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Abstract 

The dynamic modeling and analysis of planar rigid multibody systems that experience 

contact-impact events is presented and discussed throughout this work. The methodology is 

based on the nonsmooth dynamics approach, in which the interaction of the colliding bodies 

is modeled with multiple frictional unilateral constraints. Rigid multibody systems are stated 

as an equality of measures, which are formulated at the velocity-impulse level. The equations 

of motion are complemented with constitutive laws for the forces and impulses in the normal 

and tangential directions. In this work, the unilateral constraints are described by a set-valued 

force law of the type of Signorini’s condition, while the frictional contacts are characterized 

by a set-valued force law of the type of Coulomb’s law for dry friction. The resulting contact-

impact problem is formulated and solved as an augmented Lagrangian approach, which is 

embedded in the Moreau time-stepping method. The effectiveness of the methodologies 

presented in this work is demonstrated throughout the dynamic simulation of a cam-follower 

system of an industrial cutting file machine. 
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1. Introduction 

The field of multibody system dynamics has its root in classical and analytical methods of 

dynamics to meet the growing demands in modeling and simulation of complex and advanced 

mechanical systems in industry and engineering. Multibody systems are ubiquitous in many 

fields of application, such as aerospace, automotive systems, circuit breakers industry, bipedal 

locomotion, robotics, biological engineering, computer graphics [1-5]. Their numerical 

simulation has become a crucial step not only for the virtual prototyping process in industry, but 

also in academic fields like global behavior of complex systems, control and stability, in which 

it is impossible to push forward the studies without reliable simulation software packages [6-8]. 

Numerical simulation must in turn rely on suitable mathematical models. In particular, several 

points of unilateral contact usually exist in such systems, and impact phenomena and friction 

are extremely important features in most of multibody systems. As a consequence, multiple 

impacts may occur quite frequently and become a key point for the numerical simulation of 

multibody systems. Hurmuzlu and Marghitu [9] studied the contact problem in multibody 

systems, where a planar rigid-body kinematic chain undergoes an external impact and an 

arbitrary number of internal impacts. Based on the Keller’s work [10], they developed a 

differential-integral approach and used different models for coefficient of friction. Han and 

Gilmore [11] proposed a similar approach, using an algebraic formulation of the equations of 

motion, the Poisson’s model of restitution and the Coulomb’s law to define the tangential 

motion. Different conditions that characterize the motion (slipping, sticking, and reverse 

sliding) were detected by analyzing velocities and accelerations at the contact points. Han and 

Gilmore confirmed their simulation results with experiments for two-body and three-body 

impacts. Based on a canonical form of the equations of motion Pereira and Nikravesh [12] 

presented a methodology that solves this problem in the context of multibody dynamics impact. 

Haug et al. [13] solved directly the differential equations of motion by using the Lagrange 

multiplier technique. Newton’s model was used for impact while the Coulomb’s law was used 

for friction [14]. 

Mechanical systems are often modeled as multibody systems with some degree of non-

smoothness. Typical examples in mechanics are the noise and vibration produced in railway 

brakes, impact print hammers, percussion drilling machines or chattering of machine tools. 

These effects are due to the nonsmooth characteristics such as clearances, impacts, intermittent 

contacts, dry friction, or a combination of these effects [15-20]. In nonsmooth systems the time 

evolution of the displacement and the velocities is not requested to be smooth. Due to the 

possible impacts, the velocities are even allowed to undergo jumps at certain time instances in 

order to fulfill the kinematical restrictions.  
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Contact-impact behavior strongly depends on the material properties of the colliding 

surfaces, the nature of the contact-impact problem and the level of contact-impact 

forces/impulses produced. Therefore, the investigation on the contact-impact field is one of the 

most challenging and demanding issues the engineering. In addition, contact-impact events can 

frequently occur in multibody systems and in many engineering applications the function of 

mechanical systems is based on them. Common examples can be described by the contact 

between tire and road in vehicles, wheel and rail in railway systems, contact in robotics and 

grasping machines, cam and follower mechanisms, just to mention a few [21-25]. As a result of 

an impact, the values of the system state variables change very fast, eventually looking like 

discontinuities in the system velocities. The knowledge of the peak forces developed in the 

impact process is very important for the dynamic analysis of multibody systems and has 

consequences in the design process. Thus, the selection of the most adequate contact-impact 

method used to describe the process correctly plays a key role in the accurate design and 

analysis of these kinds of systems [26-28]. In a broad sense, the different methods to solve the 

impact problem in multibody mechanical systems are continuous and discontinuous approaches 

[29-31]. Within the continuous approach, the methods commonly used are the continuous force 

model, which is in fact a penalty method, and the unilateral constraint methodology, based on 

complementarity approaches [32-35]. The compliant continuous contact force models, 

commonly referred as penalty methods, gained significant importance in the context of 

multibody systems with contacts thanks to their computational simplicity and efficiency. In 

these models, the contact force is expressed as a continuous function of penetration between 

contacting bodies. However, one of the main drawbacks associated with these force models is 

the difficulty to choose the contact parameters such as the equivalent stiffness or the degree of 

nonlinearity of the penetration, especially for complex contact scenarios.  

The complementarity formulations associated with the Moreau time-stepping algorithm for 

contact modeling in multibody systems have attracted the attention of many researchers [36-47]. 

Assuming that the contacting bodies are truly rigid, as opposed to locally deformable or 

penetrable as in the penalty approaches, the complementarity formulations resolve the contact 

dynamics problem by using the unilateral constraints to compute contact forces or impulses to 

prevent penetration from occurring. Thus, at the core of the complementarity approach is an 

explicit formulation of the unilateral constraints between the contacting rigid bodies [48]. One 

of the main features of unilateral constraints is the impenetrability, which means that points 

candidates for contact must not cross the boundaries of antagonist bodies. This can be expressed 

by writing that the distance between contacting bodies or the gap is non-negative. Also, it is 

assumed that bodies are not attracting each other, that is, the reaction force is non-negative, and 

this reaction force vanishes when the contact is not active [49].  



 4

When dealing with the formulation of frictional unilateral constraints, it is possible to 

distinguish active and passive set-valued force laws. An active set-valued force law is always 

associated with a closed unilateral contact or a frictional contact, while a passive set-valued 

force law is related to open unilateral contacts. An active set-valued force law can be described 

at the velocity level by an inclusion. It should be highlighted that a system with active unilateral 

constraints has variable degrees of freedom, being, in general, not known which degree of 

freedom is removed. This problem is usually solved by looking at all possible solutions and 

finding the one that is physically consistent. It is obvious that the search for a physical 

consistent is time-consuming. In addition, from the numerical simulation point of view, it is 

quite unsuitable to change the number of the minimum generalized coordinates during each 

time step. Thus, the augmented Lagrangian approach is quite elegant way to solve this type of 

problems, being constant the number of generalized coordinates at all instants of time. The 

number of generalized coordinates is always equal to the number of degrees of freedom of the 

system without unilateral constraints [50-52]. 

The dynamic modeling and analysis of planar multibody systems that experience contact-

impact events is presented and discussed throughout this work. The methodology is based on 

the nonsmooth dynamics approach, in which the interaction of the colliding bodies is modeled 

with multiple frictional unilateral constraints. The model of a rigid multibody system is stated as 

an equality of measures, which are formulated at the velocity-impulse level. The equations of 

motion are complemented with constitutive laws for the forces and impulses the normal and 

tangential directions. The unilateral constraints are described by a set-valued force law of the 

type of Signorini’s condition, while the frictional contacts are characterized by a set-valued 

force law of the type of Coulomb’s law for dry friction. The formulation of the generalized 

contact-impact kinematics in the normal and tangential directions can be performed by 

obtaining a geometric relation for the gaps of the candidate contact points. The gaps are 

expressed as functions of the generalized coordinates. The candidate contact points are modeled 

as hard contacts, being the normal and tangential contact laws formulated as set-valued force 

laws for frictional unilateral constraints. Furthermore, when a system includes frictional 

unilateral constraints, the occurring contact forces should be taken into account in the equations 

of motion. In the present work, due to its simplicity and robustness, this problem is solved using 

the Moreau time-stepping method, combined with the contact-impact formulated as an 

augmented Lagrangian approach. Finally, results for a planar rigid multibody system are 

presented and used to discuss the main assumptions and procedures adopted in this work. 
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2. Set-valued force laws for frictional unilateral contacts 

In the present work, the normal contact between rigid bodies is characterized by a set-

valued force law called Signorini’s condition [53]. In this section, the Signorini’s law, which 

is an elementary set-valued force law, is formulated in three different ways, namely, as 

complementarity conditions, as subdifferential equations and as normal cone of the admissible 

contact forces [52]. Figure 1 shows two convex rigid bodies apart from each other by a 

relative normal gap or distance denoted by gN. This relative normal gap is uniquely defined 

for convex surfaces, being parallel the tangent planes at the contact points 1 and 2. The 

relative normal gap is non negative due to bodies’ impenetrability condition, being the two 

bodies in contact with each other when gN=0. On the other hand, the normal contact force λN 

is also non negative because the bodies can not attract each other. The normal contact force 

vanishes when there is no contact, i.e., gN>0, and can only be positive when contact happens, 

that is, gN=0. Thus, under the assumption of impenetrability between the bodies, expressed by 

gN≥0, only two situations can occur, namely 

 0 0N Ng λ= ∧ ≥     (closed contact) (1) 

 0 0N Ng λ> ∧ =      (open contact) (2) 

Equations (1) and (2) represent a complementarity behavior, being always zero the 

product of the relative normal gap and normal contact force, that is, 

 0N Ng λ =  (3) 

Thus, the relation between the normal gap and normal contact force can be described by 

 0Ng ≥ ,     0Nλ ≥ ,     0N Ng λ =  (4) 

which represents the inequality complementarity condition between gN and λN, the so-called 

Signorini’s condition. The inequality complementarity behavior of the normal contact law is 

depicted in Fig. 2a, which shows a set-valued graph or a corner of admissible combinations 

between gN and λN [46]. 
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Figure 1. (a) Relative normal gap; (b) Normal and tangential contact forces. 
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The magnitude of contact force is denoted by λN and the direction of the contact force is 

normal to the bodies’ surface, i.e., along the line 1-2. When two rigid bodies are contacting, 

the Signorini’s condition given by Eq. (4) needs to be complemented with an impact law, 

such as the well known Newton’s kinematical law that relates the pre and post impact 

velocities to the bodies’ normal coefficient of restitution, εΝ [33]. 
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λN

gN
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λT

γT
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Figure 2. (a) Signorini’s normal contact law; (b) Coulomb’s friction law. 

The normal contact law can also be expressed as the subdifferential of the indicator 

function 
NCΨ  to convex set CN [46] 

 ( )
NN C Ng λ∈∂Ψ −  (5) 

where CN is the admissible set of negative contact forces –λN as 

 { }0N N NC λ λ −= − ∈ ≥ =  (6) 

Since the subdifferential of the indicator function is the inverse of the subdifferential of 

the support function, then Eq. (5) can be rewritten using the conjugate as 

 ( )*
NN C Ngλ− ∈∂Ψ  (7) 

Alternatively, the normal contact law can be formulated in a compact form by means of 

the normal cone of CN [46] 

 ( )
NN C Ng N λ∈ −  (8) 

where ( )
NC NN λ  denotes the normal cone of the convex set CN at λN, and CN is the set of 

admissible contact forces (6). It should be noted that this formulation is identical to the 

complementarity given by Eq. (4). 

For closed contacts with gN=0, the Signorini’s law, which is a set-valued law for normal 

contact at the displacement level can be expressed at the velocity level as 

 ( )
NN C NNγ λ∈ − ,     gN=0 (9) 

where γN is the relative normal velocity. It is also common to express the set-valued force law 

of Eq. (9) in terms of impulsive forces instead of contact forces [44]. 
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The classical Coulomb’s friction law is another typical example that can be considered as 

a set-valued force law [33]. The friction law of Coulomb states that the sliding friction is 

proportional to the normal force of a contact. The amount of the static friction force is less 

than or equal to the maximum static friction force which is also proportional to the normal 

contact force. Furthermore, the sliding force has the opposite direction of the relative velocity 

of the frictional contact. Consider again the two contacting rigid bodies depicted in Fig. 1, in 

which Coulomb friction is present at the contact points 1 and 2. The relative velocity of point 

1 with respect to point 2 along their tangent plane is denoted by γT. If contact between the two 

bodies takes place, i.e. gN=0, then the friction phenomenon imposes a tangential force λT as it 

is illustrated in Fig. 1b. If the bodies are sliding over each other, then the friction force λT has 

the magnitude μλN and acts in the direction oppose to the relative tangential velocity, that is, 

 ( )T N TSgnλ μλ γ− =      0Tγ ≠  (10) 

where μ is the friction coefficient and λN is the normal contact force. If the relative tangential 

velocity vanishes, i.e. γT =0, then the bodies purely roll over each other without slip. Pure 

rolling, or slip for locally flat objects, is denoted by stick. Thus, if the bodies stick, then the 

friction force must lie in the interval –μλN≤λT≤μλN. For unidirectional friction, that is for 

planar contact problems, three different scenarios can occur, namely 

 0T T Nγ λ μλ= ⇒ ≤      (sticking) (11) 

 0T T Nγ λ μλ< ⇒ = +      (negative sliding) (12) 

 0T T Nγ λ μλ> ⇒ = −      (positive sliding) (13) 

These three scenarios can be summarized by a set-valued force law as [33] 

 
0

[ 1,1] 0
0

N T

T N T

N T

μλ γ
λ μλ γ

μλ γ

− >⎧
⎪∈ − =⎨
⎪ <⎩

 (14) 

Figure 2b shows the Coulomb’s friction law as a set-valued force law. The admissible 

values of the negative tangential force λT form a convex set CT that is bounded by the values 

of the normal force [32] 

 ( ) { }T N T N T NC λ λ μλ λ μλ= − − ≤ ≤ +  (15) 

Thus, the Coulomb’s law can be expressed with the aid of the indicator function of CT as, 

 ( ) ( )
T NT TC λγ λ∈∂Ψ −  (16) 

or 
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 ( ) ( )
T NT TCN λγ λ∈ −  (17) 

Alternatively, Eqs. (16) and (17) can be written as [49] 

 ( ) ( )*
T NT TC λλ γ− ∈∂Ψ  (18) 

In short, the tangential forces are limited by a maximal friction force dependent on μλN in 

any direction inside the tangential plane, and where μ represents the friction coefficient. 

Lower forces correlate with sticking contacts and, therefore, γT=0. Forces reaching the 

boundary of the friction cone may indicate sliding and, therefore, γT≠0. The full description of 

the spatial Coulomb’s friction law as a set-valued force law can be found in Leine and 

Glocker [54]. 

 

3. Multibody systems with frictional unilateral constraints 

It is known that impacts and frictional phenomena are characterized by unilateral 

constraints, which usually lead to unsteady dynamical behaviors. Thus, appropriate 

methodologies and procedures to deal with this class of mechanical systems are required, 

being the main purpose of the present work. From classical mechanics, the Newton-Euler 

equations of motion of a multibody system with f degrees of freedom and with only 

frictionless bilateral constraints can be written as [32] 

 =−Mu h 0  (19) 

 =q u      t∀  (20) 

where ( )= , f ft ×∈M Μ q  is the positive definite and symmetric mass matrix, 

( )= , , ft ∈h h q u  denotes, in the present work, the vector that contains the differentiable 

forces (both conservative and non-conservative), such as spring forces, gravitational forces, 

( )= ft ∈q q  is the f-dimensional vector of generalized coordinates, ( )= ft ∈u u  addresses 

the system generalized velocities and ( )= ft ∈u u  is the vector that contains the system 

accelerations. 

Joint reaction forces of the bilateral constraints do not appear in the equations of motion 

(19) because the coordinates q are minimal Lagrangian coordinates with respect to bilateral 

constraints, i.e. the vector q represents a set of coordinates that defines uniquely the positions 

of all bodies in the system when all unilateral contacts are open. The dependence of the 

system matrices on q, u and t has been omitted in Eq. (19) for brevity. The terms M and h can 

be derived in a straightforward manner, by taking q as a set of classical generalized system 
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coordinates and evaluating Lagrange’s equations of second type or the associated virtual work 

expressions [55].  

Adding the contact forces to Eq. (19), the dynamic equations of motion of a multibody 

system with normal and tangential contact forces during an impact can be written at the 

acceleration level as [32] 

 =N N T T− − −Mu h w λ w λ 0  (21) 

 =q u      t∀  (22) 

where ( )= , f
N N t ∈w w q  and ( )= , f

T T t ∈w w q  represent the generalized normal and 

tangential force directions, respectively. The normal and tangential contact forces have 

magnitudes λNi and λTi for each contact point i. The dual variables to the normal contact 

forces λN are the variations of normal gap distances gN, while the dual variables to the 

generalized friction or tangential forces λT are the variations of the generalized sliding 

velocities γT. The remaining terms of Eq. (21) have the same meaning as described above. 

It is important to note that Eq. (21) requires the existence of the velocities u and 

accelerations u  both being meaningless for the event of an impact. Therefore, it is more 

adequate to talk about the left and right limit of the velocity at the impact, that is, the pre and 

post impact velocity, but never about the velocity at the impact itself, a meaningless term 

already from the physical point of view. For the case of impacts in multibody systems, Eq. 

(21) have to be substituted by a more suitable formulation, which consists of use the equalities 

of measures firstly introduced by Moreau [56] and that constitute the general framework for 

nonsmooth rigid multibody dynamics. 

Moreover, motion without impulses implies that λN(t) is (locally) bounded and time-

continuous. The friction force λT(t) is discontinuous when a slip-stick transition takes place or 

when the relative sliding velocity of a frictional contact reverses its sign. The acceleration u  

is not defined when λT(t) is discontinuous. The set of time instances for which λT(t) is 

discontinuous is of measure zero and Eq. (21), therefore, holds for almost all t, that is, =q u  

does not hold at single time instants at which impacts take place. Thus, due to the presence of 

impulsive forces, a nonsmooth system can not be described solely by the equations of motion 

(21). Equalities of measures provide an elegant way to obtain a valid comprehensive 

description of a nonsmooth system including the impact case. When the equations of motion 

for the impact case are integrated over a singleton in time yields 

 ( ) =N N T T
+ −− − −M u u w Λ w Λ 0  (23) 

 =q u      a.e. (24) 
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in which u– and u+ represent the pre and post impact velocities, ΛN and ΛT denote the normal 

and tangential impulsive forces, being the remaining terms defined as previously. Note that 

contact forces are replaced by the impulsive forces, which are well defined in the case of an 

impact. Furthermore, finite forces, such as gravity or reaction forces from springs and 

dampers, do not contribute to the integral and, therefore, they are not considered in Eq. (23). 

The equations of motion without impacts given by Eq. (21) and the equations of motion 

for the impact case (23) can not be used together in the present form, because the former is 

written at the acceleration level and the second one is developed at the velocity level. 

Therefore, Eqs. (21) and (23) should be considered simultaneously. Multiplying Eqs. (21) and 

(23) dt and dη, respectively, yields 

 d d d d =N N T Tt t t t− − −Mu h w λ w λ 0  (25) 

 ( )d d d =N N T Tη η η+ −− − −M u u w Λ w Λ 0  (26) 

Adding now Eqs. (25) and (26) results in 

 ( ) ( ) ( )d d d d d d d =N N N T T Tt t t tη η η+ −⎡ ⎤+ − − − + − +⎣ ⎦M u u u h w λ Λ w λ Λ 0  (27) 

or more briefly 

 d d d d =N N T Tt− − −M u h w P w P 0  (28) 

where the Lebesgue measure is represented by dt and dη represents the sum of the Dirac 

impulse measures at the impact times [49]. 

The measure for the velocities d d ( )dt η+ −= + −u u u u  is split in Lebesgue measurable 

part dtu , which is continuous, and the atomic parts which occur at the discontinuity points 

with the left and right limits u– and u+ and the Dirac point measure dη.  For impact free 

motion it holds that d dt=u u . Similarly, the measure for the so-called percussions 

corresponds to a Lagrangian multiplier which gathers both finite contact forces λ and 

impulsive contact forces Λ, that is, dP=λdt+Λdη [43, 44]. In the case of non-impulsive 

motion, all measures dη vanish and a formal division by dt yields the classical Newton-Euler 

equations of motion given by (21). 

Since the impenetrability condition between colliding bodies is required, let consider that 

a multibody system has a total n of frictional unilateral constraints, which can be represented 

by n inequalities as 

 ( ), 0Nig t ≥q ,     i=1, …, n (29) 

where the quantities gNi are the normal gap functions of the frictional contacts. They are 

formulated such that, gNi>0 indicates an open or positive contact with an Euclidian distance of 
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the contact points given by the value of gNi, gNi=0 corresponds to a closed or active contact, 

and gNi<0 indicates the forbidden overlapping or interpenetration between rigid bodies. A 

good treatment of the definition of these inequalities, under the framework of multibody 

systems formulation, is discussed by Pfeiffer and Glocker [32] and Glocker [33]. 

The set of active contacts in the present work is stated as 

 ( ){ }( ) , 0NiH t i g t= =q  (30) 

which singles out the contact at which contact-impact forces may occur. In fact, ideally when 

gNi(q,t)=0 the contact is active. However, due to the computation round-off errors 

accumulation, a tolerance must be introduced in order to accommodate for inaccuracies in the 

numerical results. Therefore, when the first penetration is within the penetration tolerance it is 

assumed that such is the moment of the impact and the position and relative velocity of the 

contact points and the direction of the plane of collision are recorded. This approach has 

implications with the integration scheme and time steps, being the reader interested in the 

details on this particular topic referred to the work by Studer et al. [47]. 

In theory, the constraints are active when the gap vanishes and the constraint forces are 

such that the gap does not become negative (no penetration). In the numerical scheme the 

constraint is set active if the gap function becomes zero or negative (i.e. is no longer strictly 

positive). We therefore allow in the numerical scheme for small interpenetrations, being a 

numerical approximation of gN=0. However, the contact law is evaluated on velocity level and 

it might therefore happen that the constraint drifts resulting in an unwanted penetration of 

noticeable size. Such a constraint drift can be remedied with a projection to a negative 

threshold (such that the constraint remains active) if the penetration becomes too large. 

Furthermore, the time-step needs to be small enough to describe hi-frequency bounces. 

However, if the exact solution has multiple bounces within a time-step of the numerical 

solution, then the numerical solution is still a "good" approximation of the exact solution in 

the sense that the numerical solution converges to the exact solution for decreasing step size. 

In order to define the constitutive force laws which relate the contact-impact impulse 

measures to the system’s kinematics q and u, let first introduce the normal and tangential 

relative velocities at the contacts as [57] 

 T=Ni Ni Niwγ +w u  (31) 

 T=Ti Ti Tiwγ +w u  (32) 

where wNi and wTi represent the generalized normal and tangential force directions, 

respectively, and Niw  and Tiw  are the partial derivatives of the of the gap functions with 

respect to time. 
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The equations of motion (28) can now be complemented with constitutive laws for normal 

and tangential contact-impact forces. In the present study, a unilateral version of the Newton’s 

impact law is considered for the normal direction with local coefficient of restitution 

εNi∈[0,1]. The Coulomb’s friction law is used for the tangential direction with coefficient of 

friction μi, which is complemented by a tangential coefficient of restitution εTi∈[0,1]. 

It is important to note that for the Newton’s impact law, the impact, which causes the 

sudden change in the relative velocity, is accompanied by a normal contact impulse dPN>0. 

Suppose that, for any reason, the contact does not participate in the impact, that is, that value 

of the normal contact impulse is zero, although the contact is closed. This situation happens 

normally for multiple contact scenarios. Therefore, for this case, it is allowed that the post 

impact relative velocity to be higher than the value prescribed by Newton’s impact law, with 

the intent to express that the contact is superfluous and could be removed without changing 

the contact-impact process. Thus, in order to account for these possibilities, two parameters 

are defined as [57] 

 :Ni Ni Ni Niξ γ ε γ+ −= +  (33) 

 :Ti Ti Ti Tiξ γ ε γ+ −= +  (34) 

where ( ) ( )( ), : ,Ni Ti Ni Tiγ γ γ γ± ± ±= u . 

Thus, normal and tangential impact laws can be stated as  

 ( )*d
NiNi C Niξ− ∈∂ΨP  (35) 

 ( ) ( )*d
Ti NiTi TiC ξ− ∈∂Ψ PP  (36) 

or, in terms of the normal cones 

 ( )d
NiNi C NiNξ ∈ − P  (37) 

 ( ) ( )d
Ti NiTi TiCNξ ∈ −P P  (38) 

Finally, the complete description of the dynamics of nonsmooth system, which accounts 

for both impact and impact-free phases, is given by Eqs. (28)-(38). 

 

4. Augmented Lagrangian approach to solve contact-impact events 

In this section, the augmented Lagrangian approach to solve the contact-impact problem 

of multibody systems with frictional unilateral constraints is presented. In a simple way, this 

approach consists of transforming the inclusions in normal and tangential directions into 

equivalent equations using proximal point of convex analysis, then the problem is solved 
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iteratively as a proximal point formulation [43, 54, 58]. After discretization, the velocity-

impulse equations of motion for nonsmooth mechanical systems can be written as [14] 

 =M M NM N TM TtΔ − Δ − −M u h W P W P 0  (39) 

in which the subscript M denotes the mid point of the integration time step. Equation (39) is 

used together with the set-valued impulsive force laws, 

 ( )*
NN C Nξ− ∈∂ΨP  (40) 

 ( ) ( )*
T NT TC ξ− ∈∂Ψ PP  (41) 

where *
NCΨ  and ( )

*
T NCΨ P  denote the support functions of the indicator functions 

NCΨ  and 

( )T NCΨ P , respectively, being 
NCN  and  ( )T NCN P  the normal cones associated with the convex 

sets CN and CT. These two convex sets represent the admissible normal and tangential 

impulsive forces given by [43, 59] 

 { }n
N N NC = − ∈ ≥P P 0  (42) 

 ( ) { }; 1...Ti Ni Ti Ti i NiC P i nμ= − ≤ =P P P  (43) 

The ξN and ξT parameters are expressed as [44] 

 N NE N NA= +ξ γ ε γ  (44) 

 T TE T TA= +ξ γ ε γ  (45) 

in which the actual normal and tangential velocities are given by [52] 

 T=NE NM E NM+γ W u w  (46) 

 T=TE TM E TM+γ W u w  (47) 

 T=NA NM A NM+γ W u w  (48) 

 T=TA TM A TM+γ W u w  (49) 

In short, in each time step the equations of motion (39) and the set-valued force laws (40) 

and (41) have to be solved for Δu, PN and PT. The augmented Lagrangian approach is an 

elegant way to solve this problem, which transforms the set of algebraic inclusions to a 

constrained optimization problem [60-62]. By definition of proximal point to a convex set C 

yields that 

 ( )
*

prox argmin *C
x C

x x x
∀ ∈

= −  (50) 

which represents the closet point in C to its argument. Thus, based on this concept, the normal 

and tangential impulses are stated as two equalities: 
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 ( )prox
NN C N Nr= −P P ξ  (51) 

 ( ) ( )prox
T NT T TC r= −PP P ξ  (52) 

with the convex sets CN and CT given by Eqs. (42) and (43). It should be mentioned that this 

approach is dependent on a non-negative arbitrary parameter r, which represents the slope of 

the regularization function. The value of r should be taken large enough to make the problem 

well conditioned in the constrained region, but not too high in order to prevent ill-

conditioning. The interested reader on the issue of the r-factor strategies for the augmented 

Lagrangian approach is referred to the work by Foerg et al. [63]. 

Finally, the contact-impact problem of nonsmooth systems based on the augmented 

Lagrangian approach can be summarized by the following mathematical relations 

 ( ) ( ), , , =M M NM N N N TM T N T TtΔ − Δ − Π − ΠM u h W P ξ W P P ξ 0  (53) 

 ( ) ( ), prox
NN N N C N NrΠ = −P ξ P ξ  (54) 

 ( ) ( ) ( ), , prox
T NT N T T T TC rΠ = −PP P ξ P ξ  (55) 

Thus, this set of algebraic equations can be easily included in the Moreau time-stepping 

method, being the saddle point of the augmented Lagrangian found by employing, for 

instance, the modified Newton method, also called Newton-Raphson method [43, 54, 61]. 

Besides some possible divergences, the Newton root-finding algorithm is considered in the 

present work due to its simplicity and computational efficiency. In this process, the computed 

impulsive forces are used as initial guesses in the next step. The Newton approach can fail if, 

for instance, the contact bodies stick together during the dynamic analysis, because the 

Newton iteration becomes singular. In order to overcome this numerical difficulty, the LU-

decomposition and the forward/backward-substitution must be performed. The reader 

interested in the details on this particular issue is referred to the work by Förg et al. [43]. 
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Figure 3. Computational strategy for the iterative Newton method. 

 

The computational strategy of the modified Newton method is illustrated in the flowchart 

of Fig. 3 and is summarized in the basic following steps: 

(i)  Initialize the counter variable k=1 and specify initial guesses for the impulses k
NP  

and k
TP ; 

(ii) Solve Δuk+1 from the following equation 

  1k k k
M M NM N TM Tt+Δ = Δ + +M u h W P W P  

(iii) Evaluate 1k
NE
+ξ  and 1k

TE
+ξ  from equations 

  ( )1 T 1=k k k
N NM A NM
+ ++ Δ +ξ W u u w  

  ( )1 T 1=k k k
T TM A TM
+ ++ Δ +ξ W u u w  

(iv) Project 1k
N
+P  and 1k

T
+P  as 

  ( ) ( )1 1 1, =prox
N

k k k k k
N N N N C N Nr+ + += Π −P P ξ P ξ  

  ( ) ( ) ( )1 1 1 1, , prox
T N

k k k k k k
T T N T T T TC r+ + + += Π = −PP P P ξ P ξ  

(v) Compute the tolerance error as 
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  1 1k k k k
N N T Terror + += − + −P P P P  

(vi) If the error is lesser than a specified tolerance (tol), then the process has converged 

and should, therefore, end; otherwise, increment counter k=k+1 and go to step (ii) to 

proceed with the process of a new iteration step. 

 

Specify

, , , ,A F A At t tΔ q u

, , , , , , , , ,Ni Ni Ti i Ni Ti Ni Tig w wε ε μM h w w

,A E A E= =q q u u

Define

, , , , , ,M M M M Ni M it g H nq M h

Compute

, , , , , , , , , , ,k k
NM TM NM TM NA TA N T N TkW W w w γ γ ε ε μ P P

Evaluate

1 1 1 1, , , , , , , ,k k k k
E NE TE N T N T error k+ + + +u γ γ ξ ξ P P

Compute while error>tol

Increment time

A At t t= + Δ

Update
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, , , , , ,M M M M Ni M it g H nq M h

Compute

, , , , , , , , , , ,k k
NM TM NM TM NA TA N T N TkW W w w γ γ ε ε μ P P

Evaluate

1 1 1 1, , , , , , , ,k k k k
E NE TE N T N T error k+ + + +u γ γ ξ ξ P P

Compute while error>tol

Increment time

A At t t= + Δ

Update

 
Figure 4. Flowchart of the Moreau time-stepping algorithm with augmented Lagrangian 

approach. 

 

Since the Moreau time-stepping method with an augmented Lagrangian approach involves 

a good deal of mathematical manipulation, it is convenient to summarize the main steps in an 

appropriate algorithm. This algorithm, presented in the flowchart of Fig. 4, is developed under 

the framework of multibody systems formulation and can be condensed in the following 

steps: 

(i)  Specify the initial conditions of the problem at hand, tA, tF, Δt, qA and uA; 

(ii)  Define the geometrical, inertial and material functions, gNi, M, h, εNi, εTi, μi, wNi, 

wTi, Niw  and Tiw ; 

(iii) Compute the mid point state variables: 

  1
2M At t t= + Δ  
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  1
2M A At= + Δq q u  

  ( ),M M Mt=M M q  

  ( ), ,M M A Mt=h h q u  

  ( ),Ni Ni M Mg g t= q  

  ( ){ }, 0M Ni M MH i g t= ≤q  

  ( )lengthi Mn H=  

(iv) For every Mi H∈  evaluate:  

( )( )mat ,NM Ni M Mt=W w q , ( )( )mat ,TM Ti M Mt=W w q ,  

( )( )col ,NM Ni M Mw t=w q  , ( )( )col ,TM Ti M Mw t=w q , ( )colNA NAiγ=γ , 

( )colTA TAiγ=γ , ( )diagN Niε=ε , ( )diagT Tiε=ε , ( )diag iμ=μ , 1k = , 

( )k
N N MH=P P , ( )k

T T MH=P P  

 (v) Compute while the Newton method does not converge, i.e., while error>tol: 

  1 1 1k k
E A M M M NM N M TM Tt− − −= + Δ + +u u M h M W P M W P  

  T=NE NM E NM+γ W u w  

  T=TE TM E TM+γ W u w  

  1=k
N NE N NA
+ +ξ γ ε γ  

  1=k
T TE T TA
+ +ξ γ ε γ  

  ( ) ( )1 1 1, =prox
N

k k k k k
N N N N C N Nr+ + += Π −P P ξ P ξ  

  ( ) ( ) ( )1 1 1 1, , prox
T N

k k k k k k
T T N T T T TC r+ + + += Π = −PP P P ξ P ξ  

  1 1k k k k
N N T Terror + += − + −P P P P  

  1k k= +  

 (vi) Compute the positions at the end of the integration time step: 

  1
2E M Et= + Δq q u  

(vii) Increment time step: 

  A At t t= + Δ  

(viii) Update system states’ variables qA=qE and uA=uE. Go to step (iii) and proceed with 

the process for the new time step. These steps must be performed until the final time 

of analysis is reached. 
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5. Analysis of the cam-follower mechanism 

This section contains a demonstrative example of application in which the contact-impact 

events are modeled and analyzed under the nonsmooth dynamics approach. This example 

deals with a cam-follower mechanism with of an industrial application of a cutting file 

machine [64-66]. Figure 5 shows the overall view and the schematic representation of this 

machine-tool. The file teeth are produced by impact of the cutting beater (system composed 

by follower, cylinder and chisel), with a reciprocate movement. To generate this movement, 

the cutting bench has a wheel with six rebounds (cam) whose rotation forces the pin to move 

up. This will lift up the cylinder, to which the chisel is attached, which immediately falls 

down, when reaching the up-dead-point, impelled by the spring and its own weight. 

 

(a)                                                             (b)(a)                                                             (b)  

Figure 5. (a) Overall view of the cutting file machine; (b) Schematic representation of the 

corresponding mechanical system. 

 

The impact energy of the chisel depends on the relationship between the spring force and 

the maximum distance between the chisel and the file (adjusted by a presser foot). The chisel 

describes a reciprocating motion that always reaches the same up dead point (maximum 

distance between the chisel and the file), while the pin, rigidly attached with the cylinder 

which moves the chisel, which always passes by the tops of cam. On the other hand, the down 

dead point of the chisel is variable, and depends on the impact energy absorbed by the file 

body. The chisel impact energy depends on the relationship of the regulations of the spring 

pre-load and on the maximum distance between the chisel and file. During the file 

manufacture, in order to obtain a tooth with the appropriate geometry (depth of the 

penetration), it is required, not only the impact energy should be adequately adjusted, but also 

the maximum distance between the chisel and the file resulting from the regulation of the 

presser foot should have a value that allows the chisel to pass above the last produced tooth. 
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When the machine operates correctly, the kinetic energy produced during the descending 

chisel movement is totally absorbed by the base body of the file. For that purpose, the presser 

foot must be adjusted in order to prevent impacts between cam and pin during the descent of 

the chisel movement. It means that the pin should never collide with cam. When this situation 

does not happen, as consequence of incorrect positioning of the presser foot, it can be 

observed that the cutting operation produces a hard and increasing noise. The noise is due to 

the impact of the pin on the cam, and strongly depends on the spring force. This clash is 

undesirable for two main reasons; firstly, because it accelerates the cam and follower wear, 

and secondly, because it decreases the kinetic energy available for the cutting operation, since 

part of the energy is be absorbed by that impact. Hence, the file quality is significantly 

penalized [65]. 

The multibody system of the cutting file machine is made of three rigid bodies (cam – the 

driver, follower – the driven element, and the ground or frame), one revolute joint, and one 

translational joint. Figure 13a depicts the kinematic configuration of the cam follower 

mechanism. It is known that for nb rigid body system with nc independent constraint 

equations, the mobility or degrees of freedom (DOF) is given by [2] 

 6 b cDOF n n= × −  (56) 

This mathematical expression, usually called as Grüebler equation, can be used to 

determine the mobility of multibody system. Thus, from Eq. (56), the DOF of the cam-

follower mechanism is equal to 1, implying one, and only one, motion generator. Since the 

follower can not rotate about its own axis, and the follower curvature radius is very large 

when compared to its own dimensions, the follower can be considered flat faced. The flat 

faced follower has the advantage of a zero degree pressure angle throughout its motion, which 

is an important feature, since most of cam-follower mechanisms are designed with pressure 

angles as small as possible [67, 68]. 
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Figure 6. (a) Kinematic configuration of the cam follower mechanism; (b) Follower displacement. 

 

Figure 6b schematically illustrates the experimental data relative to the follower 

displacement diagram corresponding to a sixth part of the cam angle rotation, since the cam 

has six rebounds and the cam-follower motion repeats itself six times in each complete cam 

rotation [66]. In Fig. 6b, point A represents the maximum follower displacement, point B 

defines the instant of impact between the follower and file body, point C corresponds to the 

minimum follower displacement, that is, the maximum penetration/deformation of the body 

file, and finally, point D represents the re-contact between the cam and follower after the 

rebound effect. Observing Fig. 6b, it is evident that the follower motion can be divided into 

two main phases, namely, the fall and the rise movements. In turn, these two phases can be 

analyzed into two different parts. Starting from maximum follower elevation, point A, the 

follower motion can be described and summarized by the following steps: 

(i)  Fall #1 - from point A to point B: the follower motion is influenced by three main 

factors, the gravity effect, the spring action and friction phenomenon that exists 

between the follower and guide. At point A, the follower is pushed down by 

preloaded spring and gravity action; 

(ii)  Fall #2 - from point B to point C: point B represents the initial instant of impact 

between the follower (chisel) and the file body. The maximum penetration depth, 

which corresponds to the edge height, is represented by the distance between points 

B and C. Point C corresponds to the end of follower fall motion; 

(iii)  Rise #1 - from point C to point D: this phase represents the rebound effect caused 

by the accumulated energy during the contact-impact process between the follower 
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and file body. In this process, there is no contact between the follower and cam due 

to rebound effect and cam speed; 

(iv)  Rise #2 - from point D to point A: the follower is in permanent contact with the cam 

surface, hence, the follower is rising and the spring is preloading in this process. 

The simulation parameters of the cam follower system are listed in Tab. 1. The system is 

considered to be frictionless. 
 

Table 1. Parameters used in the dynamic simulation of the cam follower system 
 

Follower mass – m  1.0 kg 

Cam speed – ω  20.94 rad/s 

Cam base radius – Rb  0.003 m 

Maximum follower stroke – h  0.017 m 

Pre-load spring 0.0 N 

Spring stiffness – Ks  240 N/mm 

Initial position – y0 0.017 m 

Initial velocity – v0 0.0 m/s 

Gravity acceleration – g 9.81 m/s2 

Coefficient of restitution – εN 0.4 

Integration time step – Δt  0.0001 s 

 

In order to keep the analysis simple, the follower motion is considered to be of sinusoidal 

type, being the displacement expression given by, 

 1 2sin
2

y s θ πθ
β π β

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (57) 

where s is maximum stroke of the follower, θ represents the angle of the cam rotation 

corresponding to displacement of the follower y and β is the angle of cam rotation to reach the 

stroke s. Since the cam follower has one degree of freedom the variables necessary to define 

the problem are as follows 

 ( )y=q  (58) 

 ( )y=u  (59) 

 ( )m=M  (60) 

 ( )smg K y= − −h  (61) 

 N bg y R s= − −  (62) 

 (1)N =W  (63) 

 ( )N y= −w  (64) 
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Figure 7. (a) Follower displacement; (b) follower velocity. 

Figure 7 shows the behavior of the follower for the data presented above and for a full 

cam rotation, that is, the follower displacement and the follower velocity. From these two 

plots, the different contact scenarios between the cam and follower are well visible, namely 

the continuous or permanent contact and the impact followed be rebounds due to the impacts 

that take place. The global results are in line with those offered in the literature [64]. Figure 8 

shows an animation sequence of the simulation of the cam follower movement during the first 

instants after the follower reaches the up dead point.  

 
Figure 8. Animation sequence of the virtual simulation of the cam follower movement during 

the first instants after the follower reach the up dead point. 
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6. Conclusions  

A general and comprehensive methodology for modeling and analyzing contact-impact 

events in multibody systems has been presented in this work. In the process, the main issues 

of the nonsmooth dynamics approach have been revised in face of their suitability to represent 

the interactions developed between the colliding bodies. The unilateral constraints were 

described by a set-valued force law of the type of Signorini’s condition, while the frictional 

contacts were characterized by a set-valued force law of the type of Coulomb’s law for dry 

friction. The resulting contact-impact problem was formulated and solved as an augmented 

Lagrangian approach, which was incorporated in the Moreau time-stepping method. 

The proposed methodology has been exemplified through the application to a cam-

follower mechanism of an industrial cutting-file machine. The proposed methodology is able 

to capture different phenomena involved in the dynamics of multibody system with multiple 

contacts, such as impacts followed by rebounds, sliding friction and stick phenomenon. This 

type of response strongly depends on the system’s dynamic behavior. An important result 

from this research work is that multibody systems with multiple impacts can have a 

predictable nonlinear performance. 
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