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Abstract 
 
Over the last decades, several compliant contact force models have been proposed. However, no 
complete and systematic comparison has been done on these models, which provides information 
on their range of application and accuracy for use in different contact scenarios. Thus, the 
selection of an appropriate model for a given contact problem is still an important and 
challenging issue to be addressed. The Hertzian contact theory remains the foundation for almost 
all of the available force models, but by itself, it is not appropriate for most impacts in practice, 
due to the amount of energy dissipated during the impact. A good number of contact force 
models have been offered that augment the Hertzian law with a damping term to accommodate 
the energy loss during the impact process for small or moderate impact velocities. In this work, 
the main issues associated with the most common compliant contact force models of this type are 
analyzed. Results in terms of the dynamic simulations of multibody systems are presented, which 
allow for the comparison of the similarities and differences among the models considered.  
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1. Introduction 
 

One of the problems that faces the designers and engineers in multibody system contact 
dynamics is how to select the appropriate constitutive law that best describes a given contact-
impact event, in the measure that the geometry, the kinematics of the contacting bodies and the 
nature of the materials involved play a crucial role in the modeling process of contact 
phenomena [1-3]. A second critical difficulty is associated with the evaluation of the contact 
parameters, namely the contact stiffness and damping coefficient. These parameters can be 
evaluated analytically or experimentally [4-6]. Finally, a third problem, that is of complex 
nature, deals with the quantification of the mechanisms of energy transfer, in particular the loss 
of energy typically visible by the hysteresis loop in the force-indentation diagrams [7-9]. 
Therefore, it can be said that the modeling of the interaction between contacting bodies for 
multibody dynamic simulations is critical for the systems performance [10-14]. 
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It is known that nonsmooth systems exhibit nonlinearities or discontinuities, such as 
those caused by impacts in clearance joints [15] and intermittent contacts [16]. In nonsmooth 
systems, the time evolution of the velocities is not requested to be smooth [17]. For instance, the 
jumps in the velocities that can be caused by impacts in multibody systems represent a typical 
nonsmooth system [18]. The term regularized deals with the reformulation of a problem to derive 
a solvable formulation [19]. The contact forces can be described as a function of the indentation 
by smoothening the discontinuity of impact forces. For instance, the contact force law based on 
the Hertzian contact theory is a regularization of the contact force problem [20]. Thus, for 
conceptual clarity the behavior of colliding bodies can roughly be divided into two main groups, 
namely the nonsmooth dynamics formulation and the regularized approach [21]. Each of these 
methodologies has peculiar advantages and disadvantages for various problem classes. The first 
group is based on geometrical constraints [22] and it is also known as rigid approach, in the 
measure that the colliding bodies are hard enough to not deform [23]. In turn, the regularized 
approach is based on the evaluation of the contact forces as function of indentation and 
compliance of the contacting surfaces, reason why it is often named as compliant, penalty or 
force based formulation. In contrast to nonsmooth formulations, the regularized models are 
considered as deformable approaches because the colliding bodies are allowed to deform at the 
contact zone [24]. Owing to its nature of continuous evaluation of the contact forces as function 
of the indentation, the regularized models are also referred to as continuous analysis, in contrast 
with the discrete nature of the nonsmooth formulation [25]. 

The Linear Complementarity Problem (LCP) is one of the most popular techniques to 
treat contact-impact events within the context of nonsmooth dynamics formulation [26]. 
Assuming that the contacting bodies are truly rigid, as opposed to locally deformable or 
penetrable bodies as in the regularized approach, the complementarity formulation resolves the 
contact dynamics problem using the unilateral constraints to compute contact impulses to 
prevent penetration from occurring. Thus, at the core of the complementarity approach is an 
explicit formulation of the unilateral constraints between the contacting rigid bodies [27]. The 
basic idea of complementarity in multibody systems can be stated as for a unilateral contact 
either relative kinematics is zero and the corresponding constraint impulses are zero, or vice 
versa. The product of these two groups of quantities is always zero. This leads to a 
complementarity problem and constitutes a rule that allows the treatment of multibody systems 
with unilateral constraints [28]. In short, in the LCP approach, unilateral constraints are used to 
deal with the contact problem, main feature of which is the impenetrability concept, that is, the 
unilateral constraints are utilized to avoid the overlap of the contacting bodies, meaning that the 
contact points must not cross the boundaries of antagonist bodies. Additionally, it is also 
assumed that the bodies are not attracting each other, that is, the impulsive forces are 
nonnegative, being vanished when the contact is not active. This makes the contact process 
analysis efficient from the computational point of view. However, with this approach it is 
required different numerical strategies for different contact scenarios, such as permanent contact 
and intermittent impact [26]. Furthermore, in the presence of Coulomb friction the contact 
problem can exhibit multiple solutions or no solution [29]. Another drawback can be associated 
with the LCP formulation, namely the possible violation of energy conservation principle during 
contacts with friction [30]. Moreover, the LCP approach is not easy to implement in a general-
purpose program for multibody dynamics [31]. 

The compliant contact force models do not suffer from these difficulties. For instance, the 
regularized models provide a unique approach for modeling continuous and intermittent 
contacts, being able to handle impacts, sustain contacts under load conditions and transitions 
from and to contact conditions [32]. The regularized formulations can be understood as if each 
contact region of the contacting bodies is covered with some spring-damper elements scattered 
over their surfaces. The normal force, that includes elastic and damping terms, prevents 
penetration, i.e., no explicit kinematic constraint is considered but simply force reaction terms 
are used. The magnitudes of stiffness and deflection of the spring-damper elements are computed 
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based on the relative indentation, material properties and surface geometries of the colliding 
bodies. One of the main drawbacks associated with the compliant force models is the difficulty 
to choose the contact parameters such as the equivalent stiffness and the degree of nonlinearity 
of the indentation, especially for complex contact scenarios and nonmetallic materials. In 
compliant force models, the contact force is expressed as a continuous function of indentation 
between the contacting bodies, being quite simple and straightforward to implement in general-
purpose multibody codes. Over the last few decades, several different compliant force models 
have been published in the literature to represent the interaction between contacting bodies [33]. 
Some of them are purely elastic in nature, while others include dissipative terms that are 
typically formulated as a function of the coefficient of restitution and impact velocity. The 
dissipative force models consist of an association of spring and damper elements with linear or 
nonlinear force characteristics, being the amount of energy dissipation associated with the 
internal damping of materials. The utility of some models developed to date is somewhat restrict 
because they are valid for coefficients of restitution close to unity [34]. Gonthier et al. [35] and 
Flores et al. [36] are among the few who have proposed compliant force models valid for a wide 
range of coefficient of restitution values. In short, it can be said that the compliant contact force 
models have been gaining significant importance in the context of multibody systems with 
contact-impact events due to their computational simplicity and efficiency. In addition, the 
compliant contact force models contribute to an efficient integration of the equations of motion 
and account for some level of energy dissipation. This amount of good reasons explains why 
some of the most popular commercial multibody codes use the penalty methods to treat contact 
problems [37-39]. 

It is important to mention that the bodies that belong to a multibody system can be 
considered as rigid or deformable. A body is said to be rigid when its deformations are assumed 
to be small such that they do not influence the global motion produced by the body. The 
expression deformable multibody system refers to a system holding deformable bodies with 
internal dynamics [40]. In fact, rigid bodies are a representation of reality because bodies are not 
absolutely rigid in nature. However, many physical mechanical systems contain a combination of 
rigid and deformable bodies, or rigid bodies with soft surfaces, or bodies that are rigid enough to 
be considered rigid overall, but soft enough to experience significant local deformations during 
contact. In this case, the contact approach must be able to model the dynamics of contact 
between compliant surfaces [41].  

When two bodies collide initially the force increases with increasing indentation and it 
reduces the velocity at which the bodies are approaching each other. At some instant during the 
impact process the work done by the contact force is sufficient to bring the approaching velocity 
of the two bodies to zero. This corresponds to the end of the compression or loading phase where 
the indentation reaches its maximum value. Subsequently, part of the energy stored during the 
compression drives the two bodies to apart until finally they separate with some relative velocity. 
Moreover, part of the energy of deformation is dissipated in many forms such as heat, vibration, 
sound and so forth [42]. In a simple manner, the several different mechanisms by which the 
contact energy dissipation occurs can be named as internal damping [43]. Even the collisions at 
very low velocity with perfectly elastic deformation can dissipate energy, since initial rigid body 
kinetic energy can be converted to internal vibration and waves that persist after contact ends 
[44]. In general, when modeling contact-impact events within the framework of multibody 
systems formulations, the energy dissipation is controlled by the coefficient of restitution [45]. 
This parameter has different definitions, being one of the most popular and commonly used the 
Newton’s law of restitution, also known as kinematical coefficient of restitution. In a simple 
manner, this definition states that when two bodies collide, the post-impact velocity is related to 
the pre-impact velocity by a constant of proportionality called coefficient of restitution. This 
coefficient is, in general, assumed to be constant, however, it is dependent on several factors 
such as the geometry of the contacting surfaces, pre-impact velocity, local material properties, 
contact duration, temperature and friction [46-48]. 
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The prediction of the dynamic behavior of multibody mechanical systems involves the 
formulation of the governing equations of motion and the evaluation of their kinematic and 
dynamic characteristics. This desideratum is reached when all the necessary ingredients that 
influence the response of the multibody systems are adequately taken into account. The contact-
impact phenomenon is among the most important and complex to model because they are 
dependent on many factors, such as the geometry of the contacting bodies, the material 
properties and the constitutive law used to represent the interaction among the different bodies 
that comprise the multibody systems. The classical problem of the contact mechanics is a rather 
old topic in engineering applications. The pioneering work on the collision between rigid bodies 
was developed by Hertz [49]. Naturally, the following step was to include the energy dissipation 
in terms of damping component on the contact analysis. Despite its long and profitable history, 
multibody system contact mechanics is still an active challenging research domain, as stated by 
Schiehlen “more work is required to better understand the micromechanical phenomena 
influencing the macromechanical multibody motion with contact” [50]. Thus, the main purpose 
of this work is to present and discuss several different compliant contact forces models used in 
the context of multibody system dynamics to model and analyze contact-impact events. Special 
emphasis is paid on the evolution of the Hertz contact theory, being the most common 
continuous elastic and dissipative contact force models examined and their performances 
evaluated. The similarities and differences for several contact force models are also investigated. 
Results obtained from computational simulations are presented and utilized to discuss the main 
assumptions and limitations associated with the several contact force models analyzed 
throughout this study.  

The remaining of the paper is organized as follows. In section two, a brief revision of the 
multibody systems formulation is offered. The fundamental issues associated with the 
generalized contact kinematics are described in section three. Then, several pure elastic and 
dissipative contact force models are presented in sections four and five, respectively. Section six 
includes some global results of dynamics of multibody systems involving frictionless contact-
impact events. Finally, in the last section, the main conclusions from this study are drawn and the 
perspectives for future research are outlined. The engineering analysis and design implications of 
the obtained analysis can thus be observed. 
 
2. Description of multibody systems formalism 
 

The dynamic analysis of multibody systems, made of interconnected bodies that undergo 
large displacements and rotations, is a research area with applications in a broad variety of 
engineering fields that has been deserved significant attention over the last few decades, which 
led to the development of relevant work and even to the publication of a good number of 
textbooks totally devoted to this topic [51-56]. The fundamental approaches of analytical and 
recursive dynamics for rigid and flexible bodies have been summarized and discussed in several 
review papers over the last years, such as those by Schiehlen [57, 58], Shabana [59], Rahnejat 
[60], Eberhard and Schiehlen [61], Jalón [62], Nikravesh [63], among others. In turn, many 
multibody computational programs capable of automatic generation and integration of the 
differential equations of motion have been developed, namely DAP [52], ADAMS [37], 
COMPAMM [64], SIMPACK [65] or NEWEUL [66]. The various formulations of multibody 
systems used in these programs differ in the principle used, (e.g. principle of virtual work, 
principle of virtual power, Newton-Euler approach), types of coordinates adopted, (e.g. Cartesian 
coordinates, natural coordinates) and the method selected for handling constraints in systems 
characterized by closed loop topology (e.g. Baumgarte stabilization technique, coordinate 
partitioning method, augmented Lagrange formulation) [67-69]. 

There are different coordinates and formalisms that lead to suitable descriptions of 
multibody systems, each of them presenting relative advantages and drawbacks. In the present 
work, the generalized Cartesian coordinates and the Newton-Euler approach are used in the 
multibody formulation that support the modeling and simulation of mechanical systems with 
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contact-impact events. This formulation results in the establishment of a mixed set of partial 
differential and algebraic equations, which are solved in order to predict the dynamic behavior of 
multibody systems. The Newton-Euler approach is very straightforward in terms of assembling 
the equations of motion and providing all joint reaction forces. Additionally, the equations of 
motion are solved by using the Baumgarte stabilization technique with the intent of keeping the 
constraints violation under control [67, 70]. This method can be understood as an extension of 
the feedback control theory applied to the dynamics of multibody systems. Moreover, in the 
present work, the numerical problems that arise from the existence of redundant constraints and 
the possibility of achieving singular positions are assumed to be solved [71]. In turn, the 
integration process is performed by using a numerical algorithm with variable order and time 
step [72]. The methodologies used in this study have been implemented in the computational 
program MUBODYNA [73]. This multibody formulation code is capable of automatically 
generating and solving the equations of motion for general planar multibody systems. 

A typical multibody system is defined as a collection of rigid and/or flexible bodies 
interconnected by kinematic joints and possibly some force elements [52]. Driving elements and 
prescribed trajectories for given points of the system components can also be represented under 
this general concept of multibody system. Figure 1 depicts an abstract representation of a 
multibody system. The bodies that belong to a multibody system can be considered as rigid or 
flexible. A body is said to be rigid when its deformations are assumed to be small such that they 
do not affect the global motion produced by the body. In the two-dimensional space, the motion 
of a free rigid body can be fully described by three generalized coordinates associated with the 
three degrees-of-freedom. In turn, when a body includes some amount of flexibility, it has three 
rigid degrees-of-freedom plus the number of generalized coordinates necessary to describe the 
deformations [40]. Within the scope of the present work, only rigid bodies are considered. 
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Fig. 1 Abstract representation of a multibody system with its most significant components: 

bodies, joints and forces elements. 
 

Multibody systems can range from very simple to highly complex. In fact, a multibody 
system can be used to study the kinematic and dynamic motion characteristics of a wide variety 
of systems in a large number of engineering fields of application. There is no doubt that 
multibody systems are ubiquitous in engineering and research activities, such as robotics  [74], 
automobile vehicles [75], biomechanics [76], mechanisms [77], railway vehicles [78], space 
systems [79], just to mention a few. In a simple way, multibody systems methodologies include 
the following two phases: (i) the development of mathematical models of systems and (ii) the 
implementation of computational procedures to perform the simulation, analysis and 
optimization of the global motion produced [56]. 
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For a constrained multibody system, the kinematic joints can be described by a set of 
typically nonlinear holonomic algebraic equations as [52] 

 ( , )t =Φ q 0  (1) 
where q is the vector of generalized coordinates and t is the time variable. Differentiating Eq. (1) 
with respect to time yields the velocity constraint equations. After a second differentiation with 
respect to time, the acceleration constraint equations are obtained as 

 qΦ q γ=  (2) 
in which Φq is the Jacobian matrix, q is the acceleration vector and γ is the right-hand side of 
acceleration equations, which contains the terms that are exclusively functions of velocity, 
position and time. 

The translational and rotational equations of motion for an unconstrained multibody 
system composed by rigid bodies are written as [52] 

 gqM =  (3) 

where M is the global system mass matrix, containing the mass and moments of inertia of all 
bodies and g is the generalized force vector that contains all external forces and moments 
applied on the system, such as those associated with gravitational field and contact-impact 
events [80]. Using the Lagrange multipliers technique, the effect of the constraint equations 
(1) is added to the equations of motion (3) [81]. Thus, the equations of motion are written 
together with the second time derivative of constraint equations (2) yielding a linear system 
of equations written as 

 { } { }T⎡ ⎤
=⎢ ⎥

⎣ ⎦
q

q

M Φ q g
λ γΦ 0  (4) 

where λ is the vector of Lagrange multipliers, physically related to the joint reaction forces. The 
reaction forces, owing to the kinematic joints are expressed as [82] 

 ( )c T= − qg Φ λ  (5) 
Equation (4) represents a differential-algebraic system that has to be solved and the 

resulting accelerations integrated in time. This method, however, does not explicitly use the 
position and velocity constraint equations allowing for a drift in the system constraints to 
develop. In order to keep such constraint violation during the numerical integration under 
control, the Baumgarte stabilization technique is employed, and Eq. (4) is modified as 

 { } { }22
q

q

M Φ gq
λ γ Φ ΦΦ 0

T

α β
⎡ ⎤

=⎢ ⎥ − −⎣ ⎦
 (6) 

where α and β are prescribed positive constants that represent the feedback control parameters 
for the velocities and positions constraint violations [67, 70]. 

According to this formulation, the dynamic response of multibody systems involves the 
evaluation of the vectors g and γ, for each time step. Then, Eq. (6) is solved for the system 
accelerations q . These accelerations together with the velocities q  are integrated in order to 
obtain the new velocities q  and positions q for the next time step. This process is repeated until 
the complete description of system motion is performed [52, 83, 84]. 

 
 

3. Generalized contact kinematics  
 

This paragraph deals with the generalized contact kinematics between two planar rigid 
bodies that can experience an oblique eccentric impact. Figure 2a shows two convex bodies i and 
j in the state of separation that are moving with absolute velocities ir  and jr , respectively. The 
potential contact points are denoted by Pi and Pj. The evaluation of the contact kinematics 
involves the calculation of three fundamental quantities, namely the position of the potential 
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contact points, their Euclidian distance and their relative normal velocity [85, 86]. In general, 
this information must be available in order to allow the determination of the contact forces that 
develop during the contact-impact events [87, 88]. The possible motion of each body in a 
multibody system is constrained by the distance and relative velocity of the potential contact 
points. Positive values of that distance represent a separation, while negative values denote 
relative indentation or penetration of the contacting bodies. These two scenarios are illustrated in 
Figs. 2a and 2b, respectively. The change in sign of the normal distance indicates a transition 
from separation to contact, or vice-versa [89]. In turn, positive values of the relative normal 
velocity between the contact points, that is, the indentation or penetration velocity, indicate that 
the bodies are approaching, which corresponds to the compression phase, while negative values 
denote that the bodies are separating, that corresponds to the restitution phase. The vectors of 
interest in studying contact-impact events are shown in Fig. 2. 
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Fig. 2 (a) Two bodies in the state of separation; (b) Two bodies in the state of contact (indentation, δ). 
 
The vector that connects the two potential contact points, Pi and Pj, is a gap function that 

can be expressed as 
 P P

j i= −d r r  (7) 

where both P
ir  and P

jr  are described in global coordinates with respect to the inertial reference 
frame [52], that is, 

 'P P
k k i i= +r r A s      (k = i, j) (8) 

in which ri and rj represent the global position vectors of bodies i and j, while P
i
's  and P

j
's  are the 

local components of the contact points with respect to local coordinate systems. The rotational 
transformation matrices Ak are given by 

 ⎥
⎦

⎤
⎢
⎣

⎡ −
=

kk

kk
k φφ

φφ
cossin
sincos

A      (k = i, j) (9) 

A normal vector to the plane of contact, illustrated in Fig. 2b, can be determined as 

 
d

=
dn  (10) 

where the magnitude of the vector d is evaluated as 
 Td = n d  (11) 
The minimum distance condition given by Eq. (11) is not enough to find the possible 

contact points between the contact bodies, since it does not cover all possible scenarios that may 
occur in the contact problem. Therefore, the contact points are defined as those that correspond 
to maximum indentation, that is, the points of maximum relative deformation, measured along 
the normal direction [90]. Thus, three geometric conditions for contact can be defined as, (i) the 
distance between the potential contact points given by vector d corresponds to the minimum 
distance; (ii) the vector d has to be collinear with the normal vector ni; (iii) the normal vectors ni 
and nj at the potential contact points have to be collinear. The conditions (ii) and (iii) can be 
written as two cross products as 
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 j i× =n n 0  (12) 
 i× =d n 0  (13) 
The geometric conditions given by Eqs. (12) and (13) are two nonlinear equations with 

two unknowns, which can be solved using a Newton-Raphson iterative procedure [84]. This 
system of equations provides the solutions for the location of the potential contact points. Once 
the potential contact points are found, the next step deals with the evaluation of the relative 
indentation between the contact bodies as 

 Tδ = d d  (14) 
The velocities of the contact points expressed in terms of the global coordinate system are 

evaluated by differentiating Eq. (8) with respect to time, yielding 
 P

kkk
P
k

'sArr +=      (k = i, j) (15) 
in which the dot denotes the derivative with respect to time.  

The relative normal velocity is determined by projecting the contact velocity onto the 
direction normal to the plane of contact, yielding 

 ( )T P P
N j iv δ= = −n r r  (16) 

This way to represent the relative normal velocity is very convenient, in the measure that 
it is not necessary to deal with the derivation of the normal unit vector because this velocity 
component is not directly obtained by differentiating Eq. (11). Furthermore, the fully rigid body 
velocity kinematics can easily be applied. 

The computational implementation of this methodology is quite efficient. However, the 
above description is restricted to convex rigid bodies with a smooth surface at least in a 
neighborhood of the potential contact points such that the contact area reduces to a single point 
which may move relative to the surfaces of the bodies. This approach can be extended to more 
generalized contact geometries as long as a common tangent plane of the contacting bodies is 
uniquely defined [91]. 
 
 
4. Pure elastic contact force models  
 

This section briefly covers the analytical formulation of, and the limitations with, the pure 
elastic contact force models based on the Hertzian contact theory. Hertz was pioneer to study the 
contact stresses between two perfectly elastic bodies, when he was investigating on the Newton’s 
optical interface fringes in the gap between two glass lenses and was concerned with the possible 
influence of the deformation of the surfaces of the lenses due to the contact pressure between 
them [49]. Hertz concluded that the contact area was, in general, elliptical. For a detail 
description of the Hertzian contact theory, the reader is referred to the thematic literature [20, 43, 
92]. The Hertz’s law relates the contact force with a nonlinear power function of indentation and 
can be expressed as 

 n
NF Kδ=  (17) 

where δ represents the relative indentation between the contacting bodies, K and n are the 
contact stiffness parameter and the nonlinear power exponent determined from material and 
geometric properties of the local region of the contacting objects. One advantage of the Hertz 
contact law is that it considers the geometric and material characteristics of the contacting 
surfaces, which are of paramount importance in the contact dynamic responses. For instance, for 
two spheres of isotropic materials in contact, the contact stiffness parameter is a function of the 
radii of the sphere i and j and the material properties as [43] 

 4
3( )

i j

i j i j

R R
K

R Rσ σ
=

+ +
 (18) 

in which the material parameters σi and σj are given by 
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21 l

l
lE
νσ −

= ,     (l=i, j) (19) 

and the quantities νl and El are the Poisson’s ratio and Young’s modulus associated with each 
sphere. For contact between a sphere i and a plane surface body j, the contact stiffness parameter 
depends on the radius of the sphere and the material properties of the contacting surfaces, being 
expressed as 

 4
3( ) i

i j

K R
σ σ

=
+

 (20) 

It is must be noted that, by definition, the radius is negative for concave surfaces and 
positive for convex surfaces [93]. According to Hertzian contact approach, the power exponent n 
is equal to 3/2 for the case where there is a parabolic distribution of contact stresses [49]. For 
different materials, the value of this exponent can be either higher or lower, leading to a 
convenient contact force expression which is based on experimental work, but that should not be 
confused with the Hertzian contact theory [94, 95]. Guess and Maletsky [96] utilized the 
Hertzian contact approach to evaluate the contact forces that develop in the tibiofemoral and 
patellofemoral connections within a dynamic knee multibody simulator for modeling total knee 
prosthesis. In this work, Guess and Maletsky used the value of 3/2 for the nonlinear exponent, 
while the contact stiffness parameter was evaluated based on the material properties and surface 
geometries of the contact elements. 
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Fig. 3 Externally colliding spheres modeled by Hertz contact law: (a) Contact force and indentation 

versus time; (b) Force-indentation relation; (c) Phase portrait. 
 
For the Hertz contact law, Fig. 3 shows the contact force, the indentation, the force-

indentation relation and the phase portrait of two externally colliding spheres. The contact 
indentation and the indentation velocity are the variables used to plot the phase portrait. The 
spheres are identical and have the same radius of 20 mm and the same mass of 0.092 kg. Both 
spheres have equal and opposite impact velocities of 0.15 m/s. The relative contact stiffness 
parameter is equal to 5.5×109 N/m3/2 for the calculations used to generate the plots [97]. By 
observing the plots of Fig. 3, it should be highlighted that the contact force varies in a nonlinear 
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and continuous manner and it starts from zero and returns to zero while always remains 
compressive. Figure 3c depicts the phase trajectory of the impact process, in which point A 
denotes the initial instant of impact with null indentation and impact velocity equal to 0.3 m/s. 
The segment AB corresponds to the compression phase that ends at point B, where the maximum 
relative indentation is reached. Finally, the segment BC represents the restitution phase, which 
terminates with relative velocity equal to -0.3 m/s and null indentation. It is apparent that the 
Hertz contact law given by Eq. (17) is limited to contacts with pure elastic deformations and 
does not include energy dissipation. This contact force model represents the contact process as a 
nonlinear spring along the direction of collision.  

One limitation associated with the Hertz’s law deals with the evaluation of the contact 
stiffness parameter and nonlinear exponent, particularly when the bodies contact in a line or 
surface instead of a point [93, 98, 99]. In fact, for spherical contact geometries, where the contact 
areas assume a circular or ellipsoidal shape, the contact stiffness parameter used to define the 
constitutive contact force law is estimated by applying the Hertz theory of contact. However, for 
rectangular contact areas, that is, for contacts involving cylindrical shape bodies with parallel 
axis, the physical meaning of the contact stiffness parameter is not straightforward and its value 
is not easy to obtain. In empirical and theoretical investigations, Brändlein and his co-authors 
[100] proposed the following mathematical relation for the contact between cylinders 

 1.08
NF Kδ=  (21) 

It is worth to note that K depends on the contact length and is independent of the contact radii of 
the bodies. A similar force-indentation relation for the contact between a cylinder of infinite 
length and a half space was presented by Nijen [101]. 

After an extensive review of the Hertz contact theory, Goldsmith [43] concluded that the 
Hertz theory provides a good model of the contact process if the materials involved are hard and 
the initial impact velocity is very low, that is, impacts slow enough that the bodies are deformed 
imperceptibly only. For softer materials or higher impact velocities, plastic deformation and 
strain rate effects must be included [44, 94, 102]. Goldsmith proposed a modified Hertz’s law to 
accommodate plastic or permanent indentation during the restitution phase as [43] 

 
n

p
N max

max p

F F
δ δ
δ δ
⎛ ⎞−

= ⎜ ⎟⎜ ⎟−⎝ ⎠
 (22) 

where Fmax denotes the maximum contact force, δmax is the maximum indentation and δp 
represents the permanent indentation. A straightforward manner to evaluate these parameters can 
be found in work by Lankarani and Nikravesh [97]. 

Yang and Sun [103] linearized the Hertz’s law to model the contact force developed in 
spur gear dynamics, yielding the following expression 

 NF Kδ=  (23) 
in which the contact stiffness is given by  

 2

π
4(1 )

ELK
ν

=
−

 (24) 

where E is the Young’s modulus, ν is the Poisson’s ratio and L denotes the thickness of the 
gears. Dubowsky and Freudenstein [104] also considered a linear relation between indentation 
and contact force for the case of contact of a journal inside of a bearing when the impact takes 
place at low velocity and the loads involved are small. The linearization of the Hertz’s law may 
not be very accurate because it does not represent the overall nonlinear nature of an impact, and 
a number of weaknesses limit its application as it was avowed by Hunt and Crossley [7]. 

Another weakness associated with Hertz’s law is that it assumes that the size of contact 
area is small when compared to the curvature radii of the surfaces in contact. This assumption 
seems good enough for nonconformal contacts. However, for the case of conformal contacts this 
is not entirely true due to the large deformations that occur at the contact zone [20]. Goodman 
and Keer [105] demonstrated that conformal contacts can be up to 25 percent stiffer in 



 11 

compression than would be predicted by the Hertzian contact theory. This idea has been 
corroborated by Pereira and her co-authors [99]. Liu et al. [106] extended the Hertz contact law 
to propose a new force model for the particular case of spherical joints with clearance. In a 
previous work, Liu and his co-workers [107] presented a compliant force model for cylindrical 
joints with clearances, where the Hertz’s law is only valid for large clearance sizes and small 
loads [104, 108]. The force model proposed by Liu et al. [107] can be expressed as 

 

1
* 2π
2 2( )N

E LF
c

δ δ
δ

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 (25) 

where E* represents the composite modulus of the two colliding cylinders, L is the length of 
cylindrical joint, δ denotes the relative indentation and c is the radial clearance size. This 
approach was compared and validated with results obtained with FEM analysis [109]. The 
composite modulus can be evaluated using the following mathematical expression  

 
122

* 11 ji

i j

E
E E

νν
−

⎛ ⎞−−
= +⎜ ⎟⎜ ⎟
⎝ ⎠

 (26) 

More recently, Luo and Nahon [110] extended the Hertz contact approach for polyhedral 
contacting bodies, namely for line and face contacting objects, in which they explicitly consider 
the distinction between true contact geometry and interference geometry. This new approach was 
accompanied with both FEM and experimental discussions. Another way to overcome the 
difficulties of the Hertz’s law, when the contact area can not be represented as a single contact 
point, is to consider the elastic foundation approach [88]. This model is based on representation 
of the body surfaces by polygon meshes and contact force determination by the elastic 
foundation model, which allows for the modeling of contact between complex geometries and 
scenarios where the contact area is relatively large, having good computational efficiency when 
compared with the FEM analysis. Bei and Fregly [111] proposed a computationally efficient 
methodology for combining multibody dynamic simulation method with a deformable contact 
knee model. In this study, the contact between knee surfaces was modeled through the use of the 
elastic foundation approach for both natural and artificial knee articulations. Pérez-González et 
al. [112] developed a modified elastic foundation approach for application in three-dimensional 
models of the prosthetic knees, in which both contacting bodies are considered to be deformable 
solids with their own elastic properties. Mukras et al. [113] also used the elastic foundation 
method to evaluate the contact forces for wear modeling and analysis in the framework of 
multibody systems formulations. Their results obtained for a planar slider-crank mechanism with 
a dry clearance revolute joint were compared and validated with those produced via FEM. 

At this stage, it must be highlighted that the contact force models described above do not 
consider the energy dissipation during the contact process. In fact, the process of energy transfer 
is an extremely complex task of modeling contact-impact events. When an elastic body is 
subjected to cyclic loads, the energy loss due to internal damping causes a hysteresis loop in the 
force-indentation diagram, which corresponds to energy dissipation. Krempf and Sabot [114] 
identified the damping capability of a dry sphere pressed against a plate made by steel (Hertzian 
contact) from experimental nonlinear resonance curves. These authors observed that the contact 
damping shows approximately viscous behavior (Kelvin and Voigt like). This corresponds to the 
theoretical considerations presented by Hunt and Crossley [7]. Sabot et al. [115] experimentally 
studied a ball normally preloaded by a moving rigid mass. They clearly exhibited the softening 
primary resonance when no loss of contact occurs and analyzed mechanical sources of damping. 
In a similar manner to Krempf and Sabot, Johnson [116] measured the energy loss within a dry 
contact, in which two spherical surfaces were pressed together and excited by an oscillating 
force. The force direction deviates from the normal direction to the contact plane, and notable 
energy dissipation was observed. The fundamental issues associated with internal damping that 
occurs in the contact process will be analyzed and discussed in the next section.  
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5. Dissipative contact force models  
 

The pure elastic contact force models presented in the previous section do not account for 
the energy dissipation process that characterizes the contact-impact events in mechanical 
systems. Therefore, the Hertz contact model can not be used during the compression and 
restitution phases of contact. This issue has led several researchers to extend the Hertz’s law to 
accommodate energy dissipation in the form of internal damping. In particular, the models 
proposed by Hunt and Crossley [7] and Lankarani and Nikravesh [34] are two examples of 
extensive use to model, simulate and analyze multibody systems involving contacts. 

The Kelvin and Voigt approach is one of the first dissipative contact force models that 
combines a linear spring with a linear damper [43]. These two elements are associated in 
parallel, and the contact force model can be written as 

 NF K Dδ δ= +  (27) 
in which the first term of the right-hand side is referred to as the linear elastic force component 
(Hooke type behavior [117]) and the second term accounts for the energy dissipation during the 
contact process. In Eq. (27), the parameter D denotes the damping coefficient of the damper 
element and δ  represents the relative normal contact velocity, and the remaining variables have 
the same meaning as it was described in the previous section.  

Besides its simplicity and some weaknesses, the Kelvin and Voigt model has been used 
by a good number of researchers. Dubowsky and his co-workers [104, 118-120] employed this 
approach to evaluate the interbody contact forces that develop in elastic mechanisms with spatial 
clearance joints. These authors also stated that the selection of the compliance and damping 
coefficients are dependent on the materials and dimensions of the elements involved in the 
contact. Additionally, Dubowsky and Young [121] provided some experimental data that 
supports the successful use of the Kelvin and Voigt model in the case of a revolute joint 
subjected to one-dimensional vibroimpact. Rogers and Andrews [122] also applied this contact 
force model to dynamically simulate planar mechanical systems with impacts at revolute 
clearance joints. They argued that this contact force model can be a satisfactory approximation of 
a viscoelastic nature when the material damping is very slight. However, for higher degrees of 
material damping, a better formulation would have the damping force proportional to the product 
of velocity and the elastic force. Khulief and Shabana [123] utilized a parallel linear spring-
damper element combination of Kelvin and Voigt type to model impact in mechanisms with 
flexible multibody systems. Hegazy et al. [124] used the Kelvin and Voigt contact force model to 
compute the vertical forces developed at the tire in the context of multibody dynamics of a full 
vehicle handling analysis. A similar application was done by Fox et al. [125]. However, these 
authors highlighted that the improvement of the contact force model is a fundamental concern to 
predict accurate dynamic responses of this type of multibody systems. 

In short, the linear Kelvin and Voigt force model may not be very accurate since it does not 
represent the overall nonlinear nature of an impact, and a number of weaknesses limit its 
application, mainly for high impact velocities. Dubowsky et al. [126] suggested that the 
compliance and damping force components must be expressed as nonlinear functions of the 
relative indentation and impact velocity. Furthermore, the Kelvin and Voigt contact force model 
has other weaknesses, namely the fact that the contact force at the beginning of the contact is not 
continuous due to the existence of the damping component. This particular issue is not realistic 
because when the contact begins, both elastic and damping force components must be null. 
Moreover, at the end of the restitution phase, the penetration is null, the relative contact velocity 
is negative and, consequently, the resulting contact force is also negative. This situation does not 
make sense from the physical point of view, in the measure that the bodies can not attract each 
other. Another limitation of the Kelvin and Voigt model is that its damping force component is 
active with the same damping coefficient during the entire impact time interval. This results in 
uniform dissipation during the compression and restitution phases, which is not fully consistent 
with reality [24, 87, 127]. 
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Thus, a more physical and realistic model is demanded. For instance, Hunt and Crossley 
[7] have argued that the damping coefficient in the case of vibroimpact should be proportional to 
a power of the spring force. These authors also showed that the linear Kelvin and Voigt approach 
does not represent the physical nature of the energy transferred during the contact process. Thus, 
they represent the contact force by the pure elastic Hertz’s law combined with a nonlinear 
viscoelastic element expressed as 

 n n
NF Kδ χδ δ= +  (28) 

where the parameter χ is called hysteresis damping factor that can be written as 

 ( )

3(1 )
2

rc Kχ
δ −

−
=  (29) 

in which K is the contact stiffness parameter given by Eqs. (18) and (19), cr denotes the 
coefficient of restitution and ( )δ −  represents the initial impact velocity. After some basic 
mathematical manipulation, the expression for the Hunt and Crossley contact force model can be 
written as follows 

 ( )

3(1 )1
2

n r
N

cF K δδ
δ −

⎡ ⎤−
= +⎢ ⎥

⎣ ⎦
 (30) 

Besides the Hunt and Crossley approach is valid for direct central and frictionless 
contact, it has been used by many researchers because of its simplicity and straightforward to 
implement [9, 128-130]. For instance, Guess et al. [131] employed the Hunt and Crossley 
formulation to successfully model the interaction between tibia, femur and menisci in a global 
three-dimensional multibody knee model. Due to the difficulty in defining the stiffness and 
damping coefficients of the contacting surfaces, these authors considered the stiffness and 
damping as design variables in an optimization process to match with the data obtained from a 
finite element model. Finally, it must be noted that the Hunt and Crossley contact force model is 
appropriate for contact cases in which the coefficient of restitution is high, at it was also 
demonstrated by Marhefka and Orin [24], Gonthier et al. [35] and Papetti et al. [132]. 
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Fig. 4 Externally colliding spheres modeled by Hertz, and Hunt and Crossley contact force model: (a) 

Contact force and indentation versus time; (b) Force-indentation relation; (c) Phase portrait. 
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The use of the contact law given by Eq. (30) to the impact of two externally spheres 
implies the outcome illustrated in Fig. 4, where the contact force, the indentation, the force-
indentation relation and the phase portrait are presented. The impact scenario is the same as in 
the example described for the pure elastic model given by Hertz’s law presented in the previous 
section. A contact stiffness parameter of 5.5×109 N/m3/2 and a coefficient of restitution equal 0.7 
have been considered for the calculations. From the plots of Fig. 4a it can be observed that the 
compression and restitution phases of the contact process are not equal due to the differences in 
the energy dissipation that occurs during these two phases. This fact is clear and visible in the 
non-symmetrical nature of the contact force curve. The energy dissipated during the contact 
process is associated with the hysteresis loop of the force-indentation diagram of Fig. 4b. The 
differences between the Hertz’s law and Hunt and Crossley model can be observed in the plots 
of Fig. 4b and 4c. Figure 4 shows the continuous nature of the contact forces, which build up 
from zero upon impact and smoothly return to zero upon separation. It is also visible that the 
forces developed in the contact process are always positive. Finally, it should be mentioned that 
with this contact force model, the energy dissipated during the contact is related to material 
damping of the contacting bodies. In this model the damping term is expressed as a function of 
indentation, which sounds reasonable from physical point of view.  

A different formulation to account for the loss of energy in contact-impact events that has 
the coefficient of restitution as main parameter was presented by Herbert and McWhannell 
[133]. In this model, the authors combined the dynamic equations of motion of the impacting 
bodies with the Hunt and Crossley contact force model, being the hysteresis damping factor 
written as 

 2 ( )

6(1 )
[(2 1) 3]

r

r

c K
c

χ
δ −

−
=

− +
 (31) 

and the corresponding contact force expression is given by 

 2 ( )

6(1 )1
[(2 1) 3]

n r
N

r

cF K
c

δδ
δ −

⎡ ⎤−
= +⎢ ⎥− +⎣ ⎦

 (32) 

This approach can be considered as a refinement of the Hunt and Crossley contact force 
model. According to Herbert and McWhannell, the hysteresis loop predicted by Eqs. (30) and 
(32) differs by 1.5 percent [133]. The contact model given by Eq. (32) has been considered and 
applied by few researchers only, namely in the works by Yang and Sun [103] and Sarkar et al. 
[134] in the study of backlash effects in geared mechanisms. 

Lee and Wang [45] proposed a new hysteresis damping factor that is quite similar to the 
one presented by Hunt and Crossley. Their main concern was to satisfy the expected hysteresis 
boundary conditions, that is, zero damping force at zero and maximum relative indentation of 
contact. Lee and Wang developed their work in the context of dynamic modeling and analysis of 
mechanisms with intermittent motion, being the hysteresis damping factor given by 

 ( )

3(1 )
4

rc Kχ
δ −

−
=  (33) 

which results in the following expression for the contact force 

 ( )

3(1 )1
4

n r
N

cF K δδ
δ −

⎡ ⎤−
= +⎢ ⎥

⎣ ⎦
 (34) 

Besides its simplicity and similarities with the contact force model developed by Hunt 
and Crossley, the approach proposed by Lee and Wang is not very popular in multibody system 
contact problems.  

Figure 5 shows the force-indentation diagram and the phase portrait for the two externally 
impacting spheres considered in the example presented above, when the Hertz, Hunt and 
Crossley, Herbert and McWhannell, and Lee and Wang contact force models are utilized. It can 
be observed that the Hunt and Crossley approach gives force profile between the other two 
dissipative models. The Lee and Wang force model produces higher impact force magnitude due 
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to the fact that less energy is dissipated in the impact. Furthermore, it can be concluded that the 
Herbert and McWhannell approach dissipates a larger amount of energy, visible in the larger 
hysteresis loop of the force-indentation curve of Fig. 5a, and also in the lower post-impact 
velocity seen in Fig. 5b. 
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Fig. 5 Externally colliding spheres modeled by Hertz, Hunt and Crossley, Herbert and McWhannell, 

and Lee and Wang contact force models: (a) Force-indentation relation; (b) Phase portrait. 
 
One of the most popular and frequently contact force models used in multibody systems 

with contact-impact events is due to Lankarani and Nikravesh [34]. They obtained an expression 
for the hysteresis damping factor by relating the kinetic energy loss by the impacting bodies to 
the energy dissipated in the system due to internal damping. Considering the kinetic energies 
before and after impact, the amount of energy loss can be expressed as a function of the 
coefficient of restitution and initial impact velocity as 

 
2( ) 21 (1 )

2 rE m cδ −Δ = −  (35) 

where m is the equivalent mass. 
The energy loss can also be evaluated the integration of the contact force around the 

hysteresis loop. Assuming that the damping force characteristics during the compression and 
restitution phases are the same, it can be seen that [34] 

 
3( )2

3
E m

K
χ δ −Δ  (36) 

Thus, after substituting Eq. (35) in Eq. (36) an expression for the hysteresis damping 
factor is obtained as  

 
2

( )

3(1 )
4

rc Kχ
δ −

−
=  (37) 

which is a quadratic function of the coefficient of restitution. 
Introducing now Eq. (37) into Eq. (28) results the continuous contact force model due to 

Lankarani and Nikravesh written here as 

 
2

( )

3(1 )1
4

n r
N

cF K δδ
δ −

⎡ ⎤−
= +⎢ ⎥

⎣ ⎦
 (38) 

This contact force model is satisfactory for general mechanical contacts, in particular for 
the cases in which the energy dissipated during the contact is relatively small when compared to 
the maximum absorbed elastic energy. That is, Eq. (38) is mainly valid for the values of the 
coefficient of restitution close to unity [34]. Shivaswamy [135] demonstrated that at low impact 
velocities, the energy dissipation due to internal damping is the main contributor to energy loss. 
Since its publication, the Lankarani and Nikravesh contact force model has been utilized by 
numerous authors in different domains [136-141]. In a later paper, Lankarani and Nikravesh [97] 
extended their original work to include the plastic or permanent deformations that takes place at 
higher impact velocities. 
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The contact force models presented above, known as point contact models, are adequate 
for the cases where the area of contact is small when compared to the dimensions of the 
contacting bodies, that is, the contact is considered to occur at a single point. Therefore, in the 
situations of large contact areas, such as those associated with nonconformal contacts, a more 
superior model is required. In line with this concern, Gonthier and his co-workers [35] developed 
a volumetric contact force model for multibody dynamics in which the hysteresis damping factor 
is given by 

 ( )
r

d K
c

χ
δ −=  (39) 

where the dimensionless factor d is defined as 

 ( )111

1
r

d cr

d
c e

d
+

+
=

−
 (40) 

which can be approximated by 
 21 rd c≈ −  (41) 

and, finally, the Gonthier et al. force model can be written as 
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It should be mentioned that this approach gives the exact solution of the dynamic contact 
problem when Eq. (40) is considered, in contrast with the contact force models presented above 
that are approximate solutions base on different simplifications and assumptions. Moreover, by 
analyzing Eq. (39), it can be concluded that for a perfectly elastic contact, i.e. cr=1, the hysteresis 
damping factor assumes a zero value, while for a purely inelastic contact, i.e. cr=0, the hysteresis 
damping factor is infinite, which is reasonable from the physical point of view. This analysis is 
not true for the hysteresis damping factors given by Eqs. (29), (31), (33) and (37), in which this 
parameter does not assume an infinite value for null coefficient of restitution, as it would be 
expected. For high values of the coefficient of restitution with the Gonthier et al. force model, 
the compression and restitution phases are essentially symmetric. In sharp contrast, for low 
values of the coefficient of restitution, most of the energy is dissipated in the compression phase 
and the hysteresis loop is nonsymmetric [35].  

The contact force model given Eq. (42) is often explicitly expressed as a function of the 
volume of interference and the contact volumetric stiffness. In this case, the unit for the force is 
per unit volume. With this approach, a new difficulty arises, which deals with the evaluation of 
the volumetric stiffness parameter. This particular issue has been recent object of theoretical and 
experimental investigations at the University of Waterloo [142, 143]. 

More recently, Zhiying and Qishao [144] described a contact force in which the 
hysteresis damping factor is given by 

 
2(1 )2

( )

3(1 )
4

rc
rc e Kχ

δ

−

−

−
=  (43) 

and the force is expressed as 
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The work by Zhiying and Qishao, published in Chinese language, was developed in the 
context of impact analysis which purpose was to derive a relation between the coefficient of 
restitution, the contact parameters and the energy dissipated in the contact process. 

 Another contact force model recently published was due to Flores and his co-authors 
[36] that was developed with the foundation of the Hertz contact theory together with a 
hysteresis damping parameter that accommodates the loss of energy during the contact process. 
For this purpose, an expression for the hysteresis damping factor was derived by evaluating the 
kinetic energy dissipated in the system due to internal damping. On one hand, the kinetic energy 
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loss can be expressed as a function of the coefficient of restitution and initial impact velocity and 
is given by Eq. (35). On the other hand, the energy dissipated during the contact process can be 
determined by integrating the contact force around the hysteresis loop. Flores et al. [36] 
considered that the energy dissipated is due internal damping and was evaluated by modeling the 
contact event as a dynamic single degree-of-freedom system, yielding 

 
5
2( )1 (1 )

4 r maxE cχ δ δ−Δ = −  (45) 

where δmax refers to the maximum indentation. Thus, substituting Eq. (45) in Eq. (35) and taking 
into account the linear momentum balance yields the following expression for the hysteresis 
damping factor as 

 ( )

8(1 )
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c K
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=  (46) 

and, hence the contact force model is expressed as 
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It must be stated that this contact force model was developed for situations between very 
elastic and inelastic contacting materials, being the outcomes similar to those obtained with the 
Gonthier et al. force model given by Eq. (42). 

Figure 6 depicts the force-indentation relation and the phase portrait for the two 
impacting spheres described above, when the contact is model with the Hertz, Hunt and 
Crossley, Lankarani and Nikravesh, Gonthier et al., Zhiying and Qishao, and Flores et al. 
formulations. From the plots it can be observed that the outcomes of the Hunt and Crossley 
approach and Lankarani and Nikravesh force model do not differ in a significant manner. This 
fact is not surprising because these two models were developed taking into account the similar 
simplifying premises. In addition, the results obtained with the Gonthier et al., Zhiying and 
Qishao, and Flores et al. force models present a quite close evolution, in which the compression 
and restitution phases of the contact process are not equal to each other due to the differences in 
the energy dissipation between these two phases. This fact is visible by observing the non-
symmetrical nature of the contact force-indentation plots. 
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Fig. 6 Externally colliding spheres modeled by Hertz, Hunt and Crossley, Lankarani and Nikravesh, 

Gonthier et al., Zhiying and Qishao, and Flores et al. contact force models: (a) Force-indentation 
relation; (b) Phase portrait. 

 
With the purpose to better understand what are the main differences between the 

dissipative contact force models presented above, let analyze the evolution of the hysteresis 
damping factor for all the entire range of the coefficient of restitution, as Fig. 7 illustrates. In 
order to keep the analysis simple, the contact stiffness parameter and the initial impact velocity 
are equal to each other and equal to unity. By observing the plots of Fig. 7, it can be concluded 
that the contact force models exhibit a similar behavior for high values of coefficient of 



 18 

restitution. Furthermore, the Hunt and Crossley, Herbert and McWhannell, Lee and Wang, and 
Lankarani and Nikravesh formulations do not work adequately for low values of the coefficient 
of restitution. In particular, the Lee and Wang approach the one that dissipated less amount of 
energy during the contact process. In turn, the Zhiying and Qishao contact force model presents a 
superior response mainly for low values of the coefficient of restitution. The force approaches 
due to Gonthier et al. and Flores et al. have a similar behavior and for low values of the 
coefficient of restitution the hysteresis damping factor increases asymptotically with the decrease 
of the coefficient of restitution, which means that they can perform well for perfectly inelastic 
contacts. Moreover, it must be highlighted that for moderate and high values of the coefficient of 
restitution, the Gonthier et al., the Zhiying and Qishao, and the Flores et al. force models present 
a very close response. This fact is true for coefficients of restitution higher than 0.5, as it can be 
observed in the diagrams plotted in Fig. 7. 
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Fig. 7 Evolution of the hysteresis damping factor as function of the coefficient of restitution for all of 

the dissipative contact force models. 
 
Finally, it must be stated that there are other contact force models candidate to be utilized 

in multibody system contact problems and some more insights can be obtained from works that 
have been developed independently of those described in the present work. In particular, the 
interested reader can find relevant information on the impact between spheres in the publications 
by Yigit et al. [145, 146], Thornton [147], Gugan [148], Falcon et al. [149], Rigaud and Perret-
Liaudet [150], Kuwabara and Kono [151], Minamoto and Kawamura [152], Kagami et al. [153], 
Pust and Peterka [154], Vu-Quoc et al. [155, 156], Burgin and Aspden [157], Bordbar and 
Hyppänen [158], Yoshioka [159], Villaggio [160], Ramírez et al. [161], Wu et al. [162, 163], Shi 
and Polycarpou [164], Tatara and Moriwaki [165], Tatara [166]. 

 
 

6. Demonstrative examples of application 
 
A planar slider-crank mechanism experiencing two frictionless impacts with an external 

free sliding block is a classical contact-impact problem selected as a first example of application. 
This multibody system is considered here to study the influence of the use of different compliant 
contact force models on the simulation of the dynamic response of multibody systems. Figure 8 
shows a generic configuration of the system which consists of five rigid bodies representing the 
slider-crank mechanism and the free sliding block. The body numbers and their corresponding 
coordinate systems are also shown in Fig 8. The system is kinematically constrained through the 
constraint equations associated with the three revolute joints and one translational joint, making 
a multibody model with a total of two degrees-of-freedom. The slider-crank mechanism is 
initialized with a crank angular velocity of 150 rad/s counter clockwise. Furthermore, the 
remaining initial conditions, necessary to start the dynamic simulations, are obtained from a 
previous kinematic analysis of the slider-crank mechanism. At the start of the dynamic analysis, 
the crank and connecting-rod links are aligned in the x direction that corresponds to the dead 
point. Initially, the free sliding block is driven at a constant linear velocity equal to 15 m/s to the 
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left. The initial position of the sliding block is located at x coordinate equal to 0.914 m. This 
multibody system is acted upon by gravitational force only which is taken as acting in the 
negative y direction, being the system defined as moving in the vertical plane. The set of data 
considered to build the multibody model used to perform the dynamic simulations is listed in 
Table 1. The integration process is performed by using a predictor-corrector algorithm with both 
variable step size and order so that smaller step sizes during the contact events can automatically 
be adjusted for. In turn, with the purpose to keep under control the constraints violation, the 
dynamic equations of motion are solved by employing the Baumgarte stabilization technique. 
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Fig. 8 Multibody system composed by a slider-crank mechanism and a free sliding block. 

 
 
Table 1 Geometrical and inertial properties of the slider-crank mechanism and free sliding block. 

Body Length [m] Mass [kg] Moment of inertia [kgm2] 

Crank 0.153 0.038 7.4×10-5 

Connecting rod 0.306 0.076 5.9×10-5 

Slider - 0.038 1.8×10-6 

Free block - 0.190 2.7×10-5 
 
The contact surfaces of the sliding bodies have spherical shapes with radius equal to 8.5 

mm and the contact stiffness parameter is evaluated as 9.5×109 N/m3/2. The value of the 
restitution coefficient used in the simulations is equal to 0.7. The geometric condition that allows 
for the evaluation of the relative indentation between the sliding bodies can be written as 

 5 4 2x x aδ = − −  (48) 

where x5 and x4 represent the x coordinate of the sliding bodies and the dimension a, shown in 
Fig. 8, is equal to 16.93 mm.  

At some instants, due to the system’s initial configuration and its dynamic behavior, the 
constrained slider impacts twice with free sliding block. In the present study, the performance of 
this multibody system is quantified by the plots of the position of the free sliding block and the 
velocity of the constrained slider. In addition, the force-indentation relation for the two impacts 
are also plotted and analyzed. For this purpose, seven different compliant contact force models 
are utilized namely, Hunt and Crossley, Herbert and McWhannell, Lee and Wang, Lankarani and 
Nikravesh, Gonthier et al., Zhiying and Qishao, Flores et al. approaches, which were briefly 
described in the previous section. 

The time history of the position of the free sliding block and the velocity of the 
constrained slider are represented in the plots of Fig. 9. The two impacts between the sliders that 
occur during the dynamic simulation are visible by the discontinuities of those plots. By 
analyzing the curves plotted in Fig. 9, it can be observed that the contact force model proposed 
by Lee and Wang produces impacts with higher rebounds, because the less amount of energy 
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dissipated in the two contact events. Furthermore, it is noteworthy that the Gonthier et al., 
Zhiying and Qishao, and Flores et al. force models exhibit a very similar behavior, for which 
rebounds are of less magnitude when compared with the remaining formulations. This 
phenomenon is quite visible in both position and velocity diagrams of Fig. 9. Finally, as it was 
expected, the Lankarani and Nikravesh, Hunt and Crossley, the Herbert and McWhannell 
approaches present an intermediate response, and the Herbert and McWhannell force model the 
most dissipative one among these last three approaches.  
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Fig. 9 (a) Position of the free sliding block; (b) Velocity of the constrained slider. 

 
Figure 10 shows the force-indentation plots for the two impacts between the slider 

bodies. Again, it is observed that the Lee and Wang model is the one that dissipates less energy 
visible in the smaller hysteresis loop. In turn, the Gonthier et al., Zhiying and Qishao, and Flores 
et al. force models dissipate more energy, exhibiting larger hysteresis loops. As a consequence, 
the rebounding velocity is lower when compared to the other force models. This analysis is valid 
for both impacts, as it can be seen in Figs. 10a and 10b. Finally, the same conclusion that was 
drawn above can be achieved here too, that is for the Lankarani and Nikravesh, Hunt and 
Crossley, and Herbert and McWhannell approaches. In short, the contact force models can be 
grouped into two main classes, one for the higher dissipative approaches that comprises the 
Gonthier et al., the Zhiying and Qishao, and Flores et al. force models, and another one for the 
remaining formulations. 
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Fig. 10 Force-indentation relation for the two impacts between the slider bodies: (a) First impact; (b) Second impact. 

 
As a second example of application, a two-dimensional knee model that experiences 

contact-impact events is considered [167]. Figure 11 shows two bodies i and j which represent 
the tibia and femur, respectively. Body-fixed coordinate systems ξη are attached to each body, 
while xy coordinate frame represents the global coordinate system. The origin of the femur 
coordinate system is located at the intercondylar notch, while the origin of the tibia coordinate 
system is located at the center of mass of the tibia, with the local ξ-axes directed proximally and 
η-axes directed posteriorly. These origin points are represented by points Oi and Oj. The angles 
of rotation of the local coordinate systems of bodies i and j, relative to the global system, are 
denoted by φi and φj, respectively.  



 21 

PC

LC
MC

AC

X

Y

(j)

Oj

ξj
ηj

(i) Oi

ηi ξi

Body (i) – tibia
Body (j) – femur
PC – Posterior cruciate ligament
AC – Anterior cruciate ligament
MC – Medial collateral ligament
LC – Lateral collateral ligament

φi

φj

PC

LC
MC

AC

X

Y

(j)

Oj

ξj
ηj

(i) Oi

ηi ξi

Body (i) – tibia
Body (j) – femur
PC – Posterior cruciate ligament
AC – Anterior cruciate ligament
MC – Medial collateral ligament
LC – Lateral collateral ligament

φi

φj

 
Fig. 11 Knee joint including the femur and tibia elements and the four primary ligaments. 

 
The Cartesian coordinates of centers of mass and inertia properties of the femur and tibia 

are listed in Table 2, which are assigned to the segments on values derived for a similar model of 
a 76 kg, 1.8 m tall male by Yamaguchi [168]. 

 
Table 2 Cartesian coordinates and inertia properties of the femur and tibia bodies. 

Body name x [m] y [m] φ [º] Mass [kg] Moment of inertia [kgm2]
Femur 0.0000 0.0000 90.00 7.580 0.1260 
Tibia -0.2016 -0.1749 35.21 3.750 0.0165 

 
In the present work, the femur and tibia elements are modeled as two contacting bodies, 

while their dynamics is controlled by contact forces. The knee joint elements are considered to 
be rigid and describe a general planar motion in the sagittal plane. The femur is considered to be 
stationary, while the tibia rolls and slides in relation to the femur profile. The femur and tibia are 
connected by four nonlinear elastic springs in order to represent the knee joint ligaments, as 
illustrated in Fig. 11. The following force-elongation relation is utilized for each ligament 

 ( )20 0

00
l l l l l

l
l l

k l l if l lF
if l l

⎧⎪ − >= ⎨
≤⎪⎩

 (49) 

where kl is the ligament stiffness, ll and 0
ll  are the current and the unstrained lengths of the 

ligaments, respectively. The unstrained lengths of the four ligaments are adopted from the 
Moeinzadeh et al. work [169]. The initial position of the tibia at 54.8 degrees of knee flexion is 
selected as it corresponds to a particular position where the ligaments are in a relatively relaxed 
condition, and therefore the knee contact forces can be neglected. The local coordinates of the 
ligament insertion points, as well as their physical properties (unstrained length and stiffness) are 
listed in Table 3. 
 

Table 3 Local coordinates of the insertion points and physical properties of the ligaments. 

Ligament AC PC MC LC 
l
fξ [m] -0.0330 -0.0190 -0.0230 -0.0250 
l
fη [m] -0.0170 -0.0140 -0.0140 -0.0190 
l
tξ [m] 0.2130 0.2100 0.1630 0.1780 
l
tη [m] -0.0090 0.0350 0.0080 0.0250 
0
ll [m] 0.0438 0.0332 0.0784 0.0562 

lk [kN/m2] 35000 30000 15000 15000 
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Based on medical imaging techniques, the femur and tibia profiles in the sagittal plane 
are extracted and used to define the interface geometric conditions for contact. The general 
contact procedure presented in the section 3 is utilized to deal with the contact problem within 
this example of application. When a contact is detected, a continuous nonlinear contact force law 
is applied which calculates the contact forces developed at the interface as a function of the 
relative indentation between the two bodies. The articular cartilages of the knee are modeled as 
linear elastic and isotropic material with an elastic modulus of E=5 MPa and a Poisson’s ratio of 
ν=0.46 [170]. The value of the restitution coefficient used in the simulations is equal to 0.6 
[157]. The forces produced in the ligaments, together with the contact forces, are introduced into 
the system’s equations of motion as generalized forces. Furthermore, an external applied force, 
Fe, is applied on the system, as Fig. 11 shows, being expressed by 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

d

t
t

e t
tAeF d πsin

2

73.4

 (50) 

which is an exponentially decaying sinusoidal pulsed function of duration td and with an 
amplitude A. The simulations are performed for 0.4 s of duration with a time step of 1E-4 s, and 
with amplitude A equal to 50 N. In order to keep the analysis simple, only three contact force 
models are considered in the dynamic simulations of the knee system, namely the Hertz, 
Lankarani and Nikravesh and Flores et al. approaches. By observing the plots of Fig. 12, it can 
be observed that Hertz model causes oscillations in the force-indentation diagram due to the pure 
elastic nature of this formulation. In contrast, the Lankarani and Nikravesh and Flores et al. 
models present a smoother behavior. In particular, when the system is modeled with the Flores et 
al. model it produces higher contact forces with almost no oscillations, at is can be observed in 
Fig. 12a. Because, the knee model experiences contacts that take place with low impact 
velocities, the contact is essentially continuous, as it is visible in the plots of Fig. 12b. 
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Fig. 12 Knee contact modeled by Hertz, Lankarani and Nikravesh, and Flores et al. contact force 

models (a) Contact force versus time; (b) Force-indentation relation. 
 
 

7. Concluding remarks 
 

A general and comprehensive study of some of the most relevant compliant contact force 
models for multibody systems dynamics has been presented in this work. In the sequel of this 
process, the main characteristics, advantages and limitations of the pure elastic and dissipative 
contact force models were also analyzed. Furthermore, the fundamental formalisms available in 
the literature to model multibody systems and the generalized contact kinematics were revisited. 
Finally, two simple planar multibody systems that include contact-impact scenarios were 
considered as examples of application to demonstrate the similarities of and differences between 
the contact force models used throughout this work. 
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 There is no doubt that the biggest landmark in contact mechanics was the work of Hertz 
for static elastic contacts. The Hertzian contact approach is based on the theory of elasticity and 
still remains the foundation for elastic and dissipative contact force models available in the 
literature. In a simple manner, the dissipative models extended the Hertz’s law to include, a 
damping term that accommodates some amount of energy loss during the impact process for low 
to moderate impact velocities. This dissipative term is expressed as function of the coefficient of 
restitution. It was shown in this work that several authors have proposed different relations 
between the coefficient of restitution and energy dissipation. Some of them are approximations, 
such as the Hunt and Crossley model, while other relations present an exact solution of the 
dynamic equations of motion for an impact between two bodies, such as the model proposed by 
Gonthier et al. Nevertheless, all contact force models have been correctly developed from the 
scientific point of view. The compliant contact force models studied in this work exhibit some 
interesting features. In first place, they consider the geometric, kinematic and material properties 
of the contacting surfaces, which is of paramount importance in the contact dynamic 
performance of the systems. These models are also computationally efficient and straightforward 
to implement in general-purpose multibody systems codes. In addition, the contact force models 
can easily incorporate friction models. 

 The dissipative formulations described and compared in this work can be distinguished 
by different damping force components that augmented the Hertz’s law. For high values of the 
coefficient of restitution, the contact force models exhibit a quite similar behaviour, namely 
when this coefficient is close to unity that represents very elastic contacts. In sharp contrast, for 
moderate or low coefficients of restitution, the Gonthier et al., Zhiying and Qishao, and Flores et 
al. approaches present a superior performance, when compared to other models. In these three 
models, the increase in damping reduces the indentation because there is less energy to store in 
the contact process. This particular aspect plays a crucial role in the prediction of the dynamic 
response of multibody systems and has consequences in the analysis and design process of 
mechanical systems. Thus, in order to correctly model, analyze and simulate multibody systems 
in general, appropriate contact force models must be adopted. 
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