other.14

Figure 2.6: BOINC's system architecture

All computing projects being executed in BOINC are connected to a
central server. Each of these projects has its own database, application and

14http://www.boinc-wiki.info/w/images/d/dc/Boinc-project-interconnect.png

17

http://www.boinc-wiki.info/w/images/d/dc/Boinc-project-interconnect.png

2.1 Distributed Computing

project back-end. When a volunteer installs the BOINC software, s/he is
given the option to choose the projects s/he may want to participate in.
The server-client exchange works roughly in the following way:

1. The volunteer chooses one or more projects to participate in;

2. The client software downloads project software;

3. The client software downloads work units (a portion of data that a
project needs to be analyzed);

4. The client software executes work units while the computer is idle;

5. The client software uploads results to the server as work units are
completed;

6. Steps 3-5 are repeated as long as there are works units available for
processing and the user does not opt out of the experiment.

Server architecture

The BOINC system uses databases at two di�erent levels of the system.
On the �rst level there is the BOINC database. It contains information about
the participants, the participants' computers, teams, results, work units and
more. The second level database is used speci�cally by a project and stores
the results from the concluded work units after they've been returned by the
participant and have passed validation.

A BOINC-powered project includes a set of server-side daemons, namely:

• Assimilator - Handles the work units that have been completed. If
the work unit's results are deemed credible, then the information is
recorded to the project's database.

• Database purge - Removes work-related database entries when they
are no longer needed.

• File deleter - Deletes input and output �les when they are no longer
needed in the project's data servers.

• Transitioner - Handles the state transitions of the work units and
results. It generates initial results for work units and generates more
results when timeouts or errors occur.

• Validator - Compares redundant results and selects a canonical result
representing the correct output.

• Work generator - Creates work units for the project's client appli-
cation.

18

Background and Related Work

The BOINC project uses a credit system with the goal of keeping vol-
unteers motivated to contribute to the project. Credits are awarded every
time a work unit is completed by the client. Statistics are then sent to the
main BOINC server and displayed on the publicly accessible BOINC Stats
webpage.15 For several reasons, these statistics may contain errors and some
users have even attempted to abuse the credit system by returning bogus
results. For the projects where result validation is computationally inexpen-
sive, simply verifying them before attributing credit is enough to avoid this
issue. Other projects implement a redundancy system, where two or more
computers execute the same work unit. Credit is only given if the results
match with each other.

Client architecture

Figure 2.7 shows BOINC's architecture from the client side.16 The client
package is made up of several software applications:

Figure 2.7: BOINC's client architecture

• The application - This is the program that processes the work units
for a BOINC project. Applications are attached to an instance of
boinc-client.

• boinc-client - Runs as a demon on the computer that processes the
work units, providing the communication and processing platform that
applications require to run. boinc-client interprets the user settings
and runs the application appropriately.

• boinc-manager - A Graphical User Interface (GUI) program that is
used to manage an instance of boinc-client. It allows the control

15http://boincstats.com
16http://boinc.berkeley.edu/w/images/a/ae/Client.png

19

http://boincstats.com
http://boinc.berkeley.edu/w/images/a/ae/Client.png

2.1 Distributed Computing

of local or remote instances of boinc-client. It communicates with
boinc-client through a local TCP/IP socket. boinc-manager is not
necessarily required when an account manger is used. Figure 2.8 shows
a screenshot of this application.17

• Account manager - A program or service (often web based) used
to manage multiple instances of boinc-client at once. Although not
strictly required, it can be useful when a user has many computers set
up to run BOINC simultaneously.

• Screensaver (optional) - A screensaver can be provided with the
application for aesthetic reasons. It communicates with boinc-client

through a local TCP/IP socket.

Figure 2.8: Screenshot of boinc-manager

The application has to be speci�cally coded using the BOINC's libraries.
Take the following "Hello World" application as an example:

1 #include <s td i o . h>
2
3 int main ()
4 }
5 FILE ∗ f ;
6 int j , num;
7
8 f = fopen ("out . txt " , "a") ;
9 f p r i n t f (f , "Hel lo , BOINC World ! \ n") ;
10 f p r i n t f (f , " S ta r t i ng some computation . . . \ n") ;
11 for (j = 0 ; j < 1234567890; j++)
12 num = rand ()+rand () ;
13 f p r i n t f (f , "Computation completed ! \ n") ;
14
15 f c l o s e (f) ;
16 return 0 ;
17 }

17http://upload.wikimedia.org/wikipedia/commons/f/f1/BOINC_screenshot.png

20

http://upload.wikimedia.org/wikipedia/commons/f/f1/BOINC_screenshot.png

Background and Related Work

The BOINC equivalent to this application would be:18

1 #include <s td i o . h>
2 #include "boinc_api . h"
3
4 int main ()
5 }
6 FILE ∗ f ;
7 char resolved_name [5 1 2] ;
8 int j , num;
9
10 bo inc_in i t () ;
11
12 boinc_reso lve_f i l ename ("out . txt " , resolved_name ,

512) ;
13
14 f = boinc_fopen (resolved_name , "a") ;
15 f p r i n t f (f , "Hel lo , BOINC World ! \ n") ;
16
17 f p r i n t f (f , " S ta r t i ng some computation . . . \ n") ;
18 for (j = 0 ; j < 1234567890; j++)
19 num = rand ()+rand () ;
20 f p r i n t f (f , "Computation completed ! \ n") ;
21
22 f c l o s e (f) ;
23 bo inc_f in i sh (0) ;
24 return 1 ;
25 }

Nearly all BOINC's applications implement CPU scavenging, where they
run as a very low priority process so as to take advantage of unused resources.
Quite often, they also implement some sort of visualization of the work
unit's progress (usually as a 3D screensaver) as a way to be more enticing
to the user. Figure 2.9 shows a screenshot of folding@home's screensaver
visualization.19

Globus Toolkit

The Globus Toolkit20 is an open source software used to build computing
grids. It allows the sharing of computing power, databases and other tools
securely across a network. The toolkit includes software for security, infor-
mation infrastructure, resource management, data management, communi-
cation, fault detection and portability. It's packaged as a set of components
that can be used either independently or together to develop distributed
applications.

18http://www.kuliniewicz.org/boinc/html/img21.html
19http://research.scea.com/2006-09-folding@home/folding@home_files/

shot-00008.jpg
20http://www.globus.org/toolkit/

21

http://www.kuliniewicz.org/boinc/html/img21.html
http://research.scea.com/2006-09-folding@home/folding@home_files/shot-00008.jpg
http://research.scea.com/2006-09-folding@home/folding@home_files/shot-00008.jpg
http://www.globus.org/toolkit/

2.1 Distributed Computing

Figure 2.9: Fold@home screensaver visualization

General architecture

[7] de�nes the Globus architecture as being built on three pyramids. As
shown in Figure 2.10 (from [7]), these are:

Figure 2.10: Globus Toolkit's three pyramids

22

Background and Related Work

• Resource management - Provides support for:

� Resource allocation;

� Submission of jobs (remotely running executables and receiving
results);

� Managing job status and progress.

• Data management - Provides support and management for �le trans-
fers among machines in the grid.

• Information services - Based on the Lightweight Directory Access
Protocol (LDAP), it provides support to collect and query information
on the grid.

The three pyramids are built on top of the underlying Grid Security
Infrastructure (GSI), which is responsible to provide security functions, in-
cluding single/mutual authentication, con�dential communication, autho-
rization, and delegation. Figure 2.11 (from [7]) shows a detailed view of all
the main components of the Globus Toolkit. These are:

• GRAM/GRASS - The primary components of the resource man-
agement pyramid are the Grid Resource Allocation Manager (GRAM)
and the Global Access to Secondary Storage (GASS);

• MDS (GRIS/GIIS) - Based on LDAP, the Grid Resource Informa-
tion Service (GRIS) and Grid Index Information Service (GIIS) com-
ponents can be con�gured hierarchically to collect the information and
distribute it. These two services are called the Monitoring and Discov-
ery Service (MDS). The information collected can be static information
about the machines as well as dynamic information showing current
CPU or disk activity.

• GridFTP - The key component for secure and high-performance data
transfer. The Globus Replica Catalog and Management is used to
register and manage both complete and partial copies of data sets.

• GSI (not shown) - All of the above components are built on top of the
underlying GSI.

Jobs

A job can be de�ned as a program that a user wishes to execute on a
known remote machine. A job has to be validated before it can be executed,
and any additional resources needed for the job noted by the remote machine.
Therefore a job is sent with a job request which can specify a number of
things, such as:

23

2.2 Inter-Process Communication Mechanisms

Figure 2.11: Globus Toolkit system components

• Name of program(s) to submit;
• Machine(s) to submit to;
• Method of result retrieval;
• Access to �les required;
• Maximum execution time;
• Minimum/Maximum memory.

Job requests are sent to and retrieved from GRAM (through the gate-
keeper). Globus supports a variety of ways of retrieving results once a job
has completed. The default being that results should be sent back to the
screen of the user that sent the request. However a number of alternatives
are available, for instance:

• Send to screen of the local machine;
• Send to �le of the local machine;
• Store in a �le at a remote ftp/http server;
• Wait until retrieve command is given from local machine;
• Don't do anything with the results.

2.2 Inter-Process Communication Mechanisms

IPC mechanisms allow the transmission of data between computer pro-
cesses, either located in the same machine or on di�erent ones. On modern

24

Background and Related Work

operating systems, each process has its own memory space, which is isolated
from every other process on the system. Because of this, they rely on IPC
mechanisms to communicate between each other. High-performance, low
overhead IPC mechanisms are also an essential part of microkernels.

Local IPC mechanisms are used to transmit data and other informa-
tion (such as concurrency handling primitives) between two processes located
in the same machine. The exact IPC mechanisms that are available and their
implementation are dependent on the OS.

Remote IPC mechanisms are used to transmit data between processes
located on di�erent machines and/or operating systems. They generally op-
erate over a specialized type of hardware interface and are tightly coupled
to the protocols used in their respective network types. Some remote mech-
anisms can also be used for local communication.

This section describes the IPC mechanisms typically available for Unix-
based systems. A performance evaluation of each of these mechanisms is
presented in Section 3.4.

2.2.1 IPC Mechanisms on Linux Systems

In this section, the IPC methods supported by the Linux kernel are dis-
cussed and implementation examples in C programming language are shown.
The mechanisms analyzed here are: �le, pipe, named (FIFO) pipe, network
and unix domain sockets, message queues, shared memory, memory map,
semaphores, signals and message passing mechanisms. Most of these are
available for other UNIX-based operating-systems.

File

Although not purposefully developed as an IPC mechanism, �les in the
�lesystem can provide a simple way of exchanging data between applications.
This method possesses some limitations, most notably the very low speed
(when compared to the other mechanisms) and concurrency issues (since it
generally works through polling). The data included is also limited to the
available disk space (or memory, for virtual disks).

A �le is a stream-based resource. Programmatically, the C functions for
�le handling are included in the stdio.h header. These include:

Opening a �le:

1 FILE ∗ fp ;
2 fp = fopen (" f i l e . txt " , "rw") ;

Writing to a �le:

1 char∗ msg_w = "Hel lo world ! " ;
2 fw r i t e (msg_w, s izeof (char) , s t r l e n (msg_w) , fd) ;

25

2.2 Inter-Process Communication Mechanisms

Reading from a �le:

1 const int n = 14 ;
2 char msg_r [n] ;
3 f r ead (msg_r , s izeof (char) , n , fd) ;

Closing the �le:

1 f c l o s e (fp) ;

Pipe

A software pipeline enables two or more processes to connect to each
other through their standard streams, so that the output of a process (stdout
or stderr) feeds directly as an input (stdin) to the other. Since there is no
ambiguity between the pipes accessible to an application, they need not to
be identi�ed. For this reason, they are also named anonymous pipes.

Pipes can be created by the user as the programs are launched through a
Command-Line Interface (CLI), and they exist only as long as the respective
processes are running. A pipe in bash can be declared in the following way:

diogo@ubuntu:~$ cat textfile.txt | grep "Hello world!"

In this example, cat dumps the contents of the �le named textfile.txt to
the stdout and redirects this output to the stdin of another program (grep),
which in turn displays (i.e., outputs to stdout) only the lines that contains
the string "Hello world".

Programatically, a software pipe can be created through a fork. In other
words, pipes can only be established between parent-child processes or pro-
cesses that share a common ancestry. As such, it's not possible to establish
a pipe between two arbitrary running process. The Portable Operating Sys-
tem Interface for Unix (POSIX) implementation of a pipe de�nes it as an
half-duplex communication channel, meaning that two pipes need to be de-
�ned in order to establish bidirectional communication.

The C functions used to implement a pipe are located in sys/types.h

and unistd.h. They are used in the following manner:

Forking a process:

1 pid_t pid ;
2 pid = fo rk () ;
3 i f (pid == 0) {
4 /∗ Code f o r c h i l d proces s ∗/
5 } else {
6 /∗ Code f o r parent proces s ∗/
7 }

Establishing the pipe:

26

Background and Related Work

1 /∗ One f i l e d e s c r i p t o r f o r each stream :
2 f d [0] : Input
3 f d [1] : Output ∗/
4 int fd [2] ;
5 pipe (fd) ;

Writing to the pipe:

1 char∗ msg_w = "Hel lo world ! " ;
2 wr i t e (fd [1] , msg_w, s t r l e n (msg_w)) ;

Reading from the pipe:

1 const int n = 14 ;
2 char msg_r [n] ;
3 read (fd [1] , msg_r , s t r l e n (msg_r)) ;

Closing the pipe:

1 c l o s e (fd [0]) ; /∗ Input ∗/
2 c l o s e (fd [1]) ; /∗ Output ∗/

Named pipe

A named pipe, also known as First In, First Out (FIFO) pipe, can be
seen as an extension of the anonymous pipe. Unlike the latter, named pipes
allow unrelated processes to communicate with each other.

A named pipe is system-persistent and is identi�ed in the �lesystem as
a (virtual) �le. They exist beyond the life of the attached processes and
as such they must be deleted once they are no longer being used. As with
any other �le, its permissions can be changed. Unlike anonymous pipes, the
standard streams are not redirected, leaving them available to be used for
other purposes.

Named pipes can be created and used in a command line interface, as
the following example (in bash) demonstrates:

diogo@ubuntu:~$ mkfifo my_pipe

diogo@ubuntu:~$ gzip -9 -c < my_pipe > out.gz

diogo@ubuntu:~$ cat file_a > my_pipe

diogo@ubuntu:~$ cat file_b > my_pipe

diogo@ubuntu:~$ rm my_pipe

In the �rst line, a named pipe is created. Then gzip is attached to the pipe
in order to compress the data that arrives through the stdin. The com-
pressed data is sent to stdout, and then piped into a �le called out.gz. In
lines 3 and 4, two di�erent �les are sent through the pipe. Finally, the pipe
is closed and removed.

An application can have complete control over named pipes, and running

27

2.2 Inter-Process Communication Mechanisms

processes can freely connect to existing pipes (and thus to other running
processes). Each pipe is a byte-oriented, half-duplex transmission medium.
Programmatically, the functions used to handle named pipes are present in
unistd.h, sys/types.h and sys/stat.h header �les. They are used in the
following way:

Open read (and write) pipe:

1 /∗ Read pipe ∗/
2 const char rpath [] = "/tmp/ rp ipe " ;
3 int r f d ;
4 r f d = open (rpath , O_RDONLY) ;
5 i f (r f d <= 0) {
6 /∗ Pipe doesn ' t e x i s t . Declare i t : ∗/
7 mkf i fo (rpath , S_IRWXU | S_IRWXG | S_IRWXO) ;
8 }
9
10 /∗ Write p ipe ∗/
11 const char wpath [] = "/tmp/wpipe" ;
12 int wfd ;
13 wfd = open (wpath , O_WRONLY) ;
14 i f (wfd <= 0) {
15 /∗ Pipe doesn ' t e x i s t . Declare i t : ∗/
16 mkf i fo (wpath , S_IRWXU | S_IRWXG | S_IRWXO) ;
17 }

Write to the pipe:

1 char∗ msg_w = "Hel lo world ! " ;
2 wr i t e (wfd , msg_w, s t r l e n (msg_w)) ;

Read from the pipe:

1 const int n = 14 ;
2 char msg_r [n] ;
3 read (rdf , msg_r , s t r l e n (msg_r)) ;

Close the pipes and remove (unlink) them from the �lesystem:

1 c l o s e (r f d) ;
2 c l o s e (wfd) ;
3 un l ink (rpath) ;
4 un l ink (wpath) ;

Network domain socket

An Internet socket or network socket is an endpoint of a bidirectional
IPC �ow across an IP-based computer network, such as the Internet. Local
IPC communication is also possible, since most systems allow the communi-
cation between processes on the same OS through a loopback address from
the network stack (such as ::1 on IPv6 networks).

28

Background and Related Work

Since network sockets were not purposely built for local transmission of
data, there is usually a performance penalty when used as such. Even within
the same OS, the data transmitted between processes has to pass through
the same stack of protocols as the ones used in remote communications,
including unnecessary data (such as error correction, multiplexing, routing
data, etc). The advantage of using this method for local IPC comes from
the ease of implementation, since the same code can be shared between local
and remote processes.

A socket is a stream-based, full-duplex communication mechanism and
it uses a client-server model to establish connections between the processes.
Several protocols from layers 2 and 3 of the Open Systems Interconnection
(OSI) network layer model are supported by the Linux (Berkley) sockets
implementation.

Programmatically, socket functions are present in the sys/socket.h header.
The following example shows how to establish and transmit data through a
TCP/IP socket:

Open the socket (client side):

1 int c l_sockfd ;
2 struct sockaddr_in cl_adr ;
3 struct hostent ∗ cl_host ;
4
5 /∗ Prepare the c l i e n t ' s s o c k e t address ∗/
6 cl_adr . s in_fami ly = AF_INET;
7 cl_adr . s in_port = htons (1234) ;
8 c l_host = gethostbyname (" 192 . 1 6 8 . 0 . 2 ") ;
9 bcopy ((char∗) cl_host−>h_addr , (char∗)&cl_adr . sin_addr .

s_addr , cl_host−>h_length) ;
10
11 /∗ Open socke t and connect to s e r v e r ∗/
12 c l_sockfd = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP) ;
13 connect (c l_sockfd , (const struct sockaddr ∗)&cl_adr ,

s izeof (cl_adr)) ;

Open the socket (server side):

1 int c l_sockfd ;
2 int srv_sockfd ;
3 struct sockaddr_in srv_adr ;
4
5 /∗ Configure the soc ke t ' s adress ∗/
6 srv_adr . s in_fami ly = AF_INET;
7 srv_adr . s in_port = htons (1234) ;
8 srv_adr . sin_addr . s_addr = INADDR_ANY;
9
10 /∗ Create a soc ke t and con f i gu r e i t to l i s t e n f o r

c l i e n t s on any l o c a l address ∗/
11 srv_sockfd = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP)

;

29

2.2 Inter-Process Communication Mechanisms

12 bind (srv_sockfd , (struct sockaddr ∗)&srv_adr , s izeof (
srv_adr)) ;

13 l i s t e n (srv_sockfd , 1) ;
14
15 /∗ Wait f o r c l i e n t s to connect : ∗/
16 while (connected) {
17 c l_sockfd = accept (cl_sockfd , NULL, 0) ;
18 /∗ Do something wi th the new c l i e n t here . . . ∗/
19 }

Read from the socket:

1 const int n = 14 ;
2 char msg_r [n] ;
3 recv (cl_sockfd , msg_r , s t r l e n (msg_r) , 0) ;

Write to the socket:

1 char∗ msg_w = "Hel lo world ! " ;
2 send (cl_sockfd , msg_w, s t r l e n (msg_w) , 0) ;

Close the socket (client side):

1 shutdown (cl_sockfd , SHUT_RDWR) ;
2 c l o s e (c l_sockfd) ;

Close the socket (server side):

1 shutdown (cl_sockfd , SHUT_RDWR) ;
2 c l o s e (c l_sockfd) ;
3 c l o s e (srv_sockfd) ;

Unix domain socket

As the name suggests, a Unix domain socket (or IPC socket) is a tradi-
tional socket applied to the operating system's local domain. Functionally,
it is somewhat similar to a named pipe, but with full-duplex communication
and the option to choose between stream or datagram transmission modes.
The API is similar to that of a network socket, but functionally a network
protocol is not used for communication. This way, the typical overhead as-
sociated with network communication is avoided, including processing time
associated to network-speci�c applications that might be running on the sys-
tem (such as packet sni�ers and �rewalls).

As with named pipes, Unix domain socket use the �le system as name
space, and the communication occurs entirely within the operating system's
kernel.

Programmatically, the functions used to manage and transmit data through
unix-domain sockets are the same as the ones used in network domain sock-
ets. These are located in unistd.h, sys/socket.h and sys/un.h headers.
It's main functions can be used as the following example demonstrates:

30

Background and Related Work

Open the socket (client side):

1 int c l_sockfd ;
2 struct sockaddr_un cl_adr ;
3
4 /∗ Prepare the c l i e n t ' s s o c k e t address ∗/
5 s t r cpy (cl_adr . sun_path , "/tmp/ sock_test ") ;
6 cl_adr . sun_family = AF_UNIX;
7
8 /∗ Open socke t and connect to s e r v e r ∗/
9 c l_sockfd = socket (AF_UNIX, SOCK_STREAM, 0) ;
10 connect (c l_sockfd , (const struct sockaddr ∗)&cl_adr ,

s izeof (cl_adr)) ;

Open the socket (server side):

1 int l en ;
2 int c l_sockfd ;
3 int srv_sockfd ;
4 struct sockaddr_un srv_adr ;
5
6 /∗ Configure the soc ke t ' s adress ∗/
7 s t r cpy (srv_adr . sun_path , "/tmp/ sock_test ") ;
8 srv_adr . sun_family = AF_UNIX;
9
10 /∗ Unlink the v i r t u a l f i l e i f i t e x i s t s (op t i ona l) : ∗/
11 unl ink (srv_adr . sun_path) ;
12
13 /∗ Create a soc ke t and con f i gu r e i t to l i s t e n f o r

c l i e n t p roce s s e s ∗/
14 srv_sockfd = socket (AF_UNIX, SOCK_STREAM, 0) ;
15 l en = s t r l e n (l o c a l . sun_path) + s izeof (l o c a l . sun_family

) ;
16 bind (srv_sockfd , (struct sockaddr ∗)&srv_adr , l en) ;
17 l i s t e n (srv_sockfd , 1) ;
18
19 /∗ Wait f o r c l i e n t p roce s s e s to connect : ∗/
20 while (connected) {
21 c l_sockfd = accept (cl_sockfd , NULL, 0) ;
22 /∗ Do something wi th the new c l i e n t proces s here

. . . ∗/
23 }

Read from the socket:

1 const int n = 14 ;
2 char msg_r [n] ;
3 recv (cl_sockfd , msg_r , s t r l e n (msg_r) , 0) ;

31

2.2 Inter-Process Communication Mechanisms

Write to the socket:

1 char∗ msg_w = "Hel lo world ! " ;
2 send (cl_sockfd , msg_w, s t r l e n (msg_w) , 0) ;

Close the socket (client side):

1 shutdown (cl_sockfd , SHUT_RDWR) ;
2 c l o s e (c l_sockfd) ;

Close the socket (server side):

1 shutdown (cl_sockfd , SHUT_RDWR) ;
2 c l o s e (c l_sockfd) ;
3 c l o s e (srv_sockfd) ;
4 un l ink (srv_adr . sun_path) ;

In addition to data, processes may also send �le descriptors across a Unix
domain socket connection using the sendmsg() and recvmsg() system calls.
The function socketpair() can be used to create a pair of connected sockets
between related processes.

Message queue

A message queue is an asynchronous IPC mechanism that allows the
transmission of data structures known as messages. A process creates the
message which is then placed on the incoming message queue of another
process. Once ready, the receiving process retrieves it using the appropriate
system call.

Message queues are managed by the operating system's kernel. Each
message queue has a persistent identi�er, meaning that they can exist beyond
the lifetime of the process. They must be explicitly removed (unlinked) when
no longer needed.

It's possible to know the message queues being currently used in a Linux
system. For the System V message queue implementation, the command
ipcs can be used. For the POSIX implementation, the queue �le system
must be mounted �rst, using the following commands:

root@ubuntu:~$ mkdir /dev/mqueue

root@ubuntu:~$ mount -t mqueue none /dev/mqueue

All POSIX message queues (if present) are shown in this directory as virtual
�les.

Programmatically, there are two di�erent implementations of message
queues available for Linux: System V IPC messages and POSIX message
queue (supported in Linux since kernel 2.6.6). The POSIX implementation
uses the mqueue.h header. Its main functions include:

32

Background and Related Work

Creating the message queue:

1 int fd ;
2
3 /∗ Prepare a t r i b u t e s o f the message queue ∗/
4 struct mq_attr a t t r ;
5 a t t r .mq_maxmsg = 20 ;
6 a t t r . mq_msgsize = 14 ;
7 a t t r . mq_flags = 0 ;
8
9 /∗ Open queue ∗/
10 fd = mq_open("my_queue" , O_CREAT|O_RDWR, PMODE; &a t t r)

;

Sending data into the queue:

1 char∗ msg_w = "Hel lo world ! " ;
2 int p r i o r i t y = 1 ;
3 mq_send(fd , msg_w, s t r l e n (msg_w) , p r i o r i t y) ;

Reading data from the queue:

1 const int n = 14 ;
2 char msg_r [n] ;
3 mq_receive (fd , msg_r , (s i ze_t)n , 0) ;

Closing and removing the message queue:

1 mq_close (md) ;
2 mq_unlink ("my_queue") ;

Message queues are the preferred IPC mechanism for real time operating
systems, due to the tight integration between message passing and CPU
scheduling. All implementations include a message priority �eld, allowing a
given higher-priority message to take precedence to all lower-priority ones in
a process's message queue.

Memory mapping/Shared memory

Shared memory is an IPC mechanism that uses a large block of Random-
Access Memory (RAM) memory allocated outside the area that is reserved
for running processes. This memory area can then be accessed by multiple
running processes, whether they are related or not. This particular method
of IPC is commonly used as a way to conserve memory, since the use of a
shared memory space for two or more applications avoids the need of dupli-
cate information. This mechanism is often used for shared libraries.

Shared memory segments are managed by the kernel. Once the mem-
ory is mapped into the address space of the processes that are sharing the
memory region, no kernel involvement occurs in passing data between the
processes (unlike most IPC mechanisms). Each segment is persistent and has
its own identi�er, meaning that it can exist beyond the process's lifetime. A

33

2.2 Inter-Process Communication Mechanisms

segment must be explicitly removed (unlinked).
Shared memory poses some particular problems not present in other IPC

mechanisms. These issues originate from the fact that CPUs need fast access
to memory and will likely cache it, which has two implications:

• CPU cache coherence: whenever one cache is updated with information
that may be used by other processors, the change needs to be re�ected
on the other processors as well, otherwise they will be working with
incoherent data. Some e�cient mechanisms can be employed to resolve
this, but they can occasionally be overloaded and become a bottleneck.

• CPU-to-memory concurrency becomes a bottleneck: when working
with shared memory, scalability is generally poor.

As with message passing, it's possible to know the shared memory segments
being currently used on a Linux system through the command ipcs.

Memory mapping is the process of assigning a direct byte-for-byte
correlation of a �le or a �le-like resource into memory. This method can
be applied to a shared memory object as well, allowing the programmer to
access the shared memory object as an ordinary memory segment in the ap-
plication's memory space.

Programmatically, shared memory does not contain any method to han-
dle concurrency, so the programmer must use another IPC mechanism (such
as semaphores) for this purpose. After being declared, the shared mem-
ory segment is memory-mapped and can be accessed as an ordinary seg-
ment of memory. The POSIX implementation of this mechanism uses the
sys/mman.h header and its main functions are used as the following example
shows:

Create the shared memory object:

1 int shm_fd ;
2
3 /∗ Remove e x i s t i n g shared memory ob j e c t , i f any ∗/
4 shm_unlink ("shm_test") ;
5
6 /∗ Create shared memory o b j e c t ∗/
7 shm_fd = shm_open("shm_test" , O_CREAT|O_RDWR, 0666) ;

Establish the memory mapping:

1 char∗ map_mem;
2 int page s i z e = syscon f (_SC_PAGESIZE) ;
3
4 /∗ Set shared memory segment s i z e ∗/
5 f t runca t e (shm_fd , page s i z e ∗ 2) ;
6
7 /∗ Es t a b l i s h the mapping ∗/
8 map_mem = (char∗)mmap(NULL, page s i z e ∗ 2 , PROT_READ |

PROT_WRITE, MAP_SHARED, shm_fd , (o f f_t) 0) ;

34

Background and Related Work

Any change on the map_mem array is re�ected on the shared memory
object. So after writing on the array...

1 map_m = "Hel lo world ! " ;

...the change would be instantly re�ected on all the other processes:

1 p r i n t f (map_m) ;
2
3 /∗ Outputs "He l l o world !" ∗/

Removing the shared memory object and mapping:

1 munmap(map_mem, page s i z e ∗ 2) ;
2 shm_unlink ("shm_test") ;

Memory-mapped �le

A memory-mapped �le is a type of memory mapping (described above),
but a �le is used instead of a shared memory object. When opened, the �le
is copied into virtual memory and any process can access it. Once the �le is
closed, all modi�cations are copied back from the memory into the �le.

Signals

A signal is a simple asynchronous noti�cation sent to a process to notify
it of an event that occurred. When a signal is sent to a process, the operating
system interrupts the process's normal �ow of execution. If the process has
previously registered a signal handler, that routine is executed. Otherwise
the default signal handler is executed instead.

Signals were not designed to transmit data, and as such it is a very lim-
ited form of IPC. Some of its common uses include notifying the process
when a QUIT, INTERRUPT or KILL requests occurs (for instance). In ad-
dition, signal handling is an asynchronous process, so race conditions must
be taken into account.

Programmatically, linux signals implementation leaves two of all possible
signal values as user de�ned.21 As the name suggests, these can be used
to signal custom events. Signals can be implemented using the signal.h

header, as the following example demonstrates:

1 /∗ Declare s i g n a l hand ler f unc t i on ∗/
2 void s ig_hdlr (int s i g n a l) {
3 i f (s i g n a l == SIGINT) {
4 /∗ Do something . . . ∗/
5 }
6 }

21http://linux.die.net/man/7/signal

35

http://linux.die.net/man/7/signal

2.2 Inter-Process Communication Mechanisms

7
8 int main (int argc , char∗ argv []) {
9 . . .
10 /∗ Reg i s t e r s i g n a l hand ler f o r i n t e r r u p t i o n ∗/
11 (void) s i g n a l (SIGINT , s ig_hdlr) ;
12 . . .
13 }

Semaphores

An IPC semaphore can be seen as a protected variable that provides
access control between multiple processes and/or threads. In the context
of IPC, they are generally used to coordinate access to other local, thread-
unsafe IPC mechanisms (such as shared memory).

Semaphores have their own ID and are system-persistent, so they live
beyond the process's lifetime and must be explicitly declared and removed.
It's possible to know the semaphores present on a system through the ipcs
command.

Programmatically, there are two di�erent implementations of IPC semaphores
available for Linux: System V Semaphores and POSIX Semaphores. The lat-
ter uses semaphore.h and its main functions are:

Opening and initializing a semaphore:

1 sem_t ∗sem ;
2
3 /∗ Remove e x i s t i n g semaphore f i r s t ∗/
4 sem_unlink (" sem_test") ;
5
6 /∗ Create and i n i t i a l i z e a b inary semaphore ∗/
7 sem = sem_open(" sem_test" , O_CREAT) ;
8 sem_init (sem , true , 1) ;

Locking a semaphore:

1 sem_wait (sem) ;

Unlocking a semaphore:

1 sem_post (sem) ;

Closing and removing (unlinking) a semaphore:

1 sem_close (sem) ;
2 sem_unlink (" sem_test") ;

Message Passing

A message passing mechanism refers to several IPC APIs that are tightly
coupled to the operating system or programming language. These APIs work

36

Background and Related Work

IPC Mechanism Scope Data type Resource ID
File Local & remote Byte stream File
Pipe Local Byte stream N/A
Named pipe Local Byte stream File
Network socket Local & remote Byte stream/message File desc.
Unix Socket Local Byte stream/message File
Message Queue Local Message File desc.
Mmap/Shared memory Local Memory segment File desc.
Memory-mapped �le Local Memory segment File
Signals Local Event Process ID
Semaphores Local Sync primitives File

Table 2.1: Feature comparison of IPC mechanisms in Linux (1 of 2)

by sending messages to one or more recipients through function calls, signals
or data packets. Message passing refers to higher-level mechanisms, in the
sense that they are built over the other IPC technologies described in this
section. For this reason, they are also inherently slower and they won't be
discussed with the same detail as the other mechanisms.

Probably the most commonly used method for message passing is the
RPC. It allows a program to execute a subroutine or procedure on another
address space without the programmer explicitly coding the details for this
remote interaction. Some existing implementations include:

• D-Bus (Desktop Bus) - A simple IPC system that allows several
processes to connect to each other.

• Java Remote Method Invocation (RMI) - A subset of the Java
SDK that adds support for RPC.

• Common Object Request Broker Architecture (CORBA) -
A standard de�ned by the Object Management Group (OMG) that
enables software written in di�erent languages and/or for di�erent op-
erating systems to communicate with each other.

• Simple Object Access Protocol (SOAP) - A protocol speci�ca-
tion for structured information exchange in web services, based on
Extensible Markup Language (XML).

Many other APIs, standards and protocols are available.

2.2.2 Summary

Tables 2.1 and 2.2 shows a feature comparison between IPC mechanisms
in Linux.

37

2.3 Network Simulation

IPC Mechanism Thread safe Process relationship
File N/A None
Pipe Yes Parent-child
Named pipe Yes None
Network socket Yes Server-client
Unix Socket Yes Server-client
Message Queue Yes None
Mmap/Shared memory No None
Memory-mapped �le No None
Signals N/A None
Semaphores N/A None

Table 2.2: Feature comparison of IPC mechanisms in Linux (2 of 2)

2.3 Network Simulation

As the name suggests, Network Simulators are pieces of software de-
signed to simulate data networks. They allow to model an hypothetical
network topology in order to test new or existing protocols, topologies and
several other aspects related to computer networks. With the explosion of
data networking, these simulators are becoming an integral part of the rapid
and stable development of computer networks.

Research about simulation of packet communication systems has been
referred since the end of the 70's. Network simulation tools began to be ef-
fectively used during the 90's, mainly for simple validation of communication
protocols. In the last decade, these tools have evolved and their usage has
spread to testing and validation of communications technologies, network
protocols, services and distributed applications, among others. These days,
several commercial and free open-source simulation packages are available to
satisfy di�erent purposes.

Nowadays, network simulators are also used as educational and test bench
tools for network protocols and con�gurations. They allow the test of po-
tentially faulty scenarios without the negative consequences of doing so on
production-ready systems. They also tend to allow a much closer and easier
inspection of the inner workings of a network, with event-driven time shifting
controls of the simulation. Since the network's hardware is simulated and it
doesn't require the manipulation of existing hardware, these solutions have
proven themselves to be relatively cheaper to use.

2.3.1 Network Simulation and Emulation

Network simulation allows the modeling of the behavior of a network
by calculating the interaction between di�erent network components using
algorithms and mathematical formulas. These components can be end-hosts
or network entities such as routers, links or packets. The simulated network

38

Background and Related Work

can be computationally modeled by capturing and playing back experimental
observation from real production networks. The behavior of the network and
supported protocols can then be analyzed, allowing to infer the simulation
model. In practice, this model must provide a low enough margin of error
when compared to a real system, so as to provide usable simulation results.

Network emulation, on the other hand, implies an exact simulation
of the network under planning in order to assess its performance or to pre-
dict the impact of possible changes or optimizations. The major di�erence
between emulation and simulation is that a network emulator allows end-
systems (such as computers) to be attached to the emulator. These will
then act exactly as if they were connected to a real network. In the end, the
network emulator's job is to emulate the network that connects end-hosts,
but not the end-hosts themselves.[19]

Another major di�erence is related to how time progresses in emulation
and simulation. Time in emulation progresses linearly and in real-time. For
this reason, emulators aren't generally used for long duration network sce-
narios. Simulation time, on the other hand, can progress arbitrarily. Since it
isn't dependent on external devices and/or accurate emulation, time can be
slowed down, sped up, rewound, etc. For instance, a simulation time of three
months could be compressed into just a couple of hours, if the complexity
and resources available to the simulator allow it to do so. An emulator, on
the other hand, would take the same amount of time as the network being
that's being emulated.

Typical network simulation tools include NS2,22 which is a popular net-
work simulator that can also be used as a limited functionality emulator. In
contrast, a typical network emulator such as WANsim23 is a simple bridged
WAN emulator that utilizes some Linux functionality.

Both network emulators and simulators share some common character-
istics. In the context of this dissertation, both will simply be referred as
simulators, unless explicitly described as such.

2.3.2 Basics of Computer Network Simulation

Elements of simulation

A network simulator is built upon a set of basic structural elements. [10]
de�nes them as:

• Entities - These are the objects that interact with each another in a
network simulator, causing changes to the state of the system. Entities
might be computer nodes, routers, packets, �ows of packets, or non-
physical objects such as simulation clocks. To distinguish di�erent
types of entities, unique attributes are assigned to each of them. For

22http://www.isi.edu/nsnam/ns/
23http://code.google.com/p/wansim/

39

http://www.isi.edu/nsnam/ns/
http://code.google.com/p/wansim/

2.3 Network Simulation

instance, a packet entity may have attributes such as packet length,
sequence number, priority, etc.

• Resources - In general, there is a limited supply of resources available
for the simulator. These are part of a complex system and have to
be shared among a certain set of entities. This is usually the case
of computer networks, where bandwidth, air time or the number of
servers represent network resources that have to be shared among the
network entities.

• Activities and events - Entities engage in activities from time to
time. Events are generated when this happens, triggering changes
in the system's state. Examples of such activities include delay and
queuing. So, for instance, when a packet is waiting for transmission
while the transmission medium is busy, it is said to be engaged in a
waiting activity.

• Scheduler - A scheduler maintains the list of events and their exe-
cution time. During a simulation, the scheduler creates and executes
events.

• Global variables - Global variables are used to keep track of some
useful values related to the simulation, and they are accessible by any
function or entity on in. These variables might include, for instance,
the simulation time, the length of the packet queue in a single-server
network, the total busy air time of the wireless network, or the total
number of packets transmitted.

• Random number generator - A Random Number Generator (RNG)
is required to introduce randomness in a simulation model.

• Statistics gatherer - The main function of the statistics gatherer is
to collect data from the simulation so that meaningful inferences can
be drawn from such data.

Types of simulation

The core of a network simulator refers to the piece of code responsible
to advance the state of the simulation. This is usually done with one of the
following techniques [6]:

• Time-driven simulation -With this technique, the network is simu-
lated between consecutive time intervals (Figure 2.12, from [11]). This
is also known as a "�uid" type of simulation due to the seemingly
continuous way data packets are transmitted. This technique presents
good overall scalability.

40

Background and Related Work

• Event-driven simulation - In this type of simulation, a series of
events are created and executed in chronological order (Figure 2.13,
from [25]). Some events may trigger other additional events (for in-
stance, a packet departure event might generate another event to signal
its arrival at the other end of the line). Most available network sim-
ulators implement this technique. This approach yields �ne-grained
results (in relation to both time and data), but su�ers from major
scalability problems. Some event-driven simulators implement opti-
mization techniques in order to attenuate them.

• Hybrid simulation - As the name suggests, this is an intermediary of
time-driven and event-driven simulation. These models can deal with
�uid data and packet trains on the same simulation (but not in the
same simulated component), and allow the use of e�cient analytical
techniques of tra�c �uxes to improve the computational e�ciency of
the simulation.

• Analytical simulation - This type of simulation uses mathemati-
cal models [12] to predict network and application behavior. These
models allow fast calculation of performance metrics and other results,
but they have very limited application for computer network simula-
tors. They are currently used to simulate only very speci�c parts of a
computer network.

Figure 2.12: Simulation state advance in time-driven simulation

Figure 2.13: Simulation state advance in event-driven simulation

41

2.3 Network Simulation

Parallel event simulation

The increasing computational complexity of simulation models and mod-
eled scenarios motivates the demand for parallelism of the simulation. Hence
a wide range of research has been conducted on Parallel Discrete Event Sim-
ulation (PDES) [25], which allows developers to draw bene�ts from executing
a simulation on multiple processing units in parallel. This is an essential step
to achieve before a network simulator can run successfully as a distributed
system.

The approach taken by PDES is to divide a simulation model into multi-
ple parts which are then executed on independent processing units in parallel.
The central challenge is to maintain synchronization and correctness of the
simulation results.[25]

The speci�c solutions for the challenges posed by parallelization di�ers
according to the type of simulation being used. The main issue is related
with causality violation. As the simulation progresses, the events with the
smallest timestamps are removed from the queue and executed sequentially
by the event handler. While the handler function is running, events can
also be added to or removed from the list. This introduces a problem for
parallelization, since it is necessary to synchronize the correct sequence of
events between all processing units. If two events do not interfere with each
other, then the simulation can be run in parallel. Otherwise, they must be
executed sequentially. Parallel simulation frameworks employ a wide variety
of synchronization algorithms to solve this issue.

A parallel simulation model is composed of a �nite number of partitions
which are created in accordance to a speci�c partition scheme. The three
main partitioning schemes are: [25]

• Channel parallel partitioning - This is based on the assumption
that transmissions over di�erent (radio) channels, mediums, coding,
etc. do not interfere. Thus, events on non-interfering nodes are con-
sidered independent and the simulation model is split between them.
This type of partitioning scheme is not generally applicable to every
simulation model, thus leaving it only for specialized simulation sce-
narios.

• Time partitioning - This scheme subdivides the simulation time of
a simulation run in time-intervals of equal size. The simulation of each
interval is considered independent from the others under the premise
that the state of the simulation model is known at the beginning of each
interval. However, the state of a network simulation is usually very
complex and not known in advance. Due to this fact, this partitioning
scheme cannot be applied to all simulation models as well.

• Space parallel partitioning - This scheme splits the simulation
model along the connections of simulated nodes. The resulting par-

42

Background and Related Work

titions constitute clusters of nodes. This type of division is used very
often, since it doesn't present the drawbacks of the other two.

The run-time component of the simulation that handles the simulation
of a partition is named a Logical Process (LP). Each partition is mapped
exactly into one LP. Every LP resembles a normal sequential simulation,
containing state variables, a timestamped list of events and a local clock.
Additionally, inter-LP communication is done through the exchange of times-
tamped messages via FIFO channels. The latter are used to preserve local
FIFO characteristics, thus avoiding causality violations. Figure 2.14 (from
[25]) shows the typical structure of an LP.

In practice, the number of LPs (i.e., partitions) is generally equal to the
number of CPUs provided by the host's hardware. Consequently, LPs tend
to directly map to processes on the operating system.

Figure 2.14: Logical process of a network simulation.

The challenges associated with the design of a distributed network sim-
ulator are identical to the ones identi�ed in section 2.1.3.

2.3.3 Related Work

Network Simulator 2

Network Simulator 2 (NS2) is an open-source event-driven simulator de-
signed speci�cally for research in computer communication networks. Since
its inception in 1989, NS2 has gained interest from industry, academia, and
even government entities. Having been under constant investigation and
development for years, NS2 now contains numerous modules for network
components, routing protocols, transport protocols, etc.

NS2 has been succeeded by Network Simulator 3 (NS3). NS3 was written
entirely from scratch, and it is focused on improving the core architecture,
software integration, models, and educational components of NS2. Never-
theless, NS2 is still used nowadays, mainly due to the lack of support for
certain protocols in NS3 (which is not backwards-compatible with NS2). It's

43

2.3 Network Simulation

expected that the latter will eventually replace NS2 in most universities that
are currently using it.24

General architecture

Figure 2.15 (from [11]) shows the basic architecture of NS2. It provides
users with an executable command ns, which is usually followed by the name
of the Tool Command Language (Tcl) simulation script to open. In most
cases, a trace �le is generated containing the results of the simulation.

NS2 works in two key languages: C++ and Object Tool Command Lan-
guage (OTcl). The C++ portion of the code contain the de�nitions of the
internal mechanisms (i.e., a backend) of the simulation objects, while OTcl is
used to set up the simulation by assembling and setting each object's con�g-
uration, as well as scheduling discrete events (i.e., a frontend). The C++ and
OTcl sections of the code are linked together using Tcl with classes (TclCl).

Figure 2.15: Basic architecture of Network Simulator 2

After the simulation is �nished, NS2 outputs either text-based or animation-
based simulation results. Tools such as Network AniMator (NAM) (Figure
2.16) and XGraph25 can be used to interpret these results graphically and
interactively. To analyze a particular behavior of the network, users can
extract a relevant subset of text-based data and then format it into a more
convenient way for better visualization it (such as graphs).[11]

Simulation details

NS2 is a discrete event simulator. An event contains an execution time,
a set of actions and a reference to the next event. All events connect to each
other, forming a chain on the simulation's timeline (Figure 2.13). NS2 does

24http://www.nsnam.org/tutorials/NS-3-LABMEETING-1.pdf
25http://www.xgraph.org

44

http://www.nsnam.org/tutorials/NS-3-LABMEETING-1.pdf
http://www.xgraph.org

Background and Related Work

Figure 2.16: Graphical representation of a network in Network AniMator
(NAM)

not support any form of simulation parallelism.
A simulation scenario is set up in a Tcl simulation script and goes through

two phases when it is executed. The �rst phase, the Network Con�guration
Phase, de�nes and con�gures the network components and how they link to
each other. A chain of events is created by connecting all generated events
chronologically. The second phase, the Simulation Phase, chronologically
executes (or dispatches) the created events until the simulator is halted or
there are no more events to execute.

There are four main classes involved in an NS2 simulation [11]:

• Class Simulator is responsible for the supervision of the simulation. It
contains simulation components such as the Scheduler, RNG, etc., and
also information of the objects that are shared by other (simulation)
components.

• Class Scheduler maintains the chain of events and chronologically dis-
patches them.

• Class Event contains the de�nition of an event on the simulation. It
consists of the trigger time and the associated handler. Events are put
together to form a chain of events, which are dispatched one by one by
the Scheduler.

45

2.3 Network Simulation

• Class Handler: When associated to an event, a handler speci�es default
actions to be taken when the event is dispatched.

OMNeT++

OMNeT++ is a modular, open-source, component-based C++ simula-
tion library and framework. Although its primary application area is commu-
nication networks, OMNeT++ has a generic and �exible architecture, mak-
ing it successful in other areas like IT systems, queuing networks, hardware
architectures, or business processes. OMNeT++ has GUI support (Figure
2.17) and is available for Unix-like systems and Windows.

Figure 2.17: OMNeT++'s Graphical User Interface

General architecture

OMNeT++ uses an Eclipse-based26 simulation Integrated Development
Environment (IDE) with GUI support built in. At its core, OMNet++ pro-
vides a component architecture based on simulation modules. In network
simulations, these may represent user agents, tra�c sources and sinks, pro-
tocols, network interfaces, etc., and data structures, such as routing tables.
These modules, written in the C++ language, can be connected to each

26http://www.eclipse.org

46

http://www.eclipse.org

Background and Related Work

other via gates and then combined together in order to form compound mod-

ules. These compound modules may represent more complex systems, such
as routers and switches. Connections are created within a single level of the
module hierarchy, meaning that a submodule can be connected with another
submodule or with the containing compound module.[19]

Every simulation model is an instance of a compound module type. These
models (components and topology) are described in NEtwork Description
(NED) �les. The NED language de�nes only the model structure (topol-
ogy), and leaves behavior and a subset of module parameters open. This
behavior can then be de�ned via the C++ code behind simple modules.
Module parameters left unassigned in NED �les will get their values from
ini �les (used to describe simulation parameters).27

Simulation models created with OMNeT++ are compiled using make.
For convenience, a tool is provided to create the respective make�les, named
opp_makemake. The result of this compilation is an executable �le. When
executed, the simulation is ran and its results are saved in output vector

(.vec) and output scalar (.sca) �les. Output vectors capture behavior over
time, while output scalar �les contain statistics (such as the number of pack-
ets sent or peak throughput). The capability to record simulation results
has to be programmed into the modules.

Several tools are provided to allow real-time simulation visualization, re-
sult collection and analysis. These tools enable the user to, for instance,
watch an animation of the running network simulation (Figure 2.18),28 col-
lect event logs, sequence diagrams (Figure 2.20),29 or plot scalar and vector
data (Figure 2.19, from [25]) acquired from the simulation.

Simulation details

OMNeT++ is a discrete event simulator. It also provides support for
network emulation, through packet capture from real networks. Parallel
simulation is also possible via a conservative implementation of the Null

Message Algorithm (see [21] for more details).
Unlike NS2, OMNeT++ uses live simulation. In other words, the user

is able to observe the simulation as it progresses and can even use C++
debugging tools to examine the network elements in detail.

2.4 RoutUM

RoutUM is a network simulator being developed by the Department of
Informatics of University of Minho since 2007. The subject of this disserta-
tion originated as a direct result of the IPC requirements appointed during

27http://www.omnetpp.org/pmwiki/index.php?n=Main.OmnetppInNutshell
28http://www.cs.wustl.edu/~jain/cse567-08/ftp/simtools/fig-5.jpg
29http://omnetpp.org/doc/omnetpp/ide-overview/pictures/img16.png

47

http://www.omnetpp.org/pmwiki/index.php?n=Main.OmnetppInNutshell
http://www.cs.wustl.edu/~jain/cse567-08/ftp/simtools/fig-5.jpg
http://omnetpp.org/doc/omnetpp/ide-overview/pictures/img16.png

2.4 RoutUM

Figure 2.18: OMNeT++'s Tkenv Graphical Runtime Environment

Figure 2.19: OMNeT++'s Result Analysis Tool

the RoutUM project's planning phase. Because of this, an understanding of
the simulator's architecture and IPC needs are essential to achieve the best
results.

48

Background and Related Work

Figure 2.20: OMNeT++'s Sequence Diagram example

2.4.1 Goals

The main goal of the RoutUM project is to de�ne a new implementation
model for computer network simulators, using state of the art techniques
and technologies. This project is an attempt to surpass the limitations of
existing major public domain tools, while maintaining an high level of appeal
for �rst time users of network simulators. The underlying model is based on
new and recent paradigms, relying on simple processes for an high level of
extensibility in future component upgrades (including the core). Cooperation
is a key aspect for the evolution and long term success of this project.[6]

2.4.2 Architecture

The RoutUM's architecture is based on an hybrid simulation core, and
parallelism is achieved through a space parallel architecture. Each logical
process that results from this division translates into a di�erent process on
the operating system. These processes are then free to be located on the
same machine or in di�erent ones (or a combination of both), communicat-
ing with each other through local and remote IPC mechanisms, respectively.

The RoutUM's architecture de�nes a central simulation client. This
client is responsible to receive a simulation request from a user, execute
it, and then return the simulation's results to the user.

As previously stated, the simulation can be executed on the same ma-
chine (centralized model) or in di�erent ones (distributed model). If the

49

2.4 RoutUM

user opts for a distributed model, two di�erent classes of processes are used:
leader and worker. A leader process is the only one that interacts with the
central simulation client. Its task is to receive simulation work and distribute
it between all workers. This distribution can be speci�ed by the user, or it
can be done by an external module. A worker process executes the simu-
lation tasks requested by the leaders. If no workers are registered on the
system, then the leader does all the work instead.

Figure 2.21 represents RoutUM's general architecture. For the sake of
example, each node represents a machine with only one process.[23]

Figure 2.21: RoutUM's general architecture

Initialization of the simulation

Figure 2.22 represents the steps taken by RoutUM during the initializa-
tion of a new simulation.

In the �rst step, the simulator receives and analyzes the simulation
scenario the user intends to run. Two lists originate from this analysis: one
containing the simulation modules and another with their connections. A
hierarchical list of components required for each simulation module is then
determined. An example of such list can be seen in Figure 2.23.

The second step consists of two tasks. First, the simulator veri�es if
the computing resources available (memory, storage space, etc) are enough
for the simulation to run. Secondly, it registers the simulation's modules

50

Background and Related Work

Reception of simulation data
and module requirement

analysis

Resource validation and
assignment of modules to

available machines

Generation of
communicational and

functional dependencies

Simulation model validation

Execution and transfer to
synchronization module.

Modules

Load modules
(triples)

Figure 2.22: RoutUM's initialization procedure

throughout the available machines (the workers). As previously stated, this
distribution can be achieved either by attempting to balance the workload
automatically between the available workers, or by appointing speci�c tasks
to speci�c workers (through manual con�guration by the user).

During the third step, the simulator generates functional and commu-
nicational dependency information from the data generated in the previous
steps. The functional dependencies are established as an hierarchy of nodes,
each one containing two objects. The �rst object stores the information per-
taining to that node, while the other stores a branch list (each identi�ed by
their respective key in the hash table). This is exempli�ed on (the left side
of) Figure 2.24. All objects in all nodes are then instantiated.

The communicational dependencies are established at two di�erent lev-
els: The �rst level pertains to communications along the branches of the
module hierarchy. In other words, these are the communications between
a module and its immediate parent or child module. The second level of
dependencies are the ones established between unrelated sub-modules. Each

51

2.4 RoutUM

Figure 2.23: RoutUM's module hierarchy (example)

Module data

Branch list

Module

Module

 name: String
 address: String

Module data

 address: String
 designation: String
 module-exec: Bool
 parameters: LinkedList <String>
 worker: address <ip:port>
 relationships: LinkedList<Module>

Figure 2.24: RoutUM's internal module structure

module contain variables used to identify these connections, as seen in (the
right side of) Figure 2.24. The variables (and objects) shown in gray are
empty if no connections exist between unrelated sub-modules.

The fourth step consists of the logical validation of the simulation en-
vironment. The semantics and syntax of the network topology are evaluated,
and the simulation progresses to the next step if no errors were detected.

The �fth and last step consists on the execution of the simulation.
The lowest-level modules on the module hierarchy are executed �rst, fol-
lowed by their parent modules and so forth. The simulation process is then
transferred to the synchronization module.[23]

52

Background and Related Work

Synchronization module

RoutUM uses an hybrid approach for its simulation, meaning that it can
simulate both at a packet and data �ow level. The synchronization module
keeps control the various components of the simulation, namely its temporal
advancement.

Simulation contexts

RoutUM uses a space parallel architecture to achieve simulation paral-
lelism. Each group of LPs (known internally as contexts) receives an instance
of a temporal synchronization module, which in turn is part of an hierarchical
structure of these modules (Figure 2.25). A submodule communicates with
its "parent", and so forth until the main synchronization module is reached.

Figure 2.25: RoutUM's simulation contexts

Every simulation context has its own clock, which progresses in �xed
time intervals. The simulation time is only allowed to progress (tick) if there
are no events left to process in the next interval. An advantage provided by
simulation contexts is that they allow the usage of di�erent time intervals
for each context. Without it, every module would progress with the same
time interval, thereby potentially wasting resources with idle parts of the
network. The contexts concept makes it possible to immediately advance a
particular context up to the interval with the next event. So, for instance, it
would be possible to have a context A progressing with a �xed time unit of
1, while context B (which has a lot less activity than A) would progress with
a time unit of 10. This way, context B would only need to check for events
(with each of its modules) with 10 times less frequency than A, therefore
increasing e�ciency.[22]

53

2.4 RoutUM

Hierarchical synchronization system

The division of a network into contexts introduces issues related with
the synchronization of events between them. RoutUM attempts to solve
these issues by dividing the event table as well, leaving each context with
the events that belong only to that same context. But there's still a problem
when a module from one context triggers an event on another module from a
di�erent context. In these cases the event must be present on both contexts,
otherwise the time would advance without restrictions. This would originate
paradoxes, such as one module sending a packet to a di�erent context and
the departure and arrival dates not complying with the rule of causality.

RoutUM solves this issue by rewinding the simulation time up to the
point where an unsynchronized event occurred. The missing event is then
introduced to the event table of the target context, and the simulation re-
sumes from that point. But the simulation can only rewind within a �xed
time window. If an unsynchronized event lies beyond this window, then a
causality violation error is thrown and the simulation accuracy is compro-
mised.

The registration of events must pass through the parent module, since
it is the only one with direct control of the tables of the synchronization
modules.[22]

Event types

Several di�erent event types are de�ned by RoutUM. These are:

1. Synchronization points - Used to synchronize the simulation clock.

2. Simulation data transfer - Used to signal the exchange of internal
data (pertaining to the simulation) between nodes.

3. Tra�c data transfer - Used to transfer various types of simulated
tra�c.

4. Reports - Used to generate and collect statistics at prede�ned points
of the simulation.

5. Control - Signals global simulation control activities.

Communication protocols

By design, the RoutUM network simulator allows modules to be heteroge-
nous, from the programming language on which they are implemented to the
operating system where the module will run in. However, every module must
comply to a single communication protocol, so they can communicate with
each other despite the discrepancies in their implementations.

54

Background and Related Work

Addressing scheme

RoutUM uses an unique string to identify each module in the hierarchical
structure of the simulator. Each string contains the simulation, context and
module IDs. It doesn't identify any real-life resource (such as a computer or
CPU), being purely functional.

Protocol primitives

As of writing this report, three primitives have been de�ned: [18]

• send(protocol_version, pdu_type, payload_size, payload,

dest_mod_id)

• receive()

• ack(dest_mod_id)

As the name suggests, the send primitive is used to send data to the destina-
tion module's incoming bu�er, and the receive primitive is used to retrieve
data from this bu�er. The ack primitive sends a con�rmation of the received
data.[18]

The Protocol Data Unit (PDU) contains the following �elds:

1. Version - Protocol version (4 bits)
2. Type - Type of PDU (4 bits)
3. Origin - The source module's address (variable length)
4. Destination - The destination module's address (variable length)
5. Sequence number - The packet's sequence number (16 bits)
6. Payload size - The length of the payload, in bytes (32 bits)
7. Payload - The payload data (variable length)

There are two di�erent types of PDU in the simulator. The �rst is used to
encapsulate the data packets generated in the simulation, while the second
one represents the information used to generate �uxes.[18]

Registration module

The registration module is used to establish the correspondence between
functional and physical addresses on the system. This module is queried
when the primitives send and ack are called. The resulting PDU is sent
though a protocol from the IPC mechanism being used.[18]

Resource sharing and management protocols

In real networked devices, processes compete for shared resources (mem-
ory, CPU time, link access, etc). This sort of interaction has to be mirrored
in network simulators for added accuracy. In RoutUM, access to shared
resources is managed by the Resource Sharing Management Protocol. All

55

2.4 RoutUM

resources in a simulation that requires access management must register in
the Shared Resources Manager using this protocol.[18]

The resource sharing and management protocol de�nes an interface with
the following methods:[18]

1. register_resource(resource_id, resource_ptr, size,

access_flags, priority)

2. read_resource(resource_id, resource_ptr, size)

3. write_resource(resource_id, resource_ptr, size)

4. unregister_resource(resource_id)

2.4.3 Parallelization of the Simulation

RoutUM's contexts concept creates isolated zones of activity and allows
them to execute simultaneously, therefore simplifying the parallelization of
the simulation. In addition, the objects in the simulator translate to ordinary
processes running on the operating system, communicating with each other
through IPC mechanisms and using the protocols described in Section 2.4.2.
These two elements of the simulator's architecture enable a lot of possible
con�gurations for the distribution of tasks over several host machines.

56

Chapter 3

Research

In order to build an API that can successfully solve the practical goals of
this dissertation, it is �rst necessary to identify the main challenges behind
its development. This chapter addresses these challenges and the solutions
that were obtained for them.

3.1 Objectives

The main topic of this dissertation originated during the planning stage
of the RoutUM simulator. Due to its heavy dependency on IPC to carry the
simulation, it would be convenient the have the ability to transparently iden-
tify and communicate with any object (each present on di�erent processes)
in the system, regardless of the communication mechanisms available. The
relative locations of the processes and the need for maximization of perfor-
mance also motivates the creation of a method to automatically choose the
fastest IPC mechanism available.

In addition to the goals established in Chapter 1.3, some desirable char-
acteristics could be identi�ed for the API:

• It should be as light (small overhead) and fast as possible;

• It should be modular, allowing easy addition, removal, replacement
and maintenance of sections of code for each functionality;

• Security mechanisms ought to be supported, if the communication
medium or the user justi�es so;

• Each process should be identi�ed with a unique primitive (e.g. a num-
ber or a label);

• Set-up and con�guration simplicity is desirable;

• Portability of the code and/or cross-platform support of the API is
desirable;

57

3.2 General Architecture

• Support for several levels of openness of the context is desirable (e.g.
only registered hosts can connect; any host can connect or any host
from the local network can connect, etc);

• Some additional functions may be desirable to facilitate the implemen-
tation of other speci�c RoutUM requirements.

Due to time limitations and to avoid unnecessary complexity and overhead
of the API, only the functionality that is strictly required will be researched
and implemented. Additional functionality should be implemented on the
application level as needed.

3.2 General Architecture

Figure 3.1 shows a rough representation of the elements on the system and
the connections between them. A process can connect to another through
remote (network) or local IPC mechanisms, depending on the relative loca-
tion between the processes. The details of the communication are all hidden
away, including protocols, security mechanisms, etc.

Network

PID #8

Machine 05

API

PID #9API

E
x
t. In

t.

Machine 04

PID #4API

E
. I.

PID #7

Machine 03

API

PID #6API

E
x
t. In

t.

Machine 02

PID #5API

E
. I.

PID #1

Machine 01

API

PID #2API

PID #3API

E
x
t. In

te
rf.

Central

Server

Figure 3.1: Example architecture (as seen from the API)

The central server is used to store a list of peers, their IPC interface
information and a list of contexts with their settings. When a process wants
to join the system, it connects to the server to obtain a list of contexts and

58

Research

peers it is allowed to connect to.
In the context of this dissertation, the terms instances and peers will be

used interchangeably to refer to these API instances.

3.3 Programming Language

Ideally, the programming language used in this project should be able to
achieve the following goals:

• Should allow the highest possible performance, independently of the
underlying hardware con�guration (this is a critical factor);

• Should include cross-platform and multi-architecture support (the main-
stream OSs, UNIX-like and Windows, must be supported);

• Should include APIs for local and remote IPC mechanisms and cryp-
tography functions (the access to the OS's functions should be di-
rect, without the additional overhead introduced with wrappers, for
instance);

• Should be a widely supported language (the API is going to be used
with existing distributed applications).

With all these requirements in mind, the language chosen for development
was C. Besides meeting all the goals written above, there are a number of
compelling reasons for this decision, such as:

• It's a very mature and widely-used language (including in the simula-
tion �eld), with all the needed APIs for this project. The same can be
said about the compilers and libraries available.

• All the major operating systems are written natively in C and provide
libraries in the same language. This means there is no need to access
system functions though wrappers.

• If needed, it is possible to add a wrapper in order to support another
language. Some of them are even built upon the C language. However,
the opposite isn't true.

• It's a language which allows small, e�cient, low overhead output (whether
it's a program or a library). It can even be used with assembly to pro-
vide a nearly ideal level of code e�ciency.

• Provides an high level of control over data structures, which is neces-
sary to obtain an high degree of e�ciency.

59

3.4 Inter-process Communication Mechanisms

The main drawbacks of the C language are the relative di�culty of use
and the absence of security-related features present on higher-level languages
(such as Java's error handling mechanism). Plus the absence of hierarchical
concepts found on higher-level languages introduces an increased level of
complexity with management and addition of modules to the code.

Libraries and portability

The standard C libraries and POSIX APIs are to be used wherever possi-
ble, as they provide a uniform interface for all UNIX-based systems. For the
Windows operating system, Microsoft provides the UNIX-subsystem add-
on,1 adding limited support for compilation and execution of POSIX appli-
cations. A more complete alternative, albeit not without a bigger perfor-
mance degradation, is Cygwin.2

At least the IPC portions of the code are going to be OS-speci�c, which
automatically introduces the need to use a portability strategy. To accom-
plish this, conditional compilation directives of the C preprocessor3 can be
used to separate code by the platform where it is being compiled in.

3.4 Inter-process Communication Mechanisms

As de�ned on chapter one, two IPC mechanisms will be implemented in
the API, one for remote and one for local IPC. In this section, an attempt
is made to establish which mechanisms allow the best performance and/or
compromise between several other desirable characteristics.

3.4.1 Selection Criteria

All of the mechanisms described in Section 2.2 have their own advantages
and disadvantages. When opting for the most suitable IPC mechanism,
several factors have to be taken into consideration, namely:

• Throughput - This refers to the resulting data rate transmitted be-
tween processes, including bandwidth, processing time, error rate (de-
tection and correction), transmission delay, jitter. There are some
instances when, for example, a lower processing and transmission de-
lay of one mechanism might end up giving an advantage over another
one with a higher bandwidth. This is the case when two end-points
exchange a series of small messages in a question-reply scenario.

1http://technet.microsoft.com/en-us/library/bb496506.aspx
2http://www.cygwin.com/
3http://en.wikipedia.org/wiki/C_preprocessor#Conditional_compilation

60

http://technet.microsoft.com/en-us/library/bb496506.aspx
http://www.cygwin.com/
http://en.wikipedia.org/wiki/C_preprocessor#Conditional_compilation

Research

• Scalability - Some mechanisms perform better with an higher number
of processes than others. This might also re�ect on the programming
complexity and the resources needed by the system.

• Connection establishment - Some mechanisms allow an easier iden-
ti�cation and connection of processes than others. For instance, it is
easier to �nd and identify a process to connect to through a �le handle
than through its process ID. Additionally, some mechanisms are full-
duplex and others half-duplex, the latter requiring twice as many IPC
descriptors for bidirectional communication.

• Reliability - Reliability can be o�ered in the form of minimum guar-
anteed overall throughput, delay and/or connection persistence.

• Compatibility - Some systems might be heterogeneous, using di�er-
ent operating systems, application, network protocols, etc. An IPC
mechanism used in such system must be compatible across all of these
characteristics.

• Ease of implementation - There are several factors that may in-
crease programming, maintenance and debugging complexity. For in-
stance, some IPC mechanisms do not contain error checking built-in,
so it would be necessary to implement it.

• Resource usage - Some IPC mechanisms may require a lower CPU
and/or memory usage for the same bandwidth than others. This has
an impact on the resources left available to the rest of the system,
potentially creating an indirect bottleneck of the throughput.

It is worth noting that although di�erent operating systems might sup-
port the same set of standards and interface speci�cations, such as POSIX
or System V Interface De�nition (SVID), the low level mechanisms used to
implement and support these speci�cations may be signi�cantly di�erent.
As such, an application's performance may vary signi�cantly between di�er-
ent operating systems and even between release versions. This issue is made
more complex when di�erent speci�cations of hardware and/or running soft-
ware are taken into account. In short, there are too many variables for a
single de�nitive conclusion.

3.4.2 Local IPC

Local IPC mechanisms are theoretically faster than remote ones, since
the data transferred between processes never ends up leaving the local mem-
ory bus. Because of this, it is important to use them whenever possible to
obtain the best performance. Due to the fact that the data never passes
through an external connection (such as ethernet), there should be no need

61

3.4 Inter-process Communication Mechanisms

for certain features, such as error control or con�dentiality.
Some IPC mechanisms won't be addressed here since they present char-

acteristics which obviously put them at a disadvantage when compared to
others. The �rst one are �le-based communications, whose dependency on
the �le system implies that it is several orders of magnitude slower than
purely memory-based mechanisms. Another one are anonymous pipes be-
cause they require a parent-child relationship, thus making it harder to de-
velop CLI-based applications due to the standard stream redirection (the
API should not never impose such restrictions on the application).

In the context of this project, signals and semaphores aren't useful
when used alone, since they allow a very limited form of communication. In-
stead, they will be used as synchronization primitives, working side-to-side
with other IPC mechanisms.

Evaluation of IPC mechanisms

This section presents the analysis of a few references and the results of
tests developed speci�cally for this dissertation.

[9] presents a performance analysis of �ve IPC mechanisms over sev-
eral UNIX-based systems. These mechanisms are POSIX pipes, POSIX
FIFO, System V messages, System V shared memory (in conjunction with
semaphores), and UNIX domain sockets. The tests were executed using a
Producer/Consumer model as described in [24].

Five programs were written to analyze each of the selected mechanisms.
For each test, 5000 messages were sent from one end to the other. The mes-
sage size (in bytes) and the number of messages to transmit were passed as
command-line arguments to each program. Each benchmark was executed
on the following operating systems:

• Linux 2.2.5-15
• Linux 2.2.17
• Linux 2.4.0-test9
• RTLinux v2.3 (prepatched with Linux 2.2.14)
• FreeBSD 4.1
• FreeBSD 4.2

Each operating system was prepared for testing by performing an "out-of-
the-box" default installation, modifying a few select IPC kernel parameters
(to set the maximum amount of a shared memory segment to 8192 bytes
on all OSs), rebuilding the kernel using default compiler/linker settings, and
placing the system in multi-user mode. No attempts were made to �ne-tune
the operating systems to enhance performance.

The results were obtained by executing the benchmarks on a computer
with the following con�guration:

62

Research

• Single processor system employing a Pentium III Processor operating
at 450 MHz.

• 32 KB split L1 cache and 512 KB of pipelined L2 (uni�ed) cache.
• 128 MB of 100 MHz SDRAM.
• 30 GB of hard disk space.
• Phoenix BIOS version 4S4EB2XO.10A.001-P03.
• Standard sets of input/output devices including keyboards, mouse, etc.

Figure 3.2 shows the throughput results for POSIX pipes, Figure 3.3 for
POSIX FIFO queues, Figure 3.4 for System V messages, Figure 3.5 for Sys-
tem V shared memory (with semaphores) and Figure 3.6 for UNIX domain
sockets. All �gures were taken from [9].

Figure 3.2: Throughput for POSIX pipe

Figure 3.3: Throughput for POSIX FIFO queue

From these results, it is easy to conclude that Linux kernel 2.2.5-15 pro-
vided the best performance from all the benchmarks, with the exception of
shared memory. Performance di�erences in all mechanisms are relatively
consistent with message sizes and operating system. There is a direct pro-
portionality between packet size and throughput, save for few (and not very
signi�cant) exceptions. Figure 3.7 (from [9]) shows the average throughput
for all tests.

For each test, the time taken to create and destroy the IPC resources was
also computed. Table 3.1 (from [9]) shows the results for 10.000 iterations.

63

3.4 Inter-process Communication Mechanisms

Figure 3.4: Throughput for System V messages

Figure 3.5: Throughput for System V shared memory (with semaphores)

Figure 3.6: Throughput for UNIX domain sockets

It is possible to conclude that, on average, anonymous pipes consistently
outperformed all the other mechanisms, followed by named pipes, System V
messages and UNIX domain sockets.

Unfortunately, the results shown here refers to outdated versions of the
Linux and FreeBSD's kernel. It's possible that signi�cant internal structural
changes have already been performed, which may have a signi�cant impact
on the validity of these results.

Another reference, [26], presents a comparative analysis between 3 dif-
ferent types of IPC on the Linux kernel. Three utilities were built to test

64

Research

Figure 3.7: Average throughput by mechanism for Linux kernel 2.2.5-15

L
in
u
x
2
.2
.5
-1
5

L
in
u
x
2
.2
.1
7

L
in
u
x
2
.4
.0
-t
es
t9

R
T
L
in
u
x
v
2
.3

F
re
eB

S
D
4
.1

F
re
eB

S
D
4
.2

POSIX pipe 574 766 1321 1313 668 677
POSIX FIFO 4378 4614 6742 5908 86999 111170
SVID messages 238 309 296 609 357 341
SVID shared memory 6684 8373 9868 8303 1472 1471
Semaphores 235 270 267 418 330 332
UNIX domain sockets 6107 659 7740 7733 83439 1501836

Table 3.1: Time needed to create and destroy 10.000 IPC resources (in ms)

anonymous pipes, UNIX domain sockets and network domain TCP/IP sock-
ets.

To determine the relative performance of each IPC mechanism, each was
subjected to two benchmarks to �nd out the raw throughput of each mecha-
nism under di�erent circumstances. The �rst benchmark involved transfer-
ring data in packet sizes ranging from 1 MB to 100 MBs with an equivalent
bu�er size so only one system call was being made to the write function.
The second benchmark involved sending a �xed amount of data, 100 MBs,
with varying bu�er sizes from 100 KBs to 100 MBs. There is a signi�-
cant amount of overhead involved in making system calls due to the context
switching. This benchmark was designed to get a better understanding of
how the various combinations of memory operations and context switching
a�ected performance. Both benchmarks were performed on many machines
with di�erent hardware con�gurations to minimize the e�ects of the di�er-
ences in hardware.

For almost all of the data sizes transferred, Unix domain sockets out-
performed the two other IPC mechanisms, as seen in Figure 3.8. Although
Figure 3.8 (from [26]) shows the results from a speci�c machine, the transfer

65

3.4 Inter-process Communication Mechanisms

Figure 3.8: Benchmark 1 results

rates are consistent across all of them. On some machines, UNIX domain
sockets reached transfer rates as high as 1500 MB/s.

For small data sizes, the throughput of UNIX domain sockets was below
that of pipes. Investigation of the cause was inconclusive because the results
were not consistent across all machines. On the Intel processor machines,
pipes performed better than TCP/IP sockets. This was not true for the
machines using the UltraSPARC processor.

Figure 3.9 (from [26]) shows the results of the second benchmark. While
the performance of pipes and TCP sockets remained relatively stable, UNIX
domain sockets showed a major decrease in performance as the bu�er size
increased.

In conclusion, UNIX domain sockets have proven to deliver the highest
throughput when compared to the other mechanisms. While its dominance
is still unclear for transfers of small amounts of data, it is otherwise the best
mechanism to use within a single machine.

Transmission Throughput Test

An application was developed in the context of this dissertation, so as to
provide more up-to-date-results. It was named ttt (short for Transmission
Throughput Test) and it contains several modules programmed in C/C++
to test each of the following IPC mechanisms:

• TCP/IP network domain socket (loopback);
• User Datagram Protocol (UDP)/IP network domain socket (loopback);

66

Research

Figure 3.9: Benchmark 2 results

• Raw ethernet (level 2) network domain socket (loopback);
• UNIX domain socket;
• POSIX Shared memory (through memory mapping) with Semaphores;
• POSIX FIFO queue;
• POSIX Message queue.

The test machine is a notebook with the following con�guration:

• CPU - Intel Core 2 Duo T9400 (2.53GHz, 64KB L1 cache, 6MB L2
cache)

• Ram - 4096MB DDR3 PC 1066 (533 MHz) 7-7-7-20
• Motherboard - LG Emerald (1067 MHz FSB)
• Storage - Fujitsu MHZ2320BH G2 (320GB, 5400rpm, 8MB bu�er)
• Network adapter - Intel 82567LF Gigabit Network Connection (1500
Bytes of MTU)

• Operating system - Ubuntu Desktop v11.10 (Linux kernel v3.0.0-12,
32-bit)

The operating system was a standard Ubuntu Desktop installation, running
in runlevel 5 and with no additional applications or daemons set up. Outside
connections were also disabled during tests (using the command ifconfig

[interface] down).
The tests consist on sending as much data as possible from one instance

of the application to the other. A script was prepared so that each test ran
for 10 minutes, �rst with data packets of 128 bytes, then 1024 and 16384

67

3.4 Inter-process Communication Mechanisms

bytes. Five tests were done for each mechanism and all values were averaged.
POSIX libraries and functions were used whenever possible. Figure 3.10
shows the message protocol used by the application. The function of each
�eld is:

• Flag - Used to recover synchronization in lossy, stream-based IPC
mechanisms (but used on all mechanisms);

• Length - The length of the entire packet, in bytes;
• Sequence number - Used to detect out-of-order packets;
• Send time - Used to compute delay times;
• Checksum - Used to detect errors in the header �elds;
• Padding data - Used to set a message size bigger than the header
itself. This data is formed by a �xed pattern, so it can also be used to
detect errors.

0 1 2 3 4 5 6 13 14 15

Flag Length Sequence number Send

time Chksum

Padding

· · ·

Figure 3.10: Transmission protocol header structure

The size of the padding data and a time limit for each test can be de�ned
through command line arguments. The application was designed to be as
e�cient as possible and it was compiled with -O3 -fno-strict-aliasing

options of GNU C Compiler (GCC).
The TCP/IP protocol was tested with three di�erent con�gurations, were

the �rst one is the standard TCP con�guration and the second has the
TCP_NODELAY option set. The latter disables the Nagle's algorithm, which
attempts to increase bandwidth by concatenating several short messages in
one packet. Enabling this option should reduce bandwidth due to the in-
crease in overhead, but delay times should also be shorter (particularly for
smaller packets). The TCP_CORK option used in the third test has the oppo-
site e�ect. By only sending a TCP packet when the bu�er is full it should
be possible to maximize bandwidth (for small packet sizes), but with higher
delay times.

The POSIX shared memory mechanism was tested with two di�erent
con�gurations. The original con�guration reserves just enough memory to
place a single message for each direction, and then POSIX semaphores are
used to perform concurrency control between processes. But this method
doesn't use bu�ering, putting it at a disadvantage when compared to the
other IPC mechanisms. While the transmitting process is placing data on

68

Research

the memory, the receiving process has to wait for the operation to �nish. The
opposite is true when the receiving process is reading from that same portion
of memory, thus not allowing an e�cient use of CPU resources. An addi-
tional module was built to counteract this through the use of transmission
bu�ers. It works by allocating N message �slots� for each direction, which
are then �lled sequentially and cyclically. Concurrency control is done by
the same semaphores as in the original con�guration, except they now count
up to N .

Bu�ered Shared memory and Message queues require the user to man-
ually specify the size of their bu�ers. To achieve optimum performance,
several tests were made to compare the impact of bu�er size (measured in
number of messages) in both bandwidth and delay. Figures 3.11, 3.12 and
3.13 show the results for packets sizes of 128, 1024 and 16384 bytes, respec-
tively.

1
2

3

4

5 6 7 8 9 10 11 13 15 16 17 18

1

2

3

4 5 6 7 8 9 10 13 14 15 16

0

10

20

30

40

50

60

70

0 0,005 0,01 0,015 0,02 0,025 0,03

Th
ro

u
gh

p
u

t
(M

B
/s

)

Delay average (ms)

Buffer size test - 128 bytes

Shared memory (buffered)

Message queue

Figure 3.11: Bu�er size test - 128 bytes

From these results, a conservative bu�er size of 6 was chosen for shared mem-
ory and 4 for message queues. Most other mechanisms allow the modi�cation
of bu�er sizes as well, but they were not tested due to time limitations and
because doing so would involve the change of system-wide constants (thus
a�ecting other applications).

Tables 3.2 and 3.3 shows the overall results. The CPU usage values
shown in the Table 3.3 are approximate and they were read from the top

command. The standard deviation and mean delay times were calculated
from an implementation4 of the algorithm described in [5] and [15]. The de-
lay time refers to the time interval between the generation of the packet and
the time it was processed in the receiving end.

Note that the word packet on the table refers to the internal packet struc-

4http://www.johndcook.com/standard_deviation.html

69

http://www.johndcook.com/standard_deviation.html

3.4 Inter-process Communication Mechanisms

1
2

3

4
5 6 8 9 10 11 12 13 14 15 16 17 18

1 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18

0

20

40

60

80

100

120

140

160

180

200

0 0,02 0,04 0,06 0,08 0,1 0,12

Th
ro

u
gh

p
u

t
(M

B
/s

)

Delay average (ms)

Buffer size test - 1024 bytes

Shared memory (buffered)

Message queue

Figure 3.12: Bu�er size test - 1024 bytes

1

2

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

50

100

150

200

250

300

350

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Th
ro

u
gh

p
u

t
(M

B
/s

)

Delay average (ms)

Buffer size test - 16384 bytes

Shared memory (buffered)

Message queue

Figure 3.13: Bu�er size test - 16384 bytes

ture shown on Figure 3.10, and not the packet structure being used by the
protocol of the IPC mechanism.

The delay values were taken from how long a given packet took to reach
its destination. These values were calculated during the throughput tests.
Due to delays introduced by bu�ers on the IPC mechanisms, these may
not be very representative of a question-reply scenario. Ideally, these values
could be more useful if they were obtained as one each end of the line waits
for one message before sending its own message and so on.

As expected, network domain sockets without error correction and �ow
control (UDP and level 2 raw sockets) were the only mechanisms that would
require further development to adapt them for local IPC. The presence of
out-of-order packets and packets with errors can probably be attributed to
the high CPU usage. The frequent system calls from the sending process

70

Research

P
a
ck
et

si
ze

T
h
ro
u
g
h
p
u
t
(M

B
/
s)

D
el
ay
:
M
ea
n
ti
m
e
(m

s)

D
el
ay
:
S
td
.
D
ev
ia
ti
o
n
(m

s)

P
a
ck
et

er
ro
r
ra
te

O
u
t-
o
f-
O
rd
er

p
a
ck
et

ra
te

TCP/IP socket
128 B 48,63 0,64 25,31 0% 0%
1024 B 167,74 4,00 62,98 0% 0%
16384 B 269,95 4,03 63.27 0% 0%

TCP/IP socket
(w/ TCP_NODELAY)

128 B 23,91 0.01 3,64 0% 0%
1024 B 168,27 3,98 62,82 0% 0%
16384 B 270,30 4,01 63,14 0% 0%

TCP/IP socket
(w/ TCP_CORK)

128 B 48,39 3,25 56,73 0% 0%
1024 B 168,08 3,93 62,48 0% 0%
16384 B 270,87 4,00 63,03 0% 0%

UDP/IP socket
128 B 26,47 0,01 3,22 0,47% 0,01%
1024 B 167,90 0,49 22,17 50,10% 24,78%
16384 B 300,17 0,31 17,66 86,43% 13,54%

Raw L2 socket
128 B 47,70 0,97 31,03 1,98% 1,20%
1024 B 176,68 0,51 22,59 61,63% 30,63%
16384 B 307,75 0,31 17,52 88,80% 11,18%

UNIX socket
128 B 42,37 0,53 22,98 0% 0%
1024 B 172,54 0,31 17,67 0% 0%
16384 B 299,55 0,23 15,23 0% 0%

Shared memory
128 B 5,42 0,01 3,22 0% 0%
1024 B 29,29 0,01 3,45 0% 0%
16384 B 217,41 0,01 2,68 0% 0%

Shared memory
(bu�ered)

128 B 63,81 0.01 2.66 0% 0%
1024 B 169,66 0.03 5.13 0% 0%
16384 B 317,37 0.24 15.44 0% 0%

FIFO queue
128 B 41,75 1,24 35,17 0% 0%
1024 B 166,25 0,27 16,31 0% 0%
16384 B 295,66 0,20 13,98 0% 0%

Message queue
128 B 50,51 0.01 3.21 0% 0%
1024 B 178,49 0.02 4.90 0% 0%
16384 B 301,65 0.25 15.84 0% 0%

Table 3.2: Internal IPC test results (1 of 2)

requires a lot of CPU time from the kernel, thus not leaving enough of it to
the receiving process to extract packets from the UDP bu�er in time. This
causes the bu�er to over�ow, thus dropping packets and introducing errors.

Overall, bu�ered Shared memory stood out as the highest-performing
mechanism from these results. It provided the highest overall throughput

71

3.4 Inter-process Communication Mechanisms

P
a
ck
et

si
ze

T
ra
n
sm

is
si
o
n
C
P
U
u
sa
g
e

R
ec
ep
ti
o
n
C
P
U
u
sa
g
e

TCP/IP socket
128 B 40% 100%
1024 B 8% 100%
16384 B 2% 100%

TCP/IP socket
(w/ TCP_NODELAY)

128 B 40% 100%
1024 B 8% 100%
16384 B 2% 100%

TCP/IP socket
(w/ TCP_CORK)

128 B 40% 100%
1024 B 8% 100%
16384 B 2% 100%

UDP/IP socket
128 B 100% 80%
1024 B 100% 90%
16384 B 100% 95%

Raw L2 socket
128 B 100% 95%
1024 B 100% 90%
16384 B 100% 95%

UNIX socket
128 B 40% 100%
1024 B 8% 100%
16384 B 0% 100%

Shared memory
128 B 35% 40%
1024 B 30% 50%
16384 B 10% 75%

Shared memory
(bu�ered)

128 B 95% 96%
1024 B 54% 96%
16384 B 14% 98%

FIFO queue
128 B 45% 100%
1024 B 10% 100%
16384 B 5% 100%

Message queue
128 B 96% 96%
1024 B 56% 98%
16384 B 18% 98%

Table 3.3: Internal IPC test results (2 of 2)

(except for packet sizes of 1024 bytes) with very low values of delay and
standard deviation. It also produced relatively predictable results, due to
the small standard deviation of the delay times.

72

Research

Security concerns

Due to the intra-host nature of local IPC, data transfer between processes
should be relatively safe against malicious users (when compared to remote
IPC). Nevertheless, some security concerns can be identi�ed, such as:

• Some mechanisms might be susceptible to eavesdropping and data cor-
ruption from processes running on the same machine (e.g. FIFO pipe
and shared memory).

• When using shared memory, an application might ignore concurrency
access rules and overwrite portions of the shared memory.

• Also when using shared memory, a malicious application might inter-
fere with the semaphores used to control access to the data.

• A malicious application might interfere and connect to the original
application as it initializes the IPC resource, not allowing it to reach
its intended destination.

Some mechanisms, whose method of identi�cation of resources passes
through the �lesystem, generally allow to set �le permissions with the same
settings as a normal �le. But �le system permissions are limited and un-
suited for authentication and prevention of unauthorized use. A workaround
could be used, consisting in running the applications as another, password-
protected user. However, this is not a very desirable solution since it would
force the change of the operating system's con�guration and introduce com-
plexity to the set-up process. Instead, internal API-level authentication
could be applied.

In conclusion, the main security issues associated with local IPC are re-
lated to authentication, integrity and con�dentiality. The level of security
depends on the mechanisms used, the overall trust of the system on which
it is being run on and the application's requirements.

Analysis and conclusion

Unfortunately, all the resources which were possible to obtain during the
limited time available to the development of this section were either old,
incomplete and/or inconclusive for the objectives proposed. Several other
resources (not shown here) were obtained, but they were based purely on
anecdotal evidence and were often contradictory. The internal application
used for testing introduced even more uncertainty and confusion to the de-
cision process. And �nally, several important characteristics were not eval-
uated (e.g. scalability, minimum delay, programming libraries, etc), which
means that the �nal decision will be taken with much less than desirable
certainty.

A particular aspect of communication that was not taken into account is
the broadcast of data from one process to the others. In this particular case,

73

3.4 Inter-process Communication Mechanisms

it should be easy to see that shared memory would probably provide much
better scalability, since the data wouldn't have to be replicated for each pro-
cess. Another noteworthy issue is that byte-stream IPC mechanisms require
additional overhead to be able to distinguish discrete messages on the stream
(due to the absence of message boundaries). This issue becomes more no-
ticeable as the transmitted messages get smaller.

The only certainty is that choosing between the best performing IPC
mechanism is a complex task, mainly due to the large amount of variables
that are necessary to evaluate in order to reach an informed decision. On
the upside, the development of the testing applications has shown that, with
the proper modularization of the API, switching between IPC mechanisms
should be relatively simple and quick to do. This might be necessary in the
future if better options or new research results become available. Also, new
developments on operating system design may render current IPC bench-
marks obsolete, which means that this ability to change is indeed very im-
portant to the API.

In the end, it was decided that due to signi�cant structural changes from
the Linux kernel 2.2 to 3.0, the more trustworthy, future-proof results were
likely to be the most recent ones. This means that (bu�ered) shared
memory will be used for local IPC communication. There are also several
additional advantages for using shared memory: they provide a very high
level of scalability, since only two external handlers are needed by process
(this also simpli�es the process of �nding and connecting to speci�c pro-
cesses); it is connectionless (unlike sockets), thus avoiding the need for addi-
tional overhead: and �nally the messages transmitted are discrete, avoiding
the necessity of a boundary checking mechanism.

Updated - April 2012: The original results and conclusion obtained

from this section did not have in account the e�ects of bu�ering. Due to this,

Message queues were initially chosen for local IPC, and the API's implemen-

tation was based on this mechanism as well. Nevertheless, the performance

results from these mechanisms are not very far o� from each other, and

Message queues possess additional advantages to Shared memory, namely

the presence of a message prioritization mechanism (which will be useful for

RoutUM and possibly other applications), and their tight integration with the

schedulers from real-time operating systems (which, if desired, should be able

to produce more predictable results).

3.4.3 Remote IPC

Opting for a remote IPC communication mechanism poses a signi�cantly
di�erent challenge from the one discussed for local communication. This is
because, unlike local IPC, the transmission medium isn't static and known.
For this project, only ethernet-based (IP) computer networks will be ap-
proached, as they represent the very large majority of computer networks.

74

Research

Only network-based socket IPC communications will be used, and the API
should be able to work optimally on any type of IP-based network. This may
be the Internet, a Wide Area Network (WAN), Local Area Network (LAN),
mobile networks or anything in between.

The main challenge for remote IPC communication comes with the de-
cision of the transport protocol to use. There are only two Transport Layer
protocols which have virtually universal support in network systems (includ-
ing routers with Network Address Translation (NAT)) - TCP and UDP.
For an even higher throughput, these protocols could be set up with Di�-
Serv/Quality of Service (QoS) parameters. There are, however, several dis-
advantages with both protocols, such as:

• The throughput advantage of UDP comes at the cost of absence of
error-correction, �ow and congestion control, and guaranteed in-order
delivery of packets. These features are all required by the API.

• TCP only allows a connection-oriented server/client model, which in-
troduces signi�cant complexity and overhead to the system. This is
because each process needs to be able to establish a connection and
maintain its state with tenths, or even hundreds of peers;

• TCP may scale poorly to sudden data bursts due to the congestion
avoidance mechanisms it uses.

• Due to its connection-oriented nature, TCP doesn't allow the trans-
mission of broadcast data.

• Unlike UDP, TCP is stream-based, thus requiring a message delin-
eation mechanism.

Neither of these two protocols are ideal for the type of connection and
throughput requirements of the API. UDP would (theoretically) provide a
much higher throughput, lower latency and reduced overhead, while failing to
provide some fundamental features to the API. TCP has more overhead and
higher latency, but the same mechanisms that may hold back transmission
rates in TCP are the same ones which maximize performance on practical,
high-latency, bandwidth-limited and/or error-prone networks. Features such
as congestion control, error checking and in-order delivery all help in ensuring
that all the data can be transmitted correctly over limited and unpredictable
networks as fast as possible. In short, there are only two viable options
available: using TCP or any other protocol built over UDP that can provide
the features needed by the API. For the latter case, several protocols could
be used, such as:

• Stream Control Transmission Protocol (SCTP)5

• Micro Transport Protocol (MTP or µTP)6

• Reliable User Datagram Protocol (RUDP)7

5http://tools.ietf.org/html/rfc3286
6http://www.utorrent.com/help/documentation/utp
7http://tools.ietf.org/html/rfc1151

75

http://tools.ietf.org/html/rfc3286
http://www.utorrent.com/help/documentation/utp
http://tools.ietf.org/html/rfc1151

3.5 Security

• Transactional Transmission Control Protocol (T/TCP)8

• Multipurpose Transaction Protocol (MTP)9

• UDP-based Data Transfer Protocol (UDT)10

All of these protocols are layered over UDP. Di�erent versions and/or
con�gurations of the Transmission Control Protocol (TCP) protocol are also
taken into consideration.

Due to the high complexity involved with the task of opting for a trans-
mission protocol, it would make more sense to test them only after the API
and the test application are up and running. References such as [17] also
suggest that most protocols are optimized to the point where the di�erences
between them are generally not very substantial and highly dependent of the
network characteristics. There are many unknown variables in a practical
scenario, and the limited time available for this dissertation would simply
make it impossible to cover all scenarios and test all con�gurations for an
overall balanced choice. This is because the performance of a protocol is
highly dependent on the application's data transmission patterns, number
of hosts in the system, the hardware, network layout, etc. In short, whatever
test could be done in this limited time would turn out to be incomplete and
inconclusive. Because of this, it was decided to use TCP/IP (in its default
con�guration) as a remote IPC mechanism, due to its maturity and the rea-
sons described above.

Computer networks are inherently insecure, so authentication and con-
�dentiality should be part of the API's implementation. Data integrity
is also part of the security requirements, but it's already implemented by the
TCP protocol.

3.5 Security

Security mechanisms should be entirely optional and used only when
justi�ed so, since they introduce overhead and complexity to the system.
The methods employed should be proportional to the level of trust of the
users involved in the system, the IPC mechanism, the transmission medium
and the application's requirements.

At an early stage, only the two most essential security options will be
available in the API: authentication and con�dentiality. These should
be able to be turned on/o� on a communication context basis.

8http://tools.ietf.org/html/rfc1644
9http://www.dataexpedition.com/MTP/

10http://udt.sourceforge.net

76

http://tools.ietf.org/html/rfc1644
http://www.dataexpedition.com/MTP/
http://udt.sourceforge.net

Research

3.5.1 Central Server Access

Since we need to use a central server to coordinate all processes in the
system, it would make sense, from a security perspective, to demand both
authentication and con�dentiality on connections established from processes.
To achieve this, a root server certi�cate will be created and contained within
every instance of the API.

3.5.2 Inter-Process Access

It would be a viable option to implement a Public Key Infrastructure
(PKI) to coordinate security for all processes in the system. If required,
a symmetrical session key could be securely exchanged after authentication
so as to provide con�dentiality (and authentication) at a lower performance
penalty.

Authentication is applied on a per-process basis and each instance should
have its own certi�cate. This way, it is possible to reduce the likelihood that
a malicious application will be able to connect to the system without being
noticed.

3.5.3 Implementation

The OpenSSL11 library should provide all the cryptographic functions
needed in C language, as well as the required tools to implement a PKI. With
some additional guidelines from the publicly available cipher recommenda-
tions from the National Institute of Standards and Technology (NIST),12 it
was decided to use the following algorithms by default:

• Certi�cate algorithms - These algorithms are used to create key
pairs and to implement hash functions for digital signatures. From a
system management perspective, it is relatively easier to revoke and
emit new certi�cates to each API instance. For this reason, and to
increase authentication speed between instances, a smaller key will be
used here:

� Digital signature - keys: RSA (1024 bit for API instances, 2048
bit for the central server);

� Digital signature - hash algorithm: SHA-2 (256 bit);
� Padding scheme: PKCS #1 v1.5 PSS.

• Authentication and session establishment algorithms - These
are used for authentication of processes and session key negotiation.
Following the same performance-security tradeo� as before, the key

11http://www.openssl.org/
12http://www.nist.gov/manuscript-publication-search.cfm?pub_id=903633

77

http://www.openssl.org/
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=903633

3.5 Security

size used for authentication between API instances is smaller than
authentication between them and the central server:

� Key establishment: Di�e-Hellman (1024 bit for API instances,
2048 bit for the central server);

� Protocol: Secure Sockets Layer (SSL).

• Session algorithms - Session keys are relatively short-lived, being
only as valid as the connection itself. There is an important tradeo�
to consider here: whether it is more important to guarantee con�den-
tiality or authenticity. The latter can be achieved either through Mes-
sage Authentication Codes (MACs) or through the session key (since
only the two peers involved have knowledge of it). MACs are orders
of magnitude slower than symmetric-key encryption, so the latter be-
comes a more attractive proposition when the API's priorities are taken
into consideration. Assuming that authenticity is more important than
con�dentiality, a relatively small key size should be enough to guaran-
tee it, while providing better performance than larger key sizes:

� Symmetric key cipher: AES-128;
� Hash function: SHA-2 (224 bit).

These algorithms and key sizes should provide an adequate compromise
between performance and security. They are to be used only as default val-
ues. If necessary, they should be able to be changed through a con�guration
�le, for instance.

Authenticity can be applied either on a per-connection or a per-message
basis. The latter involves the use of digital signatures for each message. Since
a symmetric session cipher is an order of magnitude slower than any digital
signature checking algorithm, it would make more sense from a performance
perspective to use it whenever per-packet authenticity is necessary, even if
con�dentiality isn't required.

The system administrator should have the options to enable or disable
authentication and con�dentiality on a per-context and per-IPC mechanism
basis.

The use of IPsec was considered, but discarded due to its high overhead
and incompatibility with several routers.

3.5.4 Further Development

The solution described in this section should be adequate for the majority
of use cases. Nevertheless, further developments from a security perspective
could include features such as data tampering and non-repudiation preven-
tion mechanisms, support of Access Control Lists (ACLs) for application-
speci�c features, individual settings for peers, etc.

78

Research

3.6 Resource Identi�cation

At least two types of Unique Identi�er (UIDs) are required by the system:

• API instance UID - This is required to uniquely identify each and
every instance of the API in the system.

• Operating system instance UID - This is required to enable an API
instance to decide if it should use a local or remote IPC mechanism.
Note that (ideally) it is important to uniquely distinguish between
operating systems and not the physical machine, since the former could
be running in a virtual machine.

The API instance UID will be automatically attributed when a peer
is registered in the database. This UID will then be passed as an argument
to the initialization function of the peer's API.

At the time of writing, there isn't a method that guarantees the auto-
matic generation of an 100% unique and trustworthy Operating system
instance UID. For instance, network MAC address can be spoofed, BIOS
memory doesn't contain a big enough pool of di�erent values and OSs do not
possess unique identi�ers. Nevertheless, one of the most reliable and com-
mon methods used to uniquely identify a machine is through the Medium
Access Control (MAC) address of the Network Interface Controller (NIC),
so this method ought to be used by the API as well. In theory, the MAC
address should also allow the distinction between Operating Systems (OSs)
running in virtual machines, since the virtualization layer typically emulates
network interfaces as well (along with unique MAC addresses).

In the context of this dissertation, the API instance UID will simply be
referred as �peer ID�, and the operating system instance UID as �host ID�.

3.7 Central Server

Figure 3.14 depicts the minimum required functionality that should be
provided by the central server.

The central server is used to store and manage information about the
peers and contexts in the system. It is constituted by a database and a
front-end application, whose processes in the system will connect to. The
system's con�guration includes the following information:

• A list of communication contexts, including:

� Common name;
� List of peers;
� Security settings (authentication and con�dentiality).

• A list of peers, including:

79

3.7 Central Server

Administrator

Central Database

Add/Remove peers

Check service

status

Add/Remove contexts

Setup PKI

Emit certificates

Associate process

to peers

Change context

configuration

«uses»

«uses»

«uses»

API instance

Get peers and

contexts list

Figure 3.14: Use cases diagram for the central server

� Process UID;
� Host UID;
� Common name;
� List of communication interfaces and their respective con�gura-
tions;

� The X.509 certi�cate;
� Whether of not it is allowed to connect (certi�cate revocation
list).

An API instance can request a list of peers and their respective contexts
at any time. This list contains only the peers it is allowed to connect to.

80

Chapter 4

Implementation

A software prototype was developed to ful�ll the requirements of the re-
ferred API. The resulting project is (mostly) based on the knowledge and
speci�cations discussed on the previous chapters, and it was named Rou-
tUM's Distributed Computing (RDC) API.

4.1 Tools

The RDC API was compiled and tested under Ubuntu 11.10 (32-bit Linux
kernel v3.0.0-15). The following tools were used in this project:

• GNU C Compiler (v4.6.1)
• GNU C Debugger GDB (v7.3)
• GNU Make (v3.81)
• Valgrind (tool for memory debugging, v.3.6.0)
• SQLite 3 development libraries (v3.7.2)
• OpenSSL C development libraries (v1.0.0e)
• Doxygen (documentation generator, v1.7.1)
• Geany (lightweight C IDE, v0.19.1)
• SQLite Database Browser (v1.3)

4.2 Architecture Overview

The API's project was split into the following sub-projects:

• Database management API - Allows the creation and manipulation
of the central database;

• Database management application - Implements the database man-
agement API;

• Server daemon - The daemon process responsible for the authenti-
cation and handling of requests from peers;

81

4.2 Architecture Overview

• Peer API - The core API, used to communicate between peers in the
system;

• Peer API test application - Implements the Peer API.

The relationships between these sub-projects are represented in Figure
4.1. This scheme contrasts slightly with the one established in Figure 3.1.
Some changes were made to the architecture during its implementation, be-
cause they introduce several advantages to the system. These changes will
be discussed later in this chapter.

Database API

Server daemon

Database

P. API test app.

Peer API

Database management app.

Database API

P. API test app.

Peer API

P. API test app.

Peer API...

Figure 4.1: Implementation overview

The central server functions are now carried out by two distinct ap-
plications: a lightweight daemon and a database front-end application. A
Structured Query Language (SQL) database was chosen to store all data on
the central server. It contains the up-to-date information of every context
and peer registered in the system. A peer can only connect to the system if
it has an entry in the database.

The Database management API contains all the functions needed
to establish a connection to a Database Management System (DBMS) (or
similar software), create a new database, read and manipulate its contents.
Having these functions in API form makes it possible to easily integrate
them in virtually any application. In this particular project, a dedicated
database management application was built to implement this API, al-
lowing the manipulation of the database from a CLI. But this API could as
well be implemented in any other application. As an example, it could be
incorporated in the peer API test application, thus allowing a peer to add
itself to the database, for instance.

The server daemon establishes an interface between the database and
the peers. Since it works purely as a system service and does not require
interactivity with a user, it was decided to develop it as a deamon. When a

82

Implementation

peer wishes to connect to the system, it must �rst authenticate itself with
this daemon. If the authentication has been successfully performed, the dae-
mon retrieves a list of peers (and contexts) from the database and sends it to
the peer. The daemon itself is stateless and all events are reported to syslog.

Security

The security architecture proposed during research had to be dropped
due to implementation issues. The main reason is related to the fact that
the OpenSSL library supports only TCP/IP sockets and standard �le de-
scriptors1 for PKI-based authentication. A manual implementation of the
SSL protocol would be possible, but it would require far too much work and
testing for it to become a viable proposition for this dissertation.

The solution adopted was to remove the PKI-based authentication and
use key �les instead. When a new peer is added to the system (through
the database management application), a random keypair is generated. The
public key from that pair is stored in the database and the private key in a
�le. This �le should then be used by a peer API instance so it can authen-
ticate itself.

Had the previous architecture been kept, it would be necessary to add
another authentication method for the IPC mechanisms not supported by
OpenSSL. This would introduce signi�cant architectural and code fragmen-
tation to the system. The new solution guarantees that the code and archi-
tecture are kept the same regardless of the IPC mechanism being used.

The cryptographic algorithms and key sizes that were used are similar to
the ones speci�ed in Section 3.5.3. In other words, they are:

• Keypair algorithms

� Key generation and digital signature: RSA (1024 bit);
� Digital signature - hash algorithm: SHA-2 (256 bit);
� Padding scheme: PKCS #1 v1.5 PSS.

• Session key algorithms

� Symmetric key cipher: AES-128 CBC;
� Hash function: SHA-1 (224 bit).

Peer initialization

Figure 4.2 shows the sequence of events that occur when a peer joins the
system.

One of the arguments of the initialization function (named rdc_init())
is a struct with the con�guration of the peer API instance. It includes the

1http://www.openssl.org/docs/crypto/bio.html

83

http://www.openssl.org/docs/crypto/bio.html

4.2 Architecture Overview

Peer API test

application

Peer API

instance

Server

daemon

rdc_init()

Send name

Connect

Database

Get peer data

Query results

Send peer ID

Send question

Load private key

Send reply

Send host ID + local interface list

Update host ID + interface list

Get peer list

Return peer list

Send peer list

Disconnect

Return status

Alt

Deny access

[Peer name not found]

[Peer name found]

Figure 4.2: Peer initialization sequence

name of the peer, the con�guration of the local IPC interfaces and the private
key �le. During initialization the peer is authenticated by the server and its
IPC interface con�guration and host ID are sent as well. This information is
then stored in the database. Finally, a list with all the peers (and contexts)
which this API instance is allowed to connect to is sent by the daemon.

The peers that are already connected to the system don't know which
ones are active or not. The only way to discover it is to attempt to connect
to them with the latest known interface con�guration from that peer. On
the other hand, when a new peer connects to the system, it tries to send
an updated list of its own local IPC interfaces and host ID to all the other
known peers (it is allowed to connect to) on the network. This way it is
possible to ensure that every peer on the network has updated information

84

Implementation

about each other. Figure 4.3 shows the corresponding sequence diagram of
this transaction.

Peer API

instance 1

Peer API

instance n

Connect

Loop [for each peer as n]

Send host ID + local interface list

Disconnect

Figure 4.3: Peer-to-peer interface information update sequence

Redundancy

In any fully centralized system (Figure 4.4(a)), a single failure can stop
the whole system from working properly. One of main motivations behind the
architectural changes during the implementation phase was the introduction
of an increased level of redundancy, scalability and fault tolerance into the
system.

As the central server daemon is stateless, it is possible to use several
instances of it in the same system. So two or more daemons can connect
to the same central database (Figure 4.4(b)) or an instance of a database
(Figure 4.4(c)) which is automatically replicated by the DBMS in charge.
Figure 4.4 illustrates some scenarios enabled by this architectural change.

In a system with multiple server daemons, the peers can connect to them
in two ways: either by using the IP address of a speci�c server, or through
DNS domain names. DNS records can contain more than one IP address for
each domain. This way, the user just needs to specify an address in the peer
API's con�guration, and it should randomly choose one address from the IP
list given by the DNS.

Since it is possible to split the work over multiple machines, another
advantage of this decentralized approach is an increase in performance on
large systems (i.e., an increase in scalability).

85

4.3 Implementation Details

Server
daemon

Peer API
instance

Peer API
instance

Peer API
instance

Peer API
instance

Peer API
instance

Peer API
instance

Centralized
Database

(a) Centralized database and server daemon

Server
daemon

Peer API
instance

Server
daemon

Server
daemon

Peer API
instance

Peer API
instance

Peer API
instance

Peer API
instance

Peer API
instance

Centralized
Database

(b) Centralized database with server dae-
mon redundancy

Server
daemon

Peer API
instance

Server
daemon

Server
daemon

Replicated
Database

Peer API
instance

Peer API
instance

Peer API
instance

Peer API
instance

Peer API
instance

Replicated
Database

Replicated
Database

(c) Full database and server daemon redun-
dancy

Figure 4.4: Architectural redundancy scenarios

4.3 Implementation Details

As previously stated, one of the main requirements in this project is code
e�ciency. In practice, most of the decisions taken during the architectural
and implementation phases of the software were in�uenced by this require-
ment, including ones that imply a performance/code complexity tradeo�.
Some of the steps taken to ensure high code e�ciency include:

• Usage of e�cient algorithms and data structures whenever possible;
• Usage of preprocessor directives to hide debug code;
• A low amount of function calls, threads, mutexes, data type casts, and
memory allocations;

• Parallelization of the code, ensuring an optimal use of all available
resources (namely, multi-core processing);

• On some instances, GCC's atomic locks2 were used for speci�c variables
(due to their small overhead when compared to mutexes);

2http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html#

Atomic-Builtins

86

http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html#Atomic-Builtins
http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html#Atomic-Builtins

Implementation

• CPU cache misses were taken into account when designing data struc-
tures.

Note that the C language doesn't contain classes or hereditary concepts
usually found on higher-level languages. This makes for a fuzzier modular-
ization of the code. Nevertheless, special care was taken to simplify module
replacement.

4.3.1 Project Structure

The software project is made up of several folders and �les, namely:

• ./ - Project root folder.

� make�le - Con�guration �le for Make.
� doxy�le - Settings �le for Doxygen.

• ./include/ - Include �les for the peer and database management API
libraries

� db.h - Database management API include �le.
� rdc.h - Peer API include �le.

• ./lib/ - Peer and database management API libraries

� librdc.a and librdc.so.1.0.1 - Peer API include libraries.
� librdcdb.a and librdcdb.so.1.0.1 - Database management API
libraries.

• ./src/rdc/api/ - Peer API root folder.

� rdc.c and rdc.h - Main peer API interface and functions.
� ipc.c and ipc.h - IPC interface implementation interface.
� evt_queue.c and evt_queue.h - An implementation of a FIFO
event queue.

� btree.c and btree.h - A generic implementation of an AVL bi-
nary tree.

� api_dtypes.c and api_dtypes.h - Data type de�nitions and
local data management functions.

• ./src/rdc/api/ipc/ - IPC interface implementation for peer API.

� tcpip.c and tcpip.h - TCP/IP IPC interface implementation.
� mqueue.c and mqueue.h - Message queue IPC interface imple-
mentation.

• ./src/rdc/shared/ - Common �les.

� crypto.c and crypto.h - Cryptography related functions.

87

4.3 Implementation Details

� dtypes.c and dtypes.h - Global data types.

• ./src/rdc/srv/ - Server-side applications

� cf_parser.c and cf_parser.h - Con�guration �le parser.
� const.h - Server-side global constants.
� db.c and db.h - Database management API.
� rdcd.c - RDC server daemon.
� rdcm.c - Database manager application.

This chapter contains several �le diagrams3 to describe the contents and
dependencies of the source �les. In these diagrams, the red color is used to
represent APIs, blue for internal �les used by the APIs, orange is used to
represent executables and white to reference �les from other directories. The
content of all the project's headers can be found in Appendix A.

Figure 4.5 shows the �le diagram for common �les (./src/rdc/shared/)
in the API.

crypto
«File»

RDC_CRY_SYM_KEYLEN:RhpString=16

RDC_CRY_PUBK_MAX_LEN:RhpString=272

RDC_CRY_HASH_ALG:RhpString="SHA1"

RDC_CRY_SIGN_SIZE:RhpString=128

srand_called:bool=false

ssl_init:bool=false

_rdc_cry_init():void

rdc_cry_genkey():bool

rdc_cry_free_key():void

rdc_cry_encrypt():bool

rdc_cry_decrypt():bool

rdc_cry_genkeypair():bool

rdc_cry_encrypt_pubk():bool

rdc_cry_sign():bool

rdc_cry_verify():bool

rdc_cry_encrypt_privk():bool

rdc_cry_decrypt_privk():bool

rdc_cry_decrypt_pubk():bool

rdc_cry_load_pubk():bool

rdc_cry_load_privk():bool

rdc_cry_save_privk():bool

rdc_cry_serialize_pubk():bool

rdc_cry_randword():unsigned char *

rdc_cry_free_keypair():void

dtypes
«File»

RANDW_SIZE:RhpString=32

RDC_OK:RhpString=0

RDC_ERROR:RhpString=1

RDC_ERROR_CONF:RhpString=2

RDC_ERROR_IF_INIT:RhpString=3

RDC_ERROR_CONN:RhpString=4

RDC_ERROR_AUTH:RhpString=5

RDC_ERROR_FREAD:RhpString=6

RDC_ERROR_INT:RhpString=7

RDC_ERROR_PEER_NF:RhpString=8

RDC_ERROR_CTX_NF:RhpString=9

RDC_ERROR_DNS_ERR:RhpString=10

RDC_ERROR_SHUTD:RhpString=11

RDC_ERROR_TBIG:RhpString=12

RDC_ERROR_EXT:RhpString=13

RDC_WARN_NOPEERS:RhpString=50

RDC_WARN_CONF:RhpString=51

RDC_WARN_INT:RhpString=52

rdc_dt_serialize_contexts():void

rdc_dt_deserialize_contexts():void

rdc_dt_serialize_interfaces():void

rdc_dt_deserialize_interfaces():void

rdc_dt_free_peers():void

rdc_dt_free_contexts():void

«Usage»

«Usage»

PackageViewshared

Page 1 of 1

Figure 4.5: File diagram for shared �les of the RDC API

3A �le diagram is a proposed equivalent of an Uni�ed Modeling Language (UML)
Class Diagram for functional languages. See http://public.dhe.ibm.com/common/ssi/

rep_wh/n/RAW14058USEN/RAW14058USEN.PDF for more details.

88

http://public.dhe.ibm.com/common/ssi/rep_wh/n/RAW14058USEN/RAW14058USEN.PDF
http://public.dhe.ibm.com/common/ssi/rep_wh/n/RAW14058USEN/RAW14058USEN.PDF

Implementation

4.3.2 Limitations

By examining and de�ning realistic limits on the maximum number of
peers and contexts in the system, it may be possible to reduce the overhead
of the messages exchanged between the peers (as their identi�ers may be
shorter) and even to save space on the central server's database. The chosen
limits were picked from a multiples of 8 binary digits. The maximum allowed
number of peers was set at 224, or 16.777.216. Before the development of
the API, a target was de�ned in the order of tens of thousands of peers
supported. An initial limit of 216, or 65.536 was chosen, but due to the way
sequence numbers are stored in most databases (always increases when a
new peer is added and never decreases), the next highest limit was picked
just for safety. The maximum number of contexts on a system should be
much lower than the number of peers, so a limit of 216, or 65.536 contexts,
was set.

4.3.3 Database

The database for the API's prototype is based on SQLite. The main rea-
son behind this decision is its small size. Proper DBMSs are also cumbersome
to deploy and con�gure, and they don't bring any signi�cant advantages dur-
ing the prototype phase. On a real working scenario though, a DBMS can
introduce several important advantages to the system, such as remote access,
increased security and database replication.

Figure 4.6 represents the database structure used in this system. It is
based on the requirements identi�ed in Section 3.7

peers

PK id:INTEGER

 name:TEXT

 host_id:TEXT

 pubk:BLOB

 created:DATETIME

contexts

PK context_id:INTEGER

 name:TEXT

 req_auth:INTEGER

 req_conf:INTEGER

 created:DATETIME

memberships

PK,FK1 context_id:INTEGER

PK,FK2 peer_id:INTEGER

interfaces

PK,FK1 peer_id:INTEGER

 type:INTEGER

 config:BLOB

1

*

1*

1

*

Figure 4.6: Database structure

The table contexts stores all the information related to simulation con-
texts. Each context has the option to individually enable or disable authen-
tication and/or con�dentiality as needed.

89

4.3 Implementation Details

The table peers stores all information related to a peer instance. The
public key of a peer is stored in Base64 format. The host_id is a value
which uniquely identi�es the host where the peer is located in. This value
is used by the peers to select a local or remote IPC interface, depending on
whether the host ID of the remote peer is the same as the local one or not,
respectively.

Each row on the table interfaces stores the information of an IPC in-
terface of a peer. This information is used by a peer to know which IPC
interfaces are available on the other peers and how it can reach them.

The table memberships establishes the (many-to-many) relationships
between contexts and peers.

All contexts and peers can be uniquely identi�ed through an ID num-
ber or a unique name. The ID number is primarily used internally in the
API for faster access and avoid other minor issues related with the use of
strings. The name is primarily used as a convenient and human-readable
way to identify a peer or context.

Note that an additional �eld might be necessary on the tables peers

and interfaces due to the way some databases store binary blobs. Some
DBMSs don't store the size of the blob, so an additional �eld is needed for
it.

4.3.4 Transmission and Authentication Protocols

All messages exchanged between peers follow a common format, as shown
in Figure 4.7:

0 15 16 20 21 23 24 31

Message length

Destination peer ID

Source Peer ID Flag Type

Payload

· · ·

Figure 4.7: Peer-to-peer transmission protocol structure

The �ag �eld was inserted so that the �nal sequence is a multiple of 8.
This is a �xed sequence of bits (10110), and can be used to, for instance,
check if the version of the RDC API is compatible between di�erent peers.

The �elds message length, destination peer ID and Source peer
ID are optional. They are only used if the IPC mechanism justi�es so. For
instance, the message length �eld is present in TCP/IP connections, but not
in a message queue IPC. This is because the �rst is stream-based with no
message boundaries, while the latter isn't. Similarly, TCP/IP connections

90

Implementation

don't use the destination and source ID �elds, because these never change
during the lifetime of the connection. With message queues, the source ID
may be di�erent, so this �eld is present.

The �eld type and the payload structure can assume several values de-
pending on the type of message it contains. These can be:

1. Regular messages - These are messages exchanged by the application
that implements the RDC API. The payload structure can be seen in
Figure 4.8. The Message Authentication Code (MAC) �eld is optional
and only present if the message is being sent from or to a context that
requires it;

0 15 16 31

Destination Context Source context

Message content

· · ·

MAC (optional)

...

(128 bytes)

Figure 4.8: Payload structure of a regular/urgent message

2. Urgent messages - The payload structure is identical to regular mes-
sages, but they are given higher priority inside the peer API;

3. Interface update noti�cation - These messages are sent by a re-
cently connected peer to notify other peers about their interface and
host ID information. Its payload structure can be seen on Figure 4.9;

4. Authentication messages - These messages are used to authenticate
and establish a session key between peers. Authentication is a four step
process and the payload for each message can be seen in Figure 4.10.
These steps must be executed in order. Any failure to complete a
step successfully results on a single-byte return message (containing
the character �n�);

As seen in Figure 4.10, a session key is exchanged between peers during
the authentication process. This key is valid for the lifetime of the connec-
tion. If a message has a context with con�dentiality enabled as a source or
destination, the session key will be used to cipher the message.

Authentication between two peers is performed if they both belong to
a context with con�dentiality and/or authentication enabled. The authen-
tication process is then initiated as soon as both peers have established a

91

4.3 Implementation Details

0 31

Host ID

Interface information
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Signature

...

(128 bytes)

Figure 4.9: Payload structure of an interface update message

connection. If they both initiate authentication at the same time, the peer
with the highest ID becomes the leader in the process.

Note that the transmission protocol may be altered due to some very
speci�c needs of an IPC interface, or as an improvement to the transmission
characteristics. But these modi�cations ought to be implemented inside the
�les that contain the interface implementation itself. Some examples of these
needs may include sequence numbering, error checking and/or correction and
the incorporation of synchronization �ags.

4.3.5 Database Management API

In this project, an SQLite implementation was used for the database API,
due to reasons discussed in Section 4.2. Appendix A.1 shows the contents of
the API's header �le. It is possible to implement another DBMS, an LDAP
directory, or a even a distributed database with minimal change of code
(apart from the implementation itself). Besides the modi�cation/replace-
ment of the implementation �le, one only has to change the data structures
rdc_db_t and rdc_db_cfg.

Since SQLite does not store the size of binary blobs correctly, one addi-
tional �eld was added to the table peers, named pubk_len, and another to
the table interfaces, named config_len. This is used to store the size of
the binary blobs that contains the public key and the con�guration data of
the IPC interfaces of the peers, respectively.

The use of an LDAP directory was also considered due to its higher read
performance, but ultimately dropped. The main reason for this is the high
number of writes to the database and the absence of complex queries in an
LDAP.

92

Implementation

0 31

Secret question

...

(128 bytes)

(a) Step 1 (Peer A to Peer B)

0 31

Secret question

...

(128 bytes)

Reply

(16 bytes)

(b) Step 2 (Peer B to Peer A)

0 31

Reply

(16 bytes)

(c) Step 3 (Peer A to Peer B)

0 31

Session key

(16 bytes)

(d) Step 4 (Peer B to Peer A)

Figure 4.10: Payload structure of authentication messages

4.3.6 Database Management Application

The database management application (named rdcm) allows a user to ac-
cess all the functions of the database management API through a traditional
CLI interface. Figure 4.11 shows the �le diagram for the database manage-
ment application (rdcm) and server daemon (rdcd, which will be discussed
in the next section). Con�guration variables for the database API are read

93

4.3 Implementation Details

from a con�guration �le (by rdcm).

rdcd
«File»

run:int

srv_sockfd:int

db:rdc_db_t

cfg_db_path:char*

cfg_lstn_port:unsigned short

cfg_lstn_addr:char*

signal_handler():void

print_usage():void

print_version():void

cfg_read():void

client_thread():void *

main():int

rdcm
«File»

cfg_db_path:char*=NULL

cfg_cert_path:char*=NULL

print_help():void

print_usage():void

print_version():void

cfg_read():void

main(argc:int,argv:char * %s[]):int

cf_parser
«File»

cp_open():bool

«Usage» «Usage»

db
«File»

skip_peer_mtx:bool=false

skip_intf_mtx:bool=false

rdc_db_connect():int

rdc_db_disconnect():void

rdc_db_add_context():int

rdc_db_add_peer():int

rdc_db_add_membership():int

rdc_db_remove_context():int

rdc_db_remove_peer():int

rdc_db_get_contexts():int

rdc_db_get_peers():int

rdc_db_get_memberships():int

rdc_db_get_interfaces():int

rdc_db_update_interfaces():int

rdc_db_update_hostid():int

rdc_db_update_security():int

_rdc_db_create():int

«Usage»«Usage»

const
«File»

RDC_CFG_FILE:RhpString="../cfg/rdcd.conf"

«Usage» «Usage»

shared::dtypes
«File»

shared::crypto
«File»

PackageViewsrv

Page 1 of 1

Figure 4.11: File diagram of the database management and server daemon
�les of the RDC API

The following functions are available in the application:

• Create a new database;
./rdcm -c

• Insert a context;
./rdcm -A [context_name]

• Remove an existing context;
./rdcm -R [context_name]

• Edit context security parameters;
./rdcm -E [context_name] [use_confidentiality] [use_authentication]

• Display a list of contexts;
./rdcm -L

• Insert a peer;
./rdcm -a [peer_name]

• Remove an existing peer;

94

Implementation

./rdcm -r [peer_name]

• Display a list of peers;
./rdcm -l

• Create a peer-context membership;
./rdcm -m [context_name] [peer_name]

• Display a list of peer-context memberships;
./rdcm -s

This application was developed to be script-friendly, so as to be used
with automated deployment scripts. All parameter values are entered as
arguments in the CLI. The application is non-interactive and never waits for
user input.

4.3.7 Central Server's Daemon

The central server's daemon (named rdcd), is responsible for the authen-
tication and exchange of RDC network information between peers. Figure
4.11 shows the �le diagram for the server daemon.

As the name suggests, this application is not interactive. All events are
reported to syslog, and during initialization (before the process is fork()'ed)
they are also reported to stdout. The con�guration is read from same con-
�guration �le used by rdcm.

The peers connect to the server through a regular TCP/IP connection.
This daemon is multi-threaded and can serve multiple peers at the same
time, following the procedure shown in Figure 4.2.

4.3.8 Peer API

The peer API is responsible to exchange the information between other
peers. Its header is formed by eight functions, several de�nitions and data
structures, as seen in Appendix A.2. Figure 4.12 shows its �le diagram. The
interface's functions are:

• rdc_init() - Initializes a new instance of the RDC API;
• rdc_destroy() - Finalizes an RDC instance and releases all resources
associated with it;

• rdc_sendmsg() - Sends a message to a peer;
• rdc_recv_evt() - Retrieves an event from the event queue;
• rdc_free_evt() - Frees the resources associated with a retrieved event;
• rdc_get_peers() - Returns the information of all the peers in the
system or only a speci�c peer;

• rdc_get_contexts() - Returns the information of all the contexts in
the system or only a speci�c context;

• rdc_update_db() - Forces an update to the local RDC network database.

95

4.3 Implementation Details

tcpip
«File»

rdc_ipc_tcpip_init():int

rdc_ipc_tcpip_destroy():void

rdc_ipc_tcpip_handle_create():int

rdc_ipc_tcpip_handle_destroy():void

rdc_ipc_tcpip_handle_sendmsg():int

rdc_ipc_tcpip_cfg_serialize_len():unsigned ...

rdc_ipc_tcpip_cfg_serialize():void

rdc_ipc_tcpip_cfg_deserialize():void

rdc_ipc_tcpip_cfg_destroy():void

_rdc_ipc_tcpip_peer_thread():void *

_rdc_ipc_tcpip_srv_thread():void *

evt_queue
«File»

rdc_eq_init():bool

rdc_eq_put_tail():int

rdc_eq_put_head():int

rdc_eq_get():int

rdc_eq_get_total():int

rdc_eq_destroy():void

«Usage»

rdc
«File»

_rdc_msg_generate():void

_rdc_peer_auth_revoke():void

_rdc_peer_auth_step():void

_rdc_msg_process():void

_rdc_update_db():int

_rdc_thread_evt():void *

_rdc_peer_connect():int

_rdc_thread_ifu():void *

_rdc_peer_auth():int

rdc_init():int

rdc_destroy():void

rdc_sendmsg():int

rdc_recv_evt():int

rdc_free_evt():void

rdc_update_db():int

rdc_get_peers():struct rdc_peer_ex *

rdc_get_contexts():struct rdc_ctx_ex *

«Usage»

ipc
«File»

rdc_ipc_init():int

rdc_ipc_destroy():void

rdc_ipc_handle_create():int

rdc_ipc_handle_destroy():void

rdc_ipc_handle_sendmsg():int

rdc_ipc_handle_get_type():void

rdc_ipc_cfg_serialize_len():unsigned int

rdc_ipc_cfg_serialize():void

rdc_ipc_cfg_deserialize():void

rdc_ipc_cfg_destroy():void

«Usage»

mqueue
«File»

MQ_SEND_TIMEOUT_S:RhpString=5

rdc_ipc_mqueue_init():int

rdc_ipc_mqueue_destroy():void

rdc_ipc_mqueue_handle_create():int

rdc_ipc_mqueue_handle_destroy():void

rdc_ipc_mqueue_handle_sendmsg():int

rdc_ipc_mqueue_cfg_serialize_len():unsigne...

rdc_ipc_mqueue_cfg_serialize():void

rdc_ipc_mqueue_cfg_deserialize():void

rdc_ipc_mqueue_cfg_destroy():void

_rdc_ipc_mqueue_rcv_thread():void *

«Usage»

«Usage»

btree
«File»

avl_find():node

avl_insert():int

avl_delete():int

btree_init():void

btree_destroy():void

btree_add():bool

btree_remove():bool

btree_search():void *

btree_size():unsigned int

«Usage»
api_dtypes

«File»

RDC_MSG_TYPE_MASK:RhpString=0XF8

RDC_MSG_TYPE_FLAG:RhpString=0XB0

RDC_AUTH_TIMEOUT:RhpString=3

RDC_AUTH_SCRT_LEN:RhpString=16

RDC_AUTH_ESCRT_LEN:RhpString=128

_RDC_EVT_NEW_CONN:RhpString=40

RDC_EVT_MSG_RECV:RhpString=60

RDC_EVT_UMSG_RECV:RhpString=61

RDC_EVT_IFU_OK:RhpString=62

RDC_EVT_IFU_FAIL:RhpString=63

RDC_EVT_AUTH_FAIL:RhpString=64

RDC_EVT_IF_DOWN:RhpString=65

RDC_EVT_IF_UP:RhpString=66

RDC_EVT_PEER_NEW:RhpString=67

RDC_EVT_PEER_DEL:RhpString=68

RDC_EVT_CTX_NEW:RhpString=69

RDC_EVT_CTX_DEL:RhpString=70

RDC_EVT_PEER_DOWN:RhpString=71

RDC_EVT_SHUTDOWN:RhpString=72

RDC_MSGTYPE_NCON:RhpString=0x02

RDC_MSGTYPE_AUTH:RhpString=0x07

RDC_MSGTYPE_SHUT:RhpString=0x06

RDC_MSGTYPE_UMSG:RhpString=0x01

RDC_MSGTYPE_MSG:RhpString=0x00

RDC_MSGTYPE_IFU:RhpString=0x04

rdc_dt_db_update():unsigned int

rdc_dt_db_destroy():void

rdc_dt_remove_ctx():void

rdc_dt_remove_peer():void

rdc_dt_get_peer():struct rdc_peer_ex *

rdc_dt_get_context():struct rdc_ctx_ex *

_rdc_dt_db_build():void

«Usage»

«Usage»

«Usage»

«Usage»

shared::dtypes
«File»

shared::crypto
«File»

«Usage»«Usage»

«Usage»

«Usage»

PackageViewapi

Page 1 of 1

Figure 4.12: File diagram for the peer API

Initialization

The function rdc_init() is used to initialize the peer API. It receives a
pointer to the API's instance (struct rdc_t) and a pointer to the con�gu-
ration structure (rdc_cfg_t). The initialization is a six step procedure.

In the �rst step, the host ID of the machine is retrieved and the con-
�guration structure (passed as an argument to the function) is checked for
completeness and errors. This is to avoid unnecessarily allocating and deal-
locating resources later in the function. The host ID is obtained program-
matically (function gethostid()), and it can also be obtained through a
CLI with the hostid command:

96

Implementation

diogo@ubuntu:~$ hostid

a8c08f4a

In the second step, the private certi�cate is loaded from a �le. Its path
is contained in the con�guration structure passed as a function argument.

In the third step, the peer connects to the central server (Figure 4.2) to
retrieve the list of contexts it is part of and the peers it is allowed to connect
to. The connection is based on a TCP/IP socket and the server's address
can either be a speci�c IP, or automatically retrieved from a DNS name.

In the fourth step, the event handling thread (_rdc_thread_evt()) is
initialized (with a default value of 50 elements). The role of this thread will
be discussed later in this section.

In the �fth step, all local IPC interfaces are initialized. The initialization
is deemed successfully if at least one of the interfaces could be initialized
correctly. A warning is given if at least one, but not all interfaces have failed
to initialize. The interfaces whose con�guration struct is null are ignored.

In the sixth and �nal step, the interface information update thread
(_rdc_thread_ifu()) is initialized. The task of this thread is to connect
and send the local IPC information to all peers that initialized a priori.
This information is sent internally through the same code path of a regular
message, but with a di�erent message type. A more detailed description will
be presented later in this section.

A failure to complete any of these steps successfully causes the function to
return an error code after releasing all resources allocated during the function
call. More information on errors will be presented later in this section.

Local database

After the peer obtains the RDC network data from the server, it must
store this data in a way that allows fast access to it. To achieve this, the local
database of available peers is stored in two di�erent types of data structures:
a linear linked list and an AVL binary tree. The �rst type allows the fastest
possible access for sequential algorithms. A binary tree (implemented in
btree.h and btree.c) allows a very e�cient random access to these peers.
The relatively slow update of an AVL binary tree is not an obstacle, since it
rarely (if ever) occurs after initialization.

When the application requests a speci�c peer, the API searches for it in
the binary tree. But if it requests a full list of peers, only the �rst element
of the linked list is retrieved (the next variable in a peer structure struct

rdc_peer_ex points to the next element on the linked list).
Contexts are stored and retrieved in the same way, in a separate linked

list and binary tree.

97

4.3 Implementation Details

Event handling

One of the major design features of the peer API is the event-driven archi-
tecture. It consists of an event handling thread (function _rdc_thread_evt()
in �le rdc.c) and two event queues (implemented by evt_queue.c and

evt_queue.h). The �rst queue is an incoming event queue. Any error,
message or any other type of event triggered inside the API is placed in this
queue. The event processing thread retrieves elements from this queue and
processes them according to their type. Depending on the event type, this
thread may need to notify the application of certain events. In these cases,
the thread places these events on the second queue - the outgoing event
queue. These can then be retrieved by the application at any time through
one of the main peer API functions - rdc_recv_evt(). Figure 4.13 shows a
rough schematic on how the event handling works inside the API.

The data structure rdc_evt in the �le evt_queue.h is used to represent
an event. Its contents are:

1 /∗∗ @br ie f Represents an event . ∗/
2 struct rdc_evt {
3 int type ; /// Event type .
4 int arg1 ; /// F i r s t argument .
5 int arg2 ; /// Second argument .
6 int arg3 ; /// Third argument .
7 void∗ arg4 ; /// Fourth argument .
8 int l en ; /// Length o f arg4 (i f a p p l i c a b l e) .
9 } ;

The values (event arguments) of the variables in the structure depend on the
type of event itself. Table 4.1 shows the full list of event types in the peer
API. Note that some events may only be de�ned for internal use of the API.

Peer-to-peer connection establishment and authentication

A peer will attempt to establish a connection with another on two occa-
sions: when it needs to send its local IPC information update or when the ap-
plication has requested for a message to be sent to it (through rdc_sendmsg()).
In the current implementation, this connection is kept alive for the whole
lifetime of the API or until it is lost.

There are two di�erent types of interfaces de�ned in the API: mes-
sage queues (identi�ed internally as IFTYPE_MQUEUE) and TCP/IP sockets
(IFTYPE_TCPIP). When a new connection is requested, it is �rst necessary to
know which IPC interface to use. The function rdc_ipc_handle_get_type()
(implemented in the �les ipc.c and ipc.h) returns a list of interfaces by de-
scending order of priority. The algorithm works as follows:

1. Start with an empty interface list;

98

Implementation

Incoming event queue
(messages, errors, exceptions, etc)

Get next

event

(Optional)

Notify

application

rdc_thread_evt()
[Event processing

thread]

Outgoing event queue

Application

Peer API

rdc_recv_evt()

Process

event

Figure 4.13: Event handling in peer API

2. If the target peer has the same host ID as the instance and a valid
message queue IPC con�guration, then IFTYPE_MQUEUE is added as
the �rst element of the list;

3. If the target peer has a valid TCP/IP con�guration, then IFTYPE_TCPIP
is added as the next element on the list (or as �rst element if previously
empty);

After this list is generated, the API attempts to establish a connection
through the IPC interface whose type comes �rst on the list. If the connec-
tion attempt fails, it tries the second type on the list, third and so on until
the connection is successfully established or the end of the list is reached. In
the latter case, the connection attempt is deemed unsuccessful and the call-

99

4.3 Implementation Details

Event type Description Internal
only?

_RDC_EVT_NEW_CONN New connection attempt received. Yes
RDC_EVT_MSG_RECV New message received. No
RDC_EVT_UMSG_RECV New urgent message received. No
RDC_EVT_IFU_OK Successfully noti�ed a peer of local

IPC interfaces.
No

RDC_EVT_IFU_FAIL Could not notify a peer of a local
IPC interfaces.

No

RDC_EVT_AUTH_FAIL An error occurred while authenticat-
ing a peer.

No

RDC_EVT_IF_DOWN An IPC interface was lost. No
RDC_EVT_IF_UP An IPC interface was recovered. No
RDC_EVT_PEER_NEW A new peer was added to the local

database.
No

RDC_EVT_PEER_DEL A peer was removed from the local
database.

No

RDC_EVT_CTX_NEW A new context was added to the lo-
cal database.

No

RDC_EVT_CTX_DEL A context was removed from the lo-
cal database.

No

RDC_EVT_PEER_DOWN A peer has disconnected. No
RDC_EVT_SHUTDOWN The API was successfully shut

down.
No

Table 4.1: Event types in the peer API

ing function (usually rdc_send_msg()) returns the appropriate error code.
If, on the other hand, the connection was successful, an interface handle is
returned (whose type depends on the interface type itself) that can later be
used to send messages to this peer.

After a connection is successfully established, the next step is to authen-
ticate the peer. This step is only performed if both the local and remote
peers belong to at least one context with authentication and/or con�dential-
ity enabled, otherwise it's skipped. The authentication is a �ve-step process,
where both peers authenticate each other and a session key is exchanged. If
two peers happen to initiate the authentication process simultaneously, the
peer with the highest peer ID becomes the leader in the process. In other
words, the authentication request from the peer with the lowest peer ID is
ignored (and the other one is given priority).

The authentication state of a peer is stored in the variable auth_state of
a peer's structure (struct rdc_peer_ex). This is an integer with an initial
value of �ve. As the authentication process progresses, this variable gets
decremented until it reaches zero. In this state the peer is assumed to be au-
thenticated. Figure 4.14 shows the state diagram for authentication. Figure
4.10 shows the content of these messages (payload only).

100

Implementation

State = 4

State = 3

State = 2

State = 1

State = 0
(authenticated)

[Reply received]

[Reply error]

[R
ep

ly O
K

][Authentication initiated
by local peer]

[Else]

[Reply received]

[Reply received]

[Reply received]

[R
ep

ly O
K

]

[Reply OK]

[New authentication request received]

Figure 4.14: Peer-to-peer authentication state diagram

Peer-to-peer data transmission

After a pair of peers are connected and authenticated (if required), they
are ready to exchange application-level messages. These are sent through
the function rdc_sendmsg(). The �ow chart in Figure 4.15 describes the
algorithm used in this function.

If the source or target context require authentication (but not con�-
dentiality), the message is sent with a Message Authentication Code (MAC)
at the end. If it requires con�dentiality (regardless of authentication), the
message content is ciphered with the symmetric key that was agreed during
the authentication process.

At the other end of the medium, the receiving peer reads the message
(through whichever IPC mechanism is being used) and puts it in the incom-
ing event queue. This event will be then processed by the event handling
thread (_rdc_thread_evt()). If the message was received with no errors,
the latter puts on the outgoing event queue to be retrieved by the application
(through the function rdc_recv_evt()).

The �ow chart in Figure 4.16 describes the algorithm used by the event
processing thread for incoming messages.

The API keeps track of several statistics for each peer. These are stored
in every peer structure (struct rdc_peer_ex) and can be retrieved at any

101

4.3 Implementation Details

No

Start

Destination
context requires
authentication?

Is peer
authenticated?

NoYes

Authentication
successful?

Destination
peer and context

found?
Yes

Is peer
connected?

Yes

Generate
message

Authenticate
peer

Yes

No

Send message
through IPC

Interface
handle

Return status

Connect to
peer

Connection
successfull?

No

End

Figure 4.15: Peer to peer message transmission �owchart

time by the application. The variables are:

• sent_msg - Total sent messages;
• sent_bytes - Total sent bytes;
• recv_msg - Total received messages;
• recv_bytes - Total received bytes.

All events and regular-priority messages are always placed at the back
of the outgoing event queue, e�ectively creating a FIFO queue. The only
exception are urgent messages, which are placed at the beginning of it (or

102

Implementation

Start

Update peer’s
statistics

Place message in
the back of the
outgoing event

queue

End

Source peer found?

No

Dest. ctx. requires
confidentiality?

Yes

Decypher message

Yes

Dest. ctx. requires
authentication?

No

Operation
successfull?

NoYes

No

Verify MAC code

Yes

Is MAC valid?

Yes

Place event on the
outgoing message

queue

Is message
urgent?

Place message in
the front of the
outgoing event

queue

Yes

No

Query central server
for the peer ID

Source peer found?

No

Figure 4.16: Peer to peer message reception �owchart

at the back of the last urgent message), thus becoming the immediate next
element to be retrieved from the queue.

Concurrency control

There are several threads in the API that require access to common
resources simultaneously. Concurrency access control is enforced using four
di�erent types of mechanisms:

• Pthread's mutexes (pthread_mutex_t) - These are used when a
critical section of the code should be accessed by only one thread at a
time;

103

4.3 Implementation Details

• Pthread's read-write locks (pthread_rwlock_t) - These are equiv-
alent to mutexes, but they allow multiple threads to read a critical
section of the code, but restricts access to a single thread for writing;

• Binary semaphores (sem_t) - These are functionally equivalent to
Pthread's mutexes. They are used whenever the locking and unlocking
is performed by di�erent threads, for which a regular mutexes has
unde�ned behavior;

• GCC's atomic built-ins4 - These are a set of functions that allow a
single atomic variable change. These functions have substantially less
overhead than any of the other types mentioned above.

Each of these mechanisms were used whenever it was more adequate. For
instance, Pthread's mutexes were used in the function rdc_sendmsg(), so as
to ensure that no issues arise from several concurrent threads trying to send
messages at the same time. Pthread's read-write locks are used for certain
variables in the peer structure (struct rdc_peer_ex). These variables are
read much more often than they are written, so it's much more e�cient to
use read-write locks instead of regular mutexes. Binary semaphores are only
used in the event queue implementation (�le evt_queue.c). The algorithms
used require di�erent threads to lock and unlock a given portion of the code,
so an ordinary mutex could not be used. Finally, GCC's atomic built-ins
are used in all variables related to statistics, such as the number of messages
transmitted to and received by a peer.

The GCC's atomic built-ins have a lot less overhead that other types of
concurrency handling mechanisms, mainly due to the fact that they don't
trigger a system call. The downside of these primitives is that they aren't
compatible with di�erent compilers and/or architectures.4

Pthread's spin locks were also considered as a portable alternative to
GCC's atomic built-ins, since they also have very little overhead. In the end
they were left out, mainly due to the fact that they perform very poorly on
machines with single-core processors.

Error codes and error handling

The application can be noti�ed of errors in two ways: through the return
codes of most API functions or through events.

Function return codes are de�ned in the �le dtypes.h. The functions
rdc_init(), rdc_sendmsg() and rdc_update_db() all return a subset of
these codes. They are also used in the database API. Table 4.2 shows the
description of these codes.

4http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html#

Atomic-Builtins

104

http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html#Atomic-Builtins
http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html#Atomic-Builtins

Implementation

Error type Description
RDC_OK No error.
RDC_ERROR Unspeci�ed error.
RDC_ERROR_CONF Con�guration error.
RDC_ERROR_IF_INIT Could not initialize one or more IPC

interfaces.
RDC_ERROR_CONN Connection error.
RDC_ERROR_AUTH Authentication error.
RDC_ERROR_FREAD File access error.
RDC_ERROR_INT Internal error.
RDC_ERROR_PEER_NF Peer not found.
RDC_ERROR_CTX_NF Context not found.
RDC_ERROR_DNS Could not resolve DNS host name.
RDC_ERROR_SHUTD API is shutting down.
RDC_ERROR_TBIG Message is too big to send.
RDC_ERROR_EXT Record already exists.
RDC_WARN_NOPEERS No peers were found.
RDC_WARN_CONF Non-critical con�guration error.
RDC_WARN_INT Non-critical internal error.

Table 4.2: Return codes of the RDC API

Local database updates

After the API has been initialized, the function rdc_update_db() can
be called at any time to update the local database's contents. This function
requests a list of peers and contexts to the server in the same way as it does
during the initialization phase. Then, the new lists (of peers and contexts)
are compared to the existing ones. The missing elements in the new lists are
removed from the existing ones and the missing elements in the existing ones
are added from the new lists. Every added and removed peer and context
is reported to the application through events. Additionally, every peer is
checked for di�erences in their con�guration and updated if needed. The
�nal result is an updated list of peers without the need to destroy and re-
initialize the API's instance.

After an update is completed successfully, the API may reconnect to a
peer if a new and better interface is available. Also, if the security parameters
of an existing context are changed, or a new context with con�dentiality or
authentication enabled is added to a peer without security-enabled contexts,
the authentication process for that peer is triggered.

Peer API shutdown

When the function rdc_destroy() is called, all interface handles and
IPC interfaces are disconnected, along with some other additional resources.
An event of the type RDC_EVT_SHUTDOWN is then created and put at the back
of the outgoing queue. The API's resources are only fully released after this

105

4.3 Implementation Details

event is retrieved by the application. This way it is possible to predictably
shut down the API with no loss of information.

4.3.9 Peer API Test Application

The peer API test application was created to evaluate functional charac-
teristics of the peer API. To a lesser extent, this application was also used
to evaluate performance bottlenecks during development.

There are actually two versions of the test application, and a module for
ttt was developed as well. The �rst version of the application is used to
perform functional tests on the RDC API. The second version was speci�-
cally developed to perform scalability tests. And �nally, the ttt's module is
used to perform peer-to-peer throughput tests.

Functional tests

Due to the API's complexity, it became apparent from the beginning of
the development process that it was crucial to implement e�ective debugging
mechanisms, so as to accelerate the debugging process and to allow the con-
clusion of the project in a realistic time frame. One of these measures is the
inclusion of the assert() macro in strategic places of the code. This allows
the veri�cation of simple conditions that must always be true if the code
works correctly, and to cause a signal to be sent to the debugger otherwise.
Debugging messages are also used extensively in the code (using printf()

and perror()). They allow the analysis of the correct sequence of events and
simple diagnostics (e.g. making sure a message in a context with security is
correctly ciphered before being sent). All of these messages are surrounded
by conditional preprocessor directives, so they can be �removed� from the
code on request.

The API test application was used to test the stability and correct op-
eration of the API. It su�ered several modi�cations during development, so
that any new functionality being worked on could be tested immediately.
The �nal version tests all the functions in the API, namely:

• Connects to the server (tests correct initialization of the API);
• Displays a list of peers, interfaces and contexts retrieved (tests retrieval
of data from the server, serialization/deserialization of said data and
validity of local data structures);

• Uses several threads to send data bursts to all peers and contexts (tests
stability and concurrency control);

• Tries to update the database while still sending and receiving data
from peers (tests stability and concurrency control);

• Shuts down the API (tests correct shutdown and release of allocated
resources).

106

Implementation

The database manager application, the database API and the server dae-
mon have a signi�cant lower level of complexity than that of the peer's API,
so the debugging measures shown above were not used since they weren't
justi�ed.

Performance tests

An additional module for the RDC API was developed for the ttt ap-
plication used in Section 3.4.2. This way, it will be possible to obtain results
and compare them to the primitive IPC mechanisms that were previously
tested by the same application and the same algorithms. A minimal database
was created for these tests, with only two peers and one context. Both IPC
mechanisms will be tested, locally and remotely (if possible), with four dif-
ferent con�gurations for the context security (combinations of con�dentiality
and authentication parameters enabled and/or disabled).

A second version of the peer API test application was created to test the
scalability of the system. It works by sending as much data as possible to
every peer in the system, and then displaying the amount of all data trans-
mitted to all peers. From these values it is possible to conclude just how
well the peer API scales to large networks (having in mind the limitations
of IPC mechanisms).

For all performance tests, the RDC API was compiled in release mode
with GCC's optimization �ag -O3 set.

4.3.10 Building and Executing the Project

A Make script (makefile) was used to build the software project. The
following make targets were included:

• make all - Builds everything described below;
• make rdcd - Builds the central server daemon;
• make rdcm - Builds the database management application;
• make rdc_db - Builds the database API in the form of a software li-
brary (static library librdc.a and shared library librdc.so.1.0.1):

• make rdc_api - Builds the peer API in the form of a software library
(static library librdcdb.a and shared library librdcdb.so.1.0.1);

• make rdc_test - Builds the peer API test application;
• make tar - Creates a .tar (compressed archive) �le with all of the
project's �les.

• make clean - Removes all .obj (object code) and backup �les.
• make clear - Same as make clean, but also removes the executables,
libraries and tar �le.

Debug and release versions of the output binaries can be speci�ed by
setting the global variable DEBUG as 1 (enabled) or 0 (disabled). For instance,

107

4.4 Adding/Replacing modules

to build the entire project with debug symbols, one could use the command
make all DEBUG=1. For a release build, with no debug symbols and full
code optimization, the command make all DEBUG=0 should be used. When
enabled, the DEBUG directive also has the following e�ects in the code:

• The server daemon does not get "daemonized". In other words, the
launching process is not fork()'ed and the log messages are sent to
the standard output (stdout), in addition to syslog;

• Debugging code is enabled in the peer API. This consists on several
printf() functions in the code containing useful information about
what is being executed and the status of the system.

If no DEBUG parameter is set, the debug release is selected by default.
After being executed, make all outputs the following executables:

• rdc_test - Peer API test application;
• rdcm - Database manager application;
• rdcd - Central server daemon.

Two di�erent libraries are also created:

• librdc.a - Peer API library.
• librdcdb.a - RDC's database management API library.

4.4 Adding/Replacing modules

4.4.1 Database API

To change the DBMS being used by the database API, the following steps
must be taken:

1. Modify rdc_db_t (in db.h) in order to contain all the necessary vari-
ables to identify an instance of the database;

2. Modify struct rdc_db_cfg (in db.h) to contain all the needed vari-
ables needed to con�gure the database;

3. Modify the �le db.c so as to contain the implementation of all the
functions de�ned in db.h.

Applications that uses the database API must change the con�guration
structure struct rdc_db_t, if necessary.

4.4.2 Peer API

The peer API supports adding and removing IPC interfaces. This is
a more complex task due to the absence of hereditary concepts in the C
language. The following procedure must be taken to add a new module:

108

Implementation

1. Create �les in path ./src/api/ipc to implement the IPC interface
(e.g. ipcmodule.h and ipcmodule.c);

2. Add an #include "./ipc/ipcmodule.h" directive in ipc.c;
3. Modify the content of all functions in ipc.c according to their task;
4. Perform the following modi�cations in api_dtypes.h:

(a) Add an interface type entry in enum rdc_if_type (e.g.
IFTYPE_IPCMODULE);

(b) Add a con�guration structure (e.g. struct rdc_if_ipcmodule_cfg);
(c) Add a pointer to the con�guration structure in struct rdc_cfg;

5. Add interface initialization code to the function rdc_init() contained
in �le rdc.c.

The makefile should also be updated for proper compilation and linking.

4.5 Deployment

The RDC API can be used in either C or C++ projects. To use the
API in a project, one has to include ./include/rdc.h in the source �le
and then link the application against ./lib/librdc.a (for static linking)
or ./lib/librdc.so.1.0.1 (for shared linking). The same applies to the
database management API, but with the include �le ./include/db.h and li-
brary �les ./lib/librdcdb.a or ./lib/librdcdb.so.1.0.1. The rdcd and
rdcm applications are generic, and as such they are ready for deployment and
can be used in a production environment with no modi�cations if necessary.

The entire source code of the project is commented using Doxygen's syn-
tax. From the root folder of the project, the command doxygen doxyfile

can be used to generate the full documentation of the API.

4.6 Conclusion

The implementation ful�lls all the requirements identi�ed in Section 1.3.
Nevertheless, the time constrains in this dissertation means that the project
presented here is just a prototype, and as such there's room left for improve-
ment.

One of the biggest challenges faced during the planning phase was to
decide how the RDC network information would be synchronized between
all peers. Several designs were considered, but every one had its limitations.
Ultimately, the adopted design is the one shown in this chapter, which stands
for a good compromise between scalability and temporal accuracy of data.
Some of the alternatives proposed (and how they compare to the current
solution) include:

• Updates through permanent peer-server connections - Means an higher
(centralized) load for the server, lower scalability due to limitations on

109

4.6 Conclusion

the number of socket connections, and the system may not function
properly if the server goes down. On the other hand, it would be
easier to know which peers had to be updated (if they needed to);

• Regular server polling - This would imply a delay for the update mes-
sages to propagate through the network, an higher workload and un-
necessary usage of resources in the system;

• Server connects and sends a message to the peers when a new update
arrives - This solution would introduce load problems if too many peers
tried to connect at once. In terms of overall load it should be similar
to the solution that was implemented.

Designing an architecture for the peer API that is both well structured
and e�cient revealed to be a particularly di�cult task. A lot of e�ort was
put in �nding a good tradeo� between these two, but code legibility and
maintainability still had to be sacri�ced in favor of performance. Some de-
sign choices may appear to be less than ideal from an architectural point of
view, but they are justi�ed when evaluated from an e�ciency point of view.

One of the most obvious ways the peer API could be improved is by
instantiating additional event processing threads. This would allow a more
e�cient usage of resources to process the events, particularly in systems
with Symmetric multiprocessing (SMP). The reason why this wasn't imple-
mented is that it would require a mechanism to ensure the correct order
(causality) of the messages. For instance, a new connection event should al-
ways take precedence to new messages of the same peer. But if two threads
take turns in handling the incoming messages, the new message event could
be processed before the correct parameters of the peer were set by the new
connection event, and an error would occur. A mechanism would be needed
to avoid this. On the downside, this feature would require more mutexes
and threads, which would also increase overhead.

Another modi�cation that could theoretically increase the throughput of
the system would be sending all the regular messages directly to the outgoing
queue as they are received by the implementation �le of the IPC mechanism.
Such implementation would increase parallelization of tasks (assuming that
more than one IPC mechanism is being used) and would reduce unnecessary
overhead by skipping the incoming event queue. On the other hand, this
would reduce the modularization of the IPC interface's code and could in-
troduce problems related with causality violation of events.

Another important improvement that could be made is the inclusion of a
new �eld in the database to store the last time a peer connected and updated
its data with the central server. This would allow other peers to know if they
need to send interface information updates to it after they log in. If there
were no updates to the interface information of peer A currently stored in the
database since peer B connected to it, then peer A doesn't need to sent an
interface information update message to it. This way, needless tra�c could

110

Implementation

be avoided and faster initialization of the system could be accomplished.
Since the database API allows a peer to directly connect to the database,

one of the arguments that could be made is that the dependency on central
servers is a hindrance to the system as it becomes redundant. This system
was designed while having in mind a relatively small number of peers (in
the order of thousands), and it doesn't make much sense to require authen-
tication if the peer itself can create its own key and add itself to whatever
context it wants to. For this reason, it is recommended to never implement
the database API only inside the peer. If really necessary, a workaround
to allow each peer to connect directly to the database would be to simply
include an instance of the server daemon on each peer.

One potential security issue in the current implementation has to do with
the authentication process. Ideally, both peers should be involved in the gen-
eration of the session key, thus allowing equal responsibility in keeping the
data safe. This feature was not included due to limitations of the OpenSSL
library.

To conclude, the prototype ful�lls all objectives proposed for this dis-
sertation. Although there is still a good margin for improvement, it should
provide a good starting point for future developments.

111

4.6 Conclusion

112

Chapter 5

Evaluation

The API was put to the test to evaluate its proper functionality and its
capability to ful�ll the goals it was designed for. This chapter presents the
results obtained from these tests. As shown in Section 4.3.9, they were split
between functional and performance assessments.

5.1 Resources

The lab tests were done over a couple of computers connected to each
other. The complete hardware list is:

• Computer A:

� CPU - Intel Core 2 Duo T9400 (2.53GHz, 64KB L1 cache, 6MB
L2 cache)

� Ram - 4096MB DDR3 PC 1066 (533 MHz) 7-7-7-20
� Motherboard - LG Emerald (1067 MHz FSB)
� Storage - Fujitsu MHZ2320BH G2 (320GB, 5400rpm, 8MB bu�er)
� Network adapter - Intel 82567LF Gigabit Network Connection
(1500 Bytes of MTU)

� Operating system - Ubuntu Desktop v11.10 (Linux kernel v3.0.0-
12, 32-bit)

• Computer B:

� CPU - Intel Core i5-2300 (2.8GHz, 4x32KB L1 cache, 4x256KB
L2 cache, 6MB L3 cache)

� Ram - 4096MB DDR3 (1333 MHz)
� Motherboard - ASUS P8H61-M LX (Intel H61B3 chipset)
� Storage - Samsung HD502HI (500GB, 5400rpm, 16MB bu�er)
� Network adapter - Realtek RTL8111E PCIe GBE Family Con-
troller (1500 Bytes of MTU)

113

5.1 Resources

� Operating system - Ubuntu Desktop v11.10 (Linux kernel v3.0.0-
12, 32-bit)

• Computers C1-C4:

� Computer C1:

∗ CPU - AMD Semptron 3000+ (1800Mhz, 128KB L1 cache,
128KB L2 cache)

∗ RAM - 512MB DDR400
∗ Chipset - Nvidia NForce3
∗ Network adapter - Realtek ethernet 10/100mbps
RTL-8139/8139c/8139c+

∗ Operating system - Lubuntu 11.10 (in Live CD mode) (Linux
kernel v3.0.0-12, 32 bit)

� Computer C2:

∗ CPU - Pentium 4 @ 2.0Ghz (8KB L1 cache, 512KB L2 cache)
∗ RAM - 512MB
∗ Network adapter - Silicon Integrated Systems (SiS) 900 PCI
Fast Ethernet 10/100Mbps

∗ Operating system - Lubuntu 11.10 (in Live CD mode) (Linux
kernel v3.0.0-12, 32 bit)

� Computer C3:

∗ CPU - Pentium 4 @ 2.4Ghz (8KB L1 cache, 512KB L2 cache)
∗ RAM - 256MB
∗ Chipset - Chipset: Via Technologies VT8753
∗ Network adapter - Realtek ethernet 10/100mbps
RTL-8139/8139c/8139c+

∗ Operating system - Lubuntu 11.10 (in Live CD mode) (Linux
kernel v3.0.0-12, 32 bit)

� Computer C4:

∗ CPU - Pentium 4 @ 2.0Ghz (8kb L1 + 512 KB L2 cache)
∗ RAM - 512MB
∗ Chipset - VIA Technologies P4X333/P4X400/PT800
∗ Network adapter - VIA Technologies VT6102 10/100Mbps
∗ Operating system - Lubuntu 11.10 (in Live CD mode) (Linux
kernel v3.0.0-12, 32 bit)

• Network A:

� Local network deployed on a Cisco Systems Catalyst 2900 series
XL (10/100 Mbit)

The tool lshw was used to extract the hardware information from Com-
puters C1-C4. This tool omitted details on some of the machines, so a
complete hardware description of every machine could not be obtained.

114

Evaluation

All tests described in this chapter that required only one computer were
executed in Computer A. This is the exact same machine and setup that was
described in Section 3.4.2. All tests that required two machines were exe-
cuted in Computer A and Computer B. They were connected to each other
over an ethernet cable and their network interfaces operated at 1 Gbps (full-
duplex). For all tests that required more than two computers, Computer A
and Computers C1-C4 were used, connected to each other via Network A
(as shown in Figure 5.1). The switch was con�gured with three local Virtual
Local Area Networks (VLANs) of 6 elements each, but only one VLAN was
used.

Computer A
(acts as a peer and as server daemon)

C1 C2 C3 C4

Computers C1-C4
(peers)

Figure 5.1: Network topology used for testing

Computer B had some problems related to the stability of its network
drivers. To compensate for this issue, each test than involved this computer
ran several times more than planned and the best values were kept. Comput-
ers C1-C4 and Network A showed problems related to synchronization and
loose and/or defective cables. These issues interfered with the results fairly
frequently, so the network was monitored as best as possible while the tests
were running. Unfortunately, due to the sparse location of the network's
elements, it was impossible to be absolutely sure that all connections were
OK for the entire duration of each test.

115

5.2 Functional Tests

5.2 Functional Tests

The RDC API was compiled in debug mode for the functional tests.
The debug messages implemented on the code are representative of the code
paths in the API. The format of these messages include the �le and function
where they are located in, a brief description of the operation being carried
on and/or the value of some relevant variable(s). The test program used for
functional tests was described in Section 4.3.9.

Due to the extensive length of some of the peer API's outputs, some
screenshots were omitted and replaced by a verbatim output of the applica-
tion.

5.2.1 API's Functions

Database management

A new con�guration �le was created in the prede�ned directory (set by
the constant RDC_CFG_FILE in ./src/const.h). Its contents were:

#

Configuration file for RDC Daemon/RDC database manager

#

Listen address and port:

lstn_addr = 0.0.0.0

lstn_port = 1024

Locations:

db_path = rdc.db

cert_path = ../cert/

The next step was to create a new database and all its tables (as seen
in Figure 4.6). This was done with the database management application
(rdcm) by typing ./rdcm -c. Figure 5.2 shows the output of the command
and the tables that were added to the database �le.

A new context and peer were added to the database and a membership
between them was created. Figure 5.3 shows the sequence of commands exe-
cuted and the contents of the database. Four more peers and three contexts
were then added. All peers belong to context ctx_1, while peers peer_1 and
peer_2 belong to ctx_2, and peers peer_2 and peer_3 belong to ctx_3.

Peer API initialization and destruction

The server daemon (rdcd) and the peer API test application (rdc_test)
were both initiated in debug mode. The latter was set up so as to initialize
an RDC API instance, print the contents of the local database and destroy
the same instance. The output from peer peer_1 was the following:

116

Evaluation

Figure 5.2: Creating a new database

Figure 5.3: Adding a context, a peer and a membership to the database

root@ubuntu:/home/diogo/Desktop/ttt_rdc/rdc/bin# ./rdc_test peer_1

--- RDC API Initializing ---

[rdc.c | rdc_init] Initializing...

[rdc.c | rdc_init] Host ID: a8c0944a.

[rdc.c | rdc_init] Verifying configuration...

[rdc.c | rdc_init] Loading private key...

[rdc.c | rdc_init] Obtaining database...

[rdc.c | _rdc_update_db] Connecting to central server...

[rdc.c | _rdc_update_db] Connection established.

[rdc.c | _rdc_update_db] Authentication: Sending name to server...

[rdc.c | _rdc_update_db] Authentication successful!

[rdc.c | _rdc_update_db] Sending peer list request...

117

5.2 Functional Tests

[rdc.c | _rdc_update_db] Sending host ID...

[rdc.c | _rdc_update_db] Sending interface information to server...

[rdc.c | _rdc_update_db] Receiving peer information from server...

[rdc.c | _rdc_update_db] Interface information retrieved successfully.

[rdc.c | _rdc_update_db] Creating RDC network database...

[api_dtypes.c | rdc_dt_db_update] Updating database...

[api_dtypes.c | rdc_dt_db_update] Database is being initialized for the first

time.

[api_dtypes.c | rdc_dt_db_update] Adding contexts and peers...

[api_dtypes.c | rdc_dt_db_update] All OK. 3 new peer(s) added.

[rdc.c | _rdc_update_db] Notifying application of new contexts...

[rdc.c | _rdc_update_db] Removing contexts from the database...

[rdc.c | _rdc_update_db] Notifying application of new peers...

[rdc.c | _rdc_update_db] Removing peers from the database...

[rdc.c | _rdc_update_db] All OK.

[rdc.c | rdc_init] Initializing incoming and outgoing message queues...

[rdc.c | rdc_init] Initializing event processing thread...

[rdc.c | rdc_init] Initializing IPC interfaces...

[tcpip.c | rdc_ipc_tcpip_init] Opening server socket...

[tcpip.c | rdc_ipc_tcpip_init] Binding socket...

[tcpip.c | rdc_ipc_tcpip_init] Socket bound to port 3572.

[tcpip.c | rdc_ipc_tcpip_init] Creating thread...

[tcpip.c | rdc_ipc_tcpip_init] All ok.

[rdc.c | _rdc_thread_evt] Initializing thread...

[rdc.c | _rdc_thread_evt] Waiting for next event...

[mqueue.c | rdc_ipc_mqueue_init] Opening message queue "/rdc_1"...

[mqueue.c | rdc_ipc_mqueue_init] Creating thread...

[tcpip.c | _rdc_ipc_tcpip_srv_thread] Waiting for new connection...

[mqueue.c | rdc_ipc_mqueue_init] All ok.

[rdc.c | rdc_init] Initializing interface information update thread...

[rdc.c | rdc_init] Initialization complete.

[rdc.c | _rdc_thread_ifu] Initializing thread...

[mqueue.c | _rdc_ipc_mqueue_srv_thread] Waiting for new message...

[rdc.c | _rdc_thread_ifu] Preparing to send interface information for peer #2...

[rdc.c | _rdc_thread_ifu] Creating new handle for peer with ID = 2. Waiting for

mutex lock...

[rdc.c | _rdc_peer_connect] Attempting to connect to peer with ID = 2.

[rdc.c | _rdc_peer_connect] Error: Could not create interface handle for peer

with ID = 2.

[rdc.c | _rdc_thread_ifu] Error: Could not create interface handle for peer

with ID = 2.

[rdc.c | _rdc_thread_ifu] Assuming peer ID #2 as offline.

[rdc.c | _rdc_thread_ifu] Preparing to send interface information for peer #3...

[rdc.c | _rdc_thread_ifu] Creating new handle for peer with ID = 3. Waiting for

mutex lock...

[rdc.c | _rdc_peer_connect] Attempting to connect to peer with ID = 3.

[rdc.c | _rdc_peer_connect] Error: Could not create interface handle for peer

with ID = 3.

[rdc.c | _rdc_thread_ifu] Error: Could not create interface handle for peer

with ID = 3.

[rdc.c | _rdc_thread_ifu] Assuming peer ID #3 as offline.

[rdc.c | _rdc_thread_ifu] Preparing to send interface information for peer #4...

[rdc.c | _rdc_thread_ifu] Creating new handle for peer with ID = 4. Waiting for

mutex lock...

[rdc.c | _rdc_peer_connect] Attempting to connect to peer with ID = 4.

[rdc.c | _rdc_peer_connect] Error: Could not create interface handle for peer

with ID = 4.

[rdc.c | rdc_recv_evt] Waiting for new event...

[rdc.c | _rdc_thread_ifu] Error: Could not create interface handle for peer

with ID = 4.

[rdc.c | _rdc_thread_ifu] Assuming peer ID #4 as offline.

[rdc.c | _rdc_thread_ifu] Thread terminated.

118

Evaluation

--- RDC database information ---

Contexts:

> ID=1, name=ctx_1

> ID=2, name=ctx_2

Peers:

> ID=2, name=peer_2

Part of contexts #1 #2

> ID=3, name=peer_3

Part of contexts #1

> ID=4, name=peer_4

Part of contexts #1

--- RDC API Destroying ---

[rdc.c | rdc_destroy] Freeing IPC interfaces...

[tcpip.c | rdc_ipc_tcpip_destroy] Waiting for mutex...

[tcpip.c | rdc_ipc_tcpip_destroy] Shutting down interface...

[tcpip.c | rdc_ipc_tcpip_destroy] Waiting for server thread...

[tcpip.c | _rdc_ipc_tcpip_srv_thread] Termination requested. Exiting thread...

[tcpip.c | _rdc_ipc_tcpip_srv_thread] Thread terminated.

[tcpip.c | rdc_ipc_tcpip_destroy] Interface shut down.

[mqueue.c | rdc_ipc_mqueue_destroy] Waiting for mutex...

[mqueue.c | rdc_ipc_mqueue_destroy] Interface shut down.

[rdc.c | rdc_destroy] Waiting for threads...

[rdc.c | _rdc_thread_evt] Event retrieved (type: 72, arg1: 0, arg2: 0, arg3: 0,

arg4: (nil), len: 0, in queue: 0).

[rdc.c | _rdc_thread_evt] Thread terminated.

[rdc.c | rdc_recv_evt] Shutdown event retrieved. Releasing resources...

[api_dtypes.c | rdc_dt_remove_peer] Removing peer #2...

[api_dtypes.c | rdc_dt_remove_peer] Removing peer #3...

[api_dtypes.c | rdc_dt_remove_peer] Removing peer #4...

[api_dtypes.c | rdc_dt_remove_peer] Removing context #1...

[api_dtypes.c | rdc_dt_remove_peer] Removing context #2...

[rdc.c | rdc_recv_evt] All OK.

[rdc.c | rdc_recv_evt] New event retrieved (Type=72, Arg1=0, Arg2=0, Arg3=0,

Arg4=(nil), len=0).

[rdc.c | rdc_destroy] RDC instance resources freed sucessfully.

root@ubuntu:/home/diogo/Desktop/ttt_rdc/rdc/bin#

As shown in the output above, the API successfully retrieved the infor-
mation of the peers it can connect to from the server, before initializing all
local IPC interfaces. The list of peers and contexts shown on the output was
obtained by the peer API test application (rdc_test) through the API's
functions rdc_get_peers() and rdc_get_contexts(), respectively. In the
last step of the initialization process, the API instance tries to connect to
other peers on the system to send them the updated information of IPC
interfaces. Since no other peer is active, all connection attempts have failed
(as expected).

Authentication and data transmission

Two API instances were created (for peer_1 and peer_2) to test data
transmission between peers. The peer API test application was con�gured

119

5.2 Functional Tests

to connect to the system and send only one message from peer peer_1 to
peer_2. Figures 5.4 and 5.5 shows the output from peer_1 and peer_2, re-
spectively. Initialization and destruction code was omitted from the �gures.

Figure 5.4: Message transmission from peer_1 to peer_2 (message queue
interface)

Figure 5.5: Message reception from peer_1 to peer_2 (message queue inter-
face)

The message received by peer_2 is �rst put on its incoming event queue
and then retrieved by the event processing thread of the peer API. After
the message is processed (where headers are stripped from the payload, peer
statistics are updated, etc), it is placed on the outgoing message queue to
be retrieved by the application through the function rdc_recv_evt(). Since

120

Evaluation

both instances are located in the same machine, the message queue IPC in-
terface was used. If the message queue con�guration is disabled, the TCP/IP
interface is used instead. Figures 5.6 and 5.7 shows the TCP/IP equivalent
to �gures 5.4 and 5.5, respectively. If both peers were located in di�erent
machines, their output would be identical to Figures 5.6 and 5.7.

Figure 5.6: Message transmission from peer_1 to peer_2 (TCP/IP interface)

Figure 5.7: Message reception from peer_1 to peer_2 (TCP/IP interface)

121

5.2 Functional Tests

When authentication is enabled, the peers perform the authentication
process before application-level messages are allowed to be transmitted. Au-
thentication for context ctx_1 was enabled through the command ./rdcm

-E ctx_1 true false. Now when peer_1 sent a message peer_2, its output
was:

root@ubuntu:/home/diogo/Desktop/ttt_rdc/rdc/bin# ./rdc_test peer_1

--- RDC API Initializing ---

(...)

--- Data transmission start ---

[rdc.c | rdc_sendmsg] Preparing to send message...

[rdc.c | rdc_sendmsg] Waiting for mutexes...

[rdc.c | rdc_sendmsg] Waiting for authentication for peer with ID = 2.

[rdc.c | _rdc_msg_generate] Message generated successfully.

[rdc.c | _rdc_peer_auth] Sending authentication request for peer with ID = 2...

[tcpip.c | rdc_ipc_tcpip_sendmsg] Sending data...

[tcpip.c | rdc_ipc_tcpip_sendmsg] Message delivered successfully (133 bytes

sent).

[rdc.c | _rdc_peer_auth] Authentication request sent. Waiting for transaction

finish...

[tcpip.c | _rdc_ipc_tcpip_peer_thread] Waiting for data...

[rdc.c | _rdc_thread_evt] Event retrieved (type: 60, arg1: 2, arg2: 0, arg3: 0,

arg4: 0x92a6188, len: 145, in queue: 0).

[rdc.c | _rdc_msg_process] Processing message for peer ID 2...

[rdc.c | _rdc_peer_auth_step] Waiting for write mutex...

[rdc.c | _rdc_peer_auth_step] Peer ID 2 has an authentication status of 3.

[rdc.c | _rdc_msg_generate] Message generated successfully.

[tcpip.c | rdc_ipc_tcpip_sendmsg] Sending data...

[tcpip.c | rdc_ipc_tcpip_sendmsg] Message delivered successfully (21 bytes

sent).

[rdc.c | _rdc_thread_evt] Waiting for next event...

[tcpip.c | _rdc_ipc_tcpip_peer_thread] Waiting for data...

[rdc.c | _rdc_thread_evt] Event retrieved (type: 60, arg1: 2, arg2: 0, arg3: 0,

arg4: 0x92a62f8, len: 257, in queue: 0).

[rdc.c | _rdc_msg_process] Processing message for peer ID 2...

[rdc.c | _rdc_peer_auth_step] Waiting for write mutex...

[rdc.c | _rdc_peer_auth_step] Peer ID 2 has an authentication status of 1.

[rdc.c | _rdc_peer_auth_step] Peer 2 authenticated successfully.

[rdc.c | _rdc_thread_evt] Waiting for next event...

[rdc.c | _rdc_peer_auth] Authentication successfull for peer ID = "2".

[rdc.c | rdc_sendmsg] Acquiring write mutex for peer with ID = 2.

[rdc.c | _rdc_msg_generate] Signing message...

[rdc.c | _rdc_msg_generate] Message generated successfully.

[tcpip.c | rdc_ipc_tcpip_sendmsg] Sending data...

[tcpip.c | rdc_ipc_tcpip_sendmsg] Message delivered successfully (173 bytes

sent).

[rdc.c | rdc_sendmsg] Message sent...

[rdc_test.c | main()] Message sent to peer #2 ("RDC Peer message transmission

test!").

--- RDC API Destroying ---

(...)

root@ubuntu:/home/diogo/Desktop/ttt_rdc/rdc/bin#

122

Evaluation

And the output from peer_2 was:

root@ubuntu:/home/diogo/Desktop/ttt_rdc/rdc/bin# ./rdc_test peer_2

--- RDC API Initializing ---

(...)

--- Data transmission start ---

[tcpip.c | _rdc_ipc_tcpip_peer_thread] Waiting for data...

[rdc.c | _rdc_thread_evt] Event retrieved (type: 60, arg1: 1, arg2: 0, arg3: 0,

arg4: 0x9a2c8e0, len: 129, in queue: 0).

[rdc.c | _rdc_msg_process] Processing message for peer ID 1...

[rdc.c | _rdc_peer_auth_step] Waiting for write mutex...

[rdc.c | _rdc_peer_auth_step] Peer ID 1 has an authentication status of 4.

[rdc.c | _rdc_msg_generate] Message generated successfully.

[tcpip.c | rdc_ipc_tcpip_sendmsg] Sending data...

[tcpip.c | rdc_ipc_tcpip_sendmsg] Message delivered successfully (149 bytes

sent).

[rdc.c | _rdc_thread_evt] Waiting for next event...

[tcpip.c | _rdc_ipc_tcpip_peer_thread] Waiting for data...

[rdc.c | _rdc_thread_evt] Event retrieved (type: 60, arg1: 1, arg2: 0, arg3: 0,

arg4: 0x9a2bb80, len: 17, in queue: 0).

[rdc.c | _rdc_msg_process] Processing message for peer ID 1...

[rdc.c | _rdc_peer_auth_step] Waiting for write mutex...

[rdc.c | _rdc_peer_auth_step] Peer ID 1 has an authentication status of 2.

[rdc.c | _rdc_msg_generate] Message generated successfully.

[tcpip.c | rdc_ipc_tcpip_sendmsg] Sending data...

[tcpip.c | rdc_ipc_tcpip_sendmsg] Message delivered successfully (261 bytes

sent).

[rdc.c | _rdc_peer_auth_step] Peer 1 authenticated successfully.

[rdc.c | _rdc_thread_evt] Waiting for next event...

[tcpip.c | _rdc_ipc_tcpip_peer_thread] Waiting for data...

[rdc.c | _rdc_thread_evt] Event retrieved (type: 60, arg1: 1, arg2: 0, arg3: 0,

arg4: 0x9a2d720, len: 169, in queue: 0).

[rdc.c | _rdc_msg_process] Processing message for peer ID 1...

[rdc.c | _rdc_msg_process] Waiting for write mutex...

[rdc.c | _rdc_msg_process] Authenticating message...

[rdc.c | _rdc_msg_process] Message processed successfully.

[rdc.c | _rdc_thread_evt] Waiting for next event...

[rdc.c | rdc_recv_evt] New event retrieved (Type=60, Arg1=1, Arg2=1, Arg3=1,

Arg4=0x9a2bc00, len=36).

[rdc_test.c | evt_thread] Message received from peer #1 ("RDC Peer message

transmission test!").

[rdc.c | rdc_recv_evt] Waiting for new event...

--- RDC API Destroying ---

(...)

root@ubuntu:/home/diogo/Desktop/ttt_rdc/rdc/bin#

When con�dentiality was enabled instead (through the command ./rdcm -E

ctx_1 false true), peer_1 gave the following output:

root@ubuntu:/home/diogo/Desktop/ttt_rdc/rdc/bin# ./rdc_test peer_1

--- RDC API Initializing ---

123

5.2 Functional Tests

(...)

--- Data transmission start ---

[rdc.c | rdc_sendmsg] Preparing to send message...

[rdc.c | rdc_sendmsg] Waiting for mutexes...

[rdc.c | rdc_sendmsg] Waiting for authentication for peer with ID = 2.

[rdc.c | _rdc_msg_generate] Message generated successfully.

[rdc.c | _rdc_peer_auth] Sending authentication request for peer with ID = 2...

[tcpip.c | rdc_ipc_tcpip_sendmsg] Sending data...

[tcpip.c | rdc_ipc_tcpip_sendmsg] Message delivered successfully (133 bytes

sent).

[rdc.c | _rdc_peer_auth] Authentication request sent. Waiting for transaction

finish...

[tcpip.c | _rdc_ipc_tcpip_peer_thread] Waiting for data...

[rdc.c | _rdc_thread_evt] Event retrieved (type: 60, arg1: 2, arg2: 0, arg3: 0,

arg4: 0x83952f8, len: 145, in queue: 0).

[rdc.c | _rdc_msg_process] Processing message for peer ID 2...

[rdc.c | _rdc_peer_auth_step] Waiting for write mutex...

[rdc.c | _rdc_peer_auth_step] Peer ID 2 has an authentication status of 3.

[rdc.c | _rdc_msg_generate] Message generated successfully.

[tcpip.c | rdc_ipc_tcpip_sendmsg] Sending data...

[tcpip.c | rdc_ipc_tcpip_sendmsg] Message delivered successfully (21 bytes

sent).

[rdc.c | _rdc_thread_evt] Waiting for next event...

[tcpip.c | _rdc_ipc_tcpip_peer_thread] Waiting for data...

[rdc.c | _rdc_thread_evt] Event retrieved (type: 60, arg1: 2, arg2: 0, arg3: 0,

arg4: 0x83952f8, len: 257, in queue: 0).

[rdc.c | _rdc_msg_process] Processing message for peer ID 2...

[rdc.c | _rdc_peer_auth_step] Waiting for write mutex...

[rdc.c | _rdc_peer_auth_step] Peer ID 2 has an authentication status of 1.

[rdc.c | _rdc_peer_auth_step] Peer 2 authenticated successfully.

[rdc.c | _rdc_peer_auth] Authentication successfull for peer ID = "2".

[rdc.c | rdc_sendmsg] Acquiring write mutex for peer with ID = 2.

[rdc.c | _rdc_msg_generate] Encrypting message...

[rdc.c | _rdc_msg_generate] Message generated successfully.

[tcpip.c | rdc_ipc_tcpip_sendmsg] Sending data...

[tcpip.c | rdc_ipc_tcpip_sendmsg] Message delivered successfully (57 bytes

sent).

[rdc.c | rdc_sendmsg] Message sent...

[rdc_test.c | main()] Message sent to peer #2 ("RDC Peer message transmission

test!").

--- RDC API Destroying ---

(...)

root@ubuntu:/home/diogo/Desktop/ttt_rdc/rdc/bin#

And the output from peer_2 was:

root@ubuntu:/home/diogo/Desktop/ttt_rdc/rdc/bin# ./rdc_test peer_2

--- RDC API Initializing ---

(...)

--- Data transmission start ---

[tcpip.c | _rdc_ipc_tcpip_peer_thread] Waiting for data...

[rdc.c | _rdc_thread_evt] Event retrieved (type: 60, arg1: 1, arg2: 0, arg3: 0,

124

Evaluation

arg4: 0x9f228e0, len: 129, in queue: 0).

[rdc.c | _rdc_msg_process] Processing message for peer ID 1...

[rdc.c | _rdc_peer_auth_step] Waiting for write mutex...

[rdc.c | _rdc_peer_auth_step] Peer ID 1 has an authentication status of 4.

[rdc.c | _rdc_msg_generate] Message generated successfully.

[tcpip.c | rdc_ipc_tcpip_sendmsg] Sending data...

[tcpip.c | rdc_ipc_tcpip_sendmsg] Message delivered successfully (149 bytes

sent).

[rdc.c | _rdc_thread_evt] Waiting for next event...

[tcpip.c | _rdc_ipc_tcpip_peer_thread] Waiting for data...

[rdc.c | _rdc_thread_evt] Event retrieved (type: 60, arg1: 1, arg2: 0, arg3: 0,

arg4: 0x9f21b80, len: 17, in queue: 0).

[rdc.c | _rdc_msg_process] Processing message for peer ID 1...

[rdc.c | _rdc_peer_auth_step] Waiting for write mutex...

[rdc.c | _rdc_peer_auth_step] Peer ID 1 has an authentication status of 2.

[rdc.c | _rdc_msg_generate] Message generated successfully.

[tcpip.c | rdc_ipc_tcpip_sendmsg] Sending data...

[tcpip.c | rdc_ipc_tcpip_sendmsg] Message delivered successfully (261 bytes

sent).

[rdc.c | _rdc_peer_auth_step] Peer 1 authenticated successfully.

[rdc.c | _rdc_thread_evt] Waiting for next event...

[tcpip.c | _rdc_ipc_tcpip_peer_thread] Waiting for data...

[rdc.c | _rdc_thread_evt] Event retrieved (type: 60, arg1: 1, arg2: 0, arg3: 0,

arg4: 0x9f22430, len: 53, in queue: 0).

[rdc.c | _rdc_msg_process] Processing message for peer ID 1...

[rdc.c | _rdc_msg_process] Waiting for write mutex...

[rdc.c | _rdc_msg_process] Decyphering message...

[rdc.c | _rdc_msg_process] Message processed successfully.

[rdc.c | _rdc_thread_evt] Waiting for next event...

[rdc.c | rdc_recv_evt] New event retrieved (Type=60, Arg1=1, Arg2=1, Arg3=1,

Arg4=0x9f231d8, len=36).

[rdc_test.c | evt_thread] Message received from peer #1 ("RDC Peer message

transmission test!").

[rdc.c | rdc_recv_evt] Waiting for new event...

--- RDC API Destroying ---

(...)

root@ubuntu:/home/diogo/Desktop/ttt_rdc/rdc/bin#

Database updates

Since the server daemon doesn't cache queries and keeps a persistent con-
nection to the database, any modi�cations introduced through rdcm should
be immediately re�ected on the information transmitted by the daemon to
the peers.

To test this functionality, the peer API test application was modi�ed
to initialize, idle and then update its local database through the function
rdc_update_db() when triggered by an input. While the API was idling,
one peer and one context were added to the database, while one existing
peer and one context were removed from it (Figure 5.8).
The output from peer_1 was:

125

5.2 Functional Tests

Figure 5.8: Database changes performed while peer_1 was waiting for input

root@ubuntu:/home/diogo/Desktop/ttt_rdc/rdc/bin# ./rdc_test peer_1

--- RDC API Initializing ---

(...)

Waiting for input...

--- Updating database ---

[rdc.c | _rdc_update_db] Connecting to central server...

[rdc.c | _rdc_update_db] Connection established.

[rdc.c | _rdc_update_db] Authentication: Sending name to server...

[rdc.c | _rdc_update_db] Authentication successful!

[rdc.c | _rdc_update_db] Sending peer list request...

[rdc.c | _rdc_update_db] Sending host ID...

[rdc.c | _rdc_update_db] Sending interface information to server...

[rdc.c | _rdc_update_db] Receiving peer information from server...

[rdc.c | _rdc_update_db] Interface information retrieved successfully.

[rdc.c | _rdc_update_db] Creating RDC network database...

[api_dtypes.c | rdc_dt_db_update] Updating database...

[api_dtypes.c | rdc_dt_db_update] Checking for deleted contexts...

[api_dtypes.c | rdc_dt_db_update] Removing context ID #2...

[api_dtypes.c | rdc_dt_db_update] Checking for new contexts...

[api_dtypes.c | rdc_dt_db_update] Adding context ID #4...

[api_dtypes.c | rdc_dt_db_update] Checking for deleted peers...

[api_dtypes.c | rdc_dt_db_update] Removing peer ID #2...

[api_dtypes.c | rdc_dt_db_update] Checking for new peers...

[api_dtypes.c | rdc_dt_db_update] Adding peer ID #5...

[api_dtypes.c | rdc_dt_db_update] Freeing resources...

[api_dtypes.c | rdc_dt_remove_peer] Removing context #1...

[api_dtypes.c | rdc_dt_remove_peer] Removing peer #3...

[api_dtypes.c | rdc_dt_remove_peer] Removing peer #4...

[api_dtypes.c | rdc_dt_db_update] All OK.

[rdc.c | _rdc_update_db] Notifying application of new contexts...

[rdc.c | _rdc_update_db] Removing removed contexts from the database...

126

Evaluation

[rdc.c | _rdc_update_db] Removing context #2...

[rdc.c | _rdc_update_db] Removing context information from peer #2...

[api_dtypes.c | rdc_dt_remove_peer] Removing context #2...

[rdc.c | _rdc_update_db] Notifying application of new peers...

[rdc.c | _rdc_update_db] Removing removed peers from the database...

[rdc.c | _rdc_update_db] Removing peer #2...

[api_dtypes.c | rdc_dt_remove_peer] Removing peer #2...

[rdc.c | _rdc_update_db] All OK.

--- RDC API Destroying ---

(...)

root@ubuntu:/home/diogo/Desktop/ttt_rdc/rdc/bin#

5.3 Stability

rdc_test was modi�ed in accordance to the algorithm described in Sec-
tion 4.3.9, so as to test the peer API's stability and the presence of memory
errors (such as memory over�ows, memory leaks and memory corruption
bugs). The application valgrind was used to accomplish the latter.

Running the application through valgrind allowed the successful detec-
tion and removal of memory errors during its implementation. There were,
however, some leaks that could not be �xed as they were present inside
two libraries used by the application - libssl and librt. The output from
valgrind after running the stability test for one minute was:

==20519==

==20519== HEAP SUMMARY:

==20519== in use at exit: 51,856 bytes in 2,230 blocks

==20519== total heap usage: 6,763 allocs, 4,533 frees, 44,336,451 bytes

allocated

==20519==

==20519== 144 bytes in 1 blocks are possibly lost in loss record 202 of 251

==20519== at 0x4024F12: calloc (vg_replace_malloc.c:467)

==20519== by 0x40117CB: _dl_allocate_tls (dl-tls.c:300)

==20519== by 0x41C76A9: pthread_create@@GLIBC_2.1 (allocatestack.c:570)

==20519== by 0x8060727: rdc_ipc_mqueue_init (mqueue.c:272)

==20519== by 0x805A6D1: rdc_ipc_init (ipc.c:17)

==20519== by 0x80599A7: rdc_init (rdc.c:2135)

==20519== by 0x8055026: RdcModule::start() (RdcModule.cpp:100)

==20519== by 0x804B4E9: main (ttt.cpp:197)

==20519==

==20519== 144 bytes in 1 blocks are possibly lost in loss record 203 of 251

==20519== at 0x4024F12: calloc (vg_replace_malloc.c:467)

==20519== by 0x40117CB: _dl_allocate_tls (dl-tls.c:300)

==20519== by 0x41C76A9: pthread_create@@GLIBC_2.1 (allocatestack.c:570)

==20519== by 0x8059A03: rdc_init (rdc.c:2150)

==20519== by 0x8055026: RdcModule::start() (RdcModule.cpp:100)

==20519== by 0x804B4E9: main (ttt.cpp:197)

==20519==

==20519== 244 bytes in 1 blocks are definitely lost in loss record 213 of 251

==20519== at 0x4025BD3: malloc (vg_replace_malloc.c:236)

==20519== by 0x43723FD: ??? (in /lib/libcrypto.so.0.9.8)

127

5.3 Stability

==20519== by 0x4372A8B: CRYPTO_malloc (in /lib/libcrypto.so.0.9.8)

==20519== by 0x43EA4E5: EVP_CipherInit_ex (in /lib/libcrypto.so.0.9.8)

==20519== by 0x43E7570: EVP_EncryptInit_ex (in /lib/libcrypto.so.0.9.8)

==20519== by 0x805AE1D: rdc_cry_encrypt (crypto.c:105)

==20519== by 0x80558AD: _rdc_msg_generate (rdc.c:55)

==20519== by 0x805A269: rdc_sendmsg (rdc.c:2427)

==20519== by 0x80553F2: RdcModule_sendThread(void*) (RdcModule.cpp:190)

==20519== by 0x41C6CC8: start_thread (pthread_create.c:304)

==20519== by 0x42AC69D: clone (clone.S:130)

==20519==

==20519== 724 (88 direct, 636 indirect) bytes in 1 blocks are definitely lost in

loss record 239 of 251

==20519== at 0x4025BD3: malloc (vg_replace_malloc.c:236)

==20519== by 0x43723FD: ??? (in /lib/libcrypto.so.0.9.8)

==20519== by 0x4372A8B: CRYPTO_malloc (in /lib/libcrypto.so.0.9.8)

==20519== by 0x43C6077: RSA_new_method (in /lib/libcrypto.so.0.9.8)

==20519== by 0x43C62AD: RSA_new (in /lib/libcrypto.so.0.9.8)

==20519== by 0x43C571C: ??? (in /lib/libcrypto.so.0.9.8)

==20519== by 0x440249B: ??? (in /lib/libcrypto.so.0.9.8)

==20519== by 0x4405707: ASN1_item_ex_d2i (in /lib/libcrypto.so.0.9.8)

==20519== by 0x4405E94: ASN1_item_d2i (in /lib/libcrypto.so.0.9.8)

==20519== by 0x43C5874: d2i_RSAPublicKey (in /lib/libcrypto.so.0.9.8)

==20519== by 0x4416074: PEM_ASN1_read_bio (in /lib/libcrypto.so.0.9.8)

==20519== by 0x4415655: PEM_read_bio_RSAPublicKey (in /lib/libcrypto.so.0.9.8)

==20519==

==20519== 2,376 (24 direct, 2,352 indirect) bytes in 1 blocks are definitely lost

in loss record 248 of 251

==20519== at 0x4025BD3: malloc (vg_replace_malloc.c:236)

==20519== by 0x43723FD: ??? (in /lib/libcrypto.so.0.9.8)

==20519== by 0x4372A8B: CRYPTO_malloc (in /lib/libcrypto.so.0.9.8)

==20519== by 0x43EBB44: EVP_PKEY_new (in /lib/libcrypto.so.0.9.8)

==20519== by 0x805B1C6: rdc_cry_sign (crypto.c:217)

==20519== by 0x805592E: _rdc_msg_generate (rdc.c:70)

==20519== by 0x8058C9F: _rdc_thread_ifu (rdc.c:1717)

==20519== by 0x41C6CC8: start_thread (pthread_create.c:304)

==20519== by 0x42AC69D: clone (clone.S:130)

==20519==

==20519== LEAK SUMMARY:

==20519== definitely lost: 364 bytes in 4 blocks

==20519== indirectly lost: 2,988 bytes in 42 blocks

==20519== possibly lost: 288 bytes in 2 blocks

==20519== still reachable: 48,216 bytes in 2,182 blocks

==20519== suppressed: 0 bytes in 0 blocks

==20519== Reachable blocks (those to which a pointer was found) are not shown.

==20519== To see them, rerun with: --leak-check=full --show-reachable=yes

==20519==

==20519== For counts of detected and suppressed errors, rerun with: -v

==20519== ERROR SUMMARY: 6 errors from 6 contexts (suppressed: 33 from 10)

To test the actual stability of the system, three instances of the peer API
test application were left running for a couple of minutes. The �rst used
only message queue IPC, while the second and third peers used both mes-
sage queues TCP/IP sockets. Figure 5.9 shows the memory usage a couple of
seconds after the applications were launched. Figure 5.10 shows the memory
usage from the same instances a couple of minutes later. No errors occurred
during the tests.

Further tests were made with an higher number of peers (which com-
pleted successfully) and with authentication and/or con�dentiality enabled.

128

Evaluation

Figure 5.9: Memory usage at the start of the stability test

Figure 5.10: Memory usage after a couple of minutes into the stability test

Unfortunately, some issues with the OpenSSL library (libssl) prevented
the successful completion of most tests that required the use of it (i.e., when
authentication and/or con�dentiality was used). Even when both of the
OpenSSL's internal access control mechanisms were properly set up, the
OpenSSL library kept halting at seemingly random assert()s inside the li-
brary itself. This issue never occurred when only two peers were connected,
and the probability of error increased as the number of peers also increased.
The bug disappeared once some additional mutexes were set up in the API
in such a way as to only allow one thread to use libssl's functions at a time.
Closer inspection of the OpenSSL's source code revealed a very frequent us-
age of global variables. These facts suggest that the issue is probably due

129

5.4 Peer-to-Peer Throughput Tests

to presence of bug(s) related with the concurrent access control mechanisms
built into OpenSSL. An older version of the library was also tested (v0.9.8o),
but with similar results.

5.4 Peer-to-Peer Throughput Tests

An RDC API module was created for ttt (used in section 3.4.2), in order
to assess the IPC performance of the API. Note that the messages exchanged
between processes through the RDC API contain an higher overhead than
the ones sent directly through ttt. Coupled with the processing overhead
introduced by the API, a lower throughput was expected for the results.

The presence of error checking mechanisms in ttt's message protocol also
allowed the veri�cation that no packets were dropped or contained errors,
and that they were all delivered in the expected order.

In this section, the term plain will be used to describe that no authen-
tication and con�dentiality was set up in the communication context. Auth
means that authentication was enabled (and con�dentiality disabled), and
conf means that con�dentiality was enabled (and authentication disabled).
Results for both authentication and con�dentiality enabled presented iden-
tical values to the conf scenario, so they were not shown.

5.4.1 Local Test Results

Table 5.2 shows the results obtained and how they fare against the ref-
erence values. Only one of the two IPC mechanisms supported by the API
was tested at a time, so that direct comparisons could be made. Note that
the columns �Packet error rate� and �Out-of-order packet rate� were removed
from the table because these values were always null.

For the most part, the results obtained were expected. The increase in
overhead of the API has a negative impact on performance, and it is more
noticeable with smaller message sizes since it coincides with an increase of
processing time. However, it was somehow unexpected that the RDC API
managed to provide an higher throughput with TCP/IP for packets sizes of
16384 bytes than the reference value for that same IPC mechanism. Looking
at the CPU usage �eld, one can speculate that it could be related to the
parallelization of the code in the receiving end of the RDC API. This allows
the separation of the thread that is responsible to extract the message from
the socket to the one that veri�es and processes its contents. These threads
can run in di�erent processing cores, hence the CPU usage value above the
100% mark (meaning that more than one processing core is being used). In
any case, an higher throughput is always a desirable characteristic.

Another uncertainty is why the RDC API managed to obtain a slightly
higher throughput through the TCP/IP interface than through message
queues. The most probable reason is related to the way message queues

130

Evaluation

P
a
ck
et

si
ze

T
h
ro
u
g
h
p
u
t
(M

B
/
s)

D
el
ay
:
M
ea
n
ti
m
e
(m

s)

D
el
ay
:
S
td
.
D
ev
ia
ti
o
n
(m

s)

T
ra
n
sm

is
si
o
n
C
P
U
u
sa
g
e

R
ec
ep
ti
o
n
C
P
U
u
sa
g
e

TCP/IP socket
128 B 48,63 0,64 25,31 40% 100%
1024 B 167,74 4,00 62,98 8% 100%
16384 B 269,95 4,03 63.27 2% 100%

RDC API
(TCP/IP-plain)

128 B 20,10 4,60 67,35 42% 106%
1024 B 108,30 4,29 65,21 40% 116%
16384 B 299,19 4,31 65,35 40% 125%

RDC API
(TCP/IP-conf)

128 B 13.82 4.44 66.14 52% 100%
1024 B 44.29 4.21 64.44 70% 110%
16384 B 72.04 4.36 65.53 84% 106%

RDC API
(TCP/IP-auth)

128 B 0.03 2.57 50.51 100% 6%
1024 B 0.23 2.57 50.35 100% 6%
16384 B 3.63 4.53 67.06 100% 8%

Message queue
128 B 50,51 0.01 3.21 96% 96%
1024 B 178,49 0.02 4.90 56% 98%
16384 B 301,65 0.25 15.84 18% 98%

RDC API
(MQueue-plain)

128 B 18.58 0.36 19.04 64% 100%
1024 B 99.41 0.47 21.58 50% 106%
16384 B 286.60 4.46 66.52 20% 116%

RDC API
(MQueue-conf)

128 B 12.70 0.12 11.12 68% 108%
1024 B 45.53 1.80 42.29 72% 108%
16384 B 72.92 4.31 65.30 78% 102%

RDC API
(MQueue-auth)

128 B 0.03 4.25 68.97 100% 4%
1024 B 0.24 4.66 64.01 100% 6%
16384 B 3.89 4.21 64.68 100% 7%

Table 5.1: Local IPC test results for RDC API

are processed. The TCP/IP implementation has one reception thread for
each peer it is connected to, and it only does only two things: retrieve the
message from the socket and put in on the incoming event queue. On the
other hand, the message queue implementation has only one reception thread
for all peers, and it has to do three things: retrieve the message from the
message queue, check if the remote peer is present on the local database and
connected to the local peer (and notify it if not), and put the message on the
incoming event queue. This solution requires a low amount of memory and
resources, but the increased load on what was already the most expensive
thread of the API (the reception thread) may explain the lower throughput

131

5.4 Peer-to-Peer Throughput Tests

and the slightly lower overall CPU usage of message queues due to the reduc-
tion of work in the message processing thread. On the plus side, the delay
values are relatively shorter, so message queues should provide a throughput
advantage on a question-reply scenario.

As expected, performance su�ered considerably once cryptographic al-
gorithms were introduced. These operations are computationally expensive
and this is particularly noticeable when asymmetric encryption ciphers are
used, since these algorithms are several orders of magnitude slower that the
ones used in symmetric encryption. For the auth scenario, the performance
bottleneck is speci�cally located on the generation of the Message Authen-
tication Codes (MACs) for the authentication of messages. Repeated tests
in this particular scenario also showed a very high disparity of mean delay
values, sometimes ranging from 2 ms to 10 ms for the same test. The results
shown were obtained from the average of all tests.

5.4.2 Remote Test Results

The remote tests were executed in a similar setup as the one used for
local IPC tests, except that data was sent from Computer A to Computer
B. Reference values were also obtained using ttt's TCP/IP module. Table
5.2 shows the results from these tests.

P
a
ck
et

si
ze

T
h
ro
u
g
h
p
u
t
(M

B
/
s)

D
el
ay
:
M
ea
n
ti
m
e
(m

s)

D
el
ay
:
S
td
.
D
ev
ia
ti
o
n
(m

s)

T
ra
n
sm

is
si
o
n
C
P
U
u
sa
g
e

R
ec
ep
ti
o
n
C
P
U
u
sa
g
e

TCP/IP socket
128 B 29,58 1,36 0,09 70% 100%
1024 B 98,82 1,35 0,09 60% 100%
16384 B 111,56 1,34 0,09 20% 68%

RDC API
(TCP/IP-plain)

128 B 18,56 1,39 0,09 70% 165%
1024 B 48,40 1,39 0,09 65% 150%
16384 B 100,72 1,38 0,09 50% 103%

RDC API
(TCP/IP-conf)

128 B 8,93 1,41 0,08 70% 155%
1024 B 38,32 1,39 0,09 80% 145%
16384 B 76,12 1,40 0,09 100% 130%

RDC API
(TCP/IP-auth)

128 B 0.03 1,40 0,08 100% 10%
1024 B 0.23 1,39 0,08 100% 12%
16384 B 3.58 1,38 0,09 100% 18%

Table 5.2: Remote IPC test results for RDC API

132

Evaluation

The results shown in the table were expected. Due to an increase in
overhead, the RDC API provides a lower throughput when compared to the
reference values. And again, this is particularly noticeable for smaller data
packets.

For the reference test with packet size of 16384 bytes, the CPU usage
dropped well below 100% at both ends of the line. This suggests that the
throughput performance was network-bound instead of CPU-bound for this
particular test.

5.5 Scalability Tests

The second version of the test application (as described in Section 4.3.9)
was used to test the scalability of the RDC API. Due to instability of
OpenSSL's library, only tests for the plain scenario were executed.

5.5.1 Local Scalability Tests

A script was prepared to automate the testing process. Five tests were
ran for each combination of IPC interface and number of peers, for 30 seconds
each. All results were then averaged.

During the initialization of a message queue, an error may occur if the
total amount of memory requested surpasses the maximum amount allowed
by the operating system. Due to the large amount of peers involved in the
stability tests, the default message queue limit had to be increased. This
can be done in two di�erent ways. The �rst method involves the usage of
the ulimit tool:

diogo@ubuntu:~/Desktop$ ulimit -q [SIZE]

diogo@ubuntu:~/Desktop$

Where �SIZE� is the desired message queue length or �unlimited� for un-
limited queue size. This sets the message queue limit for the current user,
but it's only temporary and lasts only as long as the user is logged in. A
permanent, system-wide solution involves appending the following lines to
the �le /etc/security/limits.conf:

hard msgqueue [SIZE]

soft msgqueue [SIZE]

The �rst method was used to temporarily remove this limit.
Figures 5.11, 5.12 and 5.13 shows the results obtained for message sizes

of 128, 1024 and 16384 bytes, respectively. From these it is possible to see
that message queues o�er slightly more linear results than TCP/IP sockets,
particularly for smaller package sizes. The di�erences in scalability between
both IPC mechanisms are not very signi�cant, except when working with

133

5.5 Scalability Tests

small data packets. Unfortunately, message queues still provided a lower
bandwidth than TCP/IP sockets for local IPC. This is probably due to the
same reason described in section 5.4.1, but in these tests all peers are both
sending and receiving data (and not just one at the same time), so the
penalty in overhead is even more substantial. Message queues ended up
providing a throughput advantage only for big packet sizes.

10

12

14

16

18

20

22

24

26

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

To
ta

l d
at

a
tr

an
sf

e
rr

e
d

 (
M

B
)

Number of peers

RDC API - Local scalability tests - 128 Bytes

TCP/IP Message queue

Figure 5.11: RDC API's local scalability test results (128 Bytes)

10

30

50

70

90

110

130

150

170

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

To
ta

l d
at

a
tr

an
sf

e
rr

e
d

 (
M

B
)

Number of peers

RDC API - Local scalability tests - 1024 Bytes

TCP/IP Message queue

Figure 5.12: RDC API's local scalability test results (1024 Bytes)

134

Evaluation

10

210

410

610

810

1010

1210

1410

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

To
ta

l d
at

a
tr

an
sf

e
rr

e
d

 (
M

B
)

Number of peers

RDC API - Local scalability tests - 16384 Bytes

TCP/IP Message queue

Figure 5.13: RDC API's local scalability test results (16384 Bytes)

5.5.2 Remote Scalability Tests

To evaluate the remote IPC scalability of the RDC API, three tests were
executed for 60 seconds for each combination of total number of peers and
data packet size. All values were then averaged. The tests began with just
Computer A and Computer C1, and more computers from the group C were
progressively added until a maximum of 5 elements was reached. Figure 5.14
shows the overall throughput of the system.

For the reasons described in Section 5.1, the resources available for this
test were much less than ideal. It's not clear how the di�erences in the
con�guration of the computers impacts the results, and the values obtained
also ended up with discrepancies between them, leaving little credibility to
these values. A much better test would involve a group of more modern
computers with identical con�guration and a faster and more stable network.
Unfortunately, such hardware was not available for the time reserved for the
testing phase of this dissertation.

5.6 Multiple Simultaneous IPC Mechanisms

Additional tests were set up to test the multiple IPC interface capability
of the RDC API. The version of rdc_test used to test the scalability of the
API was used again to measure the di�erences of throughput when only one
(TCP/IP) or both types of interfaces were used. Two instances of the API
were executed for 60 seconds in each of the two di�erent computers (A and
B), for a total of four processes. Each test was repeated three times and all

135

5.6 Multiple Simultaneous IPC Mechanisms

0

200

400

600

800

1000

1200

2 3 4 5

To
ta

l d
at

a
tr

a
n

sf
e

rr
e

d
 (M

B
)

Number of peers

RDC API - Remote scalability tests

128 Bytes 1024 Bytes 16384 Bytes

Figure 5.14: RDC API's remote scalability test results

values were averaged. Figure 5.15 shows the results.

1,06

7,44

34,6

0,85

6,06

47,84

0

10

20

30

40

50

60

128 Bytes 1024 Bytes 16384 Bytes

To
ta

l d
at

a
tr

an
sm

it
te

d
 (

G
B

)

Message size

RDC API - Single vs multiple IPC mechanisms

TCP/IP only TCP/IP and Message Queue

Figure 5.15: RDC API's single vs multiple IPC mechanisms

As expected from the previous tests, only large packet sizes give the API
a throughput advantage when using message queues. Another reason may
be related to the saturation of the ethernet link.

136

Evaluation

5.7 Conclusion

The API's prototype has proven to be fully functional and relatively sta-
ble, the latter being held back mostly due to concurrency bugs present on
the OpenSSL's library. Performance tests have shown that the API would
still require a bit more work to be able to extract the throughput potential
of the multi-IPC capability. Nevertheless, the framework is built and func-
tional, and an architectural change of the message queue's implementation
code should be enough to boost the results. Other mechanisms (such as
shared memory) could also be attempted for an higher throughput.

Unfortunately, the hardware available made for testing conditions that
were much less than ideal. The results obtained for remote scalability tests
are not trustworthy, and they ought to be repeated (if possible) in better
conditions.

Some bugs in the API only started to show up during the function-
al/stability tests phase, where a large number of peers executed simultane-
ously. These bugs were particularly hard to diagnose and �x because it was
necessary to replicate the correct sequence of events for them to show up,
sometimes over multiple instances of the API. The debugging mechanisms
embedded in the RDC API's code helped to track most bug's origins, but a
closer an detailed examination with gdb was frequently required.

Further testing of the API could be done involving di�erent con�gura-
tions of the system, such as di�erent kernel versions, architectures, hardware
con�gurations (single-core vs multi-core CPUs), etc. Other tests could in-
volve a comparison between the results from the RDC API and a similar
third party API, which wasn't done due to the di�culty in �nding similar
APIs to the one developed. Further tests could also be done for the UDP-
based alternative protocols described in Section 3.4.3, which were not made
due to time constraints.

137

5.7 Conclusion

138

Chapter 6

Conclusion

This dissertation is the result of many thousands of hours of work, in
which a prototype was planned, implemented and tested successfully. The
potential for further development of this API is still signi�cant, and this dis-
sertation should provide a good starting point for future work on the subject.

All objectives identi�ed in Sections 1.3 and 3.1 were met, and the ma-
jority of the desirable characteristics identi�ed in Section 3.1 were met as
well. No special tweaks for RoutUM were implemented in the API since no
requests ended up being made from the RoutUM's development team. The
only exception is the inclusion of support for urgent messages, which resulted
in the creation of an high-priority code path in the API.

Despite all the work put into the software package, it is still not ready
to be used in a production environment. Before it can reach this status,
its reliability has to be improved (namely due to the problems identi�ed in
the OpenSSL library) and some minor functionality should be added to the
system and issues corrected (e.g. the ability to split messages transmitted
by message queues, when their size surpass what's allocated).

One of the most di�cult and time-consuming tasks during the whole dis-
sertation was �nding a good architecture for the peer API. In one hand, it
had to o�er a good degree of readability and modularization (for further de-
velopment) and at the same time it had to be as e�cient as possible. These
two priorities often translate into opposing choices, and a lot of thought had
to be put into making the right decisions. The resulting compromise made
up for a very complex base architecture, which went through various changes
until the �nal version (presented here) was implemented. But until this ver-
sion was developed, a lot of time was spent writing and rewriting less than
ideal architectures several times over. And even after all the work, there are
still some leads that a better architecture could have been achieved. In any
case, the work presented here and the conclusions that were taken should
provide a solid starting point for future developments.

The OpenSSL library forced me to do some unexpected changes to the

139

system, and its instability prevented me from completing the tests as they
were planned. Obviously, changes will have to be made to the API in
order for it to become a viable proposition for a production environment.
OpenSSL's notoriously poor documentation also meant that more work was
needed to implement the cryptographic functions than expected.

As for the research phase, I couldn't �nd any good references about sim-
ilar APIs as the one that was developed, which made up for some guesswork
during the planning phase. The resources obtained about IPC performance
tests were also poor and the internal tests were incomplete.

One of the most important lessons learned during development is the im-
portance of e�ective debugging mechanisms when dealing with distributed
systems and highly threaded code. The very large majority of the devel-
opment time was spent with debugging, and the total time spent with the
development largely surpassed what was planned from the beginning. De-
spite the debugging mechanisms that were implemented, some bugs took
almost a week of work to �nd and �x.

Another important lesson was taken from the testing phase. As seen from
the throughput results obtained by the API, synthetic benchmarks were not
enough to reliably choose the highest performing IPC mechanism for an ap-
plication. These raw benchmarks (throughput, delay, error rate, etc) are
only as important as the type of IPC needed by the application in question.
Other factors such as identi�cation of incoming messages, CPU usage and
parallelization of tasks, tracking of connection status, etc. can have a big
impact on IPC performance as well. The issues related to the lower band-
width of local IPC (for other than large data packets) showed me that I
underestimated the importance of parallelization and CPU usage during the
implementation phase. Despite this, I fully believe that architecture adjust-
ments to the message queue implementation would allow it to better extract
the throughput advantages of message queues, but not without adding com-
plexity and resource usage of the system. This solution would involve the
usage of a single message queue between each pair of peers in the system,
thus allowing an increased level of parallelization of tasks and the creation of
a faster reception thread. This was not implemented due to time limitations.

The theme of this dissertation demanded the software to be developed in
API form. Despite this, I believe that there could be signi�cant performance
advantages if a more integrated approach was taken with RoutUM instead.
In theory, this could allow higher code e�ciency with less modularization, by
unifying duplicate data and taking advantage of variable lookups that oth-
erwise would have to be done twice. For instance, the data structures used
to identify peers in the API could be coupled with RoutUM's own structs,
thus reducing the need to lookup data from the same peer twice (one from
the application and one from the API) when sending application-level mes-
sages. Another example is related to RoutUM's PDU structure, which could
be integrated with that of RDC API, allowing a slight reduction of overhead

140

Conclusion

by removing redundant �elds.
Despite all of this, I consider the knowledge taken from this dissertation

to be very valuable, as it encompasses a multitude of areas of knowledge, in-
cluding networks, distributed systems, programming, optimization, etc. The
development of the API gave a deeper understanding of the problems that
are generally involved in the development of distributed systems. I also ac-
quired a lot of secondary but useful knowledge during the development of
the software, from the time that I spent debugging with gdb, working out
issues with linkers (e.g. when I attempted to mix C with C++), �guring out
what existing tools and systems I could use to solve various problems, etc.

6.1 Future Work

The resulting software package from this dissertation is merely a pro-
totype and as such it can be further developed in several areas. Besides
improvements related to e�ciency and stability of the code, some additional
and useful features could be added to it. Some suggestions may include:

• Message delivery con�rmation - Some IPC mechanisms do not
posses delivery con�rmation, and even when they do it's not possible
to be sure if a message was delivered successfully or not. A message
may also not be delivered due to other factors, such as corruption,
interception, etc. This feature is already included in RoutUM, but an
API level implementation would make it accessible for any applications
that implements it.

• Usage of multiple simultaneous IPC interfaces between peers
- This feature would introduce advantages related to throughput and
fault tolerance but could signi�cantly increase code complexity. Causal-
ity between all received and transmitted messages would have to be
kept between IPC interfaces with di�erent transmission characteristics
(bandwidth, delay, etc). Smart algorithms would have to be devel-
oped for when small �question-reply� data packets are transmitted, or
this feature could potentially become an hindrance as the throughput
advantage would be nulli�ed by an increase in delay.

• An improved error report system - With a more detailed and
explicit error report system, the application would have more infor-
mation about issues with the API and thus be more prepared to take
measures to correct said issues. A simple example would be when the
initialization of an interface fails during rdc_init(). In the current
implementation, the application has no way of knowing which and why
an interface has failed to initialize.

141

• Adding a timed event queue mechanism - This feature would be
the equivalent of an event queue (as implemented by evt_queue.h and
evt_queue.c, but its events would only trigger after a speci�ed amount
of time. As long as the trigger time wasn't reached, the programmer
would have the option to remove that event from the queue. This
feature could be useful for a number things such as knowing if a peer
is still reachable after a long period of inactivity, or creating automatic
and regular database updates.

• Make security mechanisms dependent on the type of interface
- Some IPC mechanisms may require a lower level of security than
others, in which case using authentication and/or con�dentiality would
simply be a waste of resources. Additionally, di�erent ciphers could be
chosen by context, type of interface, etc.

• Local shared memory pool - It may be desirable to include the
ability to have a portion of shared memory between several peers in
the same system. If a peer had a big portion of memory that had to be
transmitted to other peers, this would drastically reduce the amount of
memory that had to be transmitted, while also allowing random access
to said data.

• Server-side authentication - This could avoid potential issues re-
lated to server forgery.

Bibliography

[1] Alternate IPC Mechanisms: A Comparison of Their Use Within an

ORB Framework. Objective Interface Systems, 2002.

[2] G.S. Almasi and A. Gottlieb. Highly Parallel Computing. Benjamin-
Cummings publishers, Redwood City, CA., 1989.

[3] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Dis-

tributed Programming. Addison Wesley, 1999.

[4] Abhijit Belapurkar et al. Distributed Systems Security: Issues, Pro-

cesses and Solutions. John Wiley & Sons, Ltd, 2009.

[5] Tony F. Chan, Gene H. Golub, and Randall J. LeVeque. Algorithms
for Computing the Sample Variance: Analysis and Recommendations.
Tech. rep. The American Statistician, 1983.

[6] routUM: Computer Communications Group. A Modular Distributed

Computer Networks Simulator. Tech. rep. Department of Informatics,
School of Engineering, University of Minho, 2007.

[7] L. Ferreira et al. Introduction to Grid Computing with Globus. IBM
Redbooks, 2003.

[8] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Com-

puting Infrastructure. Morgan Kaufmann, 1998.

[9] Patricia K. Immich, Ravi S. Bhagavatula, and Dr. Ravi Pendse. �Per-
formance Analysis of Five Interprocess Communication Mechanisms

Across UNIX Operating Systems�. In: The Journal of Systems and
Software 68 (2003), pp. 27�43.

[10] R. G. Ingalls. �Introduction to Simulation�. In: WSC'02: Proceedings
of the 34th Conference on Winter Simulation, 2002.

[11] Teerawat Issariyakul and Ekram Hossain. Introduction to Network Sim-
ulator NS2. Springer, 2010. isbn: 1441944125.

[12] Leonard Kleinrock. Queueing Systems. Volume 1: Theory. Wiley-In-
terscience, 1975. isbn: 0471491101.

[13] Ajay K. Kshemkalyani and Mukesh Singhal. Distributed Computing:

Principles, Algorithms and Systems. Cambridge University Press, 2008.

143

BIBLIOGRAPHY

[14] Distributed Cooperative Apache Web Server. WWW10 - Tenth Inter-
national World Wide Web Conference. 2001.

[15] Robert F. Ling. Comparison of Several Algorithms for Computing Sam-
ple Means and Variances. Tech. rep. The American Statistician, 1974.

[16] Manolescu, D. Beckman, and B. B. Livshits. Volta: Developing Dis-

tributed Applications by Recompiling. Microsoft Live Labs., Redmond,
WA, 2008.

[17] Masayoshi Nabeshima and Kouji Yata. �Performance Evaluation and

Comparison of Transport Protocols for Fast Long-Distance Networks�.
In: IEICE Transactions on Communications, Vol. E89-B (2006).

[18] Ana Nunes and Sara Fernandes. Communication and Resource Sharing

Management Protocols for the ROUTUM Network Simulator. Tech.
rep. Department of Informatics, School of Engineering, University of
Minho, 2007.

[19] Jianli Pan. A Survey of Network Simulation Tools: Current Status and

Future Developments. Tech. rep. Washington University in St. Louis,
2008.

[20] Papadimitriou and Christos H. Computational Complexity. Addison-
Wesley, 1994.

[21] Parallel Simulation Made Easy with OMNeT++. Delft, The Nether-
lands: Proceedings of European Simulation Symposium, 2003.

[22] Pedro Silva. RoutUM - Sincronização Temporal. Tech. rep. Department
of Informatics, School of Engineering, University of Minho, 2007.

[23] Pedro Sousa. RoutUM - Core. Tech. rep. Department of Informatics,
School of Engineering, University of Minho, 2006/2007.

[24] W. Richard Stevens. UNIX Network Programming: Networking APIs:

Sockets and XTI; Volume 1. Prentice Hall PTR, 1998. isbn: 013490012X.

[25] Klaus Wehrle, Mesut Günes, and James Gross. Modelling and Tools

for Network Simulation. Springer, 2010. isbn: 3642123309.

[26] Kwame Wright, Kartik Gopalan, and Hui Kang. �Performance Anal-

ysis of Various Mechanisms for Inter-Process Communication�. In:
(2007).

144

Appendix A

Code Headers

A.1 Database API

db.h

1 #include <s td i o . h>
2 #include <pthread . h>
3 #include " . . / shared /dtypes . h"
4
5 #ifndef _RDC_DB_H
6 #define _RDC_DB_H
7
8 typedef struct {
9 void∗ db_handle ;
10 pthread_mutex_t db_mutex ;
11 } rdc_db_t ;
12
13 struct rdc_db_cfg {
14 char∗ path ;
15 } ;
16
17 int rdc_db_connect (rdc_db_t∗ db , struct

rdc_db_cfg∗ cfg , bool c r e a t e) ;
18 void rdc_db_disconnect (rdc_db_t∗ db) ;
19
20 int rdc_db_add_context (rdc_db_t∗ db , int∗ id ,

const char∗ name) ;
21 int rdc_db_remove_context (rdc_db_t∗ db , const

char∗ name) ;
22 int rdc_db_get_contexts (rdc_db_t∗ db , struct

rdc_ctx ∗∗ context , int context_id , int peer_id ,
bool e x c l u s i v e) ;

23 int rdc_db_update_security (rdc_db_t∗ db , const

char∗ context_name , bool use_conf , bool
use_auth) ;

24
25 int rdc_db_add_peer (rdc_db_t∗ db , int∗ id , const

char∗ name , rdc_cry_keypair_t∗∗ key) ;

145

A.2 Peer API

26 int rdc_db_remove_peer (rdc_db_t∗ db , const char∗
name) ;

27 int rdc_db_get_peers (rdc_db_t∗ db , struct

rdc_peer ∗∗ peer , int context_id , int peer_id ,
char∗ peer_name) ;

28 int rdc_db_get_interfaces (rdc_db_t∗ db , struct

rdc_i f ∗∗ i n t f , int peer_id) ;
29 int rdc_db_update_interfaces (rdc_db_t∗ db , const

char∗ peer_name , struct rdc_i f ∗ i n t e r f a c e) ;
30 int rdc_db_update_hostid (rdc_db_t∗ db , const char

∗ peer_name , long host_id) ;
31
32 int rdc_db_add_membership (rdc_db_t∗ db , const

char∗ context_name , const char∗ peer_name) ;
33 int rdc_db_get_memberships (rdc_db_t∗ db , struct

rdc_ctx ∗∗ context , int context_id) ;
34
35 #endif

A.2 Peer API

rdc.h

1 #include <netdb . h>
2 #include <pthread . h>
3 #include <stdboo l . h>
4
5 #include "api_dtypes . h"
6
7 #ifndef _RDC_H
8 #define _RDC_H
9
10 int rdc_in i t (rdc_t∗ rdc , struct rdc_cfg∗ c f g) ;
11 void rdc_destroy (rdc_t∗ rdc) ;
12 int rdc_sendmsg (rdc_t∗ rdc , int peer_id , int

src_cid , int dst_cid , char∗ msg , unsigned int

msg_len , bool urgent) ;
13 int rdc_recv_evt (rdc_t∗ rdc , struct rdc_evt∗ msg) ;
14 void rdc_free_evt (struct rdc_evt∗ evt) ;
15
16 struct rdc_peer_ex∗ rdc_get_peers (rdc_t∗ rdc , int

peer_id) ;
17 struct rdc_ctx_ex∗ rdc_get_contexts (rdc_t∗ rdc , int

ctx_id) ;
18
19 int rdc_update_db (rdc_t∗ rdc , unsigned int∗ added ,

unsigned int∗ removed , unsigned int∗ t o t a l) ;
20
21 #endif /∗ _RDC_H ∗/

146

Code Headers

api_dtypes.h

1 #include <time . h>
2
3 #include " . . / shared / crypto . h"
4 #include " . . / shared /dtypes . h"
5 #include " bt ree . h"
6 #include "evt_queue . h"
7
8 #ifndef _RDC_API_DTYPES_H
9 #define _RDC_API_DTYPES_H
10
11 #de f i n e RDC_MSG_TYPE_MASK 0XF8
12 #de f i n e RDC_MSG_TYPE_FLAG 0XB0
13 #de f i n e RDC_AUTH_TIMEOUT 5
14 #de f i n e RDC_AUTH_SCRT_LEN 16
15 #de f i n e RDC_AUTH_ESCRT_LEN 128
16
17 union i n t4
18 {
19 unsigned int in ;
20 char cn [4] ;
21 } ;
22
23 #de f i n e _RDC_EVT_NEW_CONN 40
24 #de f i n e RDC_EVT_MSG_RECV 60
25 #de f i n e RDC_EVT_UMSG_RECV 61
26 #de f i n e RDC_EVT_IFU_OK 62
27 #de f i n e RDC_EVT_IFU_FAIL 63
28 #de f i n e RDC_EVT_AUTH_FAIL 64
29 #de f i n e RDC_EVT_IF_DOWN 65
30 #de f i n e RDC_EVT_IF_UP 66
31 #de f i n e RDC_EVT_PEER_NEW 67
32 #de f i n e RDC_EVT_PEER_DEL 68
33 #de f i n e RDC_EVT_CTX_NEW 69
34 #de f i n e RDC_EVT_CTX_DEL 70
35 #de f i n e RDC_EVT_PEER_DOWN 71
36 #de f i n e RDC_EVT_SHUTDOWN 72
37
38 #de f i n e RDC_MSGTYPE_NCON 0x02
39 #de f i n e RDC_MSGTYPE_AUTH 0x07
40 #de f i n e RDC_MSGTYPE_SHUT 0x06
41 #de f i n e RDC_MSGTYPE_UMSG 0x01
42 #de f i n e RDC_MSGTYPE_MSG 0x00
43 #de f i n e RDC_MSGTYPE_IFU 0x04
44
45 enum rdc_if_type {
46 IFTYPE_TCPIP,
47 IFTYPE_MQUEUE,
48 _IFTYPE_TOTAL
49 } ;
50 typedef struct {
51 int type ;
52 void∗ data ;

147

A.2 Peer API

53 bool req_msg_len ;
54 bool req_dst_id ;
55 bool req_src_id ;
56 } rdc_ipc_t ;
57
58 struct rdc_if_ex {
59 int type ;
60 void∗ c f g ;
61 struct rdc_if_ex∗ next ;
62 } ;
63 struct rdc_peer_ex {
64 int id ;
65 char∗ name ;
66 long host_id ;
67 int i f_type ;
68 void∗ i f_handle ;
69 rdc_cry_keypair_t∗ pubk ;
70 rdc_cry_key_t∗ skey ;
71 unsigned long long sent_bytes ;
72 unsigned long long sent_msg ;
73 unsigned long long recv_bytes ;
74 unsigned long long recv_msg ;
75 pthread_rwlock_t wmutex ;
76 pthread_mutex_t smutex ;
77 pthread_mutex_t auth_mutex ;
78 unsigned char∗ auth_reply ;
79 char auth_state ;
80 bool i f_updated ;
81 struct rdc_ctx_ex∗∗ ctx ;
82 struct rdc_if_ex∗ f i r s t _ i f ;
83 struct rdc_peer_ex∗ next ;
84 } ;
85 struct rdc_ctx_ex {
86 int id ;
87 char∗ name ;
88 bool req_auth ;
89 bool req_conf ;
90 struct rdc_ctx_ex∗ next ;
91 } ;
92
93 struct rdc_if_tcpip_cfg {
94 unsigned short l s tn_port ;
95 char∗ lstn_addr ;
96 } ;
97 struct rdc_if_mqueue_cfg {
98 unsigned int max_msg ;
99 unsigned int msg_len ;
100 } ;
101 struct rdc_cfg {
102 char∗ name ;
103 char∗ privk_path ;
104 char∗ srv_addr ;
105 unsigned short srv_port ;
106 bool use_dns ;

148

Code Headers

107 struct rdc_if_tcpip_cfg ∗ t cp ip ;
108 struct rdc_if_mqueue_cfg∗ mqueue ;
109 } ;
110
111 typedef struct {
112 int id ;
113 long host_id ;
114 struct rdc_cfg∗ c f g ;
115 rdc_cry_keypair_t∗ pk ;
116 struct btree peer_db ;
117 struct btree ctx_db ;
118 struct rdc_peer_ex∗ f i r s t_pe e r ;
119 struct rdc_ctx_ex∗ f i r s t_c t x ;
120 void∗ s e r_ i f s ;
121 unsigned int s e r_ i f s_ len ;
122 bool run ;
123 rdc_eq_t∗ in_queue ;
124 rdc_eq_t∗ out_queue ;
125 pthread_t evt_thread ;
126 pthread_t i fu_thread ;
127 pthread_rwlock_t db_lock ;
128 rdc_ipc_t∗ i f s [_IFTYPE_TOTAL] ;
129 } rdc_t ;
130
131 unsigned int rdc_dt_db_update (rdc_t∗ rdc , void∗ buf ,

int peer_id ,
132 struct rdc_peer_ex∗∗

peers_remove ,
struct rdc_ctx_ex∗∗
ctxs_remove ,

133 struct rdc_peer_ex∗∗
peers_add , struct

rdc_ctx_ex∗∗
ctxs_add) ;

134 void rdc_dt_db_destroy (rdc_t∗ rdc) ;
135 void rdc_dt_remove_ctx (struct rdc_ctx_ex∗∗ ctx) ;
136 void rdc_dt_remove_peer (struct rdc_peer_ex∗∗ peer) ;
137 struct rdc_peer_ex∗ rdc_dt_get_peer (rdc_t∗ rdc , int

id) ;
138 struct rdc_ctx_ex∗ rdc_dt_get_context (rdc_t∗ rdc ,

int id) ;
139
140 #endif

btree.h

1 #include <stdboo l . h>
2
3 #ifndef _BTREE_H
4 #define _BTREE_H
5
6 struct value_s {

149

A.2 Peer API

7 int va l ;
8 void∗ data ;
9 } ;
10
11 typedef struct value_s∗ value_t ;
12
13 typedef struct node_s {
14 value_t value ;
15 struct node_s ∗next [2] ;
16 int l onge r : 2 ;
17 } ∗node ;
18
19 struct btree {
20 node t r e e ;
21 unsigned int t o t a l ;
22 } ;
23
24 void bt r e e_ in i t (struct btree ∗ t r e e) ;
25 void btree_destroy (struct btree ∗ t r e e) ;
26 bool btree_add (struct btree ∗ t ree , int val , void∗

data) ;
27 bool btree_remove (struct btree ∗ t ree , int va l) ;
28 void∗ btree_search (struct btree ∗ t ree , int va l) ;
29 unsigned int bt ree_s i z e (struct btree ∗ t r e e) ;
30
31 #endif

evt_queue.h

1 #pragma once
2
3 #include <semaphore . h>
4
5 #include " . . / shared /dtypes . h"
6
7 #ifndef _RDC_EVT_QUEUE_H
8 #define _RDC_EVT_QUEUE_H
9
10 struct rdc_evt {
11 int type ;
12 int arg1 ;
13 int arg2 ;
14 int arg3 ;
15 void∗ arg4 ;
16 int l en ;
17 } ;
18
19 typedef struct {
20 struct rdc_evt∗ bu f f e r ;
21 unsigned int s i z e ;
22 unsigned int rpos ;
23 unsigned int wpos ;

150

Code Headers

24 unsigned int t o t a l ;
25 sem_t r l o ck ;
26 sem_t wlock ;
27 pthread_mutex_t wmutex ;
28 pthread_mutex_t rmutex ;
29 bool c l o s ed ;
30 } rdc_eq_t ;
31
32 bool rdc_eq_init (rdc_eq_t∗ queue , unsigned int s i z e)

;
33 int rdc_eq_put_tail (rdc_eq_t∗ queue , int type , int

arg1 , int arg2 , int arg3 , void∗ arg4 , int l en) ;
34 int rdc_eq_put_head (rdc_eq_t∗ queue , int type , int

arg1 , int arg2 , int arg3 , void∗ arg4 , int l en) ;
35 int rdc_eq_get (rdc_eq_t∗ queue , int∗ type , int∗ arg1

, int∗ arg2 , int∗ arg3 , void∗∗ arg4 , int∗ l en) ;
36 int rdc_eq_get_total (rdc_eq_t∗ queue) ;
37 void rdc_eq_destroy (rdc_eq_t∗ queue) ;
38
39 #endif

ipc.h

1 #include <ne t i n e t / in . h>
2
3 #include "api_dtypes . h"
4
5 #ifndef _RDC_IPC_H
6 #define _RDC_IPC_H
7
8
9 int rdc_ipc_init (rdc_t∗ rdc , rdc_ipc_t∗∗ i n t f , void∗

cfg , rdc_eq_t∗ evt_q , enum rdc_if_type i f t y p e) ;
10 void rdc_ipc_destroy (rdc_t∗ rdc , rdc_ipc_t∗∗ i n t f) ;
11
12 int rdc_ipc_handle_create (rdc_t∗ rdc , rdc_ipc_t∗

i n t f , struct rdc_peer_ex∗ peer , void∗∗ out_handle
) ;

13 void rdc_ipc_handle_destroy (rdc_t∗ rdc , rdc_ipc_t∗
i n t f , void∗∗ handle) ;

14 int rdc_ipc_handle_sendmsg (rdc_t∗ rdc , rdc_ipc_t∗
i n t f , void∗ handle , void∗ msg , unsigned int

msg_len) ;
15 void rdc_ipc_handle_get_type (rdc_t∗ rdc , struct

rdc_peer_ex∗ peer , int∗ types [] , unsigned int∗
types_len) ;

16
17 unsigned int rdc_ipc_cfg_ser ia l i z e_len (int i f t ype ,

void∗ c fg_st ruc t) ;
18 void rdc_ipc_c fg_se r i a l i z e (int i f t ype , void∗

c fg_struct , void∗∗ buf , unsigned int∗ buf_len) ;

151

A.2 Peer API

19 void rdc_ipc_c fg_dese r i a l i z e (struct rdc_if_ex∗ i n t f ,
void∗ buf) ;

20 void rdc_ipc_cfg_destroy (int i f t ype , void∗ c f g) ;
21
22 #endif

mqueue.h

1 #include " . . / ipc . h"
2
3 #ifndef _RDC_IPC_MQUEUE_H
4 #define _RDC_IPC_MQUEUE_H
5
6 #de f i n e MQ_SEND_TIMEOUT_S 5
7
8 int rdc_ipc_mqueue_init (rdc_t∗ rdc , rdc_ipc_t∗∗

i n t f , struct rdc_if_mqueue_cfg∗ cfg , rdc_eq_t∗
evt_q) ;

9 void rdc_ipc_mqueue_destroy (rdc_t∗ rdc , rdc_ipc_t∗∗
i n t f) ;

10
11 int rdc_ipc_mqueue_handle_create (rdc_t∗ rdc ,

rdc_ipc_t∗ i n t f , struct rdc_peer_ex∗ peer , void∗∗
out_handle) ;

12 void rdc_ipc_mqueue_handle_destroy (rdc_t∗ rdc ,
rdc_ipc_t∗ i n t f , void∗∗ handle) ;

13 int rdc_ipc_mqueue_handle_sendmsg (rdc_t∗ rdc ,
rdc_ipc_t∗ i n t f , void∗ handle , void∗ msg ,
unsigned int msg_len) ;

14
15 unsigned int rdc_ipc_mqueue_cfg_serial ize_len (struct

rdc_if_mqueue_cfg∗ c fg_st ruc t) ;
16 void rdc_ipc_mqueue_cfg_serial ize (struct

rdc_if_mqueue_cfg∗ c fg_struct , void∗∗ buf ,
unsigned int∗ buf_len) ;

17 void rdc_ipc_mqueue_cfg_deserial ize (struct rdc_if_ex
∗ i n t f , void∗ buf) ;

18 void rdc_ipc_mqueue_cfg_destroy (void∗ c f g) ;
19
20 #endif

tcpip.h

1 #include " . . / ipc . h"
2
3 #ifndef _RDC_IPC_TCPIP_H
4 #define _RDC_IPC_TCPIP_H
5
6 int rdc_ipc_tcpip_init (rdc_t∗ rdc , rdc_ipc_t∗∗ i n t f

, struct rdc_if_tcpip_cfg ∗ cfg , rdc_eq_t∗ evt_q) ;

152

Code Headers

7 void rdc_ipc_tcpip_destroy (rdc_t∗ rdc , rdc_ipc_t∗∗
i n t f) ;

8
9 int rdc_ipc_tcpip_handle_create (rdc_t∗ rdc ,

rdc_ipc_t∗ i n t f , struct rdc_peer_ex∗ peer , void∗∗
out_handle) ;

10 void rdc_ipc_tcpip_handle_destroy (rdc_t∗ rdc ,
rdc_ipc_t∗ i n t f , void∗∗ handle) ;

11 int rdc_ipc_tcpip_handle_sendmsg (rdc_t∗ rdc ,
rdc_ipc_t∗ i n t f , void∗ handle , void∗ msg ,
unsigned int msg_len) ;

12
13 unsigned int rdc_ipc_tcp ip_cfg_ser ia l i ze_len (struct

rdc_if_tcpip_cfg ∗ c fg_st ruc t) ;
14 void rdc_ipc_tcp ip_cfg_ser ia l i z e (struct

rdc_if_tcpip_cfg ∗ c fg_struct , void∗∗ buf ,
unsigned int∗ buf_len) ;

15 void rdc_ipc_tcp ip_cfg_deser ia l i ze (struct rdc_if_ex∗
i n t f , void∗ buf) ;

16 void rdc_ipc_tcpip_cfg_destroy (void∗ c f g) ;
17
18 #endif

A.3 Shared

crypto.h

1 #pragma once
2
3 #include <opens s l / r sa . h>
4 #include <stdboo l . h>
5
6 #ifndef _RDC_CRYPTO_H
7 #define _RDC_CRYPTO_H
8
9 #de f i n e RDC_CRY_SYM_KEYLEN 16
10 #de f i n e RDC_CRY_PUBK_MAX_LEN 272
11 #de f i n e RDC_CRY_HASH_ALG "SHA1"
12 #de f i n e RDC_CRY_SIGN_SIZE 128
13
14 typedef struct {
15 RSA∗ kp ;
16 EVP_PKEY∗ skey ;
17 } rdc_cry_keypair_t ;
18 typedef struct {
19 unsigned char key [RDC_CRY_SYM_KEYLEN] ;
20 unsigned char i v [RDC_CRY_SYM_KEYLEN] ;
21 EVP_CIPHER_CTX∗ e_ctx ;
22 EVP_CIPHER_CTX∗ d_ctx ;
23 } rdc_cry_key_t ;
24

153

A.3 Shared

25 bool rdc_cry_genkey (rdc_cry_key_t∗∗ outkey) ;
26 void rdc_cry_free_key (rdc_cry_key_t∗∗ key) ;
27 bool rdc_cry_encrypt (rdc_cry_key_t∗ key , void∗ in ,

unsigned int in_len , void∗∗ out , unsigned int∗
out_len) ;

28 bool rdc_cry_decrypt (rdc_cry_key_t∗ key , void∗ in ,
unsigned int in_len , void∗∗ out , unsigned int∗
out_len) ;

29
30 bool rdc_cry_genkeypair (rdc_cry_keypair_t ∗∗ key) ;
31 void rdc_cry_free_keypair (rdc_cry_keypair_t∗∗ key) ;
32 bool rdc_cry_encrypt_pubk (rdc_cry_keypair_t∗ key ,

void∗ in , unsigned int in_len , void∗∗ out ,
unsigned int∗ out_len) ;

33 bool rdc_cry_encrypt_privk (rdc_cry_keypair_t∗ key ,
void∗ in , unsigned int in_len , void∗∗ out ,
unsigned int∗ out_len) ;

34 bool rdc_cry_decrypt_privk (rdc_cry_keypair_t∗ key ,
void∗ in , unsigned int in_len , void∗∗ out ,
unsigned int∗ out_len) ;

35 bool rdc_cry_decrypt_pubk (rdc_cry_keypair_t∗ key ,
void∗ in , unsigned int in_len , void∗∗ out ,
unsigned int∗ out_len) ;

36 bool rdc_cry_sign (rdc_cry_keypair_t∗ key , void∗ in ,
unsigned int in_len , void∗∗ s ign , unsigned int∗
s ign_len) ;

37 bool rdc_cry_veri fy (rdc_cry_keypair_t∗ key , void∗ in
, unsigned int in_len , void∗ s ign , unsigned int

s ign_len) ;
38 bool rdc_cry_load_pubk (rdc_cry_keypair_t ∗∗ out , void

∗ buf , unsigned int buf_len) ;
39 bool rdc_cry_load_privk (rdc_cry_keypair_t∗∗ out ,

char∗ path) ;
40 bool rdc_cry_save_privk (rdc_cry_keypair_t∗ key , char

∗ path) ;
41 bool rdc_cry_ser ia l ize_pubk (rdc_cry_keypair_t∗ key ,

void∗∗ out , unsigned int∗ out_len) ;
42
43 unsigned char∗ rdc_cry_randword (int l ength) ;
44
45 #endif

dtypes.h

1 #include <stdboo l . h>
2
3 #include " crypto . h"
4
5 #ifndef _RDC_DTYPES_H
6 #define _RDC_DTYPES_H
7
8 #de f i n e RANDW_SIZE 32

154

Code Headers

9
10 #de f i n e RDC_OK 0
11 #de f i n e RDC_ERROR 1
12 #de f i n e RDC_ERROR_CONF 2
13 #de f i n e RDC_ERROR_IF_INIT 3
14 #de f i n e RDC_ERROR_CONN 4
15 #de f i n e RDC_ERROR_AUTH 5
16 #de f i n e RDC_ERROR_FREAD 6
17 #de f i n e RDC_ERROR_INT 7
18 #de f i n e RDC_ERROR_PEER_NF 8
19 #de f i n e RDC_ERROR_CTX_NF 9
20 #de f i n e RDC_ERROR_DNS_ERR 10
21 #de f i n e RDC_ERROR_SHUTD 11
22 #de f i n e RDC_ERROR_TBIG 12
23 #de f i n e RDC_ERROR_EXT 13
24 #de f i n e RDC_WARN_NOPEERS 50
25 #de f i n e RDC_WARN_CONF 51
26 #de f i n e RDC_WARN_INT 52
27
28 struct rdc_i f {
29 int type ;
30 void∗ c f g ;
31 unsigned int cfg_len ;
32 struct rdc_i f ∗ next ;
33 } ;
34 struct rdc_peer {
35 int id ;
36 char∗ name ;
37 long host_id ;
38 char∗ c r ea ted ;
39 rdc_cry_keypair_t∗ pubk ;
40 char∗ pubk_ser ;
41 unsigned int pubk_len ;
42 struct rdc_i f ∗ f i r s t _ i f ;
43 struct rdc_peer∗ next ;
44 } ;
45 struct rdc_ctx {
46 int id ;
47 char∗ name ;
48 bool req_auth ;
49 bool req_conf ;
50 char∗ c r ea ted ;
51 struct rdc_peer∗ f i r s t_pe e r ;
52 struct rdc_ctx∗ next ;
53 } ;
54
55 void rdc_dt_ser ia l i z e_contexts (struct rdc_ctx∗ in ,

void∗∗ out , unsigned int∗ out_len , int

excl_peer_id) ;
56 void rdc_dt_deser ia l i ze_contexts (void∗ in , struct

rdc_ctx ∗∗ out) ;
57 void rd c_dt_se r i a l i z e_ in t e r f a c e s (struct rdc_i f ∗ in ,

void∗∗ out , unsigned int∗ out_len) ;

155

A.4 Server

58 void rd c_dt_de s e r i a l i z e_ in t e r f a c e s (void∗ in , struct

rdc_i f ∗∗ out) ;
59 void rdc_dt_free_contexts (struct rdc_ctx ∗∗ context) ;
60 void rdc_dt_free_peers (struct rdc_peer ∗∗ peer) ;
61
62 #endif

A.4 Server

cf_parser.h

1 #include <stdboo l . h>
2
3 #ifndef _CF_PARSER_H
4 #define _CF_PARSER_H
5
6 bool cp_open (const char∗ path , void (∗ func) (char∗ ,

char∗ , void ∗) , void∗ arg) ;
7
8 #endif

const.h

1 #ifndef _RDC_CONST_H
2 #define _RDC_CONST_H
3
4 #de f i n e RDC_CFG_FILE " . . / c f g / rdcd . conf "
5
6 #endif /∗ _RDC_CONST_H ∗/

156

	List of Figures
	List of Tables
	Glossary
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Overview
	1.3 Objectives
	1.4 Restrictions
	1.5 Dissertation Structure

	2 Background and Related Work
	2.1 Distributed Computing
	2.1.1 Definition
	2.1.2 Types of Distributed Systems
	2.1.3 Characteristics and Design Challenges
	2.1.4 Implementations
	2.1.5 Related Work

	2.2 Inter-Process Communication Mechanisms
	2.2.1 IPC Mechanisms on Linux Systems
	2.2.2 Summary

	2.3 Network Simulation
	2.3.1 Network Simulation and Emulation
	2.3.2 Basics of Computer Network Simulation
	2.3.3 Related Work

	2.4 RoutUM
	2.4.1 Goals
	2.4.2 Architecture
	2.4.3 Parallelization of the Simulation

	3 Research
	3.1 Objectives
	3.2 General Architecture
	3.3 Programming Language
	3.4 Inter-process Communication Mechanisms
	3.4.1 Selection Criteria
	3.4.2 Local IPC
	3.4.3 Remote IPC

	3.5 Security
	3.5.1 Central Server Access
	3.5.2 Inter-Process Access
	3.5.3 Implementation
	3.5.4 Further Development

	3.6 Resource Identification
	3.7 Central Server

	4 Implementation
	4.1 Tools
	4.2 Architecture Overview
	4.3 Implementation Details
	4.3.1 Project Structure
	4.3.2 Limitations
	4.3.3 Database
	4.3.4 Transmission and Authentication Protocols
	4.3.5 Database Management API
	4.3.6 Database Management Application
	4.3.7 Central Server's Daemon
	4.3.8 Peer API
	4.3.9 Peer API Test Application
	4.3.10 Building and Executing the Project

	4.4 Adding/Replacing modules
	4.4.1 Database API
	4.4.2 Peer API

	4.5 Deployment
	4.6 Conclusion

	5 Evaluation
	5.1 Resources
	5.2 Functional Tests
	5.2.1 API's Functions

	5.3 Stability
	5.4 Peer-to-Peer Throughput Tests
	5.4.1 Local Test Results
	5.4.2 Remote Test Results

	5.5 Scalability Tests
	5.5.1 Local Scalability Tests
	5.5.2 Remote Scalability Tests

	5.6 Multiple Simultaneous IPC Mechanisms
	5.7 Conclusion

	6 Conclusion
	6.1 Future Work

	Bibliography
	A Code Headers
	A.1 Database API
	A.2 Peer API
	A.3 Shared
	A.4 Server

