
On computing complex square roots of real matrices

Zhongyun Liua,, Yulin Zhangb,∗ Jorge Santosc and Rui Ralhab

a School of Math., Changsha University of Science & Technology, Hunan, 410076, China
b Centro de Matemática, Universidade do Minho, 4710-057 Braga, Portugal

c Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, Portugal

Abstract: We present an idea for computing complex square roots of

matrices using only real arithmetic.

Keywords: Matrix square root, Schur algorithm, real arithmetic.

AMS Classifications: 65F30

1 Introduction

The computation of square roots of a real matrix A has been studied for many
years by several authors, see [4, 8, 3, 9, 10] and references therein. An important
class of algorithms rely on the Schur form of A and this is the case of the routine
sqrtm in Matlab. This routine, which implements the method proposed by A.
Björck and S. Hammarling’s [3], uses the complex Schur form. N. Higham
[8] has shown how to compute, in a stable way, a real square root using only
real arithmetic. This algorithm is implemented in Higham’s Matrix Function
Toolbox routine sqrtm real. However, for complex square roots this routine still
requires complex arithmetic. In this paper, we present an idea for computing
complex square roots using only real arithmetic. Throughout this paper, we
consider only those square roots of A which are functions of A (as defined in
[6], [12] or [11]).

2 Computing complex square roots of a real matrix

Assume that a function f is defined on the spectrum of A. Let

T̂ =


T̂11 T̂12 · · · T̂1m
0 T̂22 · · · T̂2m
...

...
. . .

...

0 0 0 T̂mm

 ∈ Rn×n

be the real Schur form of A, where T̂ii is either a real eigenvalue of A or a 2× 2
block with complex conjugate eigenvalues of A. Then we have

f(A) = Uf(T̂ )UT . (2.1)

∗Corresponding author. Email: zhang@math.uminho.pt

1



For f(λ) = λ1/2, the problem of computing a square root of A is reduced, due to
(2.1), to that of computing a square root of T̂ . It is shown in [8] that S = (T̂ )1/2

is quasi-upper triangular and

Sii = (T̂ii)
1/2, 1 ≤ i ≤ m (2.2)

and

SiiSij + SijSjj = T̂ij −
j−1∑

k=i+1

SikSkj , j > i. (2.3)

Moreover, it is shown in [8] that square roots of a 2× 2 real matrix B with
complex conjugate eigenvalues have specific structures which are depicted as
follows.

Lemma 1 [8, Lemma 2] Assume that B ∈ R2×2 has complex conjugate eigen-
values λ, λ̄ = µ ± iν with ν 6= 0. Then B has four square roots, each of which
is a function of B. In particular, two of them are real, and the other two are
pure imaginary.

We note from (2.2) and (2.3) that once Sii, i = 1, . . . ,m, are determined,
then Sij , for j > i, are uniquely determined. Furthermore, by Lemma 1, we
have that Sii, i = 1, . . . ,m, are either real or pure imaginary.

We will now describe our strategy to get any complex square using only real
arithmetic. An important tool is a reordering of the diagonal blocks. In fact,
from T̂ one may get a similar Schur form T ′ with real eigenvalues and 2 × 2
blocks T ′ii in any prescribed order by an orthogonal similarity transformation.
For example, if

T̂ =

 T̂11 T̂12 T̂13
T̂22 T̂23

T̂33


then there is an orthogonal similarity transformation Q such that

T ′ = QT̂QT =

 T ′22 T ′12 T ′13
T ′33 T ′23

T ′11


where T̂ii is similar to T ′ii, i = 1, 2, 3. This can be achieved with an algorithm
(see [1]) that is implemented in the LAPACK library and also in the Matlab’s
function ordschur.

Now, let us express the Schur form of A as in

T =

[
T1 T3

T2

]
(2.4)

where T1 glues those blocks for which real square roots will be produced using
Higham’s algorithm and T2 stands for the blocks for which pure imaginary
square roots are to be computed. Obviously, all those T̂ii that are real negative

2



eigenvalues will belong to T2 but we may also glue in T2 some 2 × 2 blocks (if
for some reason, the pure imaginary square roots of such blocks are needed).
Let S1 be the real square root of T1 and iS2 the pure imaginary square root of
T2. Then

S =

[
S1 E + iF

iS2

]
is a square root of T , where S2, E and F are real matrices. We have[

T1 T3
T2

]
=

[
S1 E + iF

iS2

] [
S1 E + iF

iS2

]
and

T3 = S1E − FS2 + i(S1F + ES2).

Since T3 is real, we write

S1F + ES2 = 0 (2.5)

and
S1E − FS2 = T3 (2.6)

Multiply (2.6) by S1 and replace −S1F with ES2, as it results from (2.5), to
get

S2
1E + ES2

2 = S1T3 (2.7)

and finally
T1E − ET2 = S1T3. (2.8)

The solution of the Sylvester equation (2.8) gives E, then F comes from (2.6).
Note that we may assume, without loss of generality, that the spectra of T1 and
T2 are disjoint, as a result of arranging T̂ii in a suitable manner. For reasons of
stability of the numerical procedure, we may also gather in the same T1 or T2
those eigenvalues that are very close.

As in Higham’s algorithm, given an arbitrary square real matrix, the initial
step is to get the real Schur form (and this is in fact the most expensive part
of the total process, see [11, p.136]). From this point, our algorithm can be
presented as

Algorithm For a given nonsingular real matrix T̂ in Schur form, this algo-
rithm uses real arithmetic to compute a complex square root of T̂ .

Step 1. reorder the diagonal blocks of T̂ to produce T = P T T̂P =

[
T1 T3

T2

]
.

Step 2. compute the square roots S1 and S2 using Higham’s real algorithm for
the quasi-upper triangular matrices T1 and −T2.
Step 3. solve Sylvester equation (2.8) to get E, and use (2.6) to produce F .

Step 4. compute P

[
S1 E
0 0

]
P T + iP

[
0 F
0 S2

]
P T to get the square root of

T̂ .

3



Now, we count the flops required in our complex arithmetic free algorithm.
Let r ≤ n be the order of T1.

• The cost of step 1 and 4 is comparatively small∗ and we may neglect it.

• The cost of step 2 is about 1
3(r3 + (n− r)3) real flops [11, p.136].

• In step 3, the computation of E involves the product S1T3 and solving the
Sylvester equation (2.8). The product takes 2r2 (n− r) flops and solving
the equation requires about r(n−r)n flops (see the Bartels–Stewart algo-
rithm in [7, p.367] and [2] for triangular matrices; adapting this algorithm
to our quasi-triangular matrices T1 and T2 causes only a slight increase in
the number of flops). For F , computing S1E−T3 and solving the equation
take r2 (n− r) + r(n− r) and r (n− r)2, respectively. The total number
of flops for step 3 is about (n− r)r(3r + 2n+ 1).

Therefore the total cost is about

C(r) =
1

3
(r3 + (n− r)3) + (n− r)r(3r + 2n+ 1)

which amounts to 1
3n

3 when r = 0, i.e., when the square is real (this is Higham’s
real Schur method). Also, we have C(n) = 1

3n
3 which corresponds to the

case of the square root being pure imaginary. The maximum of the cost C is
attained for r ≈ n

2 and C
(
n
2

)
≈ 0.9n3, that is, about three times the number of

operations required by Higham’s algorithm that, in this case, requires complex
arithmetic. The advantage of our proposal steams from the fact that it uses
only real arithmetic.

3 A numerical example

The following results have been produced, in ”format short”, with Matlab
7.2.0.232 (R2006a) on Pentium M 1.6 GHz machine under Windows XP.

Let

A =


−3.0003 −2.9668 −4.2832 −8.4829 −7.4019
−6.0681 6.6166 5.1440 −8.9210 1.3765
−4.9783 1.7053 5.0746 0.6159 −0.6122
2.3209 0.9945 −2.3911 5.5833 −9.7620
−0.5342 8.3439 1.3564 8.6802 −3.2575

 .
which has the following real Schur form

T =


13.208 −5.9066 −2.9196 0.16782 3.1015

0 5.1487 0.79683 3.5912 3.0922
0 0 −3.8716 10.79 4.7058
0 0 0 −1.734 14.707
0 0 0 −6.9954 −1.734

 .
∗Swapping adjacent diagonal elements of T requires 20n flops, plus another 20n flops to

update the Schur vectors, so the cost of the swapping is 40n times the number of swaps, see
[5]. In case the number of swaps is greater than O(n), then our Algorithm can be easily
extended to one involving a multi-block structure. Therefore the total cost is usually small
compared with the overall cost of the algorithm.

4



No real square root exists in this case. To compute a complex square root, our
Algorithm now comes into play:
Step 1. reordering the the diagonal blocks of T gives

[
T1 T3
0 T2

]
=


13.208 −5.9066 −1.2002 4.0267 0.71892

0 5.1487 3.553 2.6922 1.7947
0 0 2.231 12.079 9.7856
0 0 −9.8185 −5.6991 5.8545
0 0 0 0 −3.8716

 ,
with

P =


1 0 0 0 0
0 1 0 0 0
0 0 0.46206 −0.68738 0.56036
0 0 0.88685 0.35814 −0.29196
0 0 0 0.63185 0.77509

 .
Step 2. Using Higham’s algorithm, we get

S1 = (T1)
1
2 =


3.6342 −1.0006 0.20119 0.75793

0 2.2691 0.74099 0.1564
0 0 3.0269 2.9201
0 0 −2.3735 1.1098


S2 = T

1
2
2 =

[
1.9676

]
.

Step 3. solve Sylvester equation to get

E =


−0.30442
−0.061449

1.0861
3.3186

 and F =


0.49298
−0.31019

1.6225
−2.4137

 .
Step 4. compute P

[
S1 E
0 0

]
P T + iP

[
0 F
0 S2

]
P T to get the square root of

T which is


3. 634 2 −1. 000 6 −0.598 61 0.538 75 0.242 95

0 2. 269 1 0.200 44 0.731 1 0.05 11
0 0 0 3. 416 7 −1. 008 6
0 0 0 2. 068 4 3. 555 2
0 0 0 −1. 691 1 2. 068 3

+i


0 0 0.276 25 −0.143 93 0.382 1
0 0 −0.173 82 0.0905 −0.240 43
0 0 1. 967 6 −1. 025 2 2. 721 6
0 0 0 0 0
0 0 0 0 0



4 Acknowledgements

This research was financed by the National Natural Science Foundation of China
under Grant No. 10771022 and DMS-03-53510, and Major Foundation of Edu-
cational Committee of Hunan Province under Grant No. 09A002 [2009], Also,
supported by FEDER Funds through ”Programa Operacional Factores de Com-
petitividade - COMPETE” and by Portuguese Funds through FCT - ”Fundação
para a Ciência e a Tecnologia”, within the Project PEst-C/MAT/UI0013/2011
and PTDC/MAT/112273/2009, Portugal.

5



References

[1] Zhaojun Bai and Lames W. Demmel On swapping diagonal blocks in real schur

form, Linear Algebra Appl., 186: (1983), pp. 73–95.

[2] R. H. Bartels and G. W. Stewart, Solution of equation AX + XB = C, Comm.

ACM 15 (1972), pp. 820-826.

[3] A. Björck and S. Hammarling, A Schur method for the square root of a matrix,

Linear Algebra Appl., 52/53 (1983), pp. 127–140.

[4] G.W. Cross and P. Lancaster, Square roots of complex matrices, Linear and Multi-

linear Algebra, 1 (1974), pp. 289–293.

[5] P. I. Davis and N. J. Higham, A Parlett-Schur algorithm for computing matrix

functions, SIAM J. Matrix Anal. Appl. Vol. 25 (2003), pp. 464-485.

[6] F. R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea, New York, 1959.

[7] G. H. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins University

Press, Baltimore and London, 3rd edition, 1996.

[8] N. J. Higham, Computing real square roots of a real matrix, Linear Algebra Appl.,

88/89 (1987), pp. 405–430.

[9] N.J. Higham, Stable iterations for the matrix square root, Numer. Algorithms, 15

(1997), pp. 227–242.

[10] N.J. Higham, D.S. Mackey, N. Mackey, and F. Tisseur, Function preserving matrix

groups and iterations for the matrix square root, SIAM J. Matrix Anal. Appl.,

26(3) (2005): pp. 849–877.

[11] N.J. Higham, Functions of matrices-theory and computation, SIAM, 2008.

[12] P. Lancaster, Theory of Matices, Academic, New York, 1969.

6


