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Abstract 
 

In recent years concrete technology has been improved significantly due, mainly, to the 

development of self-compacting concrete, ultra-fluid cement based materials, high 

performance fiber reinforced concrete and engineered cement composites. These 

developments have their main applicability in the pre-casting industry, where the earliest 

demoulding of the pre-cast elements is an important aim for economic reasons. Due to the 

relatively high cost of these advanced cement based materials, optimization of the behavior 

of structural elements made with these materials is a fundamental issue for their 

competitiveness. As a consequence, these materials are, in general, applied to relatively 

thin elements that require special attention in terms of shear and punching resistance. With 

the aim of studying these types of structures, a multi-directional fixed smeared crack model 

for plane shells has been developed. This model implements an innovative approach for 

capturing the behavior of laminar structures failing in punching, which is based on the 

adoption of a softening diagram to simulate the behavior of the out-of-plane shear stress 

components. 

Since most advanced cement based materials have relatively high binder content, the risk 

of cracking at an early age should be evaluated using models that can estimate the heat 

generated by the hydration of pozolanic components and the induced stress fields. For this 

purpose, a FEM-based heat transfer model has been developed and integrated into a 

mechanical model that can simulate the crack initiation and propagation in structures 

discretized with solid finite elements. The mechanical model is a 3D multi-directional 

smeared crack model with the capability of simulating the behavior of structures failing in 

punching and shear. Shrinkage and creep are also a concern mainly for service limit states 

due to crack opening limits. 

In the last two decades fiber reinforced polymer composite materials have also been used 

for the structural rehabilitation of concrete structures, mainly for the flexural and shear 

strengthening of reinforced concrete beams. The prediction of the behavior of the shear 
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strengthened beams requires the use of crack constitutive models to simulate the decrease 

of the shear stress degradation with the crack opening evolution, in agreement. Two 

numerical approaches are proposed to simulate this phenomenon. One is based on the use 

of a softening crack shear stress versus crack shear strain diagram to model the fracture 

mode II, while in the other the total crack shear stress is obtained from the total crack shear 

strain adopting a crack shear modulus that decreases with the crack normal strain. 

Fiber reinforcement mechanisms are more effectively mobilized when support redundancy 

of a structure is high, since the stress redistribution capacity provides to this type of 

structure an ultimate load that is much higher than the load at crack initiation. However, 

the supporting conditions of a structure can change during the loading process, and even a 

loss of contact can occur. To simulate accurately these situations, linear, nonlinear and 

unilateral support conditions are numerically implemented. 

To increase the robustness of the developed numerical models, innovative numerical 

strategies are implemented in the stress update phase of the nonlinear finite element 

analysis process. Furthermore, to improve the convergence performance of the finite 

element nonlinear analyses an arc-length algorithm is implemented. 

All the numerical models are implemented in the FEMIX 4.0 FEM package, using the 

ANSI-C computer language. 
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Resumo 
 

Nos últimos anos tem havido um crescente melhoramento a nível dos processos 

tecnológicos do betão, principalmente devido ao desenvolvimento de betão 

auto-compactável, de materiais de matriz cimentícia ultra-fluídos e de betões de elevado 

desempenho reforçados com fibras. Estes desenvolvimentos têm particular aplicação na 

indústria de pré-fabricação, onde a rápida desmoldagem dos elementos pré-fabricados é um 

objectivo importante por razões económicas. Devido aos custos relativamente elevados 

destes materiais avançados de matriz cimentícia, a optimização do comportamento de 

elementos estruturais constituídos por esses materiais é fundamental para assegurar a sua 

competitividade. Em consequência, estes materiais são, em geral, aplicados a elementos 

relativamente delgados que podem exigir uma atenção especial em termos de resistência ao 

corte e ao punçoamento. Neste contexto, no presente trabalho é desenvolvido um modelo 

de fendilhação para cascas planas com a possibilidade da ocorrência de múltiplas fendas 

fixas distribuídas, integrando uma abordagem inovadora para simular o fenómeno de 

punçoamento. Esta abordagem é baseada na adopção de um diagrama com amolecimento 

que simula o comportamento das componentes de corte transversal. 

Estes materiais avançados de matriz cimentícia têm uma quantidade de ligante 

relativamente elevado, pelo que a possibilidade de ocorrência de fendilhação nas primeiras 

idades deve ser avaliada usando modelos que permitam estimar o calor gerado pela 

hidratação do ligante durante o seu processo de cura, bem como a determinação das 

correspondentes tensões. Para o efeito, no presente trabalho é desenvolvido um modelo de 

transferência de calor baseado no método dos elementos finitos, o qual é integrado num 

modelo mecânico que permite simular o início de fendilhação e a sua propagação em 

estruturas discretizadas por elementos finitos de volume. Este modelo de fendilhação 3D 

tem a possibilidade de simular a ocorrência de múltiplas fendas fixas distribuídas, bem 

como o comportamento de estruturas cujo modo de ruptura é condicionado pelas 

componentes de corte. A retracção e a fluência também são fenómenos de relevância em 

estruturas constituídas por estes tipos de materiais, principalmente em estados limites de 
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serviço por abertura de fenda, pelo que a sua modelação foi também integrada no modelo 

termo-mecânico. 

Nas últimas duas décadas, materiais de matriz polimérica reforçados com fibras contínuas 

têm sido utilizados na reabilitação estrutural de estruturas de betão, principalmente para o 

reforço à flexão e ao corte de vigas de betão armado. A previsão do comportamento das 

vigas reforçadas ao corte requer o uso de modelos constitutivos capazes de simular a 

diminuição da capacidade de transferência de tensão de corte com a evolução da abertura 

de fenda. Duas abordagens numéricas são propostas para este fim. Uma delas baseia-se na 

utilização de um diagrama de amolecimento para a modelação do modo II de fractura. A 

outra suporta-se numa formulação total para a relação entre a tensão e a extensão de corte 

na fenda, adoptando um módulo de rigidez correspondente ao modo II de fractura que 

diminui com a extensão normal à fenda. 

De forma a aumentar a robustez dos modelos numéricos desenvolvidos, foram 

implementadas algumas estratégias de actualização do estado de tensão no material durante 

o processo de análise não linear. Com o objectivo de melhorar as características de 

convergência dos métodos numéricos utilizados foram introduzidos algoritmos baseados 

na técnica arc-length. Condições de apoio com comportamento linear, não linear e 

unilateral também foram numericamente implementadas. 

Todos os modelos numéricos foram implementados no software de elementos finitos 

FEMIX usando a linguagem de programação ANSI-C. 
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Chapter 1 

Introduction 

1.1 INTRODUCTION AND MOTIVATION 

Concrete structures are still widely used in civil construction. In the last decades some 

developments were made on cement based materials to improve their resistance and 

durability. The introduction of fibers in the concrete mix is presently common in many 

applications. The benefits of fiber reinforcement in the improvement of the concrete 

post-cracking resistance are well recognized. Fibers also reduce the maximum crack width, 

decrease the crack spacing and increase the energy absorption capacity of cement based 

materials. 

Recent experimental studies with fiber reinforced cement composites, in terms of 

optimizing the toughness of these materials, have conducted to the development of high 

performance fiber reinforced cement composites of high tensile strength, and also 

engineered cementitious composites presenting tensile strain stiffening behavior with high 

tensile strain at peak tensile stress (Li and Fischer 2002, Naaman 2007). The development 

of self-compacting concrete (SCC) (Okamura 1997, Okamura and Ouchi 2003) has 

increased the potentialities of cement based materials. Combining the SCC capacity to 

flow and fill the interior of the formwork passing through the obstacles, with the benefits 

of steel fiber reinforcement, a new high performance material has resulted, being 

designated steel fiber reinforced self-compacting concrete (SFRSCC). 
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The durability of concrete structures can be largely affected by early age concrete damage, 

such as the occurrence of micro-cracks at an early stage of the development of the material 

mechanical properties. Several causes are behind the early age concrete damage, such as 

the tensile stresses due to restrained shrinkage, or the thermal stresses as a result of the heat 

generated during the hydration process. 

Concrete is a composite material with high nonlinear behavior, due to its heterogeneous 

composition based on constituents of distinct stiffness and strength, and on an interface 

that is the weakest link of the concrete micro-structure. Concrete has a tensile strength that 

is about 10 percent of its compressive strength, exhibiting an almost linear elastic behavior 

up to peak stress. After cracking, the concrete behavior is largely dependent on its energy 

absorption capacity, which is significantly improved when fibers are used. 

To accurately simulate the behavior of concrete structures for serviceability and ultimate 

limit states, sophisticated models must be used in order to capture the essential features of 

this material. In the present work, constitutive models for the material nonlinear analysis of 

concrete structures are presented. These models have been implemented in version 4.0 of 

the FEMIX computer code (Azevedo et al. 2003, Sena-Cruz et al. 2007). The predictive 

performance of these models is assessed using results available in the literature, and also 

several sets of results obtained from experimental programs carried out with SFRSCC 

(Barros et al. 2005a), and with reinforced concrete beams shear and flexurally strengthened 

with Carbon Fibre Reinforced Polymer (CFRP) laminates (Barros et al. 2011). 

1.2 OBJECTIVES 

The recent improvements made in concrete technology and the study of its rheological and 

mechanical properties must be accompanied by the development of numerical models 

capable of simulating its behavior. Thus, the main objectives of the present work are the 

development of numerical tools for the simulation of concrete structures considering the 

concrete nonlinear behavior and its time-dependent effects. With this purpose, the main 

achievements of the present work are: 
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• development of a constitutive model for the simulation of laminar structures, with 

special attention on the prediction of the shear failure mode that can occur in this type of 

structures when subjected to high concentrated loads; 

• development of a multi-fixed smeared 3D crack model capable of predicting the 

behavior of structures discretized with solid finite elements – the three fracture modes 

can be simulated with stress-strain diagrams capable of reproducing a softening or a 

stiffening behavior; 

• development of a thermal model with general purposes, including the heat development 

due to the hydration process during the concrete hardening phase to analyze structures 

since early ages; 

• addition of new functionalities to the multi-fixed smeared 3D crack to perform transient 

linear and nonlinear analyses taking into account the time-dependent effects, such as 

shrinkage, creep and temperature; 

• implementation of new strategies to avoid the numerical instabilities observed in some 

simulations of concrete structures under plane stress state using the multi-fixed smeared 

2D crack constitutive model available in the FEMIX computer code; 

• implementation of additional numerical solution procedures into FEMIX to enable the 

nonlinear finite element analysis of structures with complex behavior. 

1.3 OUTLINE OF THE THESIS 

Chapter 2 consists on an overview of recent developments about cement based materials. 

Models to simulate crack initiation and propagation in these materials are presented, and 

their main characteristics are discussed. Time-dependent phenomena, like shrinkage, creep 

and temperature variation are also presented, and the importance of their numerical 

simulation to predict the cracking risk at early age is analyzed. Numerical techniques used 

in nonlinear finite element analysis that have been implemented in the FEMIX computer 

code are briefly discussed and their benefits in terms of numerical robustness are 

presented. 

In chapter 3 the developed numerical model for the simulation of concrete laminar 

structures is presented. The multi-fixed smeared crack model is implemented under the 
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framework of the Reissner-Mindlin theory adapted to the case of layered shells, in order to 

simulate the damage due to crack initiation and propagation. Special attention is dedicated 

to the simulation of the out-of-plane shear components by proposing softening stress-strain 

diagrams to improve the predictive performance of laminar structures where the 

out-of-plane shear is the governing failure mode. A strategy to simulate supports with 

linear and nonlinear behavior is presented, and special considerations are made on 

unilateral support conditions. Improvements in the internal algorithms associated with the 

stress update and the crack status change are described and their advantages are discussed. 

The performance and the accuracy of the developed numerical tools are assessed using the 

results from a punching experimental test of a panel fabricated with steel fiber reinforced 

self-compacting concrete (SFRSCC) (Barros et al. 2005a). 

In chapter 4 two strategies to improve the degradation of the shear stress transfer with the 

crack opening evolution are described. One is based on the simulation of the crack shear 

stress-shear strain relationship with a total approach instead of an incremental approach. 

The other is based on the use of a softening diagram for the simulation of the relationship 

between the crack shear stress and the crack shear strain components. All the relevant 

aspects related with their implementation in the finite element computer code are described 

in detail. These strategies are validated by performing numerical simulations using results 

available in the literature and results available from an experimental program with 

reinforced concrete beams shear and flexurally strengthened with composite materials 

(Barros et al. 2011). 

In chapter 5 a multi-fixed smeared 3D crack model developed for the simulation of the 

nonlinear behavior of concrete structures discretized with solid finite elements is described. 

The principal aspects of its implementation in the finite element computer code are also 

detailed. Special attention is dedicated to the modeling of the shear fracture modes, being 

the utilization of the simulation strategies described in chapter 4 discussed. The numerical 

model is appraised using the results available from a punching experimental test with a 

module of a panel fabricated with SFRSCC. This module is a structurally representative of 

this panel for this type of loading configuration. 
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In chapter 6 a thermal model with general purposes is presented. The inclusion of heat 

development due to the hydration process during the concrete hardening phase to analyze 

structures since its early ages is described. The time-dependent effects are coupled with the 

multi-fixed smeared 3D crack model described in chapter 5. All the relevant aspects related 

to the transient linear and nonlinear analysis and its implementation in the finite element 

computer code are discussed. The performance and the accuracy of the developed 

numerical models are assessed using results available in the literature. 

Finally, the major conclusions are presented in chapter 7 and some suggestions for future 

research are also given. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 2 

An overview on the modeling of the 

nonlinear behavior of cement based 

materials 

2.1 CEMENT BASED MATERIALS  

Concrete is the most common material used in the construction industry. In terms of its 

internal structure, concrete can be defined as a mixture of cement, sand (fine aggregate), 

gravel (coarse aggregate) and water. The chemical reaction, known as hydration, between 

cement and water leads to a hardening process, and the presence of aggregates (sand and 

gravel) supplies the necessary strength. In a simple way, the cement paste binds the 

aggregates together resulting in a rigid structure similar to an artificial rock. Due to its 

simple fabrication and hardening process (from a liquid to a solid phase), concrete is a 

material that is adaptable to any structural form, being well accepted in the construction 

industry. 

The mechanical properties of concrete can be obtained by performing several tests. 

Concrete has a high compressive strength, but low tensile strength. According to the ACI 

(2005) the tensile strength of concrete in flexure is about 10 to 15 percent of its 

compressive strength. Since the tensile strength and the post-cracking residual strength of 

concrete plays an important role in the deflection and crack pattern of a structure under 

service loads, the addition of other materials to improve its relatively low tensile load 
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carrying capacity, such is the case of steel bars, is current practice. This type of reinforced 

concrete is widely used in the construction industry, combining the benefits of the high 

compressive strength of concrete with those resulting from the high tensile strength of 

steel. The excellent bond behavior between these two materials is also a positive factor. 

Non-continuous (discrete) fibers are an interesting reinforcement solution for cement based 

materials, since they can increase significantly the post-cracking residual strength of these 

materials. Fibers also reduce the maximum crack width, which contributes to increase the 

durability of the concrete and the life cycle of the structure. If randomly distributed in 

concrete, the fibers can also contribute to prevent early age shrinkage cracking. Various 

types of fibers are used in concrete mixtures and they can be grouped in steel, glass, 

synthetic and natural fibers (ACI 1996). To restrain the formation and propagation of 

cracks due to shrinkage, synthetic fibers are the most used, but steel fibers are also 

currently adopted. Both types of fibers can also be added to concrete in order to provide 

reinforcement mechanisms to control the crack propagation for early age and hardened 

concrete phases. For the case of structural applications steel fibers are still the most widely 

used due to cost and reinforcement level criteria, being the derived composite designated 

steel fiber reinforced concrete (SFRC). Depending on the content and geometric 

characteristics of the steel fibers, diffuse crack patterns can be formed due to the fiber 

pullout mechanisms provided by fibers bridging the crack lips. When micro-cracks occur 

due to shrinkage, the fibers can assure a relatively high residual tensile strength of the 

SFRC, limiting the crack width to a small value, and permitting an eventual healing or 

sealing of the cracks (ACI 1996). Furthermore, the addition of steel fibers to a concrete 

mix improves the impact resistance, the energy dissipation capacity, the shear and flexural 

strength of concrete, and the resistance to concrete spalling (ACI 1993). 

In the past two decades, with the development of self-compacting concrete (SCC), also 

designated self-consolidating concrete (Okamura 1997, Okamura and Ouchi 2003), new 

advantages have emerged for the concrete technology. SCC can be defined as a concrete 

mix that has the ability to flow and fill the interior of the formwork, passing through any 

obstacles or reinforcing bars, and consolidating under its own weight, without vibration. 
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According to the Precast/Prestressed Concrete Institute (2003), a SCC must satisfy the 

following rheological requirements: 

• filling ability – the ability of SCC to flow under its own weight, without vibration, 

and fill completely all formwork spaces; 

• passing ability – the ability of SCC to flow through complex spaces, e.g., between 

steel reinforcing bars; 

• stability – the ability of SCC to remain homogeneous during its transport, 

placement, and after placement, i.e., resisting to segregation. 

With the addition of steel fibers to the SCC, a high performance material is obtained, since 

the benefits of the SCC can be combined with those derived from the reinforcement 

mechanisms provided by the steel fibers. Research on the optimization of the mix design of 

steel fiber reinforced self-compacting concrete (SFRSCC) and on the characterization of its 

properties were made by several authors (Barros et al. 2005a, Pereira 2006, Dhonde et al. 

2007). 

Engineered cementitious composites (ECC) are the most recent advance in the concrete 

technology. This material exhibits a tensile strain-hardening behavior after crack initiation, 

and the post-cracking behavior is characterized by the formation of diffuse crack patterns 

(Li and Fischer 2002). Therefore, the ECC can be classified as a high performance fiber 

reinforced cement composite (HPFRCC) (Naaman and Reinhardt 2003, Naaman 2007). 

To retrieve the benefits of the improvements introduced in the concrete technology along 

the years, computer programs should be able to simulate with high accuracy the behavior 

of structures built with these new types of concrete. For this purpose, these programs 

should incorporate constitutive models capable of reproducing the behavior of these 

materials. In the present work constitutive models for the analysis of concrete structures 

are described. In the next sections a brief overview about crack constitutive models, 

time-dependent effects and numerical strategies for the material nonlinear analysis of 

cement based materials are presented. 
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2.2 CRACK CONSTITUTIVE MODELS FOR CEMENT BASED MATERIALS 

Presently, several finite element approaches are available to analyze the nonlinear behavior 

of complex structures subject to arbitrary loads. The most recent ones are capable of 

modeling the behavior of concrete structures presenting brittle failure modes, and 

accurately predict crack formation and propagation. 

Discrete cohesive fracture models (discrete) with fragmentation algorithms, strong 

discontinuity approaches (continuum) with the embedded discontinuities method, and the 

extended finite element method are examples of advanced methodologies that, together 

with powerful mesh refinement algorithms, reveal great efficiency in modeling the 

concrete fracture initiation and propagation (Yu et al. 2007). Alternative methods are based 

on damage models (de Borst and Gutiérrez 1999), smeared crack models (Bazant and 

Oh 1983)] and microplane models (Bazant 1984). These methods are less precise in the 

prediction of the local phenomena related to crack propagation, but, in terms of 

computational effectiveness and assessment of the global behavior of a concrete structure, 

are more appropriate to analyze complex structures with a large number of degrees of 

freedom. 

As shown by de Borst (2002), “fixed and rotating smeared crack models, but also 

microplane models, can be conceived as a special case of (anisotropic) damage models”. 

These three FEM-based solutions are closely related and produce similar results. Taking 

into account the main characteristics of all these approaches, the multi-directional fixed 

smeared crack model (de Borst 1987, Rots 1988, Dahlblom and Ottosen 1990), already 

implemented in the FEMIX 4.0 computer program (Azevedo et al. 2003, Sena-Cruz 2007) 

for plane stress problems, has been improved and extended to plane shells and structures 

discretized with solid finite elements. In the implementation process some innovative 

aspects have been developed. Since the majority of the structures analyzed in this work are 

made with SFRC, where diffuse crack patterns can be formed, the option for the 

multi-directional fixed smeared crack model is conceptually justified, as long as an 

appropriate constitutive law is used to model the post-cracking behavior of these materials. 
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2.3 TIME-DEPENDENT PHENOMENA 

The development of cracks in concrete at early ages, caused by shrinkage and temperature 

variation, has concerned various researchers over the years. Concrete is a brittle composite 

that exhibits a low tensile strength in comparison with its compressive strength. If the 

magnitude of tensile stresses due to shrinkage (for example: plastic, drying or thermal) 

reaches the tensile strength of concrete, then cracks are formed. Preventing or controlling 

the magnitude of these cracks, i.e. width and pattern, is important for the durability, 

performance and aesthetic appearance of the structure. 

When shrinkage is actuating, cracking in concrete members only appears if they are not 

free to shrink (Koenigsfeld and Myers 2003). In fact, tensile stresses do not develop if 

concrete shrinks freely. In current concrete structures, however, their structural elements 

are in general partially or totally restrained, and therefore shrinkage cracking has a high 

probability of occurrence. The degree of shrinkage depends on the water-to-cement (w/c) 

ratio, relative humidity associated with the temperature of the environment, type of cement 

and geometric characteristics of the element. 

Figure 2.1 illustrates the volume change under unrestrained shrinkage, the stress 

development, and the cracking phenomenon due to restrained shrinkage (ACI 2001). 

To control restrained shrinkage cracking various methods/techniques can be used. All have 

the same goal: prevent that, at a certain age, the tensile stresses due to shrinkage reach the 

tensile strength of concrete. To reduce the w/c ratio and to assure proper curing conditions 

are the most common shrinkage mitigation strategies. Other methods are the use of 

expansive cements to counteract the shrinkage effect, or the use of Shrinkage Reducing 

Admixtures (Weiss et al. 1998, D’Ambrosia et al. 2001). Fiber reinforcement has also 

gained importance due to its cracking control efficiency and facility of distribution in the 

concrete mixture with minor modifications of the concrete production technology. 



12 

 

The phe

associat

in early

reinforc

the serv

The resi

Figure 

intersec

account

(point B

Figure 2

Figure 2.

enomenon o

ted with dif

 ages. Crack

cement to ev

vice-life of a

idual stress

2.2, was p

ct (point A).

t the stress

B). 

.2 – Influence

1 – Cracking o

of shrinkag

fferent types

ks are unde

ventually ag

a structure. 

 and concre

presented b

. Weiss also

s level decr

e of creep rela

of concrete du

ge in cemen

s of damage

esirable beca

ggressive en

ete strength 

by Weiss (1

o concludes

reases due 

axation on the 

A 
B

ue to drying sh

nt based ma

es that can 

ause they re

nvironmenta

along the c

1999). The

s that when 

to creep r

shrinkage cra

 

hrinkage and r

aterials is im

occur in co

educe the lo

al condition

concrete age

e concrete c

the phenom

relaxation, 

acking of conc

restrain (ACI 

mportant b

ncrete struc

oad capacity

ns, resulting

eing proces

cracks whe

menon of cr

delaying th

 

crete (adapted 

Cha

2001). 

ecause it ca

ctures, espe

y, and expos

g in a decrea

ss, represent

en the func

reep is taken

he cracking

from Weiss 1

apter 2 

an be 

cially 

se the 

ase of 

ted in 

ctions 

n into 

g age 

1999). 



An overview on the modeling of the nonlinear behavior of cement based materials 13 

 

In order to predict the stresses related to shrinkage it is necessary to understand the 

corresponding phenomenon, and, therefore, an overview of the associated terminology and 

its meaning is presented below. 

Bastos and Cincotto (2000) classify the shrinkage according to four criteria: physical state, 

nature, degree of restriction and permanence, as indicated in Table 2.1. They also discuss 

the simultaneous occurrence of these types of shrinkage. 

Table 2.1– Shrinkage classification (Bastos and Cincotto 2000). 

Physical State 
Shrinkage at fresh 
state (Plastic shrinkage) 
Shrinkage at hardening state 

Nature of the 
phenomenon  

Drying shrinkage 
Hydration shrinkage 
Autogenous shrinkage 
Carbonation shrinkage 
Thermal shrinkage 

Degree of restriction 
Free shrinkage 
Restrained shrinkage 

Permanence of the 
phenomenon 

Reversible shrinkage 
Irreversible shrinkage 

 

Weiss (1999) has classified the shrinkage phenomenon in only two main groups: thermal 

shrinkage and water related shrinkage. Thermal shrinkage is caused by the hydration of the 

cement or the diurnal or seasonal temperature changes. The water related shrinkage is 

caused by the loss of water from the concrete. The loss of water due to its movement to the 

environment causes a volumetric change of the concrete structure, and tensile stresses 

develop due to partial or total restrain of its movement. Plastic, drying, carbonation and 

autogenous shrinkage are classified as water related shrinkage. In thin structures water can 

escape more quickly and, consequently, they are more sensitive to shrinkage than thick 

structures. Therefore, the development of stresses due to drying shrinkage is more 

intensive in thin than in thick structures. This type of shrinkage is especially important in 
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pavements, slabs and bridge decks due to their large area to volume ratio. In contrast, 

thermal shrinkage is more important in thick structures than in thin structures due to the 

slower transfer of the cement hydration heat. Shrinkage occurs as a result of the cooling 

process, being more prominent in this type of structures. 

Plastic Shrinkage 

Plastic shrinkage is the loss of water (i.e. evaporation) in a fresh concrete surface. Plastic 

shrinkage occurs at the first hours of concrete curing, and its magnitude depends on the 

environmental conditions including solar effects, wind speed, temperature and relative 

humidity. To prevent cracking due to plastic shrinkage, the use of a plastic sheet cover is 

common to block the early age evaporation of water. Wind breaks and the use of special 

concrete admixtures are also strategies that reduce plastic shrinkage. Fibers, especially 

polypropylene fibers, are being considered by designers, suppliers and constructors 

because they significantly reduce the width of cracks formed due to plastic shrinkage. 

Drying Shrinkage 

The drying shrinkage occurs in hardened concrete and is caused by the loss of water 

through the surface. The water movement is affected by the difference between the internal 

and external relative humidity. Less relative humidity in the atmosphere increases the 

drying shrinkage and the potential for the occurrence of cracking. The water-to-cement 

ratio (w/c) also influences this type of shrinkage, since the water content in the pores 

decreases with the w/c ratio. Therefore, the lower the amount of water available to be 

expelled through the surface is, the smaller the drying shrinkage effect becomes. 

Autogenous Shrinkage 

It is the shrinkage that occurs in a concrete volume without interchanges of humidity with 

the outside environmental conditions. This can occur in the core of a thick concrete 

structure or in specimens where the loss of water through the surface is not allowed. Due to 

the hydration reaction of binder materials, there is an internal consumption of water called 

self-desiccation and, in combination with its volume reduction as a result of the chemical 

reaction, the autogenous shrinkage occurs. 
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Carbonation Shrinkage 

This type of shrinkage occurs at the surface of the concrete as a result of the reaction 

between the carbon dioxide (CO2) present in the atmosphere and the hydrated cement. 

This reaction leads to the shrinkage of the concrete. 

Thermal Shrinkage 

As a result of hydration of binder materials during the concrete curing phase, an 

exothermic reaction occurs with the generation of a large quantity of heat. The dissipation 

of this heat is faster in thin than in thick structures. During the concrete cooling process 

after the curing phase, and since heating/cooling phases can occur simultaneously in 

distinct parts of a concrete element, tensile stresses are developed (thermal stresses) in the 

parts that are shrinking, leading to the formation of cracks. Thermal stresses also occur in 

hardened concrete due to diurnal and seasonal temperature changes, and the dimensional 

variation can also cause the development of cracks. 

Creep and Shrinkage 

According to the ACI (1992) creep can be defined as the time-dependent increase of strain 

in concrete subjected to sustained stress. Basic creep occurs under conditions of no 

moisture movement to or from the environment, while drying creep is the additional creep 

caused by drying. 

In Figure 2.2  it can be observed that the creep has an effect of relaxation of the residual 

stress, resulting an increase in the concrete age when it cracks. The strength increase in this 

period of time can avoid the formation of cracks, which is a favorable contribution of creep 

in the context of concrete shrinkage. Shrinkage and creep are time-dependent phenomena 

that are interrelated and cannot be completely dissociated. In the past years a special 

attention has been dedicated to the tensile creep of concrete, and its influence on shrinkage 

induced cracking when the concrete is restrained (Altoubat and Lange 2001, D’Ambrosia 

et. al. 2001, Bissonnette et al. 2007). When the concrete is restrained it is subjected to 

tensile stresses and the cracking potential increases. Tensile creep stresses and the 

corresponding strains counteract the shrinkage strains and have a beneficial effect. 
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For example, during the first days of a concrete slab on grade, shrinkage is the critical 

condition. The restrain imposed by the concrete/soil friction introduces tensile stresses in 

the concrete that, depending on the restrain characteristics, concrete and environmental 

conditions, cause the formation of cracks. Since the concrete is submitted to tensile stresses 

during this period, creep strain has a beneficial effect since it decreases the strains due to 

shrinkage. 

The simulation of the time-dependent phenomena, such as shrinkage, creep and 

temperature variation, is crucial not only to predict the cracking risk, but also to contribute 

to a more accurate prediction of the global behavior of concrete structures from their early 

ages to the hardened phase. This approach has been integrated in the FEMIX computer 

code (Azevedo et al. 2003, Sena-Cruz 2007) and is exposed in chapter 6. 

2.4 SOLUTION PROCEDURES FOR NONLINEAR PROBLEMS 

2.4.1 Introduction 

The use of the finite element method (FEM) to obtain the solution of civil engineering 

problems where no analytical approach is available is very common. According to the 

FEM, the continuum is divided in several finite elements (Zienkiewicz and Taylor 2000a) 

and the displacement field is based on shape functions and nodal displacements. When the 

material exhibits a nonlinear behavior, the resulting equations from the application of the 

principle of virtual work are also nonlinear, and an incremental/iterative procedure is used 

to solve the nonlinear system of equations. The Newton-Raphson method is widely used in 

this framework. 

The equilibrium equation of a structure can be written as 

 K a F=  (2.1)

where K , a  and F  are the stiffness matrix, the displacement vector and the vector of the 

forces that are equivalent to the external applied loads, respectively, corresponding to the 
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nodal degrees of freedom of the structure. In the context of structural nonlinear analysis, 

equation (2.1) is not linear, due to the dependence of the stiffness matrix on the nodal 

displacement vector (Zienkiewicz and Taylor 2000b). To obtain the structural response it is 

convenient to apply the load incrementally 

 1n n nF F F−= + ∆  (2.2)

where nF∆  is the incremental load vector in the load combination n , 1nF −  is the load in 

the previous combination 1n − , and nF  is the load in the current combination n . In this 

context, each combination corresponds to an increment of the load. Thus, for the 

combination n  the equation of the unbalanced forces ( )naΨ  can be defined by 

 ( ) ( )nn na F F a′Ψ = −  (2.3)

being ( )nF a′  the vector of the internal equivalent nodal forces, and na  the vector of the 

nodal displacements. For a current combination n  the vector of unbalanced forces must be 

null, i.e., 

 ( ) 0naΨ =  (2.4)

Equation (2.4) can be solved by the Newton-Raphson method. Considering the first two 

terms of the Taylor series expansion, equation (2.4) can be approximated as 

 ( ) ( )
1

1 0
q

q q q
n n n

n

a a a
a

δ
−

− ⎛ ⎞∂Ψ
Ψ ≈ Ψ + =⎜ ⎟∂⎝ ⎠

 (2.5)

where the subscript q  is the iteration counter. In equation (2.5) 
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 ( )
1 1

1'
q q

q
T n

n n

F K
a a

− −
−⎛ ⎞ ⎛ ⎞∂Ψ ∂

= − = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (2.6)

is the Jacobian matrix, which, in the context of structural analysis, corresponds to ( ) 1q
T n

K −  

multiplied by ( )1− . ( ) 1q
T n

K −  is the tangential stiffness matrix in the 1q −  iteration of the 

current combination n . Substituting (2.6) in (2.5) yields 

 ( ) ( )1 1q q q
T n nn

K a aδ− −= Ψ  (2.7)

An iterative procedure is required to obtain the solution of equation (2.4), and in each 

iteration the vector of the displacements is updated as follows 

 1
1

q q q q
n n n n na a a a aδ−

−= + = + ∆  (2.8)

with 

 1

1

q
q i q q
n n n n

i
a a a aδ δ−

=

∆ = = ∆ +∑  (2.9)

being 0
1n na a −=  and 0 0na∆ =  in the beginning of each iteration process. 

Figure 2.3 represents a load-displacement relationship of a system with one degree of 

freedom that presents a post-peak softening. The numerical simulation can be made by 

applying load increments F∆ , being this technique designated load control procedure. It is 

observed that with the load control procedure the numerical solution cannot be obtained 

for the post-peak phase, i.e., the curve between points A and B. This can be overcome if a 

displacement control procedure is adopted for the numerical simulation, i.e., by applying 

displacement increments, a∆ , instead of load increments. In this case, as shown in Figure 

2.4, the post-peak curve can be numerically obtained. 
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Figure 2.3 – Load control procedure. 

 

Figure 2.4 – Displacement control procedure. 

Figure 2.5 represents a load-displacement response of a structure with a complex behavior. 

Applying the load control procedure, the curve between points A and D is not obtained, 

i.e., the numerical response includes the points between O and A and the points after D. 

This is referred to in the literature as a snap-through behavior. When a displacement 

control procedure is used, it is verified that the points on the curve between B and C are 

not obtained, i.e., the numerical response only includes the points between O and B and the 

points after C. This phenomenon is known as snap-back behavior. To overcome these 
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difficulties and obtain the entire numerical response shown in Figure 2.5, several 

researchers have proposed different numerical strategies, among which stands out the 

arc-length technique. This technique was originally proposed by Riks (1970) and Wempner 

(1971), and was subsequently modified by several researchers (Crisfield 1983 and 1986, 

Bashir Ahmed and Xiao-zu 2004). 

To overcome the difficulties associated with solving a system of nonlinear equations, some 

iterative techniques, such as the arc-length and related methods, introduce a load factor 

during the iterative process corresponding to the Newton Raphson-method. The load level 

is now also an unknown and it is necessary to consider an additional equation. This 

equation constrains the solution to meet a certain criteria. 

In the following sections the arc-length technique and related methods are presented. These 

techniques are implemented in the FEMIX computer code, and the details can be found 

elsewhere (Ventura-Gouveia et al. 2006). 

 

Figure 2.5 – Snap-through and snap-back. 

2.4.2 Arc-length technique 

Figure 2.6 represents a nonlinear relationship between the load and displacement in a 

structure with one degree of freedom. 
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To simulate the nonlinear behavior of this structure an incremental loading procedure is 

used. Figure 2.6 also represents the load and displacement variation corresponding to the 

load increment between the combinations 1n −  and n . The use of an incremental load nF∆  

leads to a solution that moves away from point A, and bypasses the peak corresponding to 

point C, being the behavior of the structure between points A and D not captured. To 

reproduce the full path, the load increment is multiplied by a factor λ  whose value is set 

by the following restriction 

 ( ) ( )2 22 2 2
n na b F Lλ∆ + ∆ = ∆  (2.10)

In this equation b  is a scale factor that converts the magnitude of load to the magnitude of 

the displacement. 

 

Figure 2.6 – Arc-length technique applied to a system with one degree of freedom ( 1.0b = ). 

According to Figure 2.6 the external force is now a function of λ , and using equation (2.3) 

the unbalanced forces become 

 ( ) ( ) ( ) ( )1, ' ' 0n n n n n n na F F a F F F aλ λ λ−Ψ = Ψ = − = + ∆ − =  (2.11)
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In the q  iteration, equations (2.10) and (2.11) must be taken into account, resulting, for a 

system of more than one degree of freedom, in 

 ( ) ( ) ( ) ( )1, ' ' 0q q q qq q q
n n nn n na F F a F F F aλ λ λ−Ψ = − = + ∆ − =  (2.12a)

 ( ) ( ) [ ]22 2, 0
T Tq q qq q

n nn n nf a a a b F F Lλ λ⎡ ⎤∆ = ∆ ∆ + ∆ ∆ − ∆ =⎣ ⎦  (2.12b)

According to Crisfield (1991) the factor b  can be considered null for current problems. In 

the present implementation the factor b  is taken into account and can be advantageously 

used in the solution of nonlinear problems. 

In the present work the Newton-Raphson method can be used without the arc-length 

technique by applying different load increments nF∆  up to a predefined combination is 

reached, followed by a set of combinations in which the arc-length technique is used with a 

constant load increment nF∆ . In this context the increase of external force is designated by 

F∆ . Figure 2.7 represents the Newton-Raphson method without and with the arc-length 

technique. 

 

Figure 2.7 – Newton-Raphson method without and with arc-length technique. 
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The iterative process corresponding to the Newton-Raphson method with the arc-length 

technique is represented in Figure 2.8. 

 

Figure 2.8 – Iterative process associated with the arc-length technique applied to a system with one degree of 

freedom ( 1.0b = ). 

In order to use the Newton-Raphson method to obtain the solution of (2.12), the first two 

terms of the corresponding Taylor series expansion are considered (Ventura-Gouveia et al. 

2006), resulting in 

 
( )

[ ]
( )
( )

1 1 1

11 12 1

,

,2 2

q q qq
T nn n
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δλ λλ

− − −

−− −−
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 (2.13)
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This system of linear equations has a non-symmetric matrix. To overcome this 

disadvantage, Crisfield (1991) proposes the replacement of q
na∆  in the constraint (2.12b). 

This development is described in detail in Ventura-Gouveia et al. (2006). In the present 

exposition only a general approach is made. 

Thus, considering (2.12a) and making some developments, yields 

 ( ) ( )1 1 1,q q q q q
T n nn

K a a Fδ λ δλ− − −= Ψ + ∆  (2.14)

Rewritting (2.14) in terms of the iterative displacement, q
naδ , results in 

 
( ) ( ) ( )

1 11 11 1

11

,q qq q q q
T Tn nn n

qq q
n n

a K a K F

a a

δ λ δλ

δ δλ δ

− −− −− −

−−

⎡ ⎤ ⎡ ⎤= Ψ + ∆⎣ ⎦ ⎣ ⎦

= +
 (2.15)

being 

 ( ) ( )111 1 1,qq q q
Tn nn

a K aδ λ
−−− − −⎡ ⎤= Ψ⎣ ⎦  (2.16)

and 

 ( )
111 qq

Tn n
a K Fδ

−−− ⎡ ⎤= ∆⎣ ⎦  (2.17)

with 

 ( ) ( )11
1

11 ', −−
−

−− −∆+=Ψ q
n

q
n

qq
n aFFFa λλ  (2.18)

The successive approximation to the solution is made using equation (2.8), being the load 

factor qλ  updated with 
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 qqq δλλλ += −1  (2.19)

Including equations (2.9), (2.15) and (2.19) in equation (2.12b) yields (see Appendix A) 

 ( )2

1 2 3 0q qa a aδλ δλ+ + =  (2.20)

where qδλ  is the unknown and 

 

[ ]

( ) [ ]

( ) ( ) [ ]

1 1 2
1

1 1 1 2 1
2

21 1 1 1 2 1 2
3

2 2

T Tq q
n n

T Tq q q q
n n n

T Tq q q q q
n n n n

a a a b F F

a a a a b F F

a a a a a b F F L

δ δ

δ δ λ

δ δ λ

− −

− − − −

− − − − −

⎡ ⎤= + ∆ ∆⎣ ⎦

⎡ ⎤= ∆ + + ∆ ∆⎣ ⎦

⎡ ⎤= ∆ + ∆ + + ∆ ∆ − ∆⎣ ⎦

 (2.21)

2.4.3 Displacement control at a specific variable 

The application of the arc-length technique to the numerical simulation of some structural 

problems with localized nonlinearities may cause instabilities in the convergence of the 

incremental/iterative process. This deficiency can be avoided by following a strategy 

proposed by Batoz and Dhatt (1979) that consists on the restriction of the incremental 

displacement of a particular variable to a predefined value. This displacement control is 

made without the addition of any support. This procedure is called displacement control at 

a specific variable. 

The equation (2.12b) is replaced with 

 ,
q
n i ia a∆ = ∆  (2.22)

being ,
q
n ia∆  the thi  component of the vector q

na∆  and ia∆  its predefined incremental 

magnitude. 



26 Chapter 2 

 

During the iterative process the incremental value of the thi  component of the vector q
na∆  

remains constant and equal to ia∆ , i.e., the iterative variation of this component, ,
q
n iaδ , is 

null. Given this fact, equation (2.9) can be written for the thi component of the vector q
na∆  

in the following format 

 1 1
, , , ,

q q q q
n i n i n i n i ia a a a aδ− −∆ = ∆ + = ∆ = ∆  (2.23)

For a given combination n , the iterative displacements, q
naδ , are obtained with equation 

(2.15). Writing this equation for the thi  component yields 

 1 1
, , ,

q q q q
n i n i n ia a aδ δ δλ δ− −= +  (2.24)

Knowing that the iterative variation ,
q
n iaδ  is null, and solving equation (2.24) in order to 

obtain qδλ  the following expression is obtained 

 
1

,
1

,

q
n iq
q
n i

a
a

δ
δλ

δ

−

−= −  
(2.25)

being 1
,

q
n iaδ −  and 1

,
q
n iaδ −  the thi  component of the first member of equations (2.16) and 

(2.17), respectively. 

2.4.4 Relative displacement control between two specific variables 

As mentioned in the previous section, the numerical simulation of structures where 

localized nonlinearities occur becomes sometimes impossible due to equation (2.12b). In 

an attempt to avoid the instability in the convergence of the incremental/iterative process, 

de Borst (1986) suggests that in equation (2.12b) only some preselected components of 

vector q
na∆  should be considered in the analysis. In certain structures, such is the case of 
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those governed by the relative movement of the faces of existing critical failure cracks, by 

selecting two appropriate degrees of freedom (displacement components), one in each face 

of the crack, and imposing a relative displacement value that represents the movement of 

the faces of the crack during the loading process of the real structure, these types of 

instabilities can be avoided. The relative displacement control between these points is 

accomplished without the addition of any support. In order to implement this technique, 

equation (2.12b) is replaced with 

 , ,
q q
n j n i j ia a a −∆ − ∆ = ∆  (2.26)

being ,
q
n ia∆  and ,

q
n ja∆ , respectively, the i  and j  components of the vector q

na∆ , and j ia −∆  

the predefined incremental displacement between these two components. 

During the iterative process the relative incremental value between i  and j  components of 

the vector q
na∆  remains constant and equal to j ia −∆ , i.e., the relative iterative variation 

between these components ( ), ,
q q
n j n ia aδ δ−  is null. Given this fact, equation (2.9) can be 

written for the i  and j  components of the vector q
na∆  in the following form 

 

( ) ( )1 1
, , , , , ,

1 1
, ,

q q q q q q
n j n i n j n j n i n i

q q
n j n i

j i

a a a a a a

a a

a

δ δ− −

− −

−

∆ − ∆ = ∆ + − ∆ +

= ∆ − ∆

= ∆

 (2.27)

For a given combination n , the iterative displacements, q
naδ , are obtained with equation 

(2.15). Writing this equation for the i  and j  components yields 

 1 1
, , ,

q q q q
n i n i n ia a aδ δ δλ δ− −= +  (2.28a)

 1 1
, , ,

q q q q
n j n j n ja a aδ δ δλ δ− −= +  (2.28b)
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The relative iterative displacement between the i  and j  components is defined by 

 ( ) ( )1 1 1 1
, , , , , ,

q q q q q q q q
n j n i n j n j n i n ia a a a a aδ δ δ δλ δ δ δλ δ− − − −− = + − +  (2.29)

Knowing that ( ), ,
q q
n j n ia aδ δ−  is null, and solving equation (2.29) in order to obtain qδλ , the 

following expression is obtained 

 
1 1

, ,
1 1

, ,

q q
n j n iq
q q
n j n i

a a
a a

δ δ
δλ

δ δ

− −

− −

−
= −

−
 

(2.30)

In this equation 1
,

q
n iaδ −  and 1

,
q
n jaδ −  are the i  and j  components of the first member of 

equation (2.16), and 1
,

q
n iaδ −  and 1

,
q
n jaδ −  are the i  and j  components of the first member of 

equation (2.17). 

With this procedure, termed relative displacement control between two specific variables, 

the numerical response of a structure that exhibits a snap-back behavior can be obtained 

(see Figure 2.5). Another possible application of this technique is the simulation of tests in 

which the opening of the crack is controlled (Crack Mouth Opening Displacement 

control - CMOD) (Rots 1988). 

2.5 SUMMARY AND CONCLUSIONS 

In this chapter an overview on the developments of cement based materials in the past 

years is made. Some models to simulate the crack initiation and propagation of these 

materials are presented and time-dependent phenomena, like shrinkage, creep and 

temperature variation are also discussed. Numerical solutions used in nonlinear finite 

element analysis and implemented in the scope of the present work in the FEMIX 

computer code are briefly introduced and their benefits in terms of numerical simulation 

robustness are presented. 



Chapter 3 

Numerical model for concrete laminar 

structures 

3.1 INTRODUCTION 

In this chapter a multi-directional fixed smeared crack constitutive model to simulate the 

flexural/punching failure modes of concrete laminar structures is presented. The 

constitutive model is implemented in a computer program based on the finite element 

method, called FEMIX (Azevedo et al. 2003, Sena-Cruz et al. 2007), being the laminar 

structures simulated according to the Reissner-Mindlin shell theory (Reissner 1945, 

Mindlin 1951, Barros and Figueiras 2001). The thickness of the laminar structure is 

discretized into layers that are assumed to be subjected to a plane stress state. In this 

approach, the use of constitutive models to simulate the nonlinear behavior, after crack 

initiation, for the in-plane fracture modes is appropriate in most cases, and the 

deformational response of a structure subjected to load configurations that induce flexural 

failure modes can be predicted with sufficient accuracy. However, the simulation of 

laminar structures failing in punching is a much more complex task, being the treatment of 

the out-of-plane shear components of paramount importance. 

A stress-strain softening diagram is proposed to simulate the mode I fracture propagation, 

while the in-plane shear crack component depends on a shear retention factor, defined as a 

constant value or by a crack normal strain dependent law. The in-plane shear crack 
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component can also be determined by a crack shear stress-strain softening diagram (see 

Chapter 4). 

To capture the punching failure mode, a softening diagram is proposed to model, after 

crack initiation, the decrease of the out-of-plane shear stress components with the increase 

of the corresponding shear strain components. With this relatively simple approach, 

accurate predictions of the behavior of fiber reinforced concrete (FRC) structures failing in 

bending and in shear can be obtained. 

Improvements made in the subalgorithms associated with the stress update and with the 

critical change of crack status are presented and their advantages are discussed. 

The formulation of elastic supports, such as surface, line and point springs, with linear and 

nonlinear stiffness, is also presented in this chapter, and a special attention is made about 

unilateral support conditions. With this approach, the loss of contact between a structure 

and a supporting system, such is the case of a slab supported on ground, can be correctly 

simulated. 

To assess the predictive performance of the model, an experimental punching test of a 

module of a façade panel fabricated with steel fiber reinforced self-compacting concrete 

(SFRSCC) is numerically simulated. The influence that some parameters defining the 

softening diagrams have on the predictive performance of the model for this type of 

simulations is analyzed. 

3.2 GENERAL LAYERED APPROACH TO DISCRETIZE THE THICKNESS OF 

A LAMINAR STRUCTURE 

3.2.1 Introduction 

The Reissner-Mindlin theory (Reissner 1945, Mindlin 1951, Barros and Figueiras 2001) is 

widely used to simulate the behavior of laminar structures. In structural engineering 

applications, a laminar structure can be defined as a three-dimensional body with two 
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dimensions that are considerably larger than the other one, which is its thickness. Industrial 

floors, pavements of buildings or roads, and bridge decks are examples of laminar 

structures. 

Since the last century structures of this type are mainly constructed with cement based 

materials, such as reinforced concrete (RC) and, more recently, with fiber reinforced 

concrete (FRC) or steel fiber reinforced self-compacting concrete (SFRSCC). It is known 

that these materials exhibit a nonlinear behavior, even when subjected to service loads, due 

to crack formation and propagation. This material nonlinearity may be accentuated when 

early cracks appear (e.g., due to shrinkage restrain or temperature development), which can 

compromise the durability of the structure. An accurate prediction of the behavior of such 

structures is of great importance to improve its service life, and to prevent its excessive 

deformability and early failure. 

3.2.2 Formulation 

In this section a brief overview of the Reissner-Mindlin formulation applied to a layered 

plane shell approach is presented. The theory of plates and shells can be found in 

Timoshenko and Woinkowsky-Krieger (1959), and its implementation using FEM was 

done by several researchers, such as: Ugural 1981, Huang 1989, Barros 1989, Barros 1995, 

Oñate 1995. 

A plane shell is a flat laminar structure with in-plane and out-of-plane shear deformations. 

The in-plane deformations can be caused by membrane forces and bending moments. 

Therefore, a plane shell combines the behavior of a slab (development of bending and 

out-of-plane shear deformations) with those of a wall (development of membrane 

deformations). 

The basic assumptions of the Reissner-Mindlin theory applied to the case of plane shells 

are: 

• the 1u  and 2u  displacements of the shell middle surface (see Figure 3.1) are not 

neglected (the presence of membrane deformations is allowed); 
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• in comparison with the shell thickness, the displacement normal to the shell middle 

surface, 3u  (see Figure 3.1), is small; 

• the stress acting in the direction normal to the shell middle surface, 3σ , is small 

when compared with the other stress components, being neglected; 

• straight fibers normal to the middle surface of the shell are considered to remain 

straight but not necessarily orthogonal to the middle surface during the deformation 

process. 

 

Figure 3.1 – Multi-layer plane shell: displacements, rotations and k layer geometry definition. 

As mentioned before, the behavior of cement based materials is clearly nonlinear. This 

nonlinearity results primarily from the fact that this material has a relatively small cracking 

stress. 

A layered shell model to simulate the nonlinear behavior of laminar structures can simulate 

the damage resulting from crack propagation through the thickness of a shell due to 

in-plane stresses. In this approach the strains at different levels along the shell thickness 

(middle surface of each layer) are obtained from the displacements of the finite element 
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nodes, and the stresses are determined according to the constitutive laws that simulate the 

behavior of the material of this layer. Thus, for the finite element material nonlinear 

analysis, a plane shell structure is divided not only in Mindlin shell finite elements, but 

also in layers through the thickness (see Figure 3.1). 

For example, as shown in Figure 3.2, a plane shell element is discretized into an eight-node 

serendipity 3D Mindlin shell finite element (five degrees of freedom per node). Four or 

nine node Lagrangian 3D Mindlin shell finite elements are also available in the FEMIX 

computer code. Each 3D finite element is divided into layers through the thickness. These 

layers can have thickness and material properties different from each other. The strains and 

stresses are evaluated at the middle surface of each layer and their relation depends on the 

constitutive law assigned to the layer. So, the present formulation is implemented with 

general purposes, and any plane shell structure composed of different materials through the 

thickness can be numerically simulated. 
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Figure 3.2 – Example of a finite element idealization of a plane shell element according to the multi-layer 

approach. 

(c) Cross section multi-layer approach

(b) Mindlin shell (3D) finite element idealization
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When the response of the elements of a structure becomes nonlinear, the stiffness begins to 

depend on the strain state that these elements are subjected to. In the case of laminar 

structures, this strain state can vary through the thickness, and in a multi-layer approach, 

from layer to layer. So, the contribution of each layer to the element stiffness matrix is 

different, being the stiffness matrix thus obtained called the tangent stiffness matrix. 

To account for the material nonlinear behavior, the relationship between the stress and the 

strain state is established in an incremental way, i.e. 

 εσ ∆=∆ TD  (3.1)

where TD  is the tangent constitutive matrix, σ∆  the incremental stress vector and ε∆  the 

incremental strain vector. 

In the calculation of the stiffness matrix of each finite element the following procedure is 

used (see Figure 3.3): 

• from the known displacements in the finite element nodes, evaluate the 

displacements, a , at the integration points (Gauss Points); 

• calculate the strains, ε  at the middle surface of each layer; 

• calculate the tangent constitutive matrix, TD , taking into account the constitutive 

relation of the material of each layer; 

• calculate the element tangent stiffness matrix, ( )e
TK . 

3D plane shell 

element level: 
a  

 )(e
TK  

 ⇓  ⇑ 

Cross section level 

(layered approach): 
ε  ⇒ TD  

Figure 3.3 – Procedure to obtain the tangent stiffness matrix of an element. 
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Taking into account the through-thickness layer discretization (see Figure 3.1), the element 

tangent stiffness matrix, ( )e
TK , can be obtained from the submatrices associated with the 

membrane deformations, ( )e
mK , membrane-bending and bending-membrane deformations, 

( )e
mbK  and ( )e

bmK , bending deformations, ( )e
bK , and out-of-plane shear deformations, ( )e

sK . 

The submatrix ( )e
mK is obtained from 

 
( )

( )

ˆ 
e

e T
m m m m

A

K B D B dA= ∫  (3.2a)

where 

In (3.2b) h is the shell thickness, LayersN  is the number of layers of the through-thickness 

discretization, ,mb kD , is the constitutive matrix associated with the membrane-bending 

deformation of the k  layer and ( )3, 3,
t b

k kx x−  is the k  layer thickness kh . 

The submatrices ( )e
mbK  and ( )e

bmK  are obtained from 

 ( )

( )

ˆ 
e

e T
mb m mb b

A

K B D B dA= ∫  (3.3a)

  

 ( )

( )

ˆ 
e

e T
bm b bm m

A

K B D B dA= ∫  (3.3b)

where 

 ( )/ 2

,3 3, 3,/ 2
1

ˆ
layersN

h t b
m mb mb k k kh

k
D D dx D x x

−
=

= = −∑∫
 

(3.2b)
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being 3,
m

kx  the 3x  coordinate of the middle surface of the k  layer. 

The submatrix ( )e
bK  is obtained from 

 ( )

( )

ˆ 
e

e T
b b b b

A

K B D B dA= ∫  (3.4a)

where 

 
( ) ( )/ 2 22

,3 3 3, 3, 3,/ 2
1

ˆ
layersN

h m t b
b mb mb k k k kh

k
D D x dx D x x x

−
=

= = −∑∫  (3.4b)

The submatrix ( )e
sK  is obtained from 

 ( )

( )

ˆ 
e

e T
s s s s

A

K B D B dA= ∫  (3.5a)

where 

 
( )/ 2

,3 3, 3,/ 2
1

ˆ
layersN

h t b
s s s k k kh

k
D D dx D x x

−
=

= = −∑∫
 

(3.5b)

being ,s kD  the constitutive matrix associated with the out-of-plane-shear deformation of 

the k  layer. 

 
( )/ 2

,3 3 3, 3, 3,/ 2
1

ˆ ˆ
layersN

h m t b
mb bm mb mb k k k kh

k
D D D x dx D x x x

−
=

= = = −∑∫  (3.3c)
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To also take into account the flexural stiffness of each layer, equation (3.3c) is substituted 

with (Barros 1989) 

and equation (3.4b) is replaced with 

 ( ) ( )3 3
/ 2 3, 3,2

,3 3/ 2
1

ˆ
3

layers t bN
h k k

b mb mb kh
k

x x
D D x dx D

−
=

−
= = ∑∫  (3.7)

Equations (3.6) and (3.7) are used in the current layered model in order to keep it suitable 

for the analysis of a laminar structure with linear elastic behavior using only one layer. 

The mB , bB  and sB  matrices in equations (3.2) to (3.5) are used to obtain the membrane, 

bending and shear deformations from the corresponding degrees of freedom in the finite 

element (Barros 1995, Oñate 1995). 

The constitutive matrix associated with the membrane-bending deformation of the k  layer, 

,mb kD , used in equations (3.2) to (3.4) and equations (3.6) and (3.7), depends on the 

material state or regime assigned to this layer, i.e., linear or materially nonlinear behavior. 

The definition of these matrices can be found in section 3.3. 

The constitutive matrix associated with the shear deformation of the k  layer, ,s kD , used in 

equation (3.5), depends also on the out-of-plane shear material behavior assigned to the 

layer. The ,s kD  matrix for a linear elastic material is presented in section 3.3, while for a 

material with nonlinear behavior, ,s kD  is detailed in section 3.4. 

 ( ) ( )2 2
/ 2 3, 3,

,3 3/ 2
1

ˆ ˆ
2

layers t bN
h k k

mb bm mb mb kh
k

x x
D D D x dx D

−
=

−
= = = ∑∫  (3.6)
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As already described in section 2.4, at a given stage of a nonlinear analysis, the nodal 

forces that are equivalent to the external applied loads must balance the nodal forces that 

are equivalent to the stress state developed in the structure, named internal equivalent 

nodal forces, 
int

f . These internal equivalent nodal forces are intrinsically dependent on the 

material behavior, i.e., they depend on the constitutive model assigned to the material. 

The calculation of the internal equivalent nodal forces of each finite element is performed 

according to the following procedure (see Figure 3.4): 

• from the known displacements in the finite element nodes, evaluate the 

displacements, a , at the integration points (Gauss Points); 

• calculate the strains, ε  at the middle surface of each layer; 

• calculate the stress vector, σ , at the same level of the strain calculation, taking into 

account the constitutive law of the material where the stress vector is being 

calculated; 

• calculate the generalized forces, F , by integrating the stresses across the thickness; 

• calculate the element internal equivalent nodal forces, )(

int

ef . 

3D plane shell 

element level: 
a   )(

int

ef  

 ⇓  ⇑ 

Cross section level 

(layered approach): 
ε  ⇒ σ  ⇒ F  

Figure 3.4 – Scheme to obtain the internal equivalent nodal forces of an element. 

In a plane shell decomposed into layers, the element internal equivalent nodal forces can 

be obtained from the vectors associated with the membrane forces, ( )
int,

e

m
f , bending 

moments, ( )
int,

e

b
f , and out-of-plane shear forces, ( )

int,

e

s
f . 
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The vector ( )
int,

e

m
f  is obtained from 

where 

 [ ] ( )/ 2

1 2 12 3 , 3, 3,/ 2
1

ˆ
layersN

hT t b
mb mb k k kh

k
N N N N dx x xσ σ

−
=

= = = −∑∫  (3.8b)

are the membrane forces. 

The vector ( )
int,

e

b
f  is obtained from 

where 

 [ ] ( )/ 2

1 2 12 3 3 , 3, 3, 3,/ 2
1

ˆ
layersN

hT m t b
mb mb k k k kh

k
M M M M x dx x x xσ σ

−
=

= = = −∑∫  (3.9b)

are the bending moments. 

The vector ( )
int,

e

s
f  is obtained from 

 ( )
( )int,

ˆ
e

e T
mm A

f B N dA= ∫  (3.8a)

 ( )
( )int,

ˆ
e

e T
bb A

f B M dA= ∫  (3.9a)

 ( )
( )int,

ˆ
e

e T
ss A

f B Q dA= ∫  (3.10a)
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where 

 [ ] ( )/ 2

23 31 3 , 3, 3,/ 2
1

ˆ
layersN

hT t b
s s k k kh

k
Q Q Q dx x xσ σ

−
=

= = = −∑∫  (3.10b)

are the shear forces. 

When a particular layer has linear elastic behavior, the equations (3.8b) and (3.9b) are 

substituted with equations (3.11) and (3.12), respectively (Barros 1989). This is important 

when the thickness of the plane shell has only one layer (for the case of a linear elastic 

analysis). 

 ( ) ( ) ( )2 2

3, 3,
, ,3, 3,

1

ˆ
2

layers t bN
k kt b

mb k mb km fk k
k

x x
N D x x Dε ε

=

−
= − +∑  (3.11)

  

 ( ) ( ) ( ) ( )2 2 3 3

3, 3, 3, 3,
, ,

1

ˆ
2 3

layers t b t bN
k k k k

mb k mb km f
k

x x x x
M D Dε ε

=

− −
= +∑  (3.12)

where mε  and bε  are, respectively, the membrane and bending strains. 

In the framework of the finite element method, the stiffness submatrices from equations 

(3.2) to (3.5) and the vectors from equations (3.8) to (3.10) are calculated applying the 

Gauss-Legendre integration rule (Cook 1995, Zienkiewicz and Taylor 2000a). 

3.3 CRACK CONSTITUTIVE MODEL 

3.3.1 Introduction 

Smeared and discrete crack concepts can be used to model the crack propagation in 

concrete structures (de Borst et al. 2004). Since fiber reinforcement can assure the 

formation of diffuse crack patterns, a smeared crack model can be conceptually more 
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appropriate, and more effective from the computational point-of-view, for the simulation 

of the behavior of fiber reinforced concrete structures. 

3.3.2 Formulation 

In the context of finite element analysis of materially nonlinear shell structures, the 

developed constitutive multi-fixed smeared crack model is implemented under the 

framework of the Reissner-Mindlin theory adapted to the case of layered shells, in order to 

simulate the progressive damage induced by cracking. So the shell element is discretized 

into layers, and in each layer a plane stress state is assumed. 

In this section the formulation of the multi-fixed smeared crack model, implemented under 

the framework of the Reissner-Mindlin theory, is presented. Its description refers to a 

generic ( k ) concrete layer and to the domain of an integration point (IP) of a finite 

element. However, to simplify the symbols of the formulation, the subscript k  is dropped. 

The adopted constitutive laws and some model options are also discussed. An incremental 

approach is used for the in-plane components, while a total approach is adopted for the 

out-of-plane components. 

According to the adopted constitutive law, stresses and strains are related by the following 

equation 

 
0

0

co
mbmb mb

co
s ss

D

D

σ ε
σ ε

⎡ ⎤∆ ∆⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
 (3.13)

being 

 [ ]1 2 12
T

mbσ σ σ τ∆ = ∆ ∆ ∆  (3.14)

and 
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 [ ]1 2 12
T

mbε ε ε γ∆ = ∆ ∆ ∆  (3.15)

the vectors of the in-plane incremental stress and incremental strain, while  

 [ ]23 31
T

sσ τ τ=  (3.16)

and 

 [ ]23 31
T

sε γ γ=  (3.17)

are the vectors of the out-of-plane total shear stress and total shear strain. 

The vector of the total in-plane stress components, needed for the evaluation of the internal 

forces in equations (3.8) and (3.9), is obtained by adding to the previous one, prev
mbσ , the 

vector of the in-plane incremental stress components obtained with equation (3.13) 

 prev
mb mb mbσ σ σ= +∆  (3.18)

The vector of the in-plane total strain components is also updated with 

 prev
mb mb mbε ε ε= + ∆  (3.19)

In equation (3.13), co
mbD  and co

sD  are, respectively, the in-plane stiffness matrix and the 

out-of-plane shear stiffness matrix. 
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3.3.2.1 Linear elastic uncracked concrete 

For the case of linear elastic uncracked concrete, co
mbD  of equation (3.13) is the constitutive 

matrix of concrete with a linear elastic behavior, designated by ,
co
mb eD , and defined 

according to the Hooke’s law as 

 
( )

, 2

1 0
1 0

1
0 0 1 2

co
mb e

ED
ν

ν
ν

ν

⎡ ⎤
⎢ ⎥= ⎢ ⎥− ⎢ ⎥−⎣ ⎦  

(3.20)

while co
sD  in equation (3.1.3) is designated with ,

co
s eD  and is defined by 

 ,

1 0
0 1

co
s e cD FG

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (3.21)

being E the elasticity modulus of concrete, ν  the Poisson’s ratio, and cG  the shear 

modulus defined by 

 ( )2 1c
EG
ν

=
+

 (3.22)

The shear correction factor F is introduced in equation (3.21) to take into account the 

nonuniform out-of-plane shear stress distribution through the thickness of the shell. Its 

value is considered equal to 5/6 (Barros 1995, Oñate 1995). 

3.3.2.2 Linear elastic cracked concrete 

In smeared crack models the incremental strain vector mbε∆ , derived from the incremental 

nodal displacements obtained under the framework of a nonlinear FEM analysis, is 
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decomposed into an incremental crack strain vector, cr
mbε∆ , and an incremental strain 

vector of the concrete between cracks, co
mbε∆  (Rots 1988, Barros 1995, Sena-Cruz 2004). 

 co cr
mb mb mbε ε ε∆ = ∆ +∆  (3.23)

In cracked concrete, with the concrete between cracks in linear elastic state, co
mbD  is 

replaced in equation (3.13) with the in-plane cracked concrete constitutive matrix, crco
mbD , 

obtained with the following equation (Sena-Cruz 2004) 

 ( ) 1

, , , ,

T Tco co cr cr cr co cr cr cocrco
mb e mb e mb e mb embD D D T D T D T T D

−

⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦  
(3.24)

where ,
co
mb eD  is the constitutive matrix defined by equation (3.20) and crT  is the matrix that 

transforms the stress components from the coordinate system of the finite element to the 

local crack coordinate system 

 
2 2

2 2

cos sin 2sin cos
sin cos sin cos cos sin

crT
θ θ θ θ

θ θ θ θ θ θ
⎡ ⎤

= ⎢ ⎥− −⎣ ⎦  
(3.25)

and crD  is the crack constitutive matrix 

 
0

0

cr
cr I

cr
II

D
D

D
⎡ ⎤

= ⎢ ⎥
⎣ ⎦  

(3.26)

In equation (3.25), θ  is the angle between x1 and n (see Figure 3.5). In equation (3.26) 
cr
ID  and cr

IID  represent, respectively, the constitutive components relative to the crack 

opening mode I (normal) and mode II (in-plane shear). 
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Figure 3.5 – Stress components, relative displacements and local coordinate system of the crack 

(Sena-Cruz 2004). 

To take into account the formation of several cracks at the same IP, the crack constitutive 

matrix, crD , and the transformation matrix, crT , of relation (3.24) are substituted with the 

matrices that include the transformation matrix and the crack constitutive matrix of each 

crack that can occur at a specific IP (Sena-Cruz 2004). 

The crack opening propagation can be simulated with the tensile-softening trilinear 

diagram represented in Figure 3.6, which is defined by the parameters iα  and iξ , relating 

stress with strain at the transitions between the linear segments that compose this diagram. 

The ultimate crack strain, ,
cr
n uε , is defined as a function of the parameters iα  and iξ , the 

fracture energy, I
fG , the tensile strength, ,1

cr
n ctfσ = , and the crack bandwidth, bl , as follows 

(Barros 1995, Sena-Cruz 2004) 
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2 I
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being 

 1 ,2 ,1/cr cr
n nα σ σ=  (3.28a)

 2 ,3 ,1/cr cr
n nα σ σ=  (3.28b)

 1 ,2 ,/cr cr
n n uξ ε ε=  (3.28c)

 2 ,3 ,/cr cr
n n uξ ε ε=  (3.28d)

 

 

Figure 3.6 – Trilinear stress-strain diagram to simulate the fracture mode I crack propagation ( cr
n,1 ctfσ = ,

cr cr
n ,2 1 n,1σ α σ= , cr cr

n ,3 2 n,1σ α σ= , ,2 1 ,
cr cr
n n uε ξ ε= , ,3 2 ,

cr cr
n n uε ξ ε= ). 

An exponential tensile-softening diagram to simulate crack opening propagation is also 

available. This diagram, proposed by Cornelissen et al. (1986), is represented in Figure 3.7. 

The ultimate crack strain, ,
cr
n uε , is defined as 

 ,
1 I

fcr
n u

ct b

G
k f l

ε =  (3.29)
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where 

 ( ) ( )
3

3 31
1 1 22 3 4

2 2 2 2 2 2 2

1 1 1 3 6 6 11 6 1 exp
2

ck c c c
c c c c c c c

⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎢ ⎥= + − + + + + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦⎣ ⎦

 (3.30)

being c1 = 3.0 and c2=6.93. 

 

Figure 3.7 – Exponential stress-strain diagram to simulate the fracture mode I crack propagation. 

The complete equations that define the trilinear diagram of Figure 3.6 and the exponential 

diagram of Figure 3.7 are exposed in the Appendix B. A secant approach is used to 

simulate the unloading and reloading branches in both diagrams. 

The value of the fracture energy, I
fG , can be obtained with the equation proposed in the 

CEB-FIB (1993) or with experimental tests as described in section 3.7.1. 

The parameters iα  and iξ  that define the shape of the trilinear tensile-softening diagram 

depend significantly on the composition of the cement based material used, e.g., plain 

concrete, FRC, SFRSCC. The values of these parameters can be assessed by performing an 

inverse analysis, as described in section 3.7.1. 
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The crack bandwidth, bl , associated with the smeared crack approach, must be mesh 

dependent to assure mesh objectivity. In the literature, several values or methods for its 

calculation are presented (Bazant and Oh 1983, Rots 1988, Oliver 1989, Hofstetter and 

Mang 1995, Lourenço et al. 1997). In the present work, the crack bandwidth can be 

calculated as the square root of the area associated with the IP of the finite element, as the 

square root of the area of the finite element, or can adopt a supplied constant value. 

The fracture mode II modulus, cr
IID , is obtained with 

 1
cr
II cD Gβ

β
=

−  
(3.31)

where cG  is the concrete elastic shear modulus (see equation (3.22)) and β  is the shear 

retention factor. The parameter β  is defined as a constant value or as a function of the 

current crack normal strain, cr
nε , and of the ultimate crack normal strain, ,

cr
n uε , as follows, 

 
1

,

1
p

cr
n
cr
n u

εβ
ε

⎛ ⎞
= −⎜ ⎟⎜ ⎟
⎝ ⎠  

(3.32)

When 1p  is unitary, a linear decrease of β  with the increase of cr
nε  is assumed. Larger 

values of the exponent 1p  correspond to a more pronounced decrease of the parameter β , 

in order to simulate a higher in-plane shear stress degradation with the increase of the 

crack opening (Barros et al. 2004). 

A softening constitutive law to model the in-plane crack shear stress transfer has also been 

developed and implemented in the FEMIX computer code. This shear softening law is 

described in detail in Chapter 4. 
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The punching shear failure is usually brittle, and in the numerical prediction of the conical 

failure surface when, for example, a column suddenly perforates the supported slab a 

tridimensional model is required (Barzegar and Maddipudi 1997a). 

A numerical model based on the formulation of the Reissner-Mindlin shell theory applied 

to the case of a multilayer approach has a lower computational effort in comparison with a 

full tridimensional model (Polak 2005). To explore the possibility of using the former 

formulation to predict shear failure modes, a softening diagram is proposed for the 

out-of-plane shear components of equation (3.13). 

3.4.2 Description of the diagram 

When the tensile strength is reached at an IP of a finite element, the portion of concrete 

included in its influence area changes from uncracked to cracked state. This local status 

change affects the global behavior of a structure, and consequently the numerical 

simulation must be capable of reproducing these phenomena. The use of a multi-fixed 

smeared crack model to numerically predict the behavior of laminar shell structures failing 

in bending is, in most cases, acceptable as long as the fracture parameters used in the 

constitutive crack stress-strain relation are accurately predicted. The prediction of the 

behavior of a structure that fails in shear or in punching is, however, a much more difficult 

task, as already mentioned. 

The proposed out-of-plane (OP) shear diagram is represented in Figure 3.9. The 

out-of-plane shear behavior is assumed to be linear elastic for both components until the 

concrete tensile strength, ctf , is reached. When the portions of concrete associated with the 

IP change from uncracked to cracked state, the out-of-plane shear stresses ( 23,
OP

pτ  and 31,
OP

pτ ) 

are stored for later use, and the relation between each out-of-plane shear stress-strain 

( 23 23τ γ−  and 31 31τ γ− ) follows the softening law depicted in Figure 3.9. 
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Figure 3.9 – Relationship between out-of-plane (OP) shear stress and shear strain components. 

The positive branches of the diagram represented in Figure 3.9 are simulated with the 

expressions shown in equation (3.33). The negative part can be obtained by analogy. 
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 (3.33)

In the unloading or reloading branch (see section 3.4.3 for the definition of the out-of-plane 

shear status), the out-of-plane shear stress is calculated with a secant approach, given by 

 ( )
OP

OP OP OPmax
OP
max

ττ γ γ
γ

=  (3.34)

where OP
maxτ  and OP

maxγ  are the maximum out-of-plane shear stress and the maximum 

out-of-plane shear strain observed in the softening branch before the start of the unloading 

phase. 
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The definition of the out-of-plane shear stiffness matrix in equation (3.13), co
sD , is now 

based on the diagram represented in Figure 3.9, and named out-of-plane shear cracked 

concrete constitutive matrix, crco
sD . Therefore, the crco

sD  matrix is defined by 

 
23

,sec
31

,sec

0
0

crco III
s

III

D
D

D
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (3.35)

being 

 23,max 31,max23 31
,sec ,sec

23,max 31,max

,
OP OP

III IIIOP OPD D
τ τ
γ γ

= =  (3.36)

in accordance with the secant approach shown in Figure 3.9, where ,
OP
ij maxτ  and ,

OP
ij maxγ  are the 

maximum out-of-plane shear stress and shear strain observed in the softening branch of 

each shear component, respectively. 

Each out-of-plane peak shear strain, 23,
OP

pγ  or 31,
OP

pγ , is calculated using the stored 

out-of-plane peak shear stress at crack initiation, 23,
OP

pτ  or 31,
OP

pτ , and the concrete elastic 

shear modulus, cG , as follows 

 23, 31,
23, 31,,

OP OP
p pOP OP

p p
c cG G

τ τ
γ γ= =  (3.37)

Each out-of-plane ultimate shear strain, 23,
OP

uγ  or 31,
OP

uγ , is defined as a function of the 

corresponding out-of-plane peak shear strain, OP
pγ , the out-of-plane shear strength, OP

pτ , 

the mode III (out-of-plane) fracture energy, III
fG , and the crack bandwidth, bl , as follows 
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 23, 23, 31, 31,
23, 31,

2 2
,

III III
f fOP OP OP OP

u p u pOP OP
p b p b

G G
l l

γ γ γ γ
τ τ

= + = +  (3.38)

The present approach assumes that the crack bandwidth used to assure mesh independence 

when modeling fracture mode I can also be adopted in the out-of-plane fracture process. 

To improve a faster loss of out-of-plane shear stress with the increase of out-of-plane shear 

strain, two alternative diagrams are also implemented in the FEMIX computer code. These 

diagrams are very similar to the one presented in Figure 3.9. The main difference is located 

in the softening branch. Instead of a linear softening branch, one of the proposed 

alternatives is based on the trilinear softening diagram, and the other is based on the 

exponential Cornelissen diagram used in the definition of crack opening mode I, as 

described in section 3.3.2.2. These two diagrams are represented in Figure 3.10 and Figure 

3.11, respectively. Only the positive branch of the out-of-plane shear stress-strain 

relationship is represented. 

The out-of-plane shear softening trilinear diagram represented in Figure 3.10 is simulated 

with the expressions shown in equation (3.39). As for the case of equation (3.33), only the 

positive branch of the diagram is treated. The negative branch can be analogously defined. 
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 (3.39)

Some constants are defined as follows 
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 OP OP
1 1 paτ τ=  (3.40a)

 OP OP
2 2 paτ τ=  (3.40b)

 ( )OP OP OP
1 1 u pbγ γ γ= −  (3.40c)

 ( )OP OP OP
2 2 u pbγ γ γ= −  (3.40d)

 

 

Figure 3.10 – Trilinear softening diagram to simulate the relationship between the out-of-plane shear stress 

and shear strain components. Only the positive branch is represented. 

Each out-of-plane ultimate shear strain, 23,
OP

uγ  or 31,
OP

uγ , is defined as a function of the 

parameters ia  and ib , the corresponding out-of-plane peak shear strain, OP
pγ , the 

out-of-plane shear strength, OP
pτ , the mode III (out-of-plane) fracture energy, III

fG , and the 

crack bandwidth, bl , as follows 
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 31, 31,
1 1 2 2 1 2 31,

2 III
fOP OP

u p OP
p b

G
b a b a b a l

γ γ
τ

= +
+ − +

 (3.42)

Some constants are defined as follows 

 OP OP
1 1 pa τ τ=  (3.43a)

 OP OP
2 2 pa τ τ=  (3.43b)

 ( )OP OP OP
1 1 u pb γ γ γ= −  (3.43c)

 ( )OP OP OP
2 2 u pb γ γ γ= −  (3.43d)

The out-of-plane shear softening exponential diagram is simulated with the expressions 

shown in equation (3.44). As for the other cases, only the positive branch of the diagram is 

defined here. The negative branch can be analogously obtained. 
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(3.44)

In this equation the parameter A is defined by 

 
OP OP

p
OP OP
u p

A
γ γ
γ γ

−
=

−
 (3.45)

being c1 = 3.0 and c2=6.93. 
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Figure 3.11 – Exponential softening diagram to simulate the relationship between the out-of-plane shear 

stress and shear strain components. Only the positive branch is represented. 

Each out-of-plane ultimate shear strain, 23,
OP

uγ  or 31,
OP

uγ , of the exponential softening diagram 

represented in Figure 3.11 is obtained with the following equation 

 23, 23, 31, 31,
23, 31,

1 1,
III III
f fOP OP OP OP

u p u pOP OP
p b p b

G G
k l k l

γ γ γ γ
τ τ

= + = +  (3.46)

where the parameter k is defined by equation (3.30). 

3.4.3 Out-of-plane shear status 

In section 3.4.2 an out-of-plane shear stress-strain diagram is proposed, and a secant 

approach for the calculation of the out-of-plane shear cracked concrete constitutive matrix, 
crco
sD , is presented. 

For the calculation of the internal forces corresponding to the out-of-plane shear 

components, ( )
int,

e

s
f , as described in section 3.2.2, the shear stresses must be calculated. For 

the case of a nonlinear analysis, the stress history is fundamental in the prediction of the 

current behavior of the structure. Therefore, to take this into account, the shear strains and 

stresses are stored and five out-of-plane shear statuses are considered. With this procedure, 
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the diagram represented in Figure 3.9 is completely defined and, at each loading stage, for 

a given out-of-plane shear strain the out-of-plane shear stress can be evaluated and, 

consequently, the corresponding internal forces are obtained. 

The five crack statuses are represented in the diagram of Figure 3.12. Two sets of crack 

statuses are stored, one for each out-of-plane shear component, to account for their 

independent behavior. The explanation of each status is supplied only for one of these 

components. 

The five out-of-plane shear statuses represented in Figure 3.12 take into account the 

following assumptions: 

• Stiffening status, when the normal stress is smaller than the tensile strength. A 

linear behavior is assumed for the out-of-plane shear stress-strain relationship; 

• Softening status, after the normal stress reaches the concrete tensile strength. A 

decrease of the out-of-plane shear stress is observed with the increase of the 

out-of-plane shear strain; 

• Unloading status, when a decrease of the out-of-plane shear strain is observed and 

the previous status is softening. In this case a secant approach is followed; 

• Reloading status, when an increase of the out-of-plane shear strain is observed. The 

branch of the unloading status is followed; 

• Free-sliding status, when the out-of-plane shear strain is greater than the 

out-of-plane ultimate shear strain. 

 
Figure 3.12 – Out-of-plane shear statuses. 
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When the status is "Free-sliding", the out-of-plane shear modulus ,secIIID  is null. When this 

occurs for both out-of-plane shear components, the matrix crco
sD  (see equation (3.35)) 

becomes a null matrix. To avoid numerical instabilities associated with this occurrence, the 

matrix crco
sD  is initialized as follows 

 23 6 31 6
,sec ,sec10 , 10III c III cD G D G− −= =  (3.47)

As described in section 3.4.2, a linear behavior for the out-of-plane shear components is 

considered until the portion of concrete associated with an IP is assigned a cracked status. 

Afterwards, a softening behavior is followed using one of the diagrams presented in this 

section. 

There is no coupling between the normal (tensile) softening stress-strain diagram (that 

commands the crack initiation) and the out-of-plane shear softening diagram. Since the 

out-of-plane shear stress transfer would decrease with the crack opening, a possible 

strategy to simulate this effect is the activation of a softening diagram for the out-of-plane 

shear stress components. The softening phase for the out-of-plane shear stress components 

can be activated when a certain shear stress threshold value is attained. This strategy was 

implemented in version 4.0 of FEMIX. 

3.5 IMPROVEMENTS MADE IN INTERNAL ALGORITHMS 

3.5.1 Stress update 

As mentioned before, the proposed crack constitutive model is implemented in the FEMIX 

computer code (Azevedo et al. 2003) under a FEM framework, being applied to the 

Reissner-Mindlin multi-layer shell approach. The computational and algorithmic aspects of 

this model are similar to the ones implemented by Sena-Cruz (2004) in FEMIX for the 

case of a multi-fixed smeared crack model used in the context of plane stress analysis. 
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In this section some problems associated with the internal convergence related to the 

sub-incrementation of the in-plane incremental strain vector, mbε∆ , in order to fit the law 

of the crack mode I are presented. The solution procedure adopted to overcome these 

problems is also exposed. 

Firstly, the assumptions made in the algorithm for the stress update of a generic layer of an 

IP are presented. In a nonlinear problem the stress update is necessary to obtain the correct 

evaluation of the internal forces of the element that contains the IP. 

All the data related to each layer at the level of an IP, e.g., stress and strain history and 

information corresponding to the active cracks, is stored for later use. Due to the nonlinear 

material behavior, an incremental-iterative procedure must be implemented to obtain the 

solution of the problem, as described in section 2.4 of chapter 2. In a specific iteration of 

the Newton-Raphson method (with or without the use of the arc-length technique or related 

methods) the internal forces are calculated and compared with the external forces to verify 

the equilibrium. This procedure is executed until convergence is achieved. 

At the level of an IP the internal forces, 
int

f , are obtained with the procedure presented in 

section 3.2.2. As stated before, the stress vector, σ , calculated at the middle surface of 

each layer that discretize the thickness of the shell, is obtained from the strain vector ε , 

taking into account the constitutive relation of the material of the corresponding layer. For 

the in-plane components an incremental approach is used. When the material of a certain 

layer is in cracked state, and is submitted to an increment mbε∆ , the corresponding 

incremental stress vector, mbσ∆ , must be obtained taking into account the cracked state of 

the material, and, afterwards, the stress vector mbσ  is updated. 

In the stress update procedure of the in-plane components, the following system of 

nonlinear equations must be solved (Sena-Cruz 2004) (to simplify the notation the 

subscript mb is dropped at this stage) 
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 ( ) , 0
Tcr cr cr co cr co cr crcr cr

prevprevf T T D T D Tε σ σ σ ε ε⎡ ⎤∆ = + ∆ − − ∆ + ∆ =⎣ ⎦  (3.48)

In this equation ,
cr

prevσ  is the crack stress vector of the previous state in the local crack 

coordinate system  (see Figure 3.5), crσ∆  is the incremental crack stress vector that 

depends on the current incremental crack strain vector crε∆ , crT  is the matrix defined by 

equation (3.25), coD  is the matrix defined by equation (3.20) and prevσ  is the stress vector 

of the previous state. 

Two algorithms are available to solve equation (3.48), namely the Newton-Raphson 

method and the fixed-point iteration method. The later is only used when the convergence 

is not achieved with the former. 

It could be verified that in some numerical simulations these internal algorithms did not 

achieve convergence, causing the interruption of the analysis and forcing the user to 

perform successive restarts with a smaller load increment. Even with this restart 

mechanism in some cases the simulation could not proceed. 

The problems that justify the non convergence of both iterative methods are the following: 

• the sudden change in the stiffness of fracture mode I modulus when the trilinear 

tensile-softening is used (see Figure 3.6); 

• the presence of two cracks in the same IP, with, for example, one of the cracks 

trying to close and the other trying to become fully open; 

• in successive iterations a repeating pattern is observed, i.e., in a specific iteration 

the crack normal strain evolves from point A to point B (see Figure 3.13) and does 

not achieve convergence, so in the next iteration it evolves from point A to point C 

and again fails to achieve convergence. In subsequent iterations this pattern is 

repeated until the maximum number of iterations is reached and the algorithm 

stops without convergence; 
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• with the introduction of a softening constitutive relation for modeling the in-plane 

crack shear component, as described in chapter 4, these problems are greatly 

aggravated and also the difficulty in achieving convergence. 

 

Figure 3.13 – Critical change of the fracture mode I modulus – convergence difficulties. 

The convergence of each iterative method is considered to be reached when the infinite 

norm of the vector ( )crf ε
∞

∆  is smaller than a residual value named Toler . This 

parameter is assumed to be equal to 610 cf
− , being cf  the concrete compressive strength. 

To overcome the lack of convergence due to the previously enumerated problems, the 

following procedure is adopted: when the Newton-Raphson method fails to converge, the 

fixed-point method is activated and in a first phase the situation that leads to the smallest 

infinite norm of the vector ( )crf ε∆  is stored; in a second phase the convergence is 

assumed for this situation, all the vectors are updated and the procedure is continued. 

Although the enlargement of the Toler , a maximum value for it is imposed to prevent an 

excessive error. 

It could also be verified that in some cases the minimum infinite norm of the vector 

( )crf ε∆  was 510 cf
−  or 410 cf

−  and the convergence was not achieved due to a very small 

gap in the internal assumed convergence criterion ( 610 cf
− ). 
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The relation between the global stress vector, σ , and the local crack stress vector, crσ , is 

given by 

 crcr Tσ σ=  (3.49)

When Toler  is assumed to be greater than 610 cf
− , the equilibrium imposed by this relation 

is also affected. However, it must be emphasized that in subsequent iterations these 

quantities are present in equation (3.48) and consequently the enlargement of Toler can be 

minimized. 

In conclusion, with this procedure and in terms of a global analysis, this increase of Toler  

at a specific layer of an IP can be acceptable, being the robustness of the numerical 

simulation greatly improved. 

3.5.2 Critical crack status change 

In order to fit the tensile-softening diagram associated with the crack mode I, the 

incremental strain vector, mbε∆ , must be decomposed when one of the critical status 

change occurs during the strain increment (Barros 1995, Sena-Cruz 2004). The critical 

crack statuses are: new crack initiation, closure of an existent crack and reopening of a 

closed crack. 

Therefore, after the calculation of the incremental strain vector, mbε∆ , a verification of the 

occurrence of a critical status is made. When one of these occurs, the incremental vector is 

sub-incremented. For the calculation of the transition point corresponding to a new crack 

initiation, newk , to a closure of an existent crack, closek , and to the reopening of a closed 

crack, reopenk , two algorithms are available. One is based on the Newton-Raphson method, 

and the other is based on the bisection method, being used when the former does not 

converge (Sena-Cruz 2004). 
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In some numerical simulations it could be verified that, even with these two algorithms, the 

value of the transition point could not be obtained, in particular the reopenk  and the closek  

values. In this case the numerical simulation stops and to overcome this problem a restart 

procedure with a reduced incremental load can be tried, but, in some cases, this restart 

procedure does not solve the problem. 

An exhaustive analysis has been made and it could be verified that additional convergence 

problems might occur, as described below for a generic k layer of a specific IP: 

• the transition point for a crack that tries to reopen is obtained, reopenk , and the new 

stress vector is calculated using the current incremental strain vector mbreopenk ε∆ . 

With the remaining strain vector, ( )1 mbreopenk ε− ∆ , a new stress vector is calculated 

and the verification of the occurrence of a critical status change is performed. At 

this moment the crack that reopens in the earlier stage is trying to close. This 

pattern is repeated and the numerical solution cannot be obtained; 

• the transition point for a crack that tries to close is obtained, closek , and a new stress 

vector is calculated using the current incremental strain vector, mbclosek ε∆ . With the 

remaining strain vector, ( )1 mbclosek ε− ∆ , a new stress vector is calculated and the 

verification of the occurrence of critical status change is made. At this moment the 

crack that closes in the earlier stage tries to reopen. This pattern is repeated and the 

numerical solution cannot be obtained; 

• when two or more cracks occur, more than one critical crack status change can also 

occur at the sub-incrementation of the incremental strain vector, mbε∆ , and the 

convergence becomes more difficult, even not attained in some cases, e.g., a closed 

crack tries to reopen and a new crack is initiated. 

The solution encountered for these problems is treated separately for the crack reopening 

and for the crack closing processes. The adopted procedure is similar to the one 

implemented by (Sena-Cruz 2004) for the case of the initiation of a new crack. 
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For example, after the calculation of the current mbreopenk ε∆ , the crack is considered a 

potentially reopened crack. With the remaining strain vector, ( )1 mbreopenk ε− ∆ , the 

reopened crack is considered in equation (3.48) and is converted into a definitive reopened 

crack if the crack at this phase does not close. If the crack closes, the crack that in the first 

phase has indicated as potentially reopened is not allowed to change its status from closed 

to reopening, and its historical data is restored. 

To permit a future crack reopen, the crack normal stress stored in the historical data to 

allow a crack reopen is updated with 

 6
, , 10cr cr

n reopen new n cfσ σ −= +             if     6
, ,10cr cr

n c n reopen prevfσ σ−+ >  (3.50)

being , ,
cr
n reopen prevσ  the crack normal stress stored in the historical data when the crack has 

closed, , ,
cr
n reopen newσ  is the new updated crack normal stress for crack reopen, cf  is the 

compressive strength and cr
nσ  is the current crack normal stress. 

A similar treatment is made for a crack that tries to close. For example, after the 

calculation of the current mbclosek ε∆ , the crack is considered only a potentially closed crack. 

With the remaining strain vector ( )1 mbclosek ε− ∆ , the closed crack is not considered in the 

equation (3.48) and is converted into a definitive closed crack, only if at this phase does 

not try to reopen. If the crack reopens, the crack that in the first phase has indicated as 

closed is not allowed to change its status, and its historical data is restored. 

As describe before, to permit a future crack close, the crack normal strain stored in the 

historical data to allow a crack closure is updated with 

 6
, , 10cr cr

n close new nε ε −= −             if     6
, ,10cr cr

n n close prevε ε−− <  (3.51)
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being , ,
cr
n close prevε  the crack normal strain stored in the historical data, , ,

cr
n close newε  the new 

updated crack normal strain for crack close, and cr
nε  the current crack normal strain. 

With the described procedures the starting axes of the crack tensile-softening diagram for 

the specific crack where such problems occur are marginally moved, as schematically 

represented in Figure 3.14. It must be stated that the global accuracy is not significantly 

affected, being the robustness of the numerical simulations significantly improved. 

    

Figure 3.14 – Adopted criteria to: (a) update the crack normal stress for a crack reopen; (b) update the crack 

normal strain for a crack close.  

3.6 SUPPORTS WITH LINEAR AND NONLINEAR BEHAVIOR 

3.6.1 Deformable point, line and surface support system 

A structure can have some of its nodal points connected to elements that can exhibit an 

elastic or inelastic behavior. These elements can be, for example, the ground supporting 

system, bars or any other structural element whose deformability is proportional to the load 

applied to this element, etc. The contribution of these elements to the behavior of a 

structure is taken into account by adding their stiffness to the stiffness of the structure 

(Ventura-Gouveia 1996). 

In general, they can be considered as point springs, line springs or surface springs, i.e., a 

point spring when one point of a structure is connected to a deformable element, such as a 
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plate supported on a column, a line spring when the support conditions of a structure are 

provided continuously along a line, such as a plate supported on a wall, and a surface 

spring when the contact between the structure and the supporting system is a surface, such 

is the case of a slab on grade. 

In the framework of the FEM, the contribution of these supporting elements to the stiffness 

of the global system can be calculated as follows: 

Point springs 

In this case, the stiffness of the spring is directly added to the diagonal terms of the 

stiffness matrix of the structure in correspondence with the degrees of freedom of the point 

that is connected to the spring. This addition process takes into account the coordinate 

system of the structure and the direction vector of the spring. A generic representation of 

point springs connected to a structure is represented in Figure 3.15. 

 

Figure 3.15 – Point springs: global coordinate system, g
ix , local coordinate system of the structure, ix , and 

spring direction vector, is . 

The point spring stiffness point
sK  in the global coordinate system is obtained from 

 point T
s sK T k T=  (3.52)
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where T  is the transformation vector relating the global coordinate system and the spring 

direction vector (see Figure 3.15) and sk  the spring stiffness. 

Line springs 

A generic representation of a line spring connected to an edge of a structure is represented 

in Figure 3.16. 

 

 

Figure 3.16 – Line spring: global coordinate system, g
ix , local coordinate system of the structure, ix , and 

line spring direction vector, s . 

The line spring stiffness line
sK  contribution to the stiffness of the edge of the finite element 

where the line spring is connected is obtained with 

 
line T T
s sL

K N T k T N dL= ∫  (3.53)

where T  is the transformation vector relating the global coordinate system and the line 

spring direction vector (see Figure 3.16), N  is the matrix of the shape functions of 1D 

finite elements, and sk  is the spring stiffness. 
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Surface springs 

In Figure 3.17 a surface spring connected to a face of a structure is represented.  

 

Figure 3.17 – Surface spring: global coordinate system, g
ix , local coordinate system of the structure, ix , and 

surface spring direction vector, s . 

The surface spring stiffness surf
sK  contribution to the stiffness of the finite element where 

the surface spring is connected is obtained with 

 
surf T T
s sA

K N T k T N dA= ∫  (3.54)

where T  is the transformation vector relating the global coordinate system and the surface 

spring direction vector (see Figure 3.17), N  is the matrix of the shape functions of 2D 

finite elements, and sk  is the spring stiffness. 

The spring stiffness, sk , of equations (3.53) and (3.54) is obtained at each IP using the 

shape functions of the 1D finite element or the shape functions of the 2D finite element, 

respectively. With this procedure a line spring with different stiffness values along its 

length can be numerically simulated, and, in the same way, a surface spring with non 
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constant stiffness can be treated (for example the simulation of a slab supported on a 

heterogeneous soil). 

The definition of the shape functions used in the above equations can be found elsewhere 

(Zienkiewicz and Taylor 2000a). 

3.6.2 Unilateral supports 

In the previous section a general approach for the calculation of the contribution of 

different types of springs for the stiffness matrix of the structure is presented assuming a 

linear-elastic behavior for the springs. These springs can be connected to the various types 

of finite elements available in the FEMIX computer code (Azevedo et al. 2003, Sena-Cruz 

2004). 

Alternatively, there can be situations in which a supporting system can be idealized by a 

spring system with nonlinear behavior, as for the case of a soil. The evaluation of the 

tangent soil reaction modulus can be performed with plate-loading tests (Barros and 

Figueiras 1998), and results of these tests have revealed that the soil pressure-settlement 

relationship can be simulated with a multilinear or linear-parabolic diagram (Barros and 

Figueiras 2001). 

There are other situations in which the stiffness of the supporting system of a structure 

depends on the type of load acting on this supporting system, and it can even be neglected 

for certain type of loading, as for the case of a soil subjected to tensile stresses. These types 

of supports are named in the present work as unilateral supports. In the next sections 

details of two diagrams to simulate this type of supports are presented: a linear-parabolic 

diagram to predict soil nonlinear behavior and its loss of contact with the supported 

structure; a bilinear-exponential diagram that can be assigned to supports considered to be 

active only in certain circumstances. A parametric study carried out with a slab on grade is 

also presented. 
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3.6.2.1 Linear-parabolic diagram 

To provide the developed model with the possibility of numerical simulations of slabs on 

grade, a linear-parabolic diagram between pressure and settlement has been included in the 

model (Barros 1995, Barros and Figueiras 2001), being represented in Figure 3.18. 

 

Figure 3.18 – Pressure-settlement linear-parabolic diagram. 

The pressure-settlement linear-parabolic diagram is defined by the following expressions 
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being α  a parameter that defines the transition point from the linear to the parabolic 

branch (see Figure 3.18). The values of sup , sua  and slk  are obtained by curve fitting 

based on the experimental results of plate-loading tests (Barros and Figueiras 1998). 

An elastic branch is assumed for modeling the unloading/reloading phase of the 

pressure-settlement relation, although the experimental results obtained from plate-loading 

tests (Barros and Figueiras 1998) reveal that the unloading /reloading cycles can be stiffer 

than the initial elastic phase. 

For the unloading or reloading branch (see Figure 3.18) the pressure is given by the 

following equation 

 ( ) ( )2 2s sl s s s s smaxp a k a a a a a= − < ≤  (3.57)

being 2sa  the residual settlement obtained with 

 2
max

s smax
sl

pa a
k

= −  (3.58)

where smaxa  and maxp  are the maximum applied settlement and the corresponding pressure, 

pertaining to the pressure-settlement envelope curve, whose values are stored for the 

evaluation of the unloading-reloading branch. 

The soil reaction tangent modulus in the parabolic branch, stk , is obtained with the 

following equation 

 ( ) 1s
st s sl

su

ak a k
a

γ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠  

(3.59)
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In a nonlinear analysis, as described in section 2.4 of chapter 2, the internal forces must be 

obtained. With this aim, the element nodal forces that are equivalent to the soil pressure are 

calculated with 

where T  is the transformation vector relating the global coordinate system and the surface 

spring direction vector, N  is the matrix of the element surface shape functions where the 

surface spring is connected, and ( )sp a  is defined by the expressions (3.55) or (3.57). 

In the framework of the finite element method, the integrals in (3.53), (3.54) and (3.60) are 

calculated using the Gauss-Legendre quadrature rule (Cook 1995, Zienkiewicz and Taylor 

2000a). 

The soil contribution to the stiffness of the global structural system is computed with 

equation (3.54), using the soil reaction tangent modulus, slk  or stk , in the place of sk , 

according to the pressure-settlement linear-parabolic diagram represented in Figure 3.18. 

This nonlinear behavior, idealized by the linear-parabolic diagram of Figure 3.18, is 

assigned to the surface springs that are orthogonal to the middle surface of a laminar 

structure. The friction between the laminar structure and the soil is neglected. 

At each stage of a nonlinear analysis the history of some parameters, for example pressure 

and settlement, must be known. For this reason the FEMIX computer code stores the 

spring historical data, independent of the historical data related to the elements of the 

structure. For this purpose the four statuses indicated in Figure 3.18 are considered. With 

this procedure the diagram is completely defined at each stage of the nonlinear analysis 

and for the surface spring associated with each IP. 

 ( ) ( )( )int, e

e T T
ssoil A

f N T p a dA= ∫  (3.60)
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For the case of a slab on grade, when the concrete slab loses contact with the soil at an IP, 

the portion of soil that corresponds to this IP does not contribute to the stiffness of the 

slab-soil system and, consequently, the surface spring has an inactive status. When contact 

is re-established the soil stiffness is taken into account, being its value dependent on the 

branch of the diagram represented in Figure 3.18 and on the previous status before the 

spring had became inactive. This information is obtained from the data stored in the spring 

historical data. 

Although the diagram of Figure 3.18 has been idealized for soil-structure simulation, it is 

also implemented for the simulation of point springs and line springs with nonlinear 

behavior. The necessary adaptations in the calculation of the stiffness matrix and internal 

forces are included in the computer code. 

3.6.2.2 Bilinear-exponential diagram 

The bilinear-exponential diagram described in this section and represented in Figure 3.19 

can be assigned to point springs. This diagram is defined by three points, ( )1 1 1,P a F= , 

( )2 2 2,P a F= , and ( )3 3 3,P a F= , and by the parameter p  used in the definition of the third 

branch. When a unitary value is attributed to this parameter the third branch is linear. 

 

Figure 3.19 – Force-displacement bilinear-exponential diagram. 
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The equations that define the relation shown in Figure 3.19 are the following 

 ( )
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where 
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F F a ak p
a a a a

−
− ⎛ ⎞−

= − ⎜ ⎟− −⎝ ⎠  (3.62c)

In analogy with the diagram described in section 3.6.2.1, the statuses of this curve are also 

represented in Figure 3.19. The point internal forces are determined with 

being T  the transformation vector relating the global coordinate system and the spring 

direction vector. 

The stiffness matrix is obtained with equation (3.52), considering the substitution of sk  

with one of the values defined by expression (3.62). 

 int

point Tf T F=  (3.63)
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This diagram can simulate an eventual gap between the structure and a support. This is a 

very important feature since in some cases a structure becomes in contact with a support 

only after a certain displacement has occurred. Figure 3.20 represents the simulation of a 

gap. The value of 1a  is the gap between the structure and the point spring. 

A point spring simulated with the nonlinear constitutive relation proposed in this section 

can be activated to work only in compression or only in tension, e.g., if the support of a 

structure only works for compression forces, than the loss of contact is activated if a tensile 

force is applied to the support. This model is available in the FEMIX computer code and 

can be used to simulate nonlinear unilateral supports. 

 

Figure 3.20 – Gap simulation between a support and a structure. 

An elastic unloading/reloading is assumed in this diagram (Figure 3.20), being its 

inclination, maxk , assumed as the maximum stiffness provided by equations (3.62). For the 

case represented in Figure 3.20, maxk is equal to 2k . In the unloading/reloading phase the 

force is obtained with 

 ( ) ( )max r r maxF a k a a a a a= − < ≤  (3.64)

being ra  the residual displacement obtained with 
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 max
r max

max

Fa a
k

= −  (3.65)

where maxa  and maxF  are the maximum applied displacement and the corresponding force 

pertaining to the force-displacement envelope curve, whose values are stored for the 

evaluation of the unloading/reloading branch. 

3.6.2.3 Parametric study of a slab on grade 

Industrial floors are one of the most common applications of steel fiber reinforced concrete 

(SFRC). Crack control joints are built to concentrate the crack propagation in these 

weakness-induced surfaces, resulting in a floor divided into panels. The design of a SFRC 

floor is, in general, restricted to the analysis of a representative panel. For the most 

common situations a point load in a corner of the panel is the most unfavorable load 

configuration. The model described in section 3.6.2.1 is used for the soil simulation in a 

parametric study of a SFRC slab on grade (Barros et al. 2005c). When the concrete slab 

loses contact with the soil at an IP, the part of the soil that corresponds to this IP does not 

contribute to the stiffness of the slab soil system. In this study, the influence of the slab 

thickness ( h ), the soil reaction modulus ( sk ) and the amount of fibers ( fQ ) is taken into 

account, as shown schematically in Figure 3.21. 

 

Figure 3.21 – Parametric study of a SFRC slab on grade. 
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The adopted finite element mesh used to analyze the behavior of the 5×5 m2 panel is 

represented in Figure 3.22. Since the elements outside the dashed line square are not 

affected by any concrete nonlinear phenomenon, they are assumed to behave linearly. The 

elements located inside this square are assumed to exhibit a nonlinear material behavior. 

The panel thickness is decomposed in 10 layers of equal thickness. The SFRC fracture 

parameters used to define the cr cr
n nσ ε−  trilinear diagram adopted to model the fracture 

mode I are presented in Table 3.1. An average compressive strength of 38 MPa and a 

Young's Modulus of 32 GPa are considered in the analysis. The soil is simulated with 

surface springs that are orthogonal to the laminate structure. For example, Figure 3.23 

represents the crack pattern for the slab with 160h mm= , 325 /fQ kg m=  and 

30.01 /sk N mm= , at a load level corresponding to a maximum crack opening of 0.3 mm. 

More details about this study can be found elsewhere (Barros et al. 2005c). 

 
 

Nonlinear 
Elements 

Linear        
Elements 

x x 
x x 

Load  
 

Figure 3.22 – Finite element mesh. Figure 3.23 – Crack pattern at the slab top surface for 

a load level corresponding to a maximum crack 

opening of 0.3 mm. 

 

Main crack zone 
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Table 3.1 - Parameters defining the trilinear diagram of Figure 3.6 for the analyzed SFRC. 

fQ  
(kg/m3) 

,1
cr
nσ  

(MPa) 
,2

,1

cr
n
cr
n

σ
σ

 ,3

,1

cr
n
cr
n

σ
σ

 ,2

,

cr
n
cr
n u

ε
ε

 ,3

,

cr
n
cr
n u

ε
ε

 
I
fG

(N/mm) 

15 2.40 0.35 0.11 2.55 0.10 2.30 
25 2.60 0.51 0.31 1.28 0.79 3.90 
35 1.95 0.70 0.22 2.97 0.63 3.60 
45 3.42 0.60 0.60 0.05 0.14 6.60 

 

3.7 NUMERICAL SIMULATION OF A PUNCHING TEST WITH A MODULE 

OF SFRSCC PANEL 

To access the predictive performance of the developed model, an experimental punching 

test with a module of a steel fiber reinforced self-compacting concrete (SFRSCC) panel is 

numerically simulated in this section. The numerical results are compared with the 

experimental ones, and the influence of some model parameters in the numerical 

predictions is discussed. 

SFRSCC is a relatively recent cement based material that combines the benefits of the 

self-compacting concrete technology (Okamura 1997) with the advantages of the addition 

of fibers to a brittle cementitious matrix (Pereira 2006). 

To manufacture the lightweight panel system schematically represented in Figure 3.24, 

which can be applied in building façades, a developed SFRSCC was used and described 

elsewhere (Barros et al. 2005a). The mix composition of the SFRSCC used to manufacture 

the panel is presented in Table 3.2. In the composition of the SFRSCC, 30 kg/m3 of hooked 

ends steel fibers with a length ( )fl  of 60 mm, a diameter ( )fd  of 0.75 mm, an aspect ratio 

( )f fl d  of 80 and a yield stress of 1100 MPa were used. At seven days the average value 

of the compressive strength and modulus of elasticity of this SFRSCC was 52 MPa and 

31 GPa, respectively. 
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Figure 3.24 – Concept of a lightweight steel fiber reinforced self-compacting concrete panel [all dimensions 

are in mm] (Barros et al. 2005a). 

The flexural strength of this type of structural elements is a key aspect in their design, 

since, in general, the bending moments of the wind load combination are an important 

factor in the design process of the panel. To assess the panel flexural behavior, 

representative modules of the SFRSCC panel system were tested, being the details of the 

experimental program described elsewhere (Barros et al. 2007a). Numerical simulations of 

these panels were also made using the developed model and can be found elsewhere 

(Barros et al. 2007b) 

The punching resistance is also a key aspect in the design of this type of panel, since its 

lightweight zones consist of a thin layer that is only 30 mm thick. To evaluate the punching 

resistance of these zones, representative modules of the panel system are submitted to a 

load configuration that implies the occurrence of this type of failure mode (Barros et al. 

2005a, Barros et al. 2007a). 

In the next sections the results obtained in one of these tests are compared with the 

numerical simulations in order to assess the predictive performance of the developed 

model. Several numerical simulations are carried out to assess the influence of some 
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parameters that define the softening diagrams (Ventura-Gouveia et al. 2011). The objective 

of these simulations is to understand how each parameter affects the response of a laminar 

FRC structure failing in punching. The influence of the in-plane mesh and 

through-thickness refinement of the simulated structure is also analyzed. 

The possibility of defining the fracture parameters that characterize the fracture mode I 

strain-softening diagram by performing an inverse analysis (Barros et al. 2005b) is also 

discussed. The inverse analysis is based on the results obtained in three point notched 

beam bending tests carried out according to the RILEM TC 162-TDF recommendations 

(Vandewalle et al. 2002). 

Table 3.2 - Composition for 1 m3 of SFRSCC including 30 kg/m3 of fibers 

Paste 
total 

volume 

(%) 

Cement 
CEM I 
42.5R 

(kg) 

Limestone 
filler 

(kg) 

Water 

(dm3) 

Super- 
plasticizer* 

(dm3) 

Fine 
sand 

(kg) 

Coarse 
sand 

(kg) 

Crushed 
aggregates 

(kg) 

0.34 364.28 312.24 93.67 6.94 108.59 723.96 669.28 

* Third generation based on polycarboxilates (Glenium® 77SCC) 

3.7.1 Evaluation of the mode I fracture properties by inverse analysis 

This section describes the inverse analysis methodology adopted to evaluate the fracture 

mode I parameters of the SFRSCC used in the panel prototype that was experimentally 

tested and numerically simulated. Detailed information about this inverse analysis can be 

found elsewhere (Barros et al. 2005b, Sena-Cruz et al. 2004). 

As already mentioned, in the implemented smeared crack constitutive model the 

post-cracking behavior of SFRSCC under tension can be described by a trilinear 

stress-strain softening diagram (see Figure 3.6). This function is defined by a set of fracture 

parameters ( iα , iξ , I
fG , ctf  and bl ), being the accuracy of the FEM modeling largely 

dependent on the values that are assigned to these parameters. In this context, the 

experimental behavior of an element failed in bending may be predicted by a FEM model, 
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as long as the correct values of the material fracture parameters are introduced in the 

constitutive model. 

The adopted strategy consists in the evaluation of the iξ , iα  and I
fG  parameters that define 

the shape of the trilinear cr cr
n nσ ε−  constitutive law, based on the minimization of the error 

parameter 

 exp expnum
F F Ferr A A Aδ δ δ− − −= −  (3.66)

being exp
FA δ−  and num

FA δ−  the areas beneath the experimental and numerical load-deflection 

curves corresponding to a three point notched beam bending test (Sena-Cruz et al. 2004). 

The experimental curve corresponds to the average results observed in prismatic SFRSCC 

notched specimens, tested according to the RILEM TC 162-TDF recommendations at the 

age of 7 days (Vandewalle et al. 2002), while the numerical curve consists of the results 

obtained by FEM analysis, being the specimen, loading and support conditions simulated 

in agreement with the experimental flexural test setup as represented in Figure 3.25. 

In this context, the specimen is modeled with a mesh of 8 node serendipity plane stress 

finite elements. The Gauss-Legendre integration scheme with 2×2 integration points is 

used in all elements, with the exception of the elements at the specimen symmetry axis, 

where 1×2 integration points are used. With this particular integration point layout, the 

numerical results have a better agreement with the experimental observations, since a 

vertical crack may develop along the symmetry axis. Linear elastic material behavior is 

assumed in all the elements, with the exception of those above the notch, along the 

symmetry axis. In this region an elastic-cracked material model in tension is adopted. The 

crack bandwidth, bl , is assumed to be equal to 5 mm, being this value coincident with the 

width of the notch and of the elements located above it. 
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Figure 3.25 – FEM mesh used in the numerical simulation of a three-point notched beam flexural test at 

7 days (Pereira et al. 2008). 

In Figure 3.26 the results experimentally obtained in the flexural tests are compared with 

the numerical results. The curve of the numerical simulation, obtained with the optimized 

fracture parameters, is not perfectly coincident with the experimental curve, suggesting 

that additional parameters should be considered in order to obtain a better fitting. The 

values of the fracture parameters iξ , iα  and I
fG  that lead to the numerical results 

represented in Figure 3.26 are listed in Table 3.3. 

 

Figure 3.26 – Experimental average results and numerical simulation of the three-point notched beam 

flexural test at 7 days (Pereira et al. 2008). 
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3.7.2 Test setup and values of the parameters used in the numerical simulations 

The punching test of a module of the developed SFRSCC lightweight panel is used to 

assess the predictive performance of the proposed multi-fixed smeared crack model. The 

test layout and the test setup are represented in Figure 3.27. More details about the 

corresponding experimental program can be found elsewhere (Barros et al. 2007a). 

 
        (a) 

 

 
                                     (b) 

Figure 3.27 – (a) Test panel module, and (b) test setup [all dimensions are in mm] (Barros et al. 2007a). 

The influence of mesh refinement and some model parameters in the results of the 

numerical simulations is assessed and discussed in the next sections, namely: the values 

adopted for the fracture mode I parameters used to define the trilinear diagram, and the 

values used to define the out-of-plane shear stress-strain diagram. The numerical 

simulations are performed using the Newton-Raphson method, with displacement control 

at a specific variable (see section 2.4.3 of chapter 2). 

The values of the parameters of the constitutive model used in the numerical simulations of 

the punching test are listed in Table 3.3. 
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Table 3.3 - Values of the parameters of the constitutive model used in the numerical simulations of the 

punching test. 

Poisson’s ratio 0.15ν =  

Initial Young’s modulus 231000.0 N mmcE =  

Compressive strength 252.0 N mmcf =  

Trilinear tension softening diagram of 
SFRSCC (used in the numerical 
simulations of section 3.7.3. 
Parameters values obtained from 
inverse analysis) 

23.5 N mmctf = ; 4.3 N mmI
fG = ; 

1 0.009ξ = ; 1 0.5α = ; 2 0.15ξ = ; 2 0.59α =  

Trilinear tension softening diagram of 
plain concrete (used in a numerical 
simulation of section 3.7.3. Parameters 
obtained from the compressive 
strength of the SFRSCC according to 
CEB-FIP 1993 recommendations) 

23.5 N mmctf = ; 0.08732 N mmI
fG = ; 

1 0.072ξ = ; 1 0.15α = ; 2 0.4432ξ = ; 2 0.09α =  

Trilinear tension softening diagram of 
SFRSCC (used in the numerical 
simulations of section 3.7.4. Parameter 
values obtained by 
increasing/decreasing 50%± those 
obtained from inverse analysis) 

23.5 N mmctf = ; 

50% 4.3 N mmI
fG = − × ; 

1 50% 0.009ξ = ± × ; 1 50% 0.5α = ± × ; 

2 50% 0.15ξ = ± × ; 2 50% 0.59α = ± ×  
(± - depends on the numerical simulation) 

Fracture energy (mode III) used in the 
out-of-plane shear stress-strain 
diagram 

from 1.0 N mmIII
fG =  to 5.0 N mmIII

fG =  
(depends on the numerical simulation) 

Parameter defining the mode I fracture 
energy available to the new crack 2 2p =  

Shear retention factor Exponential ( 1 2p = ) 

Crack bandwidth Square root of the area of the integration point 

Threshold angle 30ºthα =  
cr cr

1 n,2 n,1/α σ σ= , 2 ,3 ,1/cr cr
n nα σ σ= , 1 ,2 ,/cr cr

n n uξ ε ε= , 2 ,3 ,/cr cr
n n uξ ε ε=  (see Figure 3.6) 

3.7.3 Analysis based on the values obtained from inverse analysis 

3.7.3.1 Influence of the out-of-plane shear softening diagram 

The results of the numerical simulations are compared with the experimental data obtained 

in the punching test of the panel module. The finite element idealization, load and support 
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conditions used in the numerical simulations of the punching test are shown in Figure 

3.28a). Due to double symmetry, only one quarter of the panel is considered in the 

simulations. The mesh is composed of 6 × 6 eight-node serendipity plane shell elements. 

The elements are divided into 11 layers, each one being 10 mm thick. Since the panel has 

lightweight zones (shaded elements in Figure 3.28a), materialized by the suppression of 

80 mm of concrete in the central zone, null stiffness is assigned to the 8 bottom layers of 

the corresponding finite elements (see Figure 3.28b). The material of the remaining three 

layers has an elastic-cracked behavior, as described in section 3.3.2.2. This model is also 

used in the elements located outside the central lightweight zone. 

 

Figure 3.28 – (a) Geometry, mesh, load and support conditions used in the numerical simulation of the 

punching test – Coarse Mesh (CM); (b) Properties of the layered cross section. 

30
0 

m
m

+

+

300 mm

Point load

Th
ic

kn
es

s -
 1

10
 m

m

x1

x2

Supports

Th
ic

kn
es

s -
 3

0 
m

m

(b) Cross section: A-A'

A'A

Layers with SFRSCC properties
Layers with null stiffness

8 ×10 mm

3 ×10 mm

(a)



Numerical model for concrete laminar structures 87 

 

A trial-and-error procedure is required to estimate reasonable values for the out-of-plane 

components of the elastic-cracked constitutive matrix, crco
sD  (see section 3.4), since their 

experimental evaluation is quite complex and beyond the scope of the present work. The 

out-of-plane shear fracture energy that leads to the best agreement with the experimental 

results of the punching tests, 3.0III
fG N mm= , is determined with this procedure. 

The values of the mode I fracture parameters that take part in the in-plane elastic-cracked 

constitutive matrix for concrete, crco
mbD , are obtained by inverse analysis, as described in 

section 3.7.1. 

In Figure 3.29 responses obtained with the numerical model are compared with the 

experimental results. A good agreement can be observed up to a deflection of 2.5 mm. For 

larger deflections, an overestimation of the load carrying capacity of the prototype panel 

occurs when a linear elastic behavior is assumed for the out-of-plane shear components. At 

a deflection of about 3 mm, the experimental curve suddenly falls, indicating the failure of 

the panel by punching, as visually confirmed in the experimental test. This load decay that 

is not reproduced when assuming a linear elastic behavior for the out-of-plane shear 

components is, however, well captured when the bilinear diagram represented in Figure 3.9 

is used to model the softening behavior of the out-of-plane shear components, with 

3.0III
fG N mm= , and assuming a crack bandwidth, bl , equal to the square root of the area 

associated with the corresponding IP. The abrupt load decay from approximately 41 kN to 

20 kN, which is observed in the experimental test, is accurately simulated by the numerical 

model, as well as the subsequent extended stage of residual load carrying capacity 

exhibiting a very small load decay. 
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Figure 3.29 – Relationship between load and deflection at the center of the test panel. 

Up to a 10 kN load, all the curves depicted in Figure 3.29 are practically coincident. 

Afterwards, the straight line that represents the response assuming a linear elastic behavior 

no longer follows the curves that correspond to the experimental test and to the numerical 

analysis with material nonlinear model. These results suggest that some cracks start to 

form at a very early stage of the experimental test. The nonlinear numerical model 

accurately captures the formation of bending cracks at the top surface (see Figure 3.30a), in 

agreement with the experimentally observed crack pattern. Figure 3.30b shows the crack 

pattern at the top surface observed at the end of the test sequence. The numerical model 

also indicates the formation of bending cracks at the bottom surface of the lightweight 

zone. These cracks initiate at the center of the panel, beneath the loaded area, and then 

progress to the corners of the lightweight zone, showing some similarities with the 

classical yield lines formed in square concrete slabs failing by flexure. These cracks can 

also be observed in the experimental test (Pereira 2006). 
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(b)

 

Figure 3.30 – Punching test simulation: (a) top surface cracks predicted by the numerical model (using a 

FEM mesh with 12 × 12 eight-node serendipity plane shell elements) , and (b) photograph showing the 

cracks at the top surface of the panel, at the end of the test sequence (Pereira 2006). 

In conclusion, the results indicate that flexure mechanisms prevail in the deformational 

behavior up to a deflection of approximately 2.5 mm. For larger deflections, the punching 

failure mechanisms start to assume a greater relevance, and the overestimation of the panel 

out-of-plane rigidity components, when linear out-of-plane shear behavior is assumed, 

leads to a divergence between the numerical model and the experimental observations. 

With the adoption of a softening law for the out-of-plane shear components, the numerical 

model becomes much more accurate in the prediction of the complete behavior of the panel 

failing in punching, capturing the sudden load decay associated with punching failure 

mechanisms. 

To estimate the contribution of fiber reinforcement to the punching resistance, a numerical 

simulation was performed adopting for the fracture mode I the parameters indicated in 

Table 3.3, which correspond to plain concrete with compressive strength matching the 

developed SFRSCC. Comparing the curves in Figure 3.31 it can be concluded that fibers 

not only increased significantly the punching resistance, but also, and especially, improved 

the ductility. 
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Figure 3.31 – Influence of fiber reinforcement in the punching resistance. 

Figure 3.32 represents the vertical displacement field for a deflection of 10 mm at the 

center of the panel for the case of the numerical simulation considering out-of-plane shear 

softening. The obtained strong gradient of vertical displacements matches with high 

precision the experimentally observed location of the interception of the punching failure 

surface with the top panel face (see Figure 3.30b). This evidences the suitability of the 

developed approach for the simulation of this complex failure mode. 

   

Figure 3.32 – Vertical displacement field (in mm) for the numerical simulation with out-of-plane shear 

softening (for a deflection of 10 mm at the center of the panel). 
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As already mentioned, the selection of a value for III
fG  has no experimental support. In 

order to analyze its influence on the results of the numerical simulation using a softening 

law for both out-of-plane components, a parametric analysis is carried out consisting in the 

variation of its value from 1.0 to 5.0 N/mm. The results depicted in Figure 3.33 show that a 

value of 3.0 N mmIII
fG =  leads to a perfect prediction of the abrupt load decay 

experimentally observed at a deflection of about 3 mm. Increasing or decreasing the value 

of III
fG  implies the occurrence of the abrupt load decay at a larger or smaller deflection, 

respectively. The conclusion of this study is that, independently of the value of III
fG , when 

using the model described in this work, it is essential to use a softening law for the 

out-of-plane shear components in order to simulate the sudden load decay observed in the 

punching test. 

 
Figure 3.33 – Influence of III

fG , using the in-plane coarse mesh and 3 layers in the lightweight zone, on the 

numerical relationship between load and deflection at the center of the test panel. 

Similar results were obtained in numerical simulations in which the supports of the panel, 

represented in Figure 3.28a by the dashed line, were simulated with line springs with 

“infinite” stiffness in compression and null strength in tension using the linear-parabolic 

diagram described in section 3.6.2.1, in order to simulate the loss of contact between the 

panel and the support during the loading process (Ventura-Gouveia et al. 2007). 
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3.7.3.2 Influence of the through-thickness refinement of the panel 

In this section, the influence of through-thickness refinement of the panel on the 

load-deflection relationship is analyzed. The parameters used to simulate the fracture 

mode I and the out-of-plane shear softening diagram are those that have best fitted the 

experimental results, according to the strategy described in the previous section. 

For this purpose, the following two refinements are considered: 6 layers in the lightweight 

zone and 22 layers in the remaining parts; 10 layers in the lightweight zone and 26 layers 

in the other zones. 

In Figure 3.34 the load-deflection relationships of these numerical simulations are 

compared with the experimental one, indicating CM_jL the curve obtained with a j-layer 

discretization in the lightweight zone. 

 
Figure 3.34 – Influence of the number of layers discretizing the thickness of the panel in the lightweight zone 

(results for 3, 6 and 10 layers are shown). 

It can be observed that by increasing the number of layers in the lightweight zone from 

3 to 6, the maximum load increases approximately 17%, and the stiffness corresponding to 

the branch between crack initiation and peak load also increases. This behavior can be 
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nonlinear analysis is performed. Therefore, the larger the number of layers discretizing the 

element, the higher the flexural stiffness of the element is, resulting in a smaller 

deformability of the panel and a higher load carrying capacity. However, Figure 3.34 also 

shows that when the number of layers increases from 6 to 10, only a marginal increase of 

the maximum load is observed, which indicates that the increase ratio of the flexural 

stiffness and load carrying capacity of the layered Mindlin shell element decreases with the 

number of layers. 

It is also interesting to observe that the deflection at the abrupt load decay, as well as the 

residual load carrying capacity of the panel, are very similar in all three numerical 

analyses. 

3.7.3.3 Influence of the in-plane mesh refinement of the panel 

In order to assess the influence of the in-plane mesh refinement on the load-deflection 

relationship, an alternative and more refined mesh (RM) is considered (see Figure 3.35), 

being the corresponding results presented below. Eight-node serendipity plane shell 

elements are used, with 10 layers in the lightweight zone and 26 layers in the other zones. 

 
Figure 3.35 – Geometry, mesh, load and support conditions used in the numerical simulation of the punching 

test – Refined Mesh (RM). 
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The load-deflection relationship for the RM is represented in Figure 3.36, being compared 

with the one obtained with the previous coarse mesh (CM), and with the one 

experimentally registered. As expected, the deformability of the panel increases with the 

mesh refinement, causing the abrupt load decay to occur for a larger deflection (3.3 mm). 

Due to the higher flexibility of the panel discretized with the RM, a decrease of about 5% 

in terms of load carrying capacity is observed. Therefore, the shape of the load-deflection 

(F-u) curve for the RM is approximately the result of the rotation of the F-u curve for the 

CM about the point that corresponds to the crack initiation. 

With the increase of the number of finite elements (and integration points), the concrete in 

cracked status and the corresponding consumed mode I fracture energy also increase. This 

can be a possible justification for the more deformable response in the numerical 

simulation of the in-plane RM . 

 
Figure 3.36 – Influence of the in-plane mesh refinement on the numerical load-deflection response at the 

center of the test panel. 
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1.0 N/mm and 5.0 N/mm. In these analyses the in-plane CM and the RM are used, with 

10 layers discretizing the thickness of the panel in the lightweight zone. The obtained 

numerical curves are represented in Figure 3.37 and Figure 3.38, respectively. It is 

observed that in the RM the III
fG  value mainly affects the residual load carrying capacity 

after the abrupt load decay. When using the CM, the value attributed to III
fG  not only 

affects the residual load carrying capacity but also influences the value of the deflection 

corresponding to the abrupt load decay. This influence, however, is less pronounced than 

when using an in-plane CM with 3 layers discretizing the thickness of the panel in the 

lightweight zone (see Figure 3.33). Therefore it can be concluded that when a RM is used, 

suitable predictions can be obtained with III I
f fG G= , but further research needs to be carried 

out for a more reliable estimation of III
fG . 

Figure 3.39 and Figure 3.40 show the consumed out-of-plane fracture energy ( ,
III
f cG ) up to a 

deflection of 3.5 mm for the in-plane CM and RM, respectively. At each integration point, 

this consumed fracture energy receives the contribution of the two out-of-plane shear 

components in all layers, and can be regarded as an indicator of damage due to the 

punching failure mode. It can be observed that the punching failure pattern is well 

predicted when using the RM. When using the in-plane CM refinement the shear failure 

bandwidth is larger, thus justifying the higher sensibility of the deflection corresponding to 

the abrupt load decay to the adopted III
fG  value (see Figure 3.37). 
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Figure 3.37 – Influence of III

fG  on the numerical relationship between load and deflection at the center of the 
panel, when using the in-plane coarse mesh and 10 layers in the lightweight zone. 

 

 

 
Figure 3.38 – Influence of III

fG  on the numerical relationship between load and deflection at the center of the 
panel, when using the in-plane refined mesh and 10 layers in the lightweight zone. 
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Figure 3.39 – Representation of the consumed out-of-plane fracture energy, ,

III
f cG , when using the in-plane 

coarse mesh and 10 layers in the lightweight zone, for a deflection of 3.5 mm. 

 
Figure 3.40 – Representation of the consumed out-of-plane fracture energy, ,

III
f cG , when using the in-plane 

refined mesh and 10 layers in the lightweight zone, for a deflection of 3.5 mm. 

3.7.4 Influence of the parameters that define the fracture mode I 

In order to assess the influence of the parameters that define the fracture mode I 

constitutive law (Figure 3.6) on the load-deflection relationship predicted by the numerical 

model, the values of these parameters are decreased and increased by 50 % relatively to 

those obtained by inverse analysis. The crack stress vs. crack strain ( cr cr
n nσ ε− ) for these 

analyses and the corresponding load-deflection relationships are depicted in Figure 3.41 to 

Figure 3.45. 
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All these numerical analyses utilize the refined mesh and use 10 layers for the 

discretization of the thickness of the lightweight part of the panel. From the analysis of 

these graphs it can be concluded that the inclination of the first branch of the cr cr
n nσ ε−  

diagram ( cr
n1D  in Figure 3.6) governs the point corresponding to the first drop in the 

load-deflection relationship. In fact, the less abrupt this branch is, the higher the load at this 

point becomes. Consequently, it is observed that the load carrying capacity of the panel is 

quite sensible to the slope of this branch. Direct tensile tests with SFRSCC similar to the 

one used in the tested panels showed, in fact, an abrupt stress decay immediately after 

crack formation. 

Figure 3.42b evidences that the numerically predicted load carrying capacity of the panel is 

quite dependent on the 1α  parameter, since a pronounced softening and a significant 

hardening deflection are estimated when a value of 1α  smaller or larger than the one 

obtained by inverse analysis is used (see Figure 3.42a). The higher strength ( )cr cr
n nσ ε of the 

second branch of cr cr
n nσ ε− , when adopting higher values for the 1α  parameter (see Figure 

3.42a), also contributes to increase both the load carrying capacity of the panel and the 

deflection corresponding to the punching failure. However, Figure 3.44 reveals that the 

strength ( )cr cr
n nσ ε  corresponding to the first branch of cr cr

n nσ ε−  diagram has a much higher 

influence on the load carrying capacity of the panel than the strength ( )cr cr
n nσ ε  of the 

second branch. Nevertheless, Figure 3.44 and Figure 3.45 also demonstrate that the slope 

of the load-deflection branch before the punching failure grows with the value of cr
n2D  

(Figure 3.6). Finally, the decrease of the fracture energy is mainly reflected at the point 

corresponding to the first drop of the load-deflection relationship (Figure 3.45b). This 

decrease leads to a more abrupt decay of the first branch of the cr cr
n nσ ε−  diagram (Figure 

3.45a), resulting in a decrease of the load at this point. 
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(a) 

 

 

 
(b) 

Figure 3.41 – Influence of the 1ξ  parameter: (a) trilinear softening diagrams and (b) relationship between 
load and deflection at the center of the test panel. 
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(a) 

 

 

 
(b) 

Figure 3.42 – Influence of the 1α  parameter: (a) trilinear softening diagrams and (b) relationship between 
load and deflection at the center of the test panel. 
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(a) 

 

 

 
(b) 

Figure 3.43 – Influence of the 2ξ  parameter: (a) trilinear softening diagrams and (b) relationship between 
load and deflection at the center of the test panel. 
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(a) 

 

 

 
(b) 

Figure 3.44 – Influence of the 2α  parameter: (a) trilinear softening diagrams and (b) relationship between 
load and deflection at the center of the test panel. 
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(a) 

 
(b) 

Figure 3.45 – Influence of I
fG : (a) trilinear softening diagrams and (b) relationship between load and 

deflection at the center of the test panel. 
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An experimental program was carried out by Afonso (2010) with reinforced concrete slabs 

subjected to a test configuration that conducts to the punching failure of the tested slabs. In 

two slabs steel fibers were introduced in the concrete mix and one of them, FC0 (Afonso 

2010), is in this section numerically simulated using the developed model. 
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The geometry, supports, load conditions and test setup are represented in Figure 3.46 and 

Figure 3.47. The square slab of 2500 mm edge has a thickness of 180 mm and the load is 

applied to a pile (250×250×320 mm3) casted in the central zone of the slab to simulate a 

real field case. More details about the corresponding experimental program can be found 

elsewhere (Afonso 2011). 

 

Figure 3.46 – Geometry and support conditions [all dimensions are in mm] (Moraes Neto et al. 2012). 

 

Figure 3.47 – Punching test setup [all dimensions are in mm] (Moraes Neto et al. 2012). 
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The finite element idealization, load and support conditions used in the numerical 

simulations of the flat slab punching test are shown in Figure 3.48. Due to double 

symmetry, only one quarter of the panel is considered in the simulations. The mesh is 

composed of eight-node serendipity plane shell elements. A Gauss-Legendre integration 

scheme with 3×3 IP is used. The elements are divided in 16 layers, being the first 12 layers 

11.7192 mm thick, followed by a layer with 1.6848 mm thick (to simulate the tensile 

reinforcement – see Figure 3.49) and 3 layers with 11.9298 mm thick to simulate the 

concrete cover. The surface load is applied in the shaded elements shown in Figure 3.48, 

and the supports are simulated by point springs with a linear elastic behavior. The 

Newton-Raphson method with displacement control at a specific variable (central vertical 

displacement) is used in the nonlinear analysis (see section 2.4.3 of chapter 2). 

 

Figure 3.48 – Finite element mesh. 

x1

Loaded area

Supports

x2

12
50

 m
m

1250 mm

586 mm 250 mm

58
6 

m
m

25
0 

m
m



106 Chapter 3 

 

 

Figure 3.49 – Longitudinal steel bars – tensile reinforcement (Moraes Neto et al. 2012). 

The values of the parameters of the constitutive model used in the numerical simulations 

are indicated in Table 3.4. The compressive strength, cf , the concrete tensile strength, ctf , 

and the modulus of elasticity, cE , are determined experimentally (Afonso 2010), being the 

values for characterizing the trilinear tension softening diagram (see Figure 3.6) and 

out-of-plane shear stress-strain diagram (see Figure 3.9) obtained by back-fitting analysis 

in order to approximate as much as possible the experimental curve in the post-cracking 

phase, since no experimental data was available. 

Tree numerical simulations are performed. One uses a linear elastic behavior for the 

concrete, and the others uses the proposed constitutive model varying only in the treatment 

of the ou-of-plane shear components. Figure 3.50 represents the experimental and 

numerical relationships between the load and the deflection at the central point for the 

tested FC0 flat slab. Using a linear elastic behavior for concrete the numerical response 

diverges from the experimental one just after crack initiation, indicating that some cracks 

start to form at a very early stage of the experimental test. When a linear elastic behavior is 

assumed for the out-of-plane shear components a good agreement can be observed up to a 

deflection of 11.8 mm. After this deflection the experimental curve indicates a decrease in 

the load carrying capacity and then suddenly falls, suggesting the failure of the flat slab by 

punching. This load decay is not well reproduced when assuming a linear elastic behavior 

for the out-of-plane shear components, and this numerical simulation has predicted a slight 

high load carrying capacity. However, if the bilinear diagram represented in Figure 3.9 is 

used to model the softening behavior of the out-of-plane shear components, the abrupt 

decay in the load carrying capacity is better captured. 

19φ16 c/125mm

21φ16 c/115mm
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Table 3.4 - Values of the parameters of the constitutive model used in the numerical simulation of the flat 

slab punching test. 

Poisson’s ratio 0.15ν =  

Initial Young’s modulus 225000.0 N mmcE =  

Compressive strength 239.3 N mmcf =  

Trilinear tension softening diagram 
(assigned to the concrete layers) 

23.5 N mmctf = ; 0.015N mmI
fG = ; 

1 0.3ξ = ; 1 0.5α = ; 2 0.5ξ = ; 2 0.25α =  

Fictitious parameters assigned to the 
layer to simulate the tensile 
reinforcement 

2450.0 N mmctf = ; 120 N mmI
fG = ; 

1 0.1ξ = ; 1 1.0α = ; 2 0.25ξ = ; 2 1.05α =  
2205000.0 N mmsE =  

Fracture energy (mode III) used in the 
out-of-plane shear stress-strain diagram 

0.015 N mmIII
fG =  

Parameter defining the mode I fracture 
energy available to the new crack 2 2p =  

Shear retention factor Exponential ( 1 2p = ) 

Crack bandwidth Square root of the area of the IP 

Threshold angle 30ºthα =  

Maximum number of cracks per each IP 2 
cr cr

1 n,2 n,1/α σ σ= , 2 ,3 ,1/cr cr
n nα σ σ= , 1 ,2 ,/cr cr

n n uξ ε ε= , 2 ,3 ,/cr cr
n n uξ ε ε=  (see Figure 3.6) 

 

 
Figure 3.50 – Relationship between load and deflection at the center of the FC0 slab. 
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3.9 SUMMARY AND CONCLUSIONS 

In the present work a model based on the finite element method is proposed to simulate 

concrete laminar structures failing in bending and shear. The Reissner-Mindlin theory in 

the context of layered shells is presented and special emphasis is placed on the treatment of 

the shear behavior. 

The proposed model is based on a multi-directional and fixed smeared crack concept. By 

considering the nonlinear behavior of each shell layer, crack propagation through the 

thickness of these structures can be simulated. 

Fracture mode I is modeled with a crack stress vs. crack strain trilinear diagram, whose 

defining parameters can be obtained by inverse analysis using the load-deflection 

relationship obtained with three-point notched beam tests, carried out according to the 

RILEM TC 162-TDF recommendations. With this strategy the values of the fracture 

parameters that define the normal stress-strain crack constitutive relationship are obtained. 

Since this type of test is much simpler and faster to execute, it becomes an advantageous 

alternative to the direct tensile tests recommended to evaluate the fracture mode I 

parameters of cement based materials. The adopted inverse analysis strategy is presented 

and discussed in section 3.7.1. 

To simulate the out-of-plane strain gradient that occurs in punching tests, a softening 

diagram is proposed to model, after crack initiation, the out-of-plane shear components. 

The formulation of linear and nonlinear support conditions, such as surface, line and point 

springs, is presented, and a special attention is dedicated to unilateral support conditions. 

With this approach, the loss of contact between the structure and the supporting system can 

be simulated, e.g., for the case of a slab supported on ground. A parametric study based on 

a steel fiber reinforced concrete slab supported on soil, using a nonlinear model for the 

simulation of the slab support conditions, is also presented. 



Numerical model for concrete laminar structures 109 

 

The improvements made in the internal algorithms associated with the stress update and 

with the critical crack status changes are presented and their advantages are discussed. 

The adequacy and accuracy of the proposed model is appraised using the results obtained 

in a punching test of a panel prototype built with steel fiber reinforced self-compacting 

concrete (SFRSCC) and in a punching test of a reinforced concrete flat slab that also 

included steel fibers in the concrete matrix. The proposed numerical strategy allows for an 

accurate simulation of the load-deformational process of the experimentally SFRSCC 

tested panel, which exhibited a brittle punching failure. Several numerical simulations are 

presented and discussed. Mesh refinement, data obtained with inverse analysis to define 

the trilinear diagram and a softening out-of-plane shear diagram are alternatives whose 

influence on the prediction of the experimental panel response is investigated. The 

load-deformational process of the experimentally tested reinforced concrete flat slab was 

also well predicted. 

The use of softening laws to simulate the mode I crack opening and the out-of-plane shear 

components is crucial in order to obtain accurate numerical simulations The numerical 

simulations carried out with the proposed model and its comparison with the results of the 

experimental tests used in this work lead to the conclusion that the behavior of laminar 

structures failing in punching can be numerically predicted by a FEM-based 

Reissner-Mindlin shell approach as long as a crack constitutive model that includes a 

softening diagram for modeling both out-of-plane shear constitutive laws is used. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 4 

Modeling of the crack shear component 

4.1 INTRODUCTION 

In the previous chapter a model for concrete laminar structures based on the formulation of 

the Reissner-Mindlin layered approach is described. Each layer is considered to be in a 

state of plane stress. To simulate the nonlinear behavior of the intervening materials, as 

occurs, for example, in the crack propagation through the thickness of a shell, a crack 

constitutive model is proposed and explained in section 3.3. To improve the predictive 

accuracy of the model for the simulation of the behavior of laminar structures failing in 

punching, special attention is dedicated to the treatment of the out-of-plane shear 

components by proposing a softening diagram after crack initiation (see section 3.4). 

For the case of cracked concrete, stress and strain in-plane components are related by a 

cracked concrete constitutive matrix, crco
mbD , defined by equation (3.24). For the simulation 

of the mode I crack opening, two tensile-softening diagrams can be used, being the crack 

mode II (in-plane shear) modulus calculated using the concept of shear retention factor, β , 

defined as a constant value or as a function of the crack normal strain, as shown in 

equations (3.31) and (3.32). As observed, the adoption of a softening tensile-diagram to 

simulate the crack opening propagation is a suitable strategy to accurately assess the 

behavior of structures governed by flexural failure mode. However, an accurate simulation 

of structures failing in shear or in flexural/shear is still a challenge in the computational 

mechanics domain. To improve the predictive accuracy of the model for the simulation of 
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the behavior of structures governed by this type of failure, two strategies to simulate the 

crack shear component that appears in the formulation of the smeared crack constitutive 

model described in section 3.3.2.2 are presented and discussed in this chapter. 

These strategies are exposed for the in-plane components of a specific k  layer of the 

laminar structure, but they were also implemented in the already available smeared 

multi-fixed crack model developed for plane stress, as well as in the three-dimensional 

multi-fixed smeared crack model described in chapter 5. Therefore, for the exposition of 

these strategies the subscript mb  used in the formulation presented in section 3.3 is not 

used. 

The main purpose of the implementation of these two strategies is to improve the 

simulation of the degradation of the shear stress transfer with the crack opening evolution. 

One of the strategies is based on the adoption of a total approach for the crack shear 

stress-shear strain relationship. The other strategy is based on the introduction of a 

softening diagram for the relation between the crack shear stress-shear strain components. 

Numerical simulations are performed to evidence the main differences provided by both 

strategies when they are applied to shear-failure structures. 

4.2 INCREMENTAL VS. TOTAL APPROACH FOR MODELING THE SHEAR 

CRACK COMPONENT 

When the material corresponding to a specific integration point (IP) is assumed to be in a 

cracked state and is submitted to an incremental strain, ε∆ , the strain field in this IP is 

modified and the stress state must be updated. 

In the following sections two formulations are presented for the stress update. The first one 

is an incremental approach for both, normal and shear crack components, and the second 

one is an incremental approach for the normal crack component and a total approach for 

the crack shear component. The formulations are restricted to one crack, but its 

generalization to the case of multiple cracks at each IP is a straightforward process. 
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The concept of the incremental and total approach for the crack shear stress-shear strain 

relationship is represented in Figure 4.1. 

 

Figure 4.1 – Example of crack shear stress-strain relation for the incremental and total approaches. 

In the incremental approach the crack shear stress cr
tτ  provided by the aggregate interlock 

effect at a certain crack shear strain stage is obtained with 

 , ,
cr cr cr cr cr cr
t t prev t t prev II tDτ τ τ τ γ= +∆ = + ∆  (4.1)

where ,
cr
t prevτ  is the crack shear stress in a previous state at the same IP, cr

tτ∆  is the 

increment of the crack shear stress, cr
IID  is the mode II stiffness modulus, defined by 

equation (3.31), and cr
tγ∆  is the incremental crack shear strain. 

It can be observed in Figure 4.1 that the increment of the crack shear stress cr
tτ∆  is only 

null when 0cr
IID = , i.e., for ,

cr cr
n n uε ε≥  (see equations (3.31) and (3.32)). Therefore, even 
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when the crack width is increasing, the crack shear stress cr
tτ  can also increase up to an 

asymptotic value, regardless the crack is no longer capable of transferring normal tensile 

stresses. This can lead to the formation of a new crack, resulting in several cracks at an IP, 

which introduces severe difficulties in accomplishing the constitutive laws of the cracks 

formed at the IP, even when a rigorous strain-decomposition concept is adopted for this 

purpose (Sena-Cruz 2004). The occurrence of quite high crack shear stresses can also 

contribute to numerical predictions with higher stiffness and load carrying capacity than 

the values registered experimentally, mainly in elements failing in shear. 

In the total approach the crack shear stress cr
tτ  at a certain crack shear strain stage is 

obtained with 

 ( ), ,
cr cr cr cr cr cr cr cr cr cr
t II t II t prev t II t prev II tD D D Dτ γ γ γ γ γ= = + ∆ = + ∆  (4.2)

By observing Figure 4.1, it can be stated that for an increment of the crack shear strain 
cr
tγ∆  a decrease in the crack shear stress cr

tτ  can occur due to a significant decrease of cr
IID . 

Therefore, the aim of the total approach, proposed in the present work for modeling the 

fracture mode II, is to reproduce numerically a decrease of crack shear stress transfer cr
tτ  

with the increase of the crack shear strain cr
tγ , after a first phase where cr

tτ  increases with 

cr
tγ  (Abaqus 2002), as is expected when crack opening cr

nε  is also increasing. 

4.2.1 Incremental approach 

The relationship between the in-plane stress components in the coordinate system of the 

finite element, σ , and the crack stress components in the local crack coordinate system, 
crσ , is obtained with equation (3.49), rewritten at this phase for convenience. 

 crcr Tσ σ=  (4.3)
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where 

 
Tcr cr cr

n tσ σ τ⎡ ⎤= ⎣ ⎦  (4.4)

and 

 [ ]1 2 12
Tσ σ σ τ=  (4.5)

being cr
nσ  and cr

tτ  the crack normal and shear stresses in the crack, respectively, and crT  

is the matrix that transforms the stress components from the coordinate system of the finite 

element to the local crack coordinate system (see Figure 3.5) for a specific crack in the IP. 

Taking into account equation (3.18), equation (4.3) can be rewritten as follows 

 ( ),
crcr cr

prevprev Tσ σ σ σ+ ∆ = + ∆  (4.6)

where the subscript prev  indicates, in this case, the stress in a previous state in the IP, σ∆  

the incremental stress vector for the in-plane components in the coordinate system of the 

finite element defined by equation (3.14) and crσ∆  the incremental local crack stress 

vector defined by 

 
Tcr cr cr

n tσ σ τ⎡ ⎤∆ = ∆ ∆⎣ ⎦  (4.7)

being cr
nσ∆  and cr

tτ∆  the incremental crack normal and shear stress components, 

respectively. 
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Using the strain decomposition concept, co crε ε ε∆ = ∆ +∆  and knowing the relationship 

between the incremental crack strain components in the coordinate system of the finite 

element crε∆  and the crack strain components in the local crack coordinate system crε∆  

 
Tcr cr crTε ε⎡ ⎤∆ = ∆⎣ ⎦  (4.8)

where 

 
Tcr cr cr

n tε ε γ⎡ ⎤∆ = ∆ ∆⎣ ⎦  (4.9)

and 

 [ ]1 2 12
Tε ε ε γ∆ = ∆ ∆ ∆  (4.10)

the incremental stress is obtained with 

 ( )Tco co cr crcoD D Tσ ε ε ε⎡ ⎤∆ = ∆ = ∆ − ∆⎣ ⎦  (4.11)

being coD  defined by equation (3.20). 

Including equation (4.11) in equation (4.6) and making some arrangements, this equation 

can be written as 

 , 0
Tcr cr co cr co cr crcr cr

prevprev T T D T D Tσ σ σ ε ε⎡ ⎤+ ∆ − − ∆ + ∆ =⎣ ⎦  (4.12)

where crσ∆  depends on crε∆ , being obtained with this equation 
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0

0

cr crcr
cr n nI

cr crcr
t tII

D
D

σ ε
σ

τ γ
⎡ ⎤ ⎡ ⎤⎡ ⎤∆ ∆

∆ = =⎢ ⎥ ⎢ ⎥⎢ ⎥∆ ∆⎣ ⎦⎣ ⎦ ⎣ ⎦
 (4.13)

In equation (4.13) cr
ID  and cr

IID  represents, respectively, the constitutive components of 

the crack opening mode I (normal) and crack sliding mode II (shear). The cr
ID  can be 

obtained with a diagram characterizing the crack fracture mode I propagation, while the 
cr
IID  can be determined from shear retention factor concept defined in the section 3.3.2.2 of 

chapter 3. 

As referred in section 3.5.1, to solve the system of nonlinear equations represented in 

equation (4.12), where the unknowns are the components of the crack strain vector crε∆ , 

two algorithms for the stress update are available, being one based on the Newton-Raphson 

method, and the other based on the fixed point iteration method. Both these methods are 

described elsewhere (Sena-Cruz 2004). 

4.2.2 Total approach 

The total approach is applied only to the shear components. In this case equation (4.6) can 

be written as 

 

,

1 12 2

2 22 2

12 12

cos sin 2sin cos
sin cos sin cos cos sin

cr cr
n prev n

cr
t

prev

σ σ
τ

σ σ
θ θ θ θ

σ σ
θ θ θ θ θ θ

τ τ

⎡ ⎤+ ∆
=⎢ ⎥

⎣ ⎦

⎛ ⎞∆⎡ ⎤ ⎡ ⎤
⎜ ⎟⎡ ⎤ ⎢ ⎥ ⎢ ⎥= + ∆⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎜ ⎟⎢ ⎥ ⎢ ⎥∆⎣ ⎦ ⎣ ⎦⎝ ⎠

 (4.14)

where 

 cr cr cr
n I nDσ ε∆ = ∆  (4.15)
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and cr
tτ  is defined by (4.2). 

Substituting equations (4.15) and (4.2) in the left term of the equation (4.14) 

 

,

,

1 12 2

2 22 2

12 12

cos sin 2sin cos
sin cos sin cos cos sin

cr cr cr
n prev I n

cr cr cr cr
II t prev II t

prev

D
D D
σ ε
γ γ

σ σ
θ θ θ θ

σ σ
θ θ θ θ θ θ

τ τ

⎡ ⎤ ⎡ ⎤∆
+ =⎢ ⎥ ⎢ ⎥∆⎢ ⎥ ⎣ ⎦⎣ ⎦

⎛ ⎞∆⎡ ⎤ ⎡ ⎤
⎜ ⎟⎡ ⎤ ⎢ ⎥ ⎢ ⎥= + ∆⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎜ ⎟⎢ ⎥ ⎢ ⎥∆⎣ ⎦ ⎣ ⎦⎝ ⎠

 (4.16)

or in matrix form 

 ( )*

,
crcr cr

prevprev Tσ σ σ σ+ ∆ = + ∆  (4.17)

and introducing equation (4.11) in (4.17) results 

 
*

, 0
Tcr cr co cr co cr crcr cr

prevprev T T D T D Tσ σ σ ε ε⎡ ⎤+ ∆ − − ∆ + ∆ =⎣ ⎦  (4.18)

being 

 
*

, , ,

Tcr cr cr cr
prev n prev II t prevDσ σ γ⎡ ⎤= ⎣ ⎦  (4.19)

the modified crack stress vector (only the shear component) from a previous state. The 

components of crσ∆  are obtained with (4.13). 

Similarly to the incremental approach, the crack strain vector crε∆  can be obtained with 

the Newton-Raphson or the fixed-point iteration methods. 
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Equation (4.18) can be reduced to 

 ( ) 0crf ε∆ =  (4.20)

At iteration q  of the Newton-Raphson method the first derivative of f  in order to the 

incremental crack strain vector crε∆  must be obtained, being defined by (see Appendix C) 

 
( )cr

Tcrcr cr co cr
cr

f
D D T D T

ε

ε

∂ ∆
⎡ ⎤= + + ⎣ ⎦∂∆

 (4.21)

where 

 
0 0

0
cr cr

crII
tcr

n

D D γ
ε

⎡ ⎤
⎢ ⎥= ∂⎢ ⎥
⎢ ⎥∂∆⎣ ⎦

 (4.22)

being cr
IID  obtained with equation (3.31). 

Equation (4.22) is similar to the one used in the incremental approach described in 

(Sena-Cruz 2004), being the main difference the replacement of the incremental shear 

crack strain, cr
tγ∆ , with the total shear crack strain, cr

tγ . 

4.2.3 Numerical simulations 

As mentioned above, the total approach for the crack shear component is also included in 

the smeared crack model previously implemented for plane stress analysis with the 

incremental approach. In this section, to validate the exposed approaches, two numerical 

simulations are made. The first one is a more theoretical numerical simulation, whose main 

purpose is to show the differences between both approaches and the capabilities of the total 

approach to simulate the degradation of the stresses at an IP. The second example is 
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dedicated to the numerical simulation of reinforced concrete beams shear and flexurally 

strengthened with composite materials. 

4.2.3.1 Single element 

To compare the capabilities of the total and incremental approaches two numerical 

simulations are made in this section. One with an incremental approach for both crack 

normal and shear components, and the other with an incremental approach for the crack 

normal component and a total approach for the crack shear component. 

A single element considered to be subjected to a plane stress state is used for both these 

numerical simulations. Figure 4.2 represents the geometry, load and support conditions of 

the element, and Table 4.1 includes the values of some parameters required by the model. 

A four-noded plane stress finite element with one IP (Gauss point) is used, and a 

tensile-softening trilinear diagram is adopted to simulate the mode I fracture propagation. 

The Newton-Raphson method with displacement control at a specific variable is utilized in 

this example. 

 

Figure 4.2 – Geometry, load and support conditions of the single element mesh. 
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Table 4.1 - Model properties used in the single element simulation. 

Poisson’s ratio 0.2ν =  

Initial Young’s modulus 231000.0 N mmcE =  

Compressive strength 238.0 N mmcf =  

Trilinear tension softening 
diagram 

22.9 N mmctf = ; 0.075 N mmI
fG = ; 

1 0.2ξ = ; 1 0.7α = ; 2 0.75ξ = ; 2 0.5α =  

Parameter defining the mode I 
fracture energy available to the 
new crack 

2 2p =  

Shear retention factor Exponential ( 1 2p = ) 

Crack bandwidth Square root of the area of the element 

Threshold angle 30ºthα =  

 

 

Figure 4.3 – Load-horizontal displacement relationship. 

The load-horizontal displacement relationship is represented in Figure 4.3, using the total 
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capacity, maintaining a high residual load in comparison with the total curve that presents 

a softening behavior up to the complete loss of load carrying capacity. 

This behavior can be justified by the analysis of the stress-strain relationship for fracture 

mode I and mode II obtained in the IP for each approach, and represented in Figure 4.4 and 

Figure 4.5. 

Figure 4.4 represents the crack normal stress-strain relation in the crack coordinate system 

(CrCS), and Figure 4.5 the crack shear stress-strain relation in the same CrCS. As 

expected, both approaches provide similar crack normal stress strain diagram, because the 

total approach is only applied to the crack shear component. In fact, Figure 4.5 shows that 

quite different crack shear stress-strain diagrams can be obtained for both approaches. In 

the total approach the crack shear stress decreases with the crack opening process, while in 

the incremental approach the crack shear stress increases up to an asymptotic value. 

 

Figure 4.4 – Crack normal stress-strain relationship in CrCS. 
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Figure 4.5 – Crack shear stress-strain relationship in CrCS. 

The stresses and strains developed at the IP in the global coordinate system (GCS) are 

represented in Figure 4.6 to Figure 4.8. It can be observed in all of these charts that the 

behavior of each approach is similar up to crack initiation and, then, they gradually follow 

a different path, leading, for the cases of the 2x  normal stress and 1 2x x  shear stress, to a 

very different post-peak residual value (see Figure 4.7 and Figure 4.8). This difference can 

be justified by the fact that in the incremental approach the crack shear stress has an 

asymptotic residual value, as shown in Figure 4.5. Due to its contribution to the stresses in 

the global coordinate system, higher stress components are obtained using the incremental 

approach. 

A numerical simulation of the single element with four integration points was also 

performed, and similar conclusions were obtained. 
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Figure 4.6 – 1x  normal stress-strain relationship in GCS. 

 

 

 

Figure 4.7 – 2x  normal stress-strain relationship in GCS. 
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Figure 4.8 – 1 2x x  shear stress-strain relationship in GCS. 
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thickness by using the Near Surface Mounted (NSM) technique demands to cut the bottom 
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program composed of three series of beams of distinct cross section depth can be found 

elsewhere (Costa and Barros 2010). 

The NSM technique for the flexural strengthening of RC beams or slabs consists of 
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to strengthen bonded with an epoxy adhesive to the surrounding concrete. The efficiency 

of this technique can be found elsewhere (Täljsten et al. 2003, El-Hacha and Rizkalla 

2004, Sena-Cruz 2004, Barros and Fortes 2005, Bonaldo et al. 2008, Barros et al. 2008). In 

a tentative of avoiding the occurrence of shear failure in the NSM-flexurally strengthened 

beams, wet layup CFRP strips of sheet of U configuration were also applied according to 

the Externally Bonded Reinforcement (EBR) technique (ACI Committee 440, 2007). The 

U shape CFRP strips were placed between the existing steel stirrups (see Figure 4.9). 
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Figure 4.9 – Localization of the NSM CFRP laminates and of the EBR strip of wet layup CFRP sheet 

[dimensions in mm] (Barros et al. 2011). 

In the numerical simulation of these beams, the total and incremental approaches for the 

crack shear component were used. In this section, only the numerical results of the beams 

of the first series are presented. The complete numerical research can be found in Barros et 

al. (2011). 

The designations of the beams used in the experimental research are the following: 

• VR1 - reinforced concrete reference beam; 

• VE1 - VR1 beam with the bottom arm of the steel stirrups cut; 

• VL1 - VE1 beam flexurally strengthened with NSM CFRP laminates; 

• VLM1 - VL1 beam shear strengthened with EBR strips of wet layup CFRP sheets 

of U configuration. 

The geometry, support and loading conditions of the beams are represented in Figure 4.10. 

For the case of the beams of series 1: 1 550L mm= ; 2 950L mm= ; 200b mm= ; 250h mm=  

longitudinal steel bars at bottom surface ( )2
sA 2 10 1 6 185mm+ = φ + φ  and longitudinal steel 

bars at top surface ( )2
sA 2 10 157mm− = φ . 

 

Figure 4.10 – Beam geometry, support and loading conditions [dimensions in mm] (Barros et al. 2011). 
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Under the framework of the finite element analysis, the tested beams are considered as a 

plane stress problem. Therefore, the beams are modeled with a mesh of 8-noded 

serendipity plane stress finite elements. A Gauss-Legendre integration scheme with 2×2 IP 

is used in all the concrete elements. The steel bars, the NSM laminates and the EBR CFRP 

strips are modeled with 2-noded perfectly bonded embedded cables (one degree-of-

freedom per node). 

For modeling the behavior of the steel bars, the stress-strain relationship available in the 

FEMIX computer code is used (Sena-Cruz 2004). The curve (under compressive or tensile 

loading) is defined by the points PT1 = ( ),sy syε σ , PT2 = ( ),sh shε σ  and PT3 = ( ),su suε σ  

and a parameter p  that defines the shape of the last branch of the curve. Unloading and 

reloading linear branches with slope s sy syE σ ε=  are assumed in the present approach. For 

modeling both the NSM laminates and EBR strips of sheet, a linear elastic stress-strain 

relationship is adopted. 

The values of the parameters of the constitutive model used in the numerical simulations 

are indicated in Table 4.2, Table 4.3 and Table 4.4. Using the average compressive 

strength cf , determined experimentally, and the equations proposed by CEB-FIP (1993), 

the concrete tensile strength ctf  and the fracture energy I
fG are obtained. 

As suggested by Stevens (1987), the tensile yield stress and the stress values corresponding 

to strains higher than the tensile yield strain of the steel bars are reduced by the term 

75 /ycr ct sfσ φ∆ = , being ctf  the concrete tensile strength in MPa, and sφ  the diameter of 

the steel bar in mm. This reduction is to take into account that the stress in the steel 

reinforcement at the concrete crack plane is higher than the average stress determined in 

the IP of the corresponding embedded cable element. This stress is obtained from the 

displacements of the “mother element” of the embedded cable. 
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Table 4.2 - Properties of CFRP laminates and strips 

of sheets. 

 CFK 
Laminate 

C Sheet 
240 

ffu (MPa) 2783 3257 

Ef (GPa) 157 237 

εfu (‰) 17.8 13.77 

tf (mm) 1.42 0.117 
 

Table 4.3 - Steel properties. 

 φs=6 mm φs=10 mm 
fsym (MPa) 571 548 

fsum (MPa) 662 648 

εsy (‰) 3.1 3.0 

σsy (MPa) 515 514 

εsh (‰) 25 25 

σsh (MPa) 579 576 

εsu (‰) 50 50 

σsu (MPa) 643 637 

p 1 1 

 

Table 4.4 - Model properties used for the beams simulation. 

Poisson’s ratio 0.2ν =  

Initial Young’s modulus 228900.0 N mmcE =  

Compressive strength 231.0 N mmcf =  

Trilinear tension softening 
diagram 

21.5 N mmctf = ; 0.0665 N mmI
fG = ; 

1 0.1ξ = ; 1 0.5α = ; 2 0.3ξ = ; 2 0.2α =  

Parameter defining the mode I 
fracture energy available to the 
new crack 

2 1p =  

Shear retention factor Cubic ( 1 3p = ) 

Crack bandwidth Square root of the area of the IP 

Threshold angle 30ºthα =  

Maximum number of cracks per 
each IP 2 

 

In Figure 4.11 the experimental relationship between the load and the deflection at the 

loaded section for the tested beams and the numerical ones obtained with the incremental 
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and the total approaches are compared. The dash-dot horizontal line corresponds to the 

maximum experimental load of each beam. 

Figure 4.12 represents, for each beam and for the numerical simulations involving both 

approaches, the crack patterns at the end of the analysis, i.e., for the last converged load 

increment. The cracks are represented by quadrilateral 4-noded finite elements centered at 

the IP, being drawn with a width that is proportional to the crack normal strain, cr
nε . More 

details about the status of the cracks are supplied in the caption of the Figure 4.12. 

(a) – VR1 (b) – VE1 
  
  
  
  

(c) – VL1 (d) – VLM1 

Figure 4.11 – Load-deflection at the loaded section for the beams of series 1 (Barros et al. 2011). 
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and predicted with good accuracy the deformational response of the VL1 and VLM1 

beams. However, comparing the crack pattern of VL1 beam represented in Figure 4.13 

with the crack patterns obtained numerically and represented in Figure 4.12, it can be 

concluded that only the total approach captured with high precision the localization and 

profile of the shear failure crack. 

The longitudinal steel bars of the VL1 and VLM1 beams have already yielded at the 

moment of the shear failure. This is well predicted by the numerical simulations using the 

total and incremental approaches, since vertical completely open cracks are observed near 

the loaded section (see Figure 4.12). 

 

Incremental approach  Total approach 

VR1 

VE1 

VL1 

VLM1 

Figure 4.12 – Crack patterns of the beams of series 1 (in pink color: crack completely open ( ,
cr cr
n n uε ε≥ ); in 

red color: crack in the opening process; in cyan color: crack in the reopening process) (Barros et al. 2011). 
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(Rots and de Borst 1987). The crack shear stress increases linearly until the crack shear 

strength is reached (first branch of the shear crack diagram), followed by a decrease in the 

shear residual strength (softening branch). 

 

Figure 4.14 – Diagram to simulate the relationship between the crack shear stress and crack shear strain 

component and possible shear crack statuses. 

The diagram represented in Figure 4.14 (based on Rots and de Borst 1987) is defined by 

the expressions shown in equation (4.23). The positive part of the diagram is explained 

here, being the treatment of the negative part straightforward. 
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The initial shear fracture modulus, ,1
cr
tD , is defined by 

 ,1 1
cr
t cD Gβ

β
=

−
 (4.24)
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where cG  is the concrete elastic shear modulus and β  is the shear retention factor, defined 

as a constant value in the range ]0,1[ , in this case. 

The peak crack shear strain, ,
cr
t pγ , is obtained using the crack shear strength (from the input 

data), ,
cr
t pτ , and the crack shear modulus is obtained with equation (4.24) 

 ,
,

,1

cr
t pcr

t p cr
tD

τ
γ =  (4.25)

The ultimate crack shear strain, ,
cr
t uγ , depends on the crack shear strength, ,

cr
t pτ , on the shear 

fracture energy (mode II fracture energy for the case of in-plane shear), ,f sG , and on the 

crack bandwidth, bl , as follows 

 ,
,

,

2 f scr
t u cr

t p b

G
l

γ
τ

=  (4.26)

In the present approach it is assumed that the crack bandwidth, used to assure that the 

results are independent of the mesh refinement, is the same for both fracture mode I and 

mode II processes. 

When the softening constitutive law represented in Figure 4.14 is used to evaluate the 

fracture mode II stiffness modulus cr
IID  of equation (3.26), its value depends on the 

branches defining the diagram. For this reason five shear crack statuses are proposed and 

their meaning is explained in the next section. 

The crack mode II stiffness modulus of the first linear branch of the diagram is defined by 

equation (4.24), the second linear (softening) branch is defined by 
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 ,
,2

, ,

cr
t pcr cr

II t cr cr
t u t p

D D
τ

γ γ
= = −

−
 (4.27)

and the crack shear modulus of the unloading and reloading branches is obtained from 

 ,max
,3 4

,max

cr
tcr cr

II t cr
t

D D
τ
γ−= =  (4.28)

being ,max
cr
tγ  and ,max

cr
tτ  the maximum crack shear strain already attained and the 

corresponding crack shear stress determined from the softening linear branch. Both 

components are stored to define the unloading/reloading branch (see Figure 4.14). 

To increase the generality of the simulation of the post-peak crack shear stress, two 

alternative crack shear stress-strain diagrams are proposed, being their shapes represented 

in Figure 4.15 and Figure 4.16. For the case of Figure 4.15, the post-peak phase is 

simulated with a trilinear diagram, while in Figure 4.16 this branch is exponential. 

The crack shear softening diagram of Figure 4.15 is defined by the expressions shown in 

equation (4.29). Similarly to equation (4.23), only the positive part of the diagram is 

treated in 
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being 
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 cr cr
1 1 t ,pcτ τ=  (4.30a)

 cr cr
2 2 tpcτ τ=  (4.30b)

 ( )cr cr cr
1 1 t ,u t ,pdγ γ γ= −  (4.30c)

 ( )cr cr cr
2 2 t ,u t ,pdγ γ γ= −  (4.30d)

 

Figure 4.15 – Diagram to simulate the relationship between the crack shear stress and crack shear strain 

component with post-peak trilinear branches. 

The ultimate crack shear strain, ,
cr
t uγ , is defined as a function of the parameters ic  and id , 

the peak crack shear strain, ,
cr
t pγ , the crack shear strength, ,

cr
t pτ , the mode II (for in-plane 

shear) fracture energy, ,
II
f f sG G= , and the crack bandwidth, bl , as follows 
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and 

 cr cr
1 1 t ,pc τ τ=  (4.33a)

 cr cr
2 2 t ,pc τ τ=  (4.33b)

 ( )cr cr cr
1 1 t ,u t ,pd γ γ γ= −  (4.33c)

 ( )cr cr cr
2 2 t ,u t ,pd γ γ γ= −  (4.33d)

The crack mode II stiffness modulus of the first linear branch of the diagram is defined by 

equation (4.24), while for the post peak branches it is obtained from the following 

equations 

 
( )( )*

2
1 1 1 2 2 1 2

,2
1 ,

1
2

cr b ct
t II
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c d c d c d c l fD
d G

− + − +
=−  (4.34a)
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−
 (4.34b)

For the unloading and reloading branches, the crack mode II stiffness modulus is 

determined by equation (4.28). 

The exponential branch of the crack shear softening diagram represented in Figure 4.16 is 

based on the Cornelissen diagram used in the definition of the crack opening mode I. 

Equation (4.35) gives expressions of the positive part of the proposed softening diagram 
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(4.35)

being 

 ,

, ,

cr cr
t t p
cr cr
t u t p

B
γ γ
γ γ

−
=

−
 (4.36)

and c1 = 3.0 ; c2=6.93. 

 

Figure 4.16 – Diagram to simulate the relationship between the crack shear stress and crack shear strain 

component with post-peak exponential branch. 
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where the parameter k is defined by equation (3.30) and ,
II
f auxG  by equation (4.32). 

The crack mode II stiffness modulus of the first linear branch of the diagram is defined by 

equation (4.24), for the unloading and reloading branches by equation (4.28) and for the 

exponential (softening) branch by 
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 (4.38)

being ,
cr
t uγ  obtained with equation (4.37). 

4.3.2 Crack shear status 

As a consequence of the formation of other cracks in the neighborhood of existing cracks, 

these existing cracks can close or reopen. The model must take into account this change of 

crack status. For the opening mode I the model takes this into account (Sena-Cruz 2004) 

and for the crack shear component a similar approach is used. 

The shear crack status is shown in Figure 4.14 and its definition takes into account the 

following assumptions: 

• Stiffening status, if the crack shear strain is less than the crack shear strain at peak 

crack shear stress, ,
cr
t pγ , obtained with equation (4.25) and assuming a constant 

shear retention factor for the evaluation of the fracture mode II stiffness modulus; 
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• Softening status, after the crack shear strain has reached ,
cr
t pγ . A decrease in the 

crack shear stress is observed with the increase of the crack shear strain; 

• Unloading status, when a shear softening crack experiences a decrease of crack 

shear strain. In this case a secant approach is followed; 

• Reloading status, when a crack with an unloading status experiences an increase of 

crack shear strain. The same branch of the unloading status is followed; 

• Free-sliding status, when the crack shear strain is greater than the ultimate crack 

shear strain. 

These crack shear statuses are stored to be used in the subsequent steps of the nonlinear 

analysis. With this procedure, at each instant the shear softening diagram is well defined. 

For example, Figure 4.17 to Figure 4.22 illustrate the possible paths that can be followed at 

each increment of crack shear strain, and, consequently, the complexity of the associated 

crack status changes. 

 

a) 0crγ∆ >  b) 0crγ∆ <  

Figure 4.17 – Increment of the crack shear strain crγ∆ : possible paths when the starting point is positive and 

in Stiffening shear crack status (point A). 
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a) 0crγ∆ <  b) 0crγ∆ >  

Figure 4.18 – Increment of the crack shear strain crγ∆ : possible paths when the starting point is negative and 

in Stiffening shear crack status (point A). 

 

 

a) 0crγ∆ >  b) 0crγ∆ <  

Figure 4.19 – Increment of the crack shear strain crγ∆ : possible paths when the starting point is positive and 

in Softening shear crack status (point A). 
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a) 0crγ∆ <  b) 0crγ∆ >  

Figure 4.20 – Increment of the crack shear strain crγ∆ : possible paths when the starting point is negative and 

in Softening shear crack status (point A). 

 

 

a) 0crγ∆ <  b) 0crγ∆ >  

Figure 4.21 – Increment of the crack shear strain crγ∆ : possible paths when the starting point is positive and 

in Unloading or Reloading shear crack status (point A). 
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a) 0crγ∆ >  b) 0crγ∆ <  

Figure 4.22 – Increment of the crack shear strain crγ∆ : possible paths when the starting point is negative and 

in Unloading or Reloading shear crack status (point A). 
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crack reopens at a subsequent step, i.e., the normal stress of the crack becomes tensile, the 

opening mode I behavior follows the unloading/reloading branch of the tensile-softening 

diagram (see for example Figure 3.6) and the data relative to strain and stress is updated. A 

more complex task is the update of the crack shear strain and stress when a softening 

diagram is used, because the crack shear stress at crack closure can be very different from 

the crack shear stress when the crack reopens. This is similar to the treatment of the 

rotation of the principal axes when the status of the crack is Closed. This problem was 

reported by Rots and de Borst (1987) and the proposed solution was to impose that the 

shear crack component enters immediately in a softening phase. For this purpose, the ,
cr
t pτ  

and ,
cr
t pγ  components (see Figure 4.14) that define the new shear softening diagram is the 

crack shear stress upon reopen and the stored crack shear strain at closure of the crack, 

respectively. The ultimate crack shear strain of the new diagram, ,
cr
t uγ , is updated in order 

to maintain the same mode II fracture energy. This procedure was implemented in a first 

phase, but it could be observed that in some cases the value of the shear crack stress was 

very low upon reopen of the crack, implying that the new softening diagram could have an 

abnormal high ultimate crack shear strain because of the condition of preserving the 

mode II fracture energy. Therefore, a new approach is adopted and the corresponding 

assumptions are commented in Table 4.5 and illustrated in Figure 4.23. This approach 

takes into account the shear crack status before the closure of the crack, being the diagram 

updated in some cases, and maintained in others. 

Figure 4.23 represents the different starting points in the crack shear softening diagram 

when the mode I crack status changes from Closed to Reopening. The value of cr
iτ  is the 

current crack shear stress at crack reopen, and cr
iγ  is the corresponding calculated crack 

shear strain. The symbol 1
cr
iγ −  represents the crack shear strain before the closure of the 

crack. If the crack shear stress, cr
iτ , is negative the starting points are located on the 

negative branch of the crack shear softening diagram (see Figure 4.14). In accordance with 

Figure 4.23, Table 4.5 represents the conditions for the update of the shear crack status 

when a crack reopens. 
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a) 
 
 
 
 
 

b) 
 
 
 
 
 

   
c) 
 
 
 
 
 

d) 
 
 
 
 
 

  
e) f) 

Figure 4.23 – Different starting points in the crack shear softening diagram when the mode I crack status 

changes from Closed to Reopening. 
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Table 4.5 – Update of shear crack status when a crack reopens 

Shear crack 
status 

before crack 
closure 

Conditions Start 
Point 

Shear crack 
status 

when crack 
reopens 

Update 
shear crack 

strength 

Update 
crack shear strain ** 

Stiffening 

cr cr
i pτ τ<  A Stiffening * - 

1

cr
pcr

i IID
τ

γ =  

cr cr
i pτ τ≥  B Softening * ,

cr cr
p new iτ τ=  ,

,
1

cr
p newcr cr

i p newIID
τ

γ γ= =  

Softening 

cr cr
i pτ τ<  C Softening * - 

2

cr cr
cr cr i u
i p IID

τ τγ γ −
= +  

cr cr
i pτ τ≥  B Softening * ,

cr cr
p new iτ τ=  ,

1

cr
p newcr

i IID
τ

γ =  

Unloading 
or 

Reloading 

cr cr
i pτ τ<  

max
3,4

cr
cri

IID
τ γ>  

D Softening * - 
2

cr cr
cr cr i u
i p IID

τ τγ γ −
= +  

cr cr
i pτ τ<  

max
3,4

cr
cri

IID
τ γ≤  

1
3,4

cr
cri
iIID

τ γ −≤  

E Unloading - 
3,4

cr
cr i
i IID

τγ =  

cr cr
i pτ τ<  

max
3,4

cr
cri

IID
τ γ≤  

1
3,4

cr
cri
iIID

τ γ −>  

F Reloading - 
3,4

cr
cr i
i IID

τγ =  

cr cr
i pτ τ≥  B Softening * ,

cr cr
p new iτ τ=  ,

1

cr
p newcr

i IID
τ

γ =  

Free-sliding - - Free-sliding - max
cr cr
iγ γ= *** 

*  max
crγ  - the maximum crack shear strain is updated; 

**  1 1
II

cD Gβ
β

=
−

; 2

cr
pII

cr cr
u p

D
τ

γ γ
= −

−
; max

3,4
max

cr
II

crD
τ
γ

= ; 

*** the crack shear stress is assumed to be null: 0cr
iτ = . 
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4.3.3 Numerical simulations 

To validate the implemented softening diagram of the shear crack component three 

numerical simulations are performed. The first one is dedicated to the simulation of a 

mixed-mode test (Arrea and Ingraffea 1982), while the second deals with the simulation of 

a reinforced concrete T cross section beam that has failed in shear (Dias and Barros 2010). 

The last example is dedicated to the numerical simulation of a reinforced concrete beam 

strengthened in shear with embedded through-section bars (Dalfré et al. 2011). 

4.3.3.1 Mixed-mode test 

In this section the experimental test from Arrea and Ingraffea (1982) is numerically 

simulated. This test is a benchmark for the validation of models taking into account the 

flexural and shear failure modes, being this phenomenon usually designated mixed-mode 

failure. Many researchers simulated this test numerically, being the results available 

elsewhere (Rots et al. 1985, de Borst 1986, Rots and de Borst 1987, Rots 1988, Ozbolt and 

Reinhardt 2000, Jirásek and Zimmermann 2001, Most and Bucher 2006). 

Some material parameters used in the numerical simulations coincide with those used by 

Rots and de Borst 1987. The geometry, mesh, support and load conditions of the tested 

four point beam are illustrated in Figure 4.24. The beam is modeled with 8-noded plane 

stress finite elements. The elements outside the refined zone are assumed to exhibit a 

linear-elastic behavior. The multi-fixed smeared crack model is adopted for the elements of 

the refined zone thus taking into account the nonlinear behavior due to crack initiation and 

propagation. The Gauss-Legendre integration scheme with 3×3 IP is used in all the 

elements. 

Three numerical simulations are performed, varying in the treatment of the crack shear 

component. The mode I fracture behavior is simulated with a bi-linear softening diagram, 

adapted from the trilinear diagram presented in chapter 3. The parameters defining this 

diagram are listed in Table 4.6. One of the numerical simulations considers a constant 

shear retention factor to obtain the mode II stiffness modulus, while the others use the 

softening diagram of Figure 4.14 to determine the crack shear modulus. The difference 
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between these last numerical simulations resides on the value used for the mode II fracture 

energy. The parameters defining these diagrams are presented in Table 4.6. 

 

Figure 4.24 – Geometry, mesh, load and support conditions of the tested four point beam (all dimensions are 

in mm) [based on Rots and de Borst 1987]. 

 

Table 4.6 - Model properties used in the four point beam simulations. 

Poisson’s ratio 0.18ν =  

Initial Young’s modulus 224800.0 N mmcE =  

Compressive strength 248.0 N mmcf =  

Trilinear tension softening 
diagram 

22.8 N mmctf = ; 0.075 N mmI
fG = ; 

1 0.15ξ = ; 1 0.3α = ; 2 0.4ξ = ; 2 0.2α =  

Shear crack softening diagram 
0.2β = ; 2

, 0.5 N mmcr
t pτ = ;

0.075 N mmII
fG =  or 0.01 N mmII

fG =  

Parameter defining the mode I 
fracture energy available to the 
new crack 

2 2p =  

Shear retention factor 0.2 

Crack bandwidth 20.3 mm 

Threshold angle 60ºthα =  

Maximum number of cracks in 
each IP 2 
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The numerical simulations are performed using the Newton-Raphson method, controlled 

by the relative displacement between two specific variables (see section 2.4.4). The 

controlling variables consist on a pair of vertical displacements, located at each tip of the 

notch. This type of control is named Crack Mouth Sliding Displacement or CMSD. With 

this procedure an eventual snap-back can be captured (de Borst 1986, Ventura-Gouveia et 

al. 2006). 

Figure 4.25 shows the relation between the load at point B and the CMSD. The 

experimental pattern was obtained by Rots and de Borst 1987. It is observed that the three 

numerical simulations have similar behavior up to the peak load, and afterwards different 

paths are followed. With the constant shear factor the residual stress is close to the peak 

stress and practically no softening is predicted. With the introduction of the shear crack 

softening diagram a softening behavior is observed and a good agreement with the 

experimental results can be obtained, especially with the simulation that considers the 

mode II fracture energy equal to 0.075 N/mm. The abrupt load decay, from 47.7 kN to 

9 kN, in the simulation with mode II fracture energy equal to 0.01 N/mm can be justified 

by the deformed mesh observed before and after this occurrence, as represented in Figure 

4.26. 

 

Figure 4.25 – Load at point B – crack mouth sliding displacement (CMSD) relationship. 
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(a) (b) 

Figure 4.26 – Numerical simulation with softening crack shear diagram considering 0.01 N mmII
fG = : 

deformed mesh (a) before and (b) after the abrupt load decay observed in Figure 4.25. The dashed line 

represents the undeformed mesh. 

The crack pattern observed immediately before and immediately after the abrupt load 

decay is shown in Figure 4.27. 

  
(a) (b) 

Figure 4.27 – Numerical simulation with softening crack shear diagram considering 0.01 N mmII
fG = : crack 

pattern (a) before and (b) after the abrupt load decay observed in Figure 4.25. In dark quadrilateral, crack 

fully open, and the others in opening or closing process. 

From the analysis of the two deformed meshes and respective crack pattern, it can be stated 

that the model is capable to reproduce numerically the decrease of the crack shear stress 

transfer during the crack opening process, and is able to evaluate the residual load carrying 

capacity. This residual load capacity is in most cases due to the aggregate interlock 

occurring at the crack. 

In Figure 4.28 the load at point B is plotted against the crack mouth opening displacement 

(CMOD). Conclusions identical to the aforementioned ones can be extracted in terms of 
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using a softening diagram or the shear retention factor to simulate the degradation of the 

shear stress transfer during the crack opening process. An interesting phenomenon, 

captured numerically for the curve with 0.01 N mmII
fG = , is the snap-back of the CMOD 

at the sudden load decay. The explanation for this behavior can be found by examining the 

deformed meshes in Figure 4.26. Due to the rotation of the left side of the beam about the 

support point, the CMOD decreases at this instant and then progressively reopens. This 

reopening process in a residual phase is numerically reproduced and shown in Figure 4.28. 

 

Figure 4.28 – Load at point B – crack mouth opening displacement (CMOD) relationship. 

As observed by de Borst (1986) and Rots and de Borst (1987), a snap-back occurs after the 

peak load and is only achieved when the CMSD control is used in the nonlinear analysis. 

This snap-back is more pronounced when a crack softening diagram is used (see Figure 

4.29). An interesting snap-back is observed after the abrupt load decay that occurs when 

the softening 0.01 N mmII
fG = curve is used. 
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Figure 4.29 – Load - displacement at point B relationship. 

4.3.3.2 T cross section reinforced concrete beam failing in shear 

An experimental program was carried out by Dias and Barros (2010) with reinforced 

concrete (RC) T cross section beams in the scope of a research project for the assessment 

of the effectiveness of the near surface mounted (NSM) technique by using carbon fiber 

reinforced polymer (CFRP) laminates for the shear strengthening of RC T beams. Several 

RC T beams with different percentage of NSM CFRP laminates were tested. The 

geometry, support and loading conditions of the RC T reference beams are represented in 

Figure 4.30. 

 
Figure 4.30 – Reinforced concrete T reference beam: geometry, support, steel reinforcement scheme and 

loading conditions [dimensions in mm] (Dias and Barros 2010). 
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The RC tested beam named 2S-R (see Figure 4.31) is numerically simulated, which 

corresponds to the control T beam of the series with two steel stirrups in the iL  span, i.e., 

without NSM CFRP laminates. To prevent concrete spalling near the most loaded support, 

a confinement system based on the use of wet layup CFRP strips of sheets of U 

configuration is applied as represented in Figure 4.30.  

 
Figure 4.31 – 2S-R reinforced concrete T cross section beam [dimensions in mm] (Dias and Barros 2010). 

For the finite element analysis, the beam is considered as a plane stress problem. 

Therefore, the beam is modeled with a mesh of 4-noded serendipity plane stress finite 

elements (see Figure 4.32). A Gauss-Legendre integration scheme with 2×2 IP is used in 

all concrete elements and CFRP strips of sheet elements. The steel bars are modeled with 

2-noded perfectly bonded embedded cables (one degree-of-freedom per node). The 

Newton-Raphson method with displacement control at a specific variable is used in the 

nonlinear analysis (see section 2.4.3 of chapter 2). 

 
Figure 4.32 – Finite element mesh [dimensions in mm]. 

2S-R

3x300100

900

F

18x75

1350

100



Modeling of the crack shear component 153 

 

For modeling the behavior of the steel bars, the stress-strain relationship available in the 

FEMIX computer code is used (Sena-Cruz 2004). A linear elastic behavior is adopted for 

modeling CFRP strips of sheets. 

The values of the parameters of the constitutive model used in the numerical simulations 

are indicated in Table 4.7, Table 4.8 and Table 4.9. Using the average compressive 

strength, cf , determined experimentally, the concrete tensile strength, ctf , and the mode I 

fracture energy, I
fG , were initially obtained from equations proposed by CEB-FIP (1993), 

and then were slightly adjusted in order to fit with high accuracy the load at crack 

initiation. The values for characterizing the softening diagram of Figure 4.14 were obtained 

by back-fitting analysis in order to approximate as much as possible the experimental 

curve in the post-cracking phase. It can be observed that the mode II fracture energy value 

is similar to the value assigned to the mode I fracture energy. 

Table 4.7 - Properties of CFRP strips of sheets. 

 C Sheet 
240 

ffu (MPa) 2863 

Ef (GPa) 218 

εfu (‰) 13.3 

tf (mm) 0.176 

 

Table 4.8 - Steel properties. 

 φs=6 mm φs=12 mm φs=16 mm 
φs=32 mm

εsy (‰) 3.0 2.8 3.0 

σsy (MPa) 515 420 570 

εsh (‰) 25 25 25 

σsh (MPa) 542 453 740 

εsu (‰) 50 50 50 

σsu (MPa) 594 591 850 

p 1 1 1 
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Table 4.9 - Model properties used for the T beam simulation. 

Poisson’s ratio 0.15ν =  

Initial Young’s modulus 233271.0 N mmcE =  

Compressive strength 239.7 N mmcf =  

Trilinear tension softening diagram 
22.2 N mmctf = ; 0.086 N mmI

fG = ; 

1 0.005ξ = ; 1 0.4α = ; 2 0.2ξ = ; 2 0.3α =  

Shear crack softening diagram 0.5β = ; 2
, 1.0 N mmcr

t pτ = ; 0.08 N mmII
fG =  

Parameter defining the mode I fracture 
energy available to the new crack 2 3p =  

Shear retention factor 0.5 

Crack bandwidth Square root of the area of the IP 

Threshold angle 30ºthα =  

Maximum number of cracks per each IP 2 

Two numerical simulations are performed that differ in the treatment of the crack shear 

component. One uses the concept of shear retention factor with a constant value ( 0.5)β =  

and the other uses the shear crack softening diagram of Figure 4.14. 

Figure 4.33 represents the experimental and numerical relationships between the load and 

the deflection at the loaded section for the tested 2S-R beam. It can be observed that the 

use of the concept of the shear retention factor conducts to an overestimation of the load 

carrying capacity. The curve derived from this numerical analysis starts diverging 

significantly from the experimental one for deflections larger than 1.5 mm. In the analysis 

where a shear crack softening diagram was used, a quite accurate simulation was obtained 

up to a load level that is 91.6 % of the ultimate load registered experimentally. In this case 

the numerical simulation was interrupted because convergence was never possible to attain 

due to the formation of a shear failure crack, as shown in Figure 4.34. This figure 

represents the crack patterns at a deflection of about 4.9 mm for both numerical 

simulations. The use of the shear crack softening diagram reproduces very well the shear 

failure observed at the end of the experimental test and represented Figure 4.35. 
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Figure 4.33 – Load-deflection at the loaded section for the T beam. 

 

 
(a) (b) 

Figure 4.34 – Crack pattern of the 2S-R beam by using a: (a) shear retention factor; and (b) a shear crack 

softening diagram (in pink color: crack completely open ( ,
cr cr
n n uε ε≥ ); in red color: crack in the opening 

process; in cyan color: crack in the reopening process; in green color: crack in the closing process; in blue 

color: closed crack). 

 

Figure 4.35 – Crack pattern at the end of the tested 2S-R beam (Dias and Barros 2010). 
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embedded cables (one degree-of-freedom per node) and a Gauss-Legendre integration 

scheme with 3 IP is used. 

 
Figure 4.38 – Finite element mesh [dimensions in mm]. 

For modeling the behavior of the steel bars, the stress-strain relationship available in the 

FEMIX computer code is used (Sena-Cruz 2004). Two relationships are used in the 

numerical simulations and the values are presented in Table 4.10, since the strains were not 

measured in the experimental tests after the yield initiation of the steel bars. Therefore, for 

the strain and its corresponding stress that define the end of the second branch of the 

stress-strain diagram of the steel bars two pairs of values were considered, leading to the 

diagrams designated by A and B. 

The values of the parameters of the constitutive model for the concrete elements used in 

the numerical simulations are indicated in Table 4.11. Using the average compressive 

strength, cf , determined experimentally, the concrete tensile strength, ctf , and the mode I 

fracture energy, I
fG , were initially obtained from equations proposed by CEB-FIP (1993), 

and then were adjusted in order to fit with high accuracy the load at crack initiation. The 

values for characterizing the softening diagram of Figure 4.14 were obtained by 

back-fitting analysis in order to approximate as much as possible the experimental curve in 

the post-cracking phase. 
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Table 4.10 - Steel properties. 

 
φs=6 mm φs=10 mm φs=12 mm φs=25 mm 
A B A B A B A B 

εsy 
(‰) 2.75 2.75 2.66 2.66 2.35 2.35 2.27 2.27 

σsy 
(MPa) 559.14 559.14 541.6 541.6 484.68 484.68 507.68 507.68 

εsh 
(‰) 20.00 25.00 20.00 25.00 20.00 25.00 20.00 25.00 

σsh 
(MPa) 708.14 559.14 643 541.6 655.00 484.68 743.00 507.68 

εsu 
(‰) 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 

σsu 
(MPa) 708.93 708.93 643.23 643.23 655.53 655.53 743.41 743.41 

p 1 1 1 1 1 1 1 1 

Table 4.11 - Model properties used for the ETS strengthening beam simulation. 

Poisson’s ratio 0.15ν =  

Initial Young’s modulus 231100.0 N mmcE =  

Compressive strength 230.78 N mmcf =  

Trilinear tension softening diagram 
(concrete elements near the bottom 
longitudinal steel bars) 

22.0 N mmctf = ; 0.06 N mmI
fG = ; 

1 0.01ξ = ; 1 0.5α = ; 2 0.5ξ = ; 2 0.2α =  

Trilinear tension softening diagram 
(other concrete elements) 

21.8 N mmctf = ; 0.05N mmI
fG = ; 

1 0.01ξ = ; 1 0.4α = ; 2 0.2ξ = ; 2 0.2α =  
Shear crack softening diagram (concrete 
elements near the bottom longitudinal 
steel bars) 

0.2β = ; 2
, 1.38 N mmcr

t pτ = ; 0.5 N mmII
fG =  

Shear crack softening diagram (other 
concrete elements) 

0.2β = ; 2
, 1.38 N mmcr

t pτ = ; 0.3 N mmII
fG =  

Parameter defining the mode I fracture 
energy available to the new crack 2 1p =  

Shear retention factor 0.2 

Crack bandwidth Square root of the area of the IP 

Threshold angle 30ºthα =  

Maximum number of cracks per each IP 2 
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Tree numerical simulations are performed, varying in the treatment of the crack shear 

component and in the modeling of the behavior of the steel bars and the ETS strengthening 

bars. One uses the concept of shear retention factor with a constant value ( 0.2)β =  and the 

other two uses the shear crack softening diagram of Figure 4.14, differing only in the 

stress-strain relationship used for the simulation of the steel and the ETS strengthening 

bars (see Table 4.10). 

Figure 4.39 represents the experimental and numerical relationships between the load and 

the deflection at the loaded section for the tested S225.90/E225.90 beam. In comparison to 

the experimental curve the use of the concept of the shear retention factor conducts to a 

more stiff response and the load carrying capacity is attained for a smaller deflection. The 

curve derived from this numerical analysis starts diverging from the experimental one for 

deflections larger than 3.5 mm. The analyses performed using the shear crack softening 

diagram improves significantly the numerical responses. A better accurate simulation is 

obtained using the properties B (see Table 4.10) for the steel bars and the ETS 

strengthening bars but the load carrying capacity is underestimated. Adopting the 

properties A (see Table 4.10) the ultimate load is better predicted with a response that is a 

little bit more stiff than the behavior recorded experimentally. In these numerical 

simulations the analyses were interrupted because convergence was never possible to attain 

due to the formation of shear failure cracks, as shown in Figure 4.40. This figure 

represents, for each numerical simulation, the crack patterns at maximum attained load. 

The use of the shear crack softening diagram improves significantly the shear failure 

observed at the end of the experimental test and schematically represented Figure 4.41. 
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Figure 4.39 – Load-deflection at the loaded section for the ETS strengthening beam. 

 

 
(a) 

 
(b) 

 
 
 

 
(c) 

Figure 4.40 – Crack pattern of the S225.90/E225.90 beam by using: (a) shear retention factor; (b) shear crack 

softening diagram and steel diagram A; and (c) shear crack softening diagram and steel diagram B (in pink 

color: crack completely open ( ,
cr cr
n n uε ε≥ ); in red color: crack in the opening process; in cyan color: crack in 

the reopening process; in green color: crack in the closing process; in blue color: closed crack). 

 
Figure 4.41 – Crack pattern at the end of the tested S225.90/E225.90 beam (Dalfré et al. 2011). 
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4.4 SUMMARY AND CONCLUSIONS 

To accurately simulate the deformational behavior of the shear and flexural/shear failure 

modes, two alternative approaches are proposed for the treatment of the crack shear 

component. The former is the implementation of a total crack shear stress-shear strain 

approach to simulate the degradation of the shear stress transfer with the crack opening 

evolution, and the latter is based on the use of a constitutive softening relation between the 

crack shear stress and the crack shear strain component. 

Each of these strategies is described and their capabilities are assessed by performing 

several numerical simulations. The results obtained are presented and discussed. 

In conclusion, it can be said that the implementation of these new tools in the multi-fixed 

smeared crack model improves its capabilities to predict with higher accuracy the behavior 

of structures failing in shear or in flexural/shear. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 5 

Multi-fixed smeared 3D crack model to 

simulate the behavior of concrete 

structures 

5.1 INTRODUCTION 

The type of model to be selected for the analysis of a certain structure depends on the 

specificities of this structure. Sometimes some simplifications can be adopted without 

compromise the relevance of the conclusions that can be extracted from the analysis, such 

is the case of assuming a structure like a bi-dimensional body. However, in some cases, 

due to complex loading and/or geometry conditions these simplifications are not 

appropriate, and to simulate the complex failure modes that can be formed in this type of 

structures three-dimensional (3D) approaches must be used. 

In the present chapter a multi-fixed smeared 3D crack model, under the nonlinear FEM 

framework, is proposed to simulate the behavior of concrete structures. This model is 

suitable to be used with 3D solid elements available in the FEMIX computer code 

(Azevedo et al. 2003, Sena-Cruz et al. 2007). 
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The 3D model is described below and its performance is appraised by simulating a 

punching test with lightweight panels of steel fiber reinforced self-compacting concrete 

(SFRSCC). 

5.2 NUMERICAL MODEL 

5.2.1 Introduction 

In the last decades the development of sophisticated 3D models to simulate the complex 

nonlinear behavior of concrete structures has been significant, and the applicability of 

these models to real structures is becoming possible due to the continuous progress in 

high-performance computing hardware (Barzegar and Maddipudi 1997a, 1997b). 

In the present section the multi-fixed smeared 2D crack model, previously implemented in 

the FEMIX computer code by Sena-Cruz (2004), is generalized to a multi-fixed smeared 

3D crack model, implemented with solid finite elements (Ventura-Gouveia et al. 2008). 

The fracture mode I is simulated with one of the tensile-softening stress-strain diagrams 

presented in section 3.3.2.2 of chapter 3. The characterization of the shear fracture modes 

is much more complex, since the shear stress transfer between the crack surfaces depends 

on several parameters, such as concrete lateral confinement, crack opening, roughness of 

the crack surfaces, concrete strength class, number of cracks and its relative orientation, 

etc. For its simulation, the classical shear crack retention factor concept can be used, 

associated with an incremental or total approach for the shear crack components, whose 

formulation is detailed in section 4.2 of chapter 4. Alternatively, the softening crack shear 

stress-strain diagram described in section 4.3 of the previous chapter can also be used in 

the simulation of the shear stress transfer between the crack surfaces. 

5.2.2 Formulation 

5.2.2.1 Crack strain and crack stress 

As mentioned before, in a material nonlinear analysis the constitutive matrix depends on 

the stress or strain levels at a given stage of the loading process. To obtain a solution, the 
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external load is applied incrementally and an iterative technique is used to solve the 

resulting system of nonlinear equations (Zienkiewicz and Taylor 2000b, Ventura-Gouveia 

2000, Ventura-Gouveia et al. 2006). The relationship between incremental strain and 

incremental stress is in this case given by 

 Dσ ε∆ = ∆  (5.1)

where σ∆  represents the stress increment, ε∆  is the strain increment and D  is the tangent 

constitutive matrix. 

The incremental strain associated with the cracked material is, in smeared crack models, 

decomposed into an incremental strain vector of the crack, crε∆ , and an incremental strain 

vector of the uncracked concrete between the cracks, coε∆  (de Borst and Nauta 1985, Rots 

et al. 1985, de Borst 1986, Rots 1988, Barros 1995). This incremental strain decomposition 

is useful for the inclusion of other phenomena, such as temperature, creep or shrinkage (de 

Borst and Nauta 1985, Hofstetter and Mang 1995, van Zijl et al. 2001). The inclusion of 

these time-dependent phenomena is treated in chapter 6. 

 co crε ε ε∆ = ∆ + ∆  (5.2)

For the three-dimensional case the incremental local crack strain vector, crε∆ , is defined 

by 

 
1 2

Tcr cr cr cr
n t tε ε γ γ⎡ ⎤∆ = ∆ ∆ ∆⎣ ⎦  (5.3)

and, in the global coordinate system, by 

 1 2 3 23 31 12

Tcr cr cr cr cr cr crε ε ε ε γ γ γ⎡ ⎤∆ = ∆ ∆ ∆ ∆ ∆ ∆⎣ ⎦  (5.4)
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Equation (5.5) represents the relationship between crε∆  and crε∆  

 
Tcr cr crTε ε⎡ ⎤∆ = ∆⎣ ⎦  

(5.5)

where crT  is the transformation matrix (see Figure 5.2) defined by 

 

2 2 2
11 12 13 12 13 11 13 11 12

11 21 12 22 13 23 12 23 13 22 11 23 13 21 11 22 12 21

11 31 12 32 13 33 13 32 12 33 13 31 11 33 12 31 11 32

2 2 2
cr

a a a a a a a a a
T a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a

⎡ ⎤
⎢ ⎥= + + +⎢ ⎥
⎢ ⎥+ + +⎣ ⎦  

(5.6)

The 11a , 12a  and 13a  components are the cosine directors of the unit vector of the axis 

normal to the crack plane, n ; 21a , 22a  and 23a  are the cosine directors of the unit vector of 

the 1t  axis; finally, 31a , 32a  and 33a  are the cosine directors of the unit vectors of the 2t  

axis. The n , 1t  2t  axes form the local crack coordinate system. 

In matrix form the components of a  are defined by 

 
11 12 13 1 2 3

21 22 23 1 1 1 2 1 3

31 32 33 2 1 2 2 2 3

cos( , ) cos( , ) cos( , )
cos( , ) cos( , ) cos( , )
cos( , ) cos( , ) cos( , )

a a a n x n x n x
a a a a t x t x t x

a a a t x t x t x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (5.7)

The crT  matrix transforms the stress components from the global coordinate system to the 

local crack coordinate system and its terms are extracted from the matrix that transforms 

the stress tensor between coordinate systems (Azevedo 1996, Silva 2006). It can be 

demonstrated that 
TcrT⎡ ⎤⎣ ⎦  transforms the strain components from the local crack 

coordinate system to the global coordinate system (Azevedo 1985). 
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According to the fracture mechanics principles, three different types of fracture modes can 

be considered. The crack opening mode (fracture mode I), the shearing mode (fracture 

mode II - in-plane shear), and the tearing mode (fracture mode III - out-of-plane shear). A 

cracked body can be loaded in one of these modes or in a combination of the three modes 

(Wang 1996). 

 

Figure 5.1 – Basic fracture modes: (a) opening mode (tensile), (b) shearing mode (in-plane shear) and (c) 

tearing mode (out-of-plane shear) [Wang 1996]. 

For the case of 3D solids, the distinction between mode II and mode III can be dropped 

(Hofstetter and Mang 1995). For this reason, in the present model mode II and mode III are 

designated as sliding modes in 1̂t  and 2̂t  directions, respectively. 

The incremental local crack stress vector, crσ∆ , can be defined by 

 
1 2

Tcr cr cr cr
n t tσ σ τ τ⎡ ⎤∆ = ∆ ∆ ∆⎣ ⎦  (5.8)

where cr
nσ∆  is the mode I incremental crack normal stress, 

1

cr
tτ∆  is the sliding mode 

incremental crack shear stress acting in 1̂t  direction and 
2

cr
tτ∆  is the sliding mode 

incremental crack shear stress acting in 2̂t  direction. 

(a) (b) (c) 
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Figure 5.2 represents the crack stress components in the local coordinate system of the 

crack and the corresponding displacements: the opening displacement, w , the sliding 

displacement in 1̂t  direction, 1s , and the sliding displacement in 2̂t  direction, 2s . 

 

Figure 5.2 – Crack stress components, displacements and local coordinate system of the crack. 

In the global coordinate system the incremental stress components are 

 1 2 3 23 31 12

T
σ σ σ σ τ τ τ⎡ ⎤∆ = ∆ ∆ ∆ ∆ ∆ ∆⎣ ⎦  (5.9)

The relationship between σ∆  and crσ∆  is 

 crcr Tσ σ∆ = ∆  (5.10)

5.2.2.2 Constitutive law of the concrete  

A linear elastic behavior is assumed for the concrete between cracks, being the relation 

between coε∆  and σ∆  given by 
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 co coDσ ε∆ = ∆  (5.11)

with 

 ( )( )

( )
( )

( )

1 0 0 0
1 0 0 0

1 0 0 0
1 20 0 0 0 0

21 1 2
1 20 0 0 0 0

2
1 20 0 0 0 0

2

co ED

ν ν ν
ν ν ν
ν ν ν

ν

ν ν
ν

ν

⎡ ⎤−
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
= ⎢ ⎥+ − ⎢ ⎥−⎢ ⎥

⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦  

(5.12)

being E  the Young’s modulus and ν  the Poisson’s ratio of the undamaged concrete. 

5.2.2.3 Constitutive law of the crack 

At the crack zone (damaged concrete), the relationship between crε∆  and crσ∆  is given by 

 crcr crDσ ε∆ = ∆  (5.13)

where 

 
1

2

0 0
0 0

0 0

cr
n

cr cr
t

cr
t

D
D D

D

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦  

(5.14)

is the crack constitutive matrix. 
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In equation (5.14), cr
nD , 

1

cr
tD and 

2

cr
tD  represent, respectively, the fracture mode I stiffness 

modulus, the sliding stiffness modulus in the 1̂t  direction and the sliding stiffness modulus 

in the 2̂t  direction, and their values depend on the law assumed to simulate the crack 

behavior. 

In the present approach the direct shear-normal coupling is ignored, thus justifying the 

diagonality of the crack constitutive matrix. Its effect may be indirectly obtained by 

allowing non-orthogonal cracks to form and defining the sliding fracture modes as a 

function of the crack normal strain (Rots 1988). 

The fracture mode I modulus, cr
nD , is defined by one of the tensile-softening diagrams 

described in section 3.3.2.2 of chapter 3. 

The sliding fracture mode modulus, 
1

cr
tD  or 

2

cr
tD , can be obtained with, 

 1 2 1
cr cr
t t cD D Gβ

β
= =

−  
(5.15)

where cG  is the concrete elastic shear modulus and β  is the shear retention factor, defined 

by a constant value or by equation (3.32) in section 3.3.2.2 of chapter 3. Alternatively, to 

model the crack shear stress transfer in 1̂t  and 2̂t  directions, and to improve the accuracy of 

the simulations of structures failing in shear, 
1

cr
tD  or 

2

cr
tD can be obtained with one of the 

shear crack softening diagrams described in section 4.3 of chapter 4. In this case, each 

component follows an independent crack softening diagram. 

5.2.2.4 Constitutive law of the cracked concrete 

Taking into account equation (5.2) and equation (5.5), equation (5.11) can be written as 

follows 
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 ( )Tco cr crD Tσ ε ε⎡ ⎤∆ = ∆ − ∆⎣ ⎦  (5.16)

Multiplying this equation by the transformation matrix crT  and taking into account 

equation (5.10), equation (5.16) becomes 

 
Tcr co cr cr cr cocr T D T T Dσ ε ε⎡ ⎤∆ + ∆ = ∆⎣ ⎦  (5.17)

and substituting crσ∆  using equation (5.13) 

 
Tcr cr co cr cr cr cocrD T D T T Dε ε ε⎡ ⎤∆ + ∆ = ∆⎣ ⎦  (5.18)

or 

 ( ) 1Tcr cr co cr cr cocr D T D T T Dε ε
−

⎡ ⎤∆ = + ∆⎣ ⎦  (5.19)

Equation (5.19) establishes a relationship between the incremental local crack strain vector 

and the incremental strain vector in the global coordinate system. Including equation 

(5.16), the following constitutive law for the cracked concrete can be obtained 

 ( ) 1T Tco co cr cr cr co cr cr coD D T D T D T T Dσ ε
−⎛ ⎞⎡ ⎤ ⎡ ⎤∆ = − + ∆⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

 (5.20)

or 

 crcoDσ ε∆ = ∆  (5.21)

being 
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 ( ) 1T Tcrco co co cr cr cr co cr cr coD D D T D T D T T D
−

⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦  (5.22)

the constitutive matrix of the cracked concrete. 

Although the preceding equations are obtained assuming only one crack per integration 

point (IP), the model can be applied to the case of crn  cracks being formed at each IP. For 

this purpose, the crack constitutive matrix, crD , and the transformation matrix, crT , 

include the information that corresponds to these crn  cracks 

 

1

2

0 ... 0

0 ... 0
... ... ... ...

0 0 ...
cr

cr

cr
cr

cr
n

D

D
D

D

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (5.23)

and 

 1 2 ...
cr

Tcr cr cr cr
nT T T T⎡ ⎤= ⎣ ⎦  (5.24)

In equations (5.23) and (5.24), cr
iD  and cr

iT  correspond to the crack constitutive matrix 

and to the crack transformation matrix of the thi  crack. 

5.2.2.5 Model implementation 

A simple Rankine criterion is used to detect crack initiation. When the maximum principal 

tensile stress reaches the concrete tensile strength at an IP of a finite element, the material 

contained in its influence volume changes from uncracked to cracked state. The crack 

plane is considered to be normal to the direction of the maximum principal stress. The 

crack normal tensile stress follows the tensile-softening diagram characterized by the 
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fracture mode I modulus, cr
nD . For the crack shear components two hypothesis are 

available: each crack shear stress follows a shear softening diagram characterized by the 

sliding fracture modes 
1

cr
tD  and 

2

cr
tD , which can be obtained from one of the diagrams 

represented in section 4.3 of chapter 4; or the shear stresses and the sliding fracture modes 

are determined by means of the shear retention factor concept, which is based on equation 

(5.15). 

As a consequence of the rotation of the axes of the principal stresses during the subsequent 

load increments, a new smeared crack pattern can be initiated. Two conditions must be 

satisfied for the new crack initiation: 

• the maximum principal tensile stress reaches the concrete tensile strength; 

• the angle between the direction vector of the maximum principal tensile stress and 

the direction vector of the existing cracks is greater than a predefined angle, named 

threshold angle, thα . 

Values between 30º and 60º are recommended for the threshold angle (de Borst and Nauta 

1985, de Borst 1986). To maintain the consistency of the crack initiation process, when the 

second condition is not satisfied, the tensile strength must be updated. This value can be 

significantly different from the initial concrete tensile strength, especially for large values 

of thα  (Rots 1988). 

The formation of additional cracks in an previously cracked concrete can contribute to the 

modification of the crack status of these existing cracks. The previously developed 

multi-fixed 2D smeared crack model takes into account these crack status modifications. In 

the present 3D model a similar approach is used for the opening mode I (Sena-Cruz 2004), 

and for both sliding modes when the crack shear softening diagram is selected (see section 

4.3 of chapter 4). An eventual coupling between the normal and shear modes is not 

considered in the 3D model. Therefore, a crack can, for example, unload in mode I, soften 

in 1̂t  sliding mode, and reload in 2̂t  sliding mode. For this reason, the model treats 

separately the normal crack status, the shear crack status in 1̂t  direction, and the shear crack 
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status in 2̂t  direction. For the case of the sliding modes the shear crack statuses are 

described in section 4.3.2 of chapter 4. 

As a consequence of the material nonlinear behavior, the stress must be updated in order to 

satisfy the laws of the material response. This stress update is performed with the 

following equation 

 prevσ σ σ= + ∆  (5.25)

where the subscript prev  means the stress at a previous state of the IP. 

Multiplying equation (5.25) by the transformation matrix crT  results 

 ( )cr cr
prevT Tσ σ σ= + ∆  (5.26)

and taking into account the incremental relation from equation (5.10), established in terms 

of total stresses, equation (5.26) results in  

 ( ),
cr crcr cr

prev prevTσ σ σ σ σ= + ∆ = + ∆  (5.27)

Combining equation (5.20) with this equation yields, after some arrangements, 

 ( )
,

1

crcr
prev

T Tcr cr co cr co cr cr cr co cr cr co
prevT T D T D T D T D T T D

σ σ

σ ε ε
−

+ ∆ =

⎡ ⎤ ⎡ ⎤+ ∆ − + ∆⎣ ⎦ ⎣ ⎦
 (5.28)

and taking into account equation (5.19) the following equation is obtained 
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 , 0
Tcr cr cr co cr co cr crcr

prev prevT T D T D Tσ σ σ ε ε⎡ ⎤+ ∆ − − ∆ + ∆ =⎣ ⎦  (5.29)

Since crσ∆  is a function of crε∆  (see equation (5.13)), equation (5.29) can be written in 

the following form 

 ( ) ( ), 0
Tcr cr cr co cr cr co cr crcr

prev prevf T T D D T D Tε σ σ ε ε⎡ ⎤∆ = − − ∆ + + ∆ =⎣ ⎦  (5.30)

The Newton-Raphson method is used to solve equation (5.30), where the vector of 

unknowns is the local incremental crack strain vector, crε∆ . 

The first derivative of equation (5.30) in order to the incremental local crack strain vector 

is required in the q  iteration of this method. Depending on the strategy assumed for the 

crack shear components, i.e., the use of the concept of shear retention factor or the use of a 

crack shear softening diagram, this derivative is defined by equation (5.31) or equation 

(5.37), respectively. 

When the concept of shear retention factor is used to obtain the sliding fracture modulus, 

1

cr
tD or 

2

cr
tD , the derivative of ( )crf ε∆  is 

 
( )cr

Tcrcr cr co cr
cr

f
D D T D T

ε

ε

∂ ∆
⎡ ⎤= + + ⎣ ⎦∂∆

 (5.31)

where 

 

1

2

0 ... 0

0 ... 0
... ... ... ...

0 0 ...
cr

cr

cr
cr

cr
n

D

D
D

D

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (5.32)
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being 

 1

1

2

2

0 0 0

0 0

0 0

cr
cr t cr
i tcr

n ì

cr
t cr

tcr
n i

D
D

D

γ
ε

γ
ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
∂⎢ ⎥

= ∆⎢ ⎥∂∆⎢ ⎥
⎢ ⎥∂⎢ ⎥∆⎢ ⎥∂∆⎣ ⎦

 (5.33)

if an incremental approach is used for the crack shear components or 

 1

1

2

2

0 0 0

0 0

0 0

cr
cr t cr
i tcr

n i

cr
t cr

tcr
n i

D
D

D

γ
ε

γ
ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
∂⎢ ⎥

= ⎢ ⎥∂∆⎢ ⎥
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂∆⎣ ⎦

 (5.34)

if a total approach is used for the crack shear components (see section 4.2 of chapter 4). 

When equation (3.32) is adopted to define the shear retention factor used in equation 

(5.15), the derivative of the thi  sliding fracture modulus 
i

cr
tD  in order to cr

nε∆  is 

 
( )

( ) ( )( )
( )( )

( ) ( )( )
1

1

2

11
21 1

, ,

11

1 1 1 1 1 1
i

ppcr
ct c

cr pcr pcrn n u n u

A G pD A G p

A A A Aε ε ε

−∂ −
= − −

∂∆ − − − − − −
 (5.35)

being 

 ,

,

cr cr
n prev n

cr
n u

A
ε ε

ε
+ ∆

=  (5.36)
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When a constant shear retention factor is used, the matrix crD  becomes a null matrix. 

If a crack shear softening diagram is used to obtain the sliding fracture modulus, 
1

cr
tD  or 

2

cr
tD , the derivative of ( )crf ε∆  is 

 
( )cr

Tcr cr co cr
cr

f
D T D T

ε

ε

∂ ∆
⎡ ⎤= + ⎣ ⎦∂∆

 (5.37)

When the convergence of the Newton-Raphson method cannot be achieved, the fixed-point 

iteration method is used to attempt the solution of the system (5.30). 

The solution of equation (5.30) is the incremental local strain vector of the cracks, crε∆ . 

The crack strain vector in the global coordinate system is calculated using equation (5.5) 

and the crack strain is updated with 

 cr cr cr
prevε ε ε= + ∆  (5.38)

From equation (5.13) the incremental local crack stress vector is obtained and the local 

crack stress vector is updated with 

 ,
cr cr cr

prevσ σ σ= + ∆  (5.39)

From equation (5.16) the incremental stress is calculated and the stress is updated using 

equation (5.25). 

To verify the consistency of the solution a verification is made, using equation (5.10), in 

terms of total stresses with 
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 crcr Tσ σ=  (5.40)

The improvements made in the stress update and in the critical crack status change, 

explained in section 3.5 of chapter 3 for the 2D multi-fixed smeared crack model, are also 

implemented in the 3D version of this model. 

The evaluation of the internal forces requires the solution of (5.30), and the calculation of 

the stiffness matrix of an element depends on the constitutive matrix of the cracked 

concrete (5.22). For both these purposes the inversion of the matrix defined by (5.41) is 

required. 

 
Tcr cr co crD D T D T′ ⎡ ⎤= + ⎣ ⎦  (5.41)

When crD  is a null matrix, i.e., when the cracks are in Fully Open status or for the case of 

using a crack shear softening diagram, the shear crack statuses are in Free-sliding, resulting 

in a null stiffness for the sliding fractures modes, eventual problems might arise in the 

inversion of D′ . To circumvent these difficulties the following residual values are 

assigned to the diagonal of crD  (see equation (5.14)) 

 610cr
n cD f−=   ;  610

i

cr
t cD G−=  (5.42)

5.3 MODEL APPRAISAL 

The performance of the proposed constitutive model is assessed by simulating the behavior 

observed in a punching test of a lightweight SFRSCC panel. The test layout and the test 

setup are represented in Figure 3.27 of chapter 3. The finite element model, the load and 

the support conditions used in the numerical simulation of the punching test are shown in 

Figure 5.3. 
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Only one quarter of the panel is used in the simulation due to double symmetry. 

Serendipity 20 node solid elements with 2×2×3 Gauss-Legendre integration scheme are 

used (three integration points in the through-thickness direction). Three solid elements are 

used through the thickness of 110 mm, while in the lightweight zone (shaded elements in 

Figure 5.3) only one solid element is used through the thickness. The dashed line 

represents the support of the panel. 

The values of the parameters of the constitutive model used in the simulation of the 

punching test are listed in Table 5.1. The results of two numerical simulations are 

described below. In the first one, the shear stress transfer in both sliding modes is 

simulated according to equation (5.15) with the shear retention factor defined by equation 

(3.32) assuming 1 2p = . In the second one, the crack shear stress vs. crack shear strain 

diagram represented in Figure 4.14 (see section 4.3.1 of chapter 4) is used to model both 

shear sliding modes. In both simulations the values of the properties associated with the 

fracture mode I are obtained with the inverse analysis described in section 3.7.1 of 

chapter 3. The force-deflection relationship registered experimentally and those obtained 

from both numerical simulations are presented in Figure 5.4. 

 

Figure 5.3 – Geometry, mesh, load and support conditions used in the numerical simulation of the punching 

test. 
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Figure 5.4 – Relationship between the force and the deflection at the center of the test panel. 

Table 5.1 - Values of the parameters of the constitutive model used in the numerical simulation of the 

punching test. 

Poisson’s ratio 0.15ν =  

Initial Young’s modulus 231000.0 N mmcE =  

Compressive strength 252.0 N mmcf =  

Trilinear tension softening 
diagram of SFRSCC (see Figure 
3.6 of section 3.3.2.2 of chapter 3) 

23.5 N mmctf = ; 4.3 N mmI
fG = ; 

1 0.009ξ = ; 1 0.5α = ; 2 0.15ξ = ; 2 0.59α =  

Parameter defining the mode I 
fracture energy available to the 
new crack 

2 2p =  

Softening crack shear stress-strain 
diagram (see Figure 4.14 of 
section 4.3.1 of chapter 4) 

2
, 2.0 N mmcr

t pτ = ; , 5.0 N mmf sG = ; 0.5β =  

Shear retention factor Exponential ( 1 2p = ) 

Crack bandwidth Cube root of the volume of the integration point 

Threshold angle 30ºthα =  

Figure 5.4 shows that, in the experimental test, for a deflection of about 1.2 mm at the 

central point, the panel load carrying capacity is almost retained up to a deflection of about 

3 mm. Afterwards an abrupt load decay occurs due to the formation of a shear failure 

surface, typical of a punching rupture. However, using the concept of shear retention 
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factor, the model predicts an increase of the load carrying capacity with the increase of the 

panel deflection. According to this approach, the shear stresses in 1̂t  and 2̂t  sliding 

directions (
1

cr
tτ ,

2

cr
tτ ) increase with the increase of the corresponding shear strains (

1

cr
tγ ,

2

cr
tγ ). 

Only after the exhaustion of the mode I fracture energy ( ,
cr cr
n n uε ε≥ , see Figure 3.6 of 

section 3.3.2.2), both crack shear stress components become constant (the incremental 

values are null, 1
0cr

tτ∆ = , 
2

0cr
tτ∆ = ). However, for this type of problem, where the crack 

shear constitutive components have a fundamental influence on the behavior the structure, 

mainly after a certain deflection, the formulation of these components should allow the 

shear stress components to decrease with the increase of the crack opening, which requires 

the use of a shear softening diagram, similar to that represented in Figure 4.14 of section 

4.3.1. In fact, the second simulation, which is based on this approach, captured the plateau 

registered experimentally (see Figure 5.4), since the parameters of this diagram are 

evaluated by back-fitting analysis in order to reproduce this phase of the panel response. 

However, the abrupt load decay observed in the experimental test, at a deflection of about 

3 mm, is not captured by this second approach, since the numerical simulation predicts a 

continuous, but smooth, degradation of the panel load carrying capacity. It could be 

verified that a decrease of ,f sG  (e.g , 4.0 N mmf sG = or , 2.0 N mmf sG = ) causes a 

decrease on the panel load carrying capacity, mainly in its structural softening phase, but 

the abrupt load decay is still not captured as shown in Figure 5.5. 

 
Figure 5.5 – Influence of ,f sG , on the numerical relationship between the force and the deflection at the 

center of the test panel. 
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5.4 SUMMARY AND CONCLUSIONS 

In the present chapter a multi-fixed smeared 3D crack model is proposed. The developed 

model is based on the finite element method and is implemented in the FEMIX computer 

code. In an attempt to simulate the shear strain gradient that occurs in punching tests, a 

shear softening diagram is proposed in order to make both crack shear stress components 

dependent on the corresponding crack shear strains. The crack shear stress transfer can also 

be simulated using the concept of shear retention factor, which can be defined as a constant 

value or as a function of the crack normal strain. In this case the shear retention factor 

assumes a unitary value at crack initiation and a null value when the mode I fracture 

energy is exhausted. 

The performance of the model is appraised by using the results obtained in a punching test 

with a lightweight panel prototype of steel fiber reinforced self-compacting concrete. Two 

numerical simulations are performed and discussed: one using the concept of shear 

retention factor and the other using a softening diagram to model both crack shear 

components. It is observed that the use of a softening diagram for the crack shear 

components improves the numerical simulation of the tested panel. 



Chapter 6 

Thermo-mechanical model 

6.1 INTRODUCTION 

In this chapter all relevant aspects related to the heat transfer and its implementation in the 

FEMIX computer code are described. The heat transfer problem is presented, and a 

numerical model is developed to simulate the heat transfer in structures built with materials 

whose mechanical behavior can be considered to be linear or nonlinear. The heat 

development due to the hydration process during the concrete hardening phase and its 

inclusion in the heat transfer model is also treated. The performance and the accuracy of 

the developed numerical model are assessed using results available in the literature. 

The formulations of the time-dependent deformations due to shrinkage, creep and 

temperature variation are also presented, and the multi-fixed smeared 3D crack model 

proposed to simulate the behavior of concrete structures, described in chapter 5, is adapted 

to include these time-dependent effects. 

6.2 THERMAL PROBLEM 

6.2.1 Introduction 

Heat transfer can be defined as the energy transferred between material bodies due to a 

temperature difference (Holman 1986, Lewis et al. 2004, Incropera et al. 2006). The heat 

flows from hot to cold mediums until an equilibrium state is reached (Silveira 1993), being 
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the process of heat transfer divided in three modes: conduction, convection and radiation. 

A briefly description of each mode, including its governing equations, is presented in this 

section. More details can be found elsewhere (Holman 1986, Silveira 1993, Lewis et al. 

2004, Incropera et al. 2006, Lienhard IV and Lienhard V 2005, Azenha 2009). 

Conduction heat transfer 

From a simple point of view, this is the heat transfer that occurs inside a solid. The 

conduction heat transfer can occur in a steady-state regime, when the temperature field in a 

solid does not change with time or in a transient regime if the temperature field changes 

with respect to time. 

The heat conduction rate equation is defined by the Fourier’s law. For the case of one 

dimensional conduction this equation has the following form 

 x
x

q dTq k
A dx

′′ = = −  (6.1)

where xq′′  is the heat flux in x  direction, A  is the area perpendicular to the direction of 

heat transfer, k  is the material thermal conductivity and dT dx  is the temperature 

gradient. The minus sign signifies that the heat flows in the direction of the decreasing 

temperature. 

Convection heat transfer 

Convection is a process of heat transfer that occurs between a body surface and a fluid in 

movement when the temperatures differ between the two domains. 

The heat convection rate equation is defined by the Newton’s law of cooling, 

 ( )c cq h T T∞′′ = −  (6.2)

where cq′′  is the convective heat flux, ch  is the convection heat transfer coefficient, T  is 

the temperature at the body surface and T∞  is the fluid temperature. 
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Radiation heat transfer 

Radiation is the mode of heat transfer that occurs when no contact exists between the body 

that emits heat and the body that receives it (this kind of heat transfer can occur in vacuum 

conditions). 

The maximum flux emitted by radiation from a black body is defined by the 

Stefan-Boltzmann law equation, 

 4
eq Tσ′′ =  (6.3)

where eq′′  is the emitted heat flux, σ  is the Stefan-Boltzmann constant, defined as 

8 -2 -45.67 10 Wm Kσ −= × , and T  is the surface temperature. 

Introducing in equation (6.3) the concept of emissivity, ε , to take into account that, in 

reality, the bodies emit less energy than black bodies, this equation is transformed into 

 4
eq Tεσ′′ =  (6.4)

where 0 1ε< < . 

The net rate radiant exchange, for the case of a heat transfer surface at temperature 1T  

completely enclosed by a much larger surface maintained at temperature 2T , is obtained 

with (Holman 1986) 

 ( )4 4
1 1 2rq T Tε σ′′ = −  (6.5)

This equation can be rewritten as 

 ( )1 2r rq h T T′′ = −  (6.6)
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where rh  is the radiation heat transfer coefficient that is defined by 

 ( )( )2 2
1 1 2 1 2rh T T T Tε σ= + +  (6.7)

Equation (6.6) is now analogous to the heat convection rate equation (6.2), which can be 

useful when convection and radiation occur in the same body surface. 

6.2.2 Heat conduction equation 

6.2.2.1 General remarks 

In this section the heat conduction equation for the case of three-dimensional (3D) heat 

conduction analysis is directly derived by applying the conservation of energy principle to 

an infinitesimal control volume of a 3D body as represented in Figure 6.1. 

 
Figure 6.1 – Infinitesimal control volume of a 3D body. 
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The energy balance for the general case, represented in Figure 6.1, where the temperature 

may be changing with time and internal heat sources may be present, can be assured by 

(Incropera et al. 2006, Holman 1986) 

 in g st outE E E E+ = +  (6.8)

being, 

inE  the rate of energy conducted in the infinitesimal control volume, defined by 

 in x y zE q q q= + +  (6.9)

gE  in equation (6.8) is the rate of thermal energy generation, given by 

 gE Qdxdydz=  (6.10)

where Q  is the internal heat generation rate per unit volume of the infinitesimal control 

volume, 

stE  in equation (6.8) is the rate of the energy stored within the infinitesimal control 

volume, expressed as 

 st
TE c dxdydz
t

ρ ∂
=

∂
 (6.11)

where ρ  is the mass per unit volume and c  is the specific heat of the material. The cρ  

quantity represents the volumetric heat capacity and measures the capacity of a material to 

store thermal energy. 
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Finally, outE  in equation (6.8) is the rate of energy conducted out the infinitesimal control 

volume, defined by 

 out x dx y dy z dzE q q q+ + += + +  (6.12)

By considering the first two terms of the Taylor series expansion, each term on the 

right-hand side of the previous equation becomes 

 x
x dx x

qq q dx
x+

∂
= +

∂
 (6.13a)

 y
y dy y

q
q q dy

y+

∂
= +

∂
 (6.13b)

 z
z dz z

qq q dz
z+

∂
= +

∂
 (6.13c)

Substituting equations (6.9) to (6.12) into equation (6.8), and considering equation (6.13), 

yields 

 yx z
qq qTQdxdydz c dxdydz dx dy dz

t x y z
ρ

∂∂ ∂∂
= + + +

∂ ∂ ∂ ∂
 (6.14)

From equation (6.1), it can be deducted that 

 x x
Tq k dydz
x

∂
= −

∂
;   y y

Tq k dxdz
y

∂
= −

∂
;   z z

Tq k dxdz
z

∂
= −

∂
 (6.15)

Substituting (6.15) into (6.14) and making some arrangements, leads to the general 

three-dimensional heat conduction equation in Cartesian coordinates, as follows 
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 x y z
T T T Tk k k Q c

x x y y z z t
ρ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + + =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
 (6.16)

For the case of isotropic materials, the thermal conductivity is the same in all directions, 

i.e., x y zk k k k= = = . 

6.2.2.2 Initial and boundary conditions 

To obtain the temperature distribution in a body, the heat conduction equation must be 

solved considering appropriated boundary conditions, and, for the case of time dependent 

temperature phenomena, the initial conditions must also be known. 

The Dirichlet condition, or boundary condition of first order, is 

 T T=  on TS  (6.17)

where T  is the prescribed temperature in the boundary, and TS  is the boundary surface 

where the temperature is imposed. 

The Neumann conditions, or boundary conditions of second order, are the following 

• Constant heat flux in the boundary: 

 
Tq k q
n
∂′′ = − =
∂

 on qS  (6.18)

where q  is the heat flux imposed on the boundary, qS  is the boundary surface, and n  is 

the direction vector normal to the boundary surface, defined by its direction cosines. 

Therefore, equation (6.18) can be written as 
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 x x y y z z
T T Tq k n k n k n q
x y z

⎛ ⎞∂ ∂ ∂′′ = − + + =⎜ ⎟∂ ∂ ∂⎝ ⎠
 on qS  (6.19)

where xn , yn  and yn  are the direction cosines of the normal to the qS  boundary surface. 

• Insulated or adiabatic boundary: 

 0x x y y z z
T T Tq k n k n k n
x y z

⎛ ⎞∂ ∂ ∂′′ = − + + =⎜ ⎟∂ ∂ ∂⎝ ⎠
 on qS  (6.20)

The convection condition on the boundary surface is 

 ( )x x y y z z c
T T Tq k n k n k n h T T
x y z ∞

⎛ ⎞∂ ∂ ∂′′ = − + + = −⎜ ⎟∂ ∂ ∂⎝ ⎠
 on cS  (6.21)

being ch  the convection heat transfer coefficient and ( )T T∞−  the temperature difference 

between the surface and the fluid (e.g. the environment temperature). 

The radiation heat transfer can be taken into account by substituting the convection heat 

transfer coefficient by an appropriate convection-radiation heat transfer coefficient, crh , 

(Silveira 1993, Azenha 2009). 

For the case of a transient analysis the initial conditions must be known a priori. Thus, for 

a specific time 0t  the temperatures, T , of the entire 3D body must be supplied. This 

condition can be defined by 

 initT T=  (6.22)

being initT  the initial temperature imposed to the 3D body at time 0t . 
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6.2.3 Finite element method applied to heat transfer 

By applying the method of weighted residuals to the heat conduction equation (6.16) 

 0
V

wrdV =∫  (6.23)

where the residual function is defined by 

 x y z
T T T Tr k k k Q c

x x y y z z t
ρ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + + + −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
 (6.24)

and w  is the weight function ( ), ,w x y x , yields 

 

0

x y zV

V V

T T Tw k k k dV
x x y y z z

Tw QdV w c dV
t

ρ

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
∂

+ − =
∂

∫

∫ ∫
 (6.25)

By performing an integration by parts of the first term of equation (6.25) using the 

Green-Gauss theorem (Ottosen and Petersson 1992), results in 

 

x y zV

x y zV

x x y y z zS

T T Tw k k k dV
x x y y z z

w T w T w Tk k k dV
x x y y z z

T T Tw k n k n k n dS
x y z

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂

− + +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦
⎛ ⎞∂ ∂ ∂

+ + +⎜ ⎟∂ ∂ ∂⎝ ⎠

∫

∫

∫

 (6.26)

Introducing the boundary conditions described in section 6.2.2.2 in the second integral of 

(6.26) yields 
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( ) ( ) ( )

T q c

x x y y z zS

T T q c cS S S

T T Tw k n k n k n dS
x y z

w q dS w q dS w h T T dS∞

⎛ ⎞∂ ∂ ∂
+ +⎜ ⎟∂ ∂ ∂⎝ ⎠

⎡ ⎤= − + − + − −⎣ ⎦

∫

∫ ∫ ∫
 (6.27)

In this equation Tq  is the unknown heat flux on the boundary where the temperature is 

prescribed, q  is the imposed boundary heat flux (when 0q =  an insulated or adiabatic 

boundary is assumed), and ( )ch T T∞−  is the boundary convection heat flux (by 

substituting ch  with crh , convection-radiation heat transfer can be taken into account). 

By considering (6.26) and (6.27), equation (6.25) becomes 

 
( ) ( )

c

T q c

x y z c cV S V

T T q c cV S S S

w T w T w T Tk k k dV wh TdS w c dV
x x y y z z t

w QdV w q dS w q dS wh T dS

ρ

∞

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

= − − +

∫ ∫ ∫

∫ ∫ ∫ ∫
 (6.28)

The first integral of (6.28) can be written as 

 ( )T
V

w D T dV∇ ∇∫  (6.29)

where 

 
0 0

0 0
0 0

x

y

z

k
D k

k

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (6.30)

The temperatures can be approximated using shape functions as follows 

 ( ) ( ) ( )
1

, , , , ,
n

i i
i

T T x y z t N x y z T t
=

= =∑  (6.31)
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where n  is the number of nodes of the element, iN  is the shape function of element node i

and iT  is the temperature of element node i . In a transient analysis this temperature field is 

a function of time. 

In matrix form equation (6.31) can be written as 

 eT NT=  (6.32)

being 

 [ ]1 2 ... nN N N N=  (6.33)

and 

 [ ]1 2 ... Te
nT T T T=  (6.34)

By using the Galerkin method, the weight functions, w , are chosen to coincide with the 

functions that define the unknown variables (temperatures). In the present case these 

functions are the shape functions, N . Thus, equation (6.28) can be written for a specific 

finite element, considering (6.32) and (6.29), as 

 
( )

( )

( ) ( )
c

T q c

e
T e T e T

c cV S V

T T T T
T T q c cV S S S

NT
N D NT dV N h NT dS N c dV

t
N QdV N q dS N q dS N h T dS

ρ

∞

∂
∇ ∇ + +

∂
= − − +

∫ ∫ ∫
∫ ∫ ∫ ∫

 (6.35)

or 

 ( ) ee e e e e
c conv tK K T K T F+ + =  (6.36)

where e
cK  is the element conduction matrix defined by 
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 ( )Te T
c V V

K N D NdV B DBdV= ∇ ∇ =∫ ∫  (6.37)

being 

 

1 2

1 2

1 2

...

...

...

n

n

n

NN N
x x x

NN NB
y y y

NN N
z z z

⎡ ⎤∂∂ ∂
⎢ ⎥∂ ∂ ∂⎢ ⎥

∂∂ ∂⎢ ⎥= ⎢ ⎥∂ ∂ ∂
⎢ ⎥

∂∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎣ ⎦

 (6.38)

e
convK  is the element convection matrix 

 
c

e T
conv c cS

K h N NdS= ∫  (6.39)

and e
tK  is the element transient matrix 

 
e T
t V

K cN NdVρ= ∫  (6.40)

The vector eF  can be divided into 

 
T

e e e
L qF F F= +  (6.41)

where e
LF  is defined by 

 e e e e
L Q q cF F F F= + +  (6.42)

being e
QF  the vector corresponding to the element internal heat generation, 
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e T
Q V

F N QdV= ∫  (6.43)

e
qF  is the vector corresponding to the boundary where the heat flux is imposed, 

 ( )
q

e T
q qS

F N q dS= −∫  (6.44)

and e
cF  is the vector containing the values corresponding to the convection (or 

convection-radiation) boundary 

 
c

e T
c c cS

F N h T dS∞= ∫  (6.45)

In equation (6.41) 
T

e
qF  is the vector corresponding to the heat flux where the temperature 

is prescribed,  

 ( )
T

T

e T
q T TS

F N q dS= −∫  (6.46)

By considering a domain discretized into several finite elements, equation (6.36) is written 

in a global form as 

 ( )c conv tK K T K T F+ + =  (6.47)

In this equation the matrices and vectors take into account the contribution of each finite 

element of the domain. 
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6.2.4 Steady-state linear analysis 

In this section the implementation of the heat conduction problem in the FEMIX computer 

code, for the case of a steady-state linear analysis, is presented. The performance and the 

accuracy of this implementation are appraised by performing a numerical simulation. 

In a steady-state linear analysis equation (6.47) becomes 

 ( )c convK K T F+ =  (6.48)

By taking into account (6.41), and considering c convK K K= + , results in 

 TL qKT F F= +  (6.49)

For its solution equation (6.49) is written as 

 ,

,,

0

T

L FFF FP F

q PL PPF PP P

FK K T
FFK K T
⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤

= + ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (6.50)

where the subscript F  (free) corresponds to the nodes of the domain where the 

temperature is not known, and the subscript P  (prescribed) corresponds to the nodes of the 

domain where the temperature is prescribed. 

In a first phase the temperatures are obtained by solving the following system of equations, 

using the Gauss elimination method 

 ,FF F L F FP PK T F K T= −  (6.51)

and in a second phase, with the obtained temperatures, FT , the heat flux where the 

temperature is prescribed is calculated with 
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 , ,Tq P PF F PP P L PF K T K T F= + −  (6.52)

6.2.4.1 Numerical example 

The performance of the model is appraised using an example from Lewis et al. (2004), as 

shown in Figure 6.2. 

 

Figure 6.2 – Steady-state example (adapted from Lewis et al. 2004). 

For the numerical analysis the domain is descritized with serendipity 8 node solid elements 

with a 3×3×3 Gauss-Legendre integration scheme. The thermal conductivity of the 

material, k, is constant and is equal to 10 Wm-1ºC-1. 

Figure 6.3 represents the mesh and temperature field after the steady-state analysis. The 

temperature in the center of the cube (0.5, 0.5, 0.5) is 200.37ºC. Similar results were 

obtained by Lewis et al. (2004). 
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Figure 6.3 – Finite element mesh and temperature field. 

6.2.5 Transient linear analysis 

6.2.5.1 Time-discretization 

Figure 6.4 represents the temperature variation with time for a one dimensional problem. 

In the incremental time step, t∆ , a linear variation of the temperature is assumed. Thus, the 

derivative of temperature is approximated with 

 1n n n
n

T T TT
t t

+∂ −
= ≈
∂ ∆

 (6.53)

 
Figure 6.4 – Time-discretization for one dimensional problem. 
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Considering a multi-dimensional problem, the temperature at the time nt θ+  is calculated 

with 

 ( )1
1 1n n

n n n n
T TT T t T T

tθ θ θ θ+
+ +

−⎛ ⎞= + ∆ = + −⎜ ⎟∆⎝ ⎠
 (6.54)

and its derivative with (see Figure 6.4) 

 1+ +
+

− −
= =

∆ ∆
n n n n

n
T T T TT

t t
θ

θ θ
 (6.55)

Writing equation (6.47) for the time nt θ+  results in 

 ( )c conv n t n nK K T K T Fθ θ θ+ + ++ + =  (6.56)

and by substituting (6.54) and (6.55) yields 

 ( ) ( ) 1
1 1 n n

c conv n n t n
T TK K T T K F

t θθ θ +
+ +

−⎛ ⎞⎡ ⎤+ + − + =⎜ ⎟⎣ ⎦ ∆⎝ ⎠
 (6.57)

Considering for vector nF θ+  the same type of approximation that is adopted for the 

temperature, equation (6.57) can be written as 

 ( ) ( ) ( )1
1 11 1n n

c conv n n t n n
T TK K T T K F F

t
θ θ θ θ+

+ +
−⎛ ⎞⎡ ⎤ ⎡ ⎤+ + − + = + −⎜ ⎟⎣ ⎦ ⎣ ⎦∆⎝ ⎠

 (6.58)

or 
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( )

( ) ( ) ( )
1

11 1

t c conv n

t c conv n n n

K t K K T

K t K K T t F F

θ

θ θ θ

+

+

⎡ ⎤+ ∆ +⎣ ⎦
⎡ ⎤ ⎡ ⎤= − − ∆ + +∆ + −⎣ ⎦ ⎣ ⎦

 (6.59)

By adopting different values for θ  several time-stepping schemes can be obtained (Vila 

Real 1988, Lewis et al. 1996, Fonseca 1998, Lewis et al. 2004), and equation (6.59) can 

take the following formats: 

Forward-Euler ( )0θ =  

 ( )1t n t c conv n nK T K t K K T tF+ ⎡ ⎤= −∆ + +∆⎣ ⎦  (6.60)

Backward-Euler ( )1θ =  

 ( ) 1 1t c conv n t n nK t K K T K T tF+ +⎡ ⎤+ ∆ + = +∆⎣ ⎦  (6.61)

Crank-Nicolson 1
2

θ⎛ ⎞=⎜ ⎟
⎝ ⎠

 

 ( ) ( ) ( )1 1
1 1 1
2 2 2t c conv n t c conv n n nK t K K T K t K K T t F F+ +

⎡ ⎤ ⎡ ⎤+ ∆ + = − ∆ + + ∆ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (6.62)

Galerkin 2
3

θ⎛ ⎞=⎜ ⎟
⎝ ⎠

 

 ( ) ( )1 1
2 1 2 1
3 3 3 3t c conv n t c conv n n nK t K K T K t K K T t F F+ +

⎡ ⎤ ⎡ ⎤ ⎛ ⎞+ ∆ + = − ∆ + +∆ +⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠
 (6.63)

If 0θ ≠  the time-stepping schemes are called implicit, and if 0θ =  the time-stepping 

scheme is called explicit.
 
It is demonstrated in Lewis et al. (1996) that for 1 2 1θ≤ ≤  the 
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solution is unconditionally stable, and when 0 1 2θ≤ <  the solution is conditionally stable 

and the time step must be limited, such is the case of the Forward-Euler scheme. It is also 

concluded that the Galerkin time-stepping scheme leads to less oscillatory errors than the 

Crank-Nicolson time-stepping scheme, although this last one provides a higher accuracy 

(Zienkiewicz 2000a). 

6.2.5.2 Computational strategies 

The implementation of the heat conduction problem in the FEMIX computer code for the 

case of the transient linear analysis is presented in this section. 

Considering the domain discretized into several finite elements and writing (6.59) in order 

to group the nodes where the temperature is unknown, subscript F  (free), and in nodes 

where the temperature is prescribed, subscript P  (prescribed), results in 

 1 1 1n n nE T F+ + +=  (6.64)

being 

 
( ) ( )
( ) ( )

, , , , , ,
1

, , , , , ,

t FF c FF conv FF t FP c FP conv FP
n

t PF c PF conv PF t PP c PP conv PP

K t K K K t K K
E

K t K K K t K K

θ θ

θ θ+

⎡ ⎤+ ∆ + + ∆ +
= ⎢ ⎥

+ ∆ + + ∆ +⎢ ⎥⎣ ⎦
 (6.65)

  

 1,
1

1,

n F
n

n P

T
T

T
+

+
+

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (6.66)

  

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

, , , , , ,
1

, , , , , ,

, , 1, , ,

, , 1, , ,

, 1,

1 1

1 1

1
1

0
1

T

t FF c FF conv FF t FP c FP conv FP
n

t PF c PF conv PF t PP c PP conv PP

n F L n F L n F

n P L n P L n P

q n P

K t K K K t K K
F

K t K K K t K K

T t F t F
T t F t F

t F t

θ θ

θ θ

θ θ
θ θ

θ

+

+

+

+

⎡ ⎤− − ∆ + − − ∆ +
= ⎢ ⎥

− − ∆ + − − ∆ +⎢ ⎥⎣ ⎦
⎡ ⎤∆ + ∆ −⎡ ⎤

× + ⎢ ⎥⎢ ⎥ ∆ + ∆ −⎣ ⎦ ⎣ ⎦

+
∆ +∆ −( ) , ,Tq n PFθ
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (6.67)
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For the current time step, temperatures 1,n FT +  are obtained by solving the following system 

of equations using the Gauss elimination method 

 1, 1, 1,n FF n F n FE T F+ + +=  (6.68)

where 1,n FFE + is the free effective thermal transient matrix defined by 

 ( )1, , , ,n FF t FF c FF conv FFE K t K Kθ+ = + ∆ +  (6.69)

and the 1,n FF +  is the free load vector for the current time step defined by 

 

( ) ( )
( ) ( ) ( )

( )

1, , , , ,

, , 1, , , , 1,

, 1, , ,

1

1

1

n F t FF c FF conv FF n F

t FP n P n P c FP conv FP n P n P

L n F L n F

F K t K K T

K T T K K tT tT

t F t F

θ

θ θ

θ θ

+

+ +

+

⎡ ⎤= − − ∆ +⎣ ⎦
⎡ ⎤+ − + + − − ∆ − ∆⎣ ⎦

⎡ ⎤+ ∆ +∆ −⎣ ⎦

 (6.70)

For 0θ ≠  the heat flux where the temperature is prescribed is calculated with 

 

( ) ( )

( ) ( )

( ) ( )

, 1, , 1, , , , 1, ,

, 1, ,

, , 1, ,

, 1, , , , ,

11 1

1 1

1

1 1

T

T

q n P t PF n F n F c PF conv PF n F n F

t PP n P n P

c PP conv PP n P n P

L n P L n P q n P

F K T T K K T T
t t

K T T
t t

K K T T

F F F

θ
θ θ θ

θ θ

θ
θ

θ θ
θ θ

+ + +

+

+

+

⎡ ⎤−⎛ ⎞= − + + +⎢ ⎥⎜ ⎟∆ ∆⎝ ⎠ ⎣ ⎦
⎛ ⎞+ −⎜ ⎟∆ ∆⎝ ⎠

⎡ ⎤−
+ + +⎢ ⎥

⎣ ⎦
⎡ ⎤ ⎡ ⎤− −

+ − − + −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (6.71)
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6.2.5.3 Numerical examples 

To validate the implemented transient heat conduction model two numerical simulations 

have been performed, being the corresponding results presented below. The first 

simulation is a transient analysis based on the problem shown in Figure 6.2. The same 

element mesh and material properties are used. The initial temperature is set to 0ºC and a 

Crank-Nicolson scheme is used. The evolution of temperature with time at the center point 

(0.5, 0.5, 0.5) is plotted in Figure 6.5. It is verified that the temperature increases rapidly 

until a steady-state is reached. The temperature field at different times is represented in 

Figure 6.6, in the yz plane (see Figure 6.2). 

 

Figure 6.5 – Temperature vs. time at point (0.5, 0.5, 0.5). 

The second example for model appraisal is a bi-dimensional transient analysis proposed by 

Zhou and Vecchio (2005). In the present case a three-dimensional representation of the 

domain is performed, being represented in Figure 6.7. The domain is discretized with 

8-noded hexahedral elements, and a 2×2×2 Gauss-Legendre integration scheme is used. 

The conductivity of the material is constant and equal to 52 Jm-1s-1K-1, the specific heat is 

460.0 Jkg-1K-1, and the density is 7850 kg/m3. The initial temperature is set to 0ºC and a 

Crank-Nicolson scheme is used. The temperature field at different instants is represented in 

Figure 6.8. 
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0.001t s=  

 
0.01t s=  

 
0.025t s=  

 
0.05t s=  

 
0.1t s=  1.0t s=  

Figure 6.6 – Finite element mesh and temperature field for different instants of the transient analysis. 
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Figure 6.7 – Transient analysis – domain and temperature distribution. 

Figure 6.9 represents the evolution of temperature through the depth of the cross section at 

the center line of the cube. It is verified that as time evolves the curves gradually tend to 

the steady-state response. Similar results were obtained by Zhou and Vecchio (2005) for 

the bi-dimensional analysis of the problem, and a comparison for different instants of the 

transient analysis is represented in Figure 6.10. The differences between the two types of 

analyses decrease with time, but even for the first instants the discrepancy is quite 

acceptable taking into account that the analyses have been performed assuming a 2D and a 

3D discretization of the body. 
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50t s=  

 
200t s=  

 
500t s=  

 
1000t s=  

 
5000t s=  

 
50000t s=  

Figure 6.8 – Finite element mesh of the domain shown in Figure 6.7 and temperature field for different 

instants of the transient analysis. 

z

y

z

x y



Thermo-mechanical model 207 

 

 

Figure 6.9 – Temperature variation through the depth of the cross section at the center line. 

 

 

Figure 6.10 – Temperature variation through the depth of the cross section at the center line – comparison 

with the data from Zhou and Vecchio (2005). 
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6.2.6 Transient nonlinear analysis 

In the presence of early age heat development, the heat generation rate of cement based 

materials can be obtained with the mathematical formulation proposed by Reinhardt et al. 

(1982) and based on the Arrhenius type relation, being defined by equation (6.72) 

(Azenha 2009). 

 ( ) (273.15 )
aE

R T
T TQ f A eα

−
+=  (6.72)

In this equation Q  is the heat generation rate to be introduced in equation (6.43), ( )Tf α  is 

the normalized heat generation rate directly obtained through experiments (de Borst and 

van den Boogaard 1984, Azenha 2009), TA  is a rate constant, aE  (Jmol-1) is the apparent 

activation energy that depends on the type of cement, R  is the universal gas constant 

(8.314 Jmol-1K-1), and T  is the temperature in ºC. In this case the second member of 

equation (6.64) depends on the temperature and, for that reason, an iterative process is 

required at each time step to solve the nonlinear system of equations. The 

Newton-Raphson method is used for this iterative process. 

For the current time step 1n + , the equation of the unbalanced heat fluxes can be defined 

by 

 ( )1 1 1 1n n n nT F E T+ + + +Ψ = −  (6.73)

being 1nF +  and 1nE +  defined by equation (6.67) and equation (6.65), respectively. For the 

current time step 1n + , it is intended that the vector ( )1nT +Ψ  is null, i.e., 

 ( )1 0nT +Ψ =  (6.74)
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Equation (6.74) can be solved by applying the Newton-Raphson method. Considering the 

first two terms of the Taylor series expansion, equation (6.74) can be approximated as 

 ( ) ( )
1

1
1 1 1

1

0
q

q q q
n n n

n

T T T
T

δ
−

−
+ + +

+

⎛ ∂Ψ ⎞
Ψ ≈ Ψ + =⎜ ⎟∂⎝ ⎠

 (6.75)

where the subscript q  is the iteration counter. In equation (6.75) 

 
( ) ( )

11
1

1
1 1

qq
q

T n
n n

F ET
E

T T

−−
−

+
+ +

⎛ ⎞∂ −⎛ ∂Ψ ⎞
= − = −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (6.76)

is the Jacobian matrix. For simplification, the term 1 1
1 1

q q
n nF T− −
+ +∂ ∂  is dropped in the present 

formulation, being the Jacobian matrix equal to the effective tangential matrix, TE  of the 

1q −  iteration of the current time step, 1n + . Substituting (6.76) into (6.75) yields 

 ( ) ( )1 1
1 11

q q q
T n nn

E T Tδ− −
+ ++
= Ψ  (6.77)

An iterative procedure is executed up to the solution of equation (6.74), and in each 

iteration the vector of the temperatures is updated as follows 

 1
1 1 11

q q qq
n n n nnT T T T Tδ−
+ + ++= + = +∆  (6.78)

with 

 1
1 1 1 1

1

q
q i q q
n n n n

i

T T T Tδ δ−
+ + + +

=

∆ = = ∆ +∑  (6.79)

being 0
1n nT T+ =  and 0

1 0nT +∆ =  at the beginning of the iterative process. 
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The normalized heat generation rate ( )Tf α  is obtained directly from experiments, and is a 

function of the degree of heat development Tα . This parameter describes the relative 

amount of heat generation due to the cement hydration (Ferreira et al. 2008, Azenha 2009) 

 
( )

T
total

Q t
Q

α =  (6.80)

where ( )Q t  is the accumulated heat generated until a certain instant t , and totalQ  is the 

final accumulated heat of the cement (or binder) hydration. An initial value for the degree 

of heat development ,T initα  is necessary to numerically activate the nonlinear transient 

analysis due to early age heat development. 

6.2.6.1 Numerical examples 

An experimental program has been executed by Azenha (2009) with a concrete cube of 

40 cm edge length. The cube was monitored with temperature sensors placed at several 

points within the cube. A thermography camera has also been used to obtain the 

temperature field (thermography pictures) during the hardening of concrete. Figure 6.11 

represents schematically the geometry and the boundary conditions of the cube. Only one 

face is in contact with the environment, while in the others a wooden formwork separates 

the concrete from the environment. 

The value of the heat transfer coefficient assigned to the face that is in contact with the 

environment is 10.0 Wm-2K-1, and for the other faces an equivalent heat transfer 

coefficient, eqh , is used to account for the wooden formwork. The value is obtained with 

the electrical analogy (Holman 1986, Incropera et al. 2006, Azenha 2004) 

 
1

1

1 n
i

eq
icr i

Lh
h k

−

=

⎡ ⎤
= +⎢ ⎥
⎣ ⎦

∑  (6.81)
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being iL  and ik  the thickness and the thermal conductivity, respectively, of the thi  layer of 

the material located between the concrete and the environment. In the present case, the 

wooden formwork has a thickness of 1.85 cm and a conductivity of 0.2 Wm-1K-1, and a 

value of 5.2 Wm-2K-1 for eqh  is obtained. The wooden formwork of the lateral faces is 

removed 8.6 h after casting, and the corresponding faces of the concrete cube are made in 

contact with the environment, being a value of 10.0 Wm-2K-1
 assigned to the heat transfer 

coefficient. 

 

Figure 6.11 – Geometry and the boundary conditions. 

In the numerical analysis the domain is discretized with 8-noded hexahedral elements with 

a 2×2×2 Gauss-Legendre integration scheme. The material conductivity, k, is constant and 

equal to 2.6 Wm-1K-1, the volumetric heat capacity, cρ , is 2400.0 kJm-3K-1 and the initial 

temperature is set to 26 ºC. The ambient temperature is 20 ºC and a Backward-Euler time 

integration scheme is used with an incremental time step of 864s. 

The values that characterize the heat generation rate defined by equation (6.72) are 

dependent on the type of cement used in the experiment. A type I 52.5R cement content of 

z

x

y

40.0 cm

40.0 cm

40.0 cm

T   =26 ºC

Wooden formwork

init

 h   = 5.2 Wm  Keq
-2 -1

 h = 10.0 Wm  K-2 -1
Concrete

T    =20 ºCamb



212 Chapter 6 

 

3430kg m  has been used (Azenha 2009), with 1.2053E+09 430TA = × , 47.51kJ molaE =

and 3383.13 430 kJ mtotalQ = × . The normalized heat generation rate ( )Tf α  used in the 

analysis is represented in Figure 6.12, and a value of 0.05 is considered for ,T initα . 

 

Tα  ( )Tf α  
0.00 0.000 
0.05 0.626 
0.10 0.883 
0.15 0.988 
0.20 0.997 
0.25 0.995 
0.30 0.946 
0.35 0.832 
0.40 0.683 
0.45 0.544 
0.50 0.435 
0.55 0.347 
0.60 0.273 
0.65 0.218 
0.70 0.173 
0.75 0.123 
0.80 0.072 
0.85 0.035 
0.90 0.018 
0.95 0.009 
1.00 0.000 

 

Figure 6.12 – Normalized heat generation rate. 

As mentioned before, the cube is monitored by temperature sensors placed at several 

points. Azenha (2009) has compared the experimental results with numerical simulations 

and a good agreement was achieved. To assess the predictive performance of the 

developed thermal transient nonlinear model, the temperature due to heat generation during 

the first 24 h is compared with the numerical simulations of Azenha (2009) at two points 

(see Figure 6.13). One point (TP21) is located at the center of the top surface of the cube 

(0.2, 0.2, 0.4) and the other (TP9) is located at the center of the lateral surface (0.2, 0.4, 

0.2). From Figure 6.13 it can be concluded that the present model matches perfectly the 

numerical simulations performed by Azenha (2009) at the predefined points. This figure 

also shows that, due to the presence of the lateral wooden formwork, a greater temperature 

gradient due to the heat generation has occurred at the point located on the face that 

contacts directly with the environment. When the lateral formwork is removed (8.6h after 

casting) an inflection point is observed in the TP9_ThermalModel curve, and its 

temperature curve tends to match the results of the TP21_ThermalModel. Both curves are 

almost coincident after a period of 12.0h. 
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Figure 6.13 – Temperature evolution at two points of the cube during the first day. 

Figure 6.14 represents the temperature field at two different times of the transient analysis. 

One is the temperature field at the first time step (t=0.24h) and the other is the temperature 

field at the last time step (t=24h). Some conclusions can be drawn by observing these 

temperature fields. At t=0.24h, only the top face of the cube is in direct contact with the 

environment, and it can be observed that the temperature gradient is smaller compared with 

the gradient of the faces that contact the wooden formwork. The observation of the 

temperature field at time t=24h leads to the conclusion that the lateral faces tend to exhibit 

a temperature distribution that is similar to the one observed on the top surface. However, 

the bottom face has a significantly different temperature field, with a greater temperature 

gradient. This is justified by the presence of the wooden formwork on this face during the 

whole test. 

Another example for assessing the predictive performance of the implemented model is a 

concrete wall that is cast on a hardened concrete foundation. The analysis of this structure 

assuming plane strain conditions was analyzed by Lura and Breugel (2001). In the present 

work a three-dimensional representation of the domain is performed, assuming for the wall 

a length of 8 m, as shown in Figure 6.15. The domain is discretized with 20-noded 

hexahedral finite elements (see Figure 6.17), and a 3×3×3 Gauss-Legendre integration 
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scheme is used. The conductivity of the material is constant and equal to 2.6 Wm-1K-1, the 

volumetric heat capacity, cρ , is 2400.0 kJm-3K-1 and the initial temperature is set to 20 ºC. 

The ambient temperature is also 20 ºC and a Backward-Euler time integration scheme is 

used with an incremental time step of 1800s, being the total time of the analysis 120 h. 
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Figure 6.14 – Finite element mesh of the body represented in Figure 6.11, and temperature field for the first 

and last time step of the transient analysis. 
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Figure 6.15 represents schematically the geometry and the boundary conditions of the wall 

and the foundation. The top face of the wall is in contact with the environment, while a 

wooden formwork separates the others concrete surfaces from the environment until a 

curing period of 72h. After this time the wooden formwork is removed. An equivalent heat 

transfer coefficient, eqh , is used to account for the wooden formwork, which is obtained 

with the electrical analogy by using equation (6.81). 

 

Figure 6.15 – Geometry and the boundary conditions. 

As stated before, the values that characterize the heat generation rate defined by equation 

(6.72) are dependent on the type of cement used in the experiment. By the analysis of the 

type of cement used in Lura and Breugel (2001), cement content ( 3400kg m ) and 

activation energy (45.7 kJ mol ), the following data was derived, taking for this purpose 

information available in (Azenha 2009): a type I 52.5R cement with 7.400E+09 400TA = × , 

46.18 kJ molaE =  and 3386.3 400 kJ mtotalQ = × . The normalized heat generation rate 
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( )Tf α  used in the analysis is represented in Figure 6.16, and a value of 0.05 is considered 

for ,T initα . 

 

Tα  ( )Tf α  
0.00 0.00 
0.05 0.62 
0.10 0.88 
0.15 0.99 
0.20 1.00 
0.25 1.00 
0.30 0.95 
0.35 0.85 
0.40 0.70 
0.45 0.56 
0.50 0.45 
0.55 0.36 
0.60 0.28 
0.65 0.23 
0.70 0.18 
0.75 0.13 
0.80 0.08 
0.85 0.04 
0.90 0.02 
0.95 0.01 
1.00 0.00 

 

Figure 6.16 – Normalized heat generation rate. 

Only one quarter of the wall-foundation system is used in the analysis, due to double 

symmetry of the problem. The temperature field for different time steps of the transient 

analysis is represented in Figure 6.17. It can be observed that the temperature is higher in 

the interior of the wall and tends, with time, of attaining the ambient temperature. Due to 

the high convection heat transfer in the external surfaces, the temperature field decreases 

from the core of the wall to these lateral surfaces, being the lowest temperature registered 

in the corners between the top and the front-lateral surface. This is more pronounced after a 

time of 72h, when the wooden formwork is removed. 

Figure 6.18 represents the temperature evolution at three points of front edge of the wall 

(see Figure 6.15). It can be observed that the highest temperature development is in the 

center point and the lowest is at the bottom point in contact with the foundation. At a time 

of 72 h a smooth inflection point is observed in the curves due the removal of the wooden 

formwork. Similar results were obtained by Lura and Breugel (2001) and are presented in 

Figure 6.19. The main difference is the time corresponding to the peak temperature. By the 

observation of the adiabatic curve of hydration and heat release presented in Lura and 

Breugel (2001), the heat release up to 8h is abnormally very low. 
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Figure 6.17 – Finite element mesh of the body represented in Figure 6.15, and temperature field for different 

time steps of the transient analysis. 
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Figure 6.18 – Temperature evolution at three points of edge of the wall. 

 
 

 

Figure 6.19 – Temperature evolution at three points of edge of the wall (Lura and van Breugel 2001). 
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6.3 TIME-DEPENDENT DEFORMATIONS 

Using the concept of strain decomposition, the total strain at time t , ( )tε , of a concrete 

member uniaxially loaded at time 0t  with constant stress 0( )tσ  can be expressed by 

(Póvoas 1991, CEB-FIP 1993, Hofstetter and Mang 1995, Henriques 1998) 

 ( ) ( ) ( ) ( ) ( )0
in c s Tt t t t tε ε ε ε ε= + + +  (6.82)

where ( )0
in tε  is the initial strain at loading, ( )c tε  is the creep strain at time 0t t> , ( )s tε  

is the shrinkage strain and ( )T tε  is the thermal strain. 

The strains ( )0
in tε  and ( )c tε  are caused by applied stresses, being thus called mechanical 

strains, while the other two components ( )s tε  and ( )T tε  are independent from the stress 

field (Bazant 1988). 

The thermal strain ( )T tε  can be obtained from the temperature field at a certain instant, 

e.g., using the results of the thermal model described in section 6.2 and performing the 

following calculation 

 ( )T t Tε α= ∆  (6.83)

being α  the coefficient of thermal expansion and T∆  the temperature variation. 

The procedures required to evaluate the shrinkage, ( )s tε , and creep, ( )c tε , strains are 

described in the following sections, which are based on the approaches proposed by the 

Eurocode 2 (EC2 2004), and by Bazant and Baweja 2000 (B3 model). 
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6.3.1 Shrinkage 

6.3.1.1 Eurocode 2 

The total shrinkage can be calculated with 

 ( ) ( ) ( ),s
ca cd st t t tε ε ε= +  (6.84)

where ( )ca tε  is the autogenous shrinkage strain at time t  defined by equation (6.92), and 

( ),cd st tε  is the drying shrinkage strain at time t , which can be determined with the 

following equation 

 ( ) ( ) ,0, ,cd s ds s h cdt t t t kε β ε=  (6.85)

where 

 ( ) ( )
( ) 3

0

,
0,04

s
ds s

s

t t
t t

t t h
β

−
=

− +
 (6.86)

and hk  is a coefficient that depends on the notional size, 0h , and takes the values according 

to Table 6.1. 

Table 6.1 – Values for hk . 

0h  [mm] hk  

100 1.0 

200 0.85 

300 0.75 

≥ 500 0.70 

In equation (6.85) ,0cdε  is the notional drying shrinkage coefficient defined by 
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 ( ) 6
,0 1 20.85 220 110 exp 10

10
cm

cd ds ds RH
fε α α β−⎡ ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (6.87)

where 1dsα  and 2dsα  are coefficients that depend on the type of cement 

 1

3
4
6

ds

for cement Class S
for cement Class N
for cement Class R

α
⎧
⎪= ⎨
⎪
⎩

 (6.88)

 2

0.13
0.12
0.11

ds

for cement Class S
for cement Class N
for cement Class R

α
⎧
⎪= ⎨
⎪
⎩

 (6.89)

and RHβ  is the coefficient that introduces the effect of the relative humidity on drying 

 
3

1.55 1
100RH
RHβ

⎡ ⎤⎛ ⎞= − −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 (6.90)

being RH  the ambient relative humidity (%). 

In the above equations, t  is the age of concrete in days when the phenomenon is evaluated, 

st  is the age of concrete in days at the beginning of the drying shrinkage, and in equation 

(6.86) 0h  is the notional size of the cross section, in mm, defined by 

 0
2 cAh
u

=  (6.91)

where cA  is the concrete cross sectional area, in mm2, and u  is the perimeter of the part of 

the cross section which is exposed to drying, in mm. 
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In equation (6.87) cmf  is the mean compressive strength of concrete at the age of 28 days 

in MPa. 

The autogenous shrinkage strain, ( )ca tε , is defined by 

 ( ) ( ) ( )ca as cat tε β ε= ∞  (6.92)

where ( )as tβ  is a function defined by 

 ( ) ( )0.51 exp 0.2as t tβ = − −  (6.93)

and 

 ( ) ( ) 62.5 10 10ca ckfε −∞ = − − ×  (6.94)

where ckf  is the characteristic compressive strength of concrete at the age of 28 days in 

MPa. Its value can be estimated with 

 8ck cmf f= −  (6.95)

6.3.1.2 Model B3 

According to this model the total shrinkage strain is calculated with 

 ( ) ( ) ( ),s
a sh st t t tε ε ε= +  (6.96)

where ( )a tε  is the autogenous shrinkage strain obtained with equation (6.110), and 

( ),sh st tε  is the drying shrinkage strain defined by 
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 ( ) ( ),sh s sh ht t k S tε ε ∞= −  (6.97)

where ( )S t  represents the time-dependence 

 ( ) tanh s

sh

t tS t
τ
−

=  (6.98)

hk  introduces the humidity dependence 

 

31 0.98
0.2 1.0 ( )

0.98 1.0
h

h for h
k for h swelling in water

linear interpolation for h

⎧ − ≤
⎪= − =⎨
⎪ < <⎩

 (6.99)

and shε ∞  considers the time-dependence of ultimate shrinkage 

 
( )

( )
607

sh s
s sh

E
E t

ε ε
τ∞ ∞=

+
 (6.100)

being 

 ( ) 28 4 0.85
tE t E

t
⎛ ⎞= ⎜ ⎟+⎝ ⎠

 (6.101)

where 28E  is the given by 

 28 4734 cmE f=  (6.102)
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In the above equations, t , st  and cmf  have the meaning already presented in the previous 

section, and h  is the ambient relative humidity, expressed as a decimal number in the 

range 0 1h≤ ≤ . In equations (6.98) and (6.100) shτ  is the shrinkage half-time in days given 

by 

 ( )2
sh t sk k Dτ =  (6.103)

where tk  is a factor defined by 

 0.08 1 4
08.5t cmk t f− −=  (6.104)

The parameter sk  is the cross section shape factor, calculated according to 

 

1.00
1.15
1.25
1.30
1.55

s

for an infinite slab
for an infinite cylinder

k for an infinite square prism
for a sphere
for a cube

⎧
⎪
⎪⎪= ⎨
⎪
⎪
⎪⎩

 (6.105)

and D  represents the effective cross section thickness, obtained with 

 
2VD
S

=  (6.106)

being V S  the volume to surface ratio in cm. 

In equation (6.100) sε ∞  is calculated with 
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 2 2.1 0.28 6
1 2 1.9 10 270 10s cmfε α α ω− − −

∞ ⎡ ⎤= × + ×⎣ ⎦  (6.107)

where ω  is the water content of the concrete mix, in kg/m-3. The parameters 1α and 2α  are 

defined by 

 1

1.00
0.85
1.10

for type I cement
for type II cement
for type III cement

α
⎧
⎪= ⎨
⎪
⎩

 (6.108)

and 

 2

0.75
1.20

1.00

steam-curingfor 
for sealed or normal curing in air with initial
protection against drying
for curing in water or at 100% relative humidity

α

⎧
⎪
⎪= ⎨
⎪
⎪⎩

 (6.109)

The autogenous shrinkage strain, ( )a tε , is defined by 

 ( ) ( ) ( )0.99a a a at h S tε ε ∞ ∞= −  (6.110)

being ah ∞  the final self-desiccation humidity, that can be assumed to be about 80% (Bazant 

and Baweja 2000), aε ∞  the final autogenous shrinkage strain and 

 ( ) tanh set
a

a

t tS t
τ
−

=  (6.111)

In this equation sett  is the time of final set of cement in days, and aτ  is the half-time of 

autogenous shrinkage, depending on the rate of hardening of the type of concrete. 



226 Chapter 6 

 

According to Bazant and Baweja (2000) the material parameters of equations (6.110) and 

(6.111) may be calibrated by performing shrinkage measurements in sealed specimens 

(autogenous shrinkage) and drying specimens (total shrinkage). 

6.3.2 Creep 

6.3.2.1 Eurocode 2 

The creep strain at time t , ( )c tε , for a constant stress, cσ , applied at a concrete age 0t  is 

given by 

 ( ) ( )0,c c

c

t t t
E
σε ϕ=  (6.112)

where cE  is the tangent modulus of concrete, that can be considered equal to 1.05 cmE , 

being cmE  the secant modulus of elasticity of concrete at an age of 28 days. In Equation 

(6.112) the creep coefficient ( )0,t tϕ  is defined by 

 ( ) ( )0 0 0, ,ct t t tϕ ϕ β=  (6.113)

where 0ϕ  is the notional creep coefficient determined from equation (6.114); ( )0,c t tβ  is 

the coefficient that describes the time dependent evolution of creep after loading, defined 

by equation (6.116), being t  the age, in days, when the creep is evaluated, and 0t  the age 

of concrete at loading in days. 

 ( ) ( )0 0RH cmf tϕ ϕ β β=  (6.114)

where 
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 3
0

1 1001
0.1RH
RH

h
ϕ −

= +  for   fcm ≤ 35 MPa (6.115a)

 1 23
0

1 1001
0.1RH
RH

h
ϕ α α

⎡ ⎤−
= +⎢ ⎥
⎢ ⎥⎣ ⎦  

for   fcm > 35 MPa (6.115b)

 ( ) 16.8
cm

cm

f
f

β =  (6.115c)

 ( )
( )0 0.2

0

1
0.1

t
t

β =
+

 (6.115d)

being RH  the relative humidity of the ambient environment, in %, 0h  is defined by 

equation (6.91) and cmf  is the mean compressive strength of concrete at the age of 28 days 

in MPa. The term ( )0,c t tβ  in equation (6.113) is determined with 

 ( ) ( ) 0.3

0
0

0

,c
H

t t
t t

t t
β

β
⎡ ⎤−

= ⎢ ⎥+ −⎣ ⎦
 (6.116)

being 

 ( )18
01.5 1 0.012 250 1500H RH hβ ⎡ ⎤= + + ≤⎣ ⎦   for   fcm ≤ 35 MPa (6.117a)

 ( )18
0 3 31.5 1 0.012 250 1500H RH hβ α α⎡ ⎤= + + ≤⎣ ⎦   for   fcm > 35 MPa (6.117b)

The coefficients 1α , 2α  and 3α  in equations (6.115) and (6.117) depend on the mean 

compressive strength of concrete, and are defined by 

 
0.7

1
35

cmf
α

⎡ ⎤
= ⎢ ⎥
⎣ ⎦               

0.2

2
35

cmf
α

⎡ ⎤
= ⎢ ⎥
⎣ ⎦              

0.5

3
35

cmf
α

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (6.118)
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The effects of temperature during the curing phase and type of cement on the creep 

coefficient of concrete may be taken into account by modifying the value of the parameter 

that considers the age at loading 0t  

 
( )0 0, 1.2

0,

9 1 0.5
2

T

T

t t days
t

α
⎡ ⎤
⎢ ⎥= + ≥
⎢ ⎥+⎣ ⎦

 (6.119)

where α  is a parameter that depends on the type of cement 

 
1

0
1

for cement Class S
for cement Class N
for cement Class R

α
−⎧
⎪= ⎨
⎪
⎩

 (6.120)

and 0,Tt  is the age of concrete at loading, in days, adjusted according to the following 

equation 

 ( )
4000 13.65

273
0,

1

e i
n

T t
T i

i

t t
⎛ ⎞

− −⎜ ⎟⎜ ⎟+ ∆⎝ ⎠

=

= ×∆∑  (6.121)

being ( )iT t∆  the temperature in ºC during the time period it∆ , in days. 

When the compressive stress of concrete at age 0t  exceeds the value 00.45 ( )ckf t  the 

nonlinearity of creep may be taken into account by considering 

 ( ) ( ) ( )0 0, , exp 1.5 0.45nl t t t t kσϕ ϕ ⎡ ⎤= −⎣ ⎦  (6.122)



Thermo-mechanical model 229 

 

where ( )0,nl t tϕ  is the nonlinear notional creep coefficient and replaces ( )0,t tϕ  and 

0( )c ckk f tσ σ= , which is the stress-strength ratio, being 0( )ckf t  the characteristic 

compressive strength of concrete at time of loading. 

6.3.2.2 Model B3 

The compliance function ( )0,J t t  or creep function, represents the strain (elastic plus 

creep) at time t , caused by a unit constant stress applied at age 0t , and is given by 

 ( ) ( ) ( )0 1 0 0 0, , , ,d sJ t t q C t t C t t t= + +  (6.123)

where 1q  is the instantaneous strain due to unit stress 

 
6

1
28

0.6 10q
E
×

=  (6.124)

being 28E  obtained from equation (6.102). The parameter ( )0 0,C t t  is the compliance 

function for basic creep, i.e., creep at constant moisture content and no moisture movement 

through the material (Bazant and Baweja 2000), obtained with 

 ( ) ( ) ( )0 0 2 0 3 0 4
0

, , ln 1 lnn tC t t q Q t t q t t q
t

⎛ ⎞⎡ ⎤= + + − + ⎜ ⎟⎣ ⎦ ⎝ ⎠
 (6.125)

where 

 0.5 0.9
2 185.4 cmq c f −=  ;  ( )4

3 20.29q w c q=  ;  ( ) 0.7
4 20.3q a c −=  (6.126)

and 
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 ( ) ( ) ( )
( )

( ) ( )0 0

1

0
0 0

0

, 1
,

r t r t
f

f

Q t
Q t t Q t

Z t t

−
⎡ ⎤⎛ ⎞
⎢ ⎥= + ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (6.127)

in which 

 ( ) ( )0.12
0 01.7 8r t t= +  (6.128a)

 ( ) ( ) ( )0 0 0, ln 1m nZ t t t t t− ⎡ ⎤= + −⎣ ⎦  (6.128b)

 ( ) ( ) ( )2 9 4 9
0 0 00.086 1.21fQ t t t⎡ ⎤= +⎣ ⎦  (6.128c)

In equation (6.123) ( )0, ,d sC t t t  is the additional compliance function due to drying given 

by 

 ( ) ( ){ } ( ){ } 1 2
'

0 5 0, , exp 8 exp 8d sC t t t q H t H t⎡ ⎤= − − −⎣ ⎦  (6.129)

where '
0t  is the time at which drying and loading first act simultaneously, ( )'

0 0max , st t t= , 

and 

 ( ) ( ) ( )1 1H t h S t= − −  (6.130)

being ( )S t  given by equation (6.98). The meaning of the parameter h  is described in 

section 6.3.1.2, and st  is the age of concrete in days when drying begins. 

The value of 5q  in equation (6.129) is given by 

 5 1 0.6
5 7.57 10 | |cm shq f ε− −

∞= ×  (6.131)
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where shε ∞  is obtained with equation (6.100). 

In the above equations 1.0n = , 0.5m = , c  is the cement content, ( )w c  the water to 

cement ratio, ( )a c  is the aggregate to cement ratio and cmf  is the mean compressive 

strength of concrete at the age of 28 days in MPa. 

According to (Bazant and Baweja 2000) the creep coefficient should be calculated from 

the compliance function as follows 

 ( ) ( ) ( )0 0 0, , 1t t E t J t tϕ = −  (6.132)

where ( )0E t  is the modulus of elasticity at loading age 0t , being obtained with equation 

(6.101). 

6.4 CONCRETE MATURITY 

The concrete mechanical properties increases significantly with time and consequently 

these changes must be taken into account. The maturity of concrete is a consequence of the 

hydration process of the cement paste and its evolution is strongly affected by temperature, 

curing conditions and type of cement (Henriques 1998). 

The recommendations of Eurocode 2 (EC2 2004) to simulate the evolution of the 

compressive strength, tensile strength and modulus of elasticity are the following 

 ( ) ( )cm cc cmf t t fβ=  (6.133a)

 ( ) ( )ctm cc ctmf t t f
α

β⎡ ⎤= ⎣ ⎦  (6.133b)

 ( ) ( ) 0.3

cm cc cmE t t Eβ⎡ ⎤= ⎣ ⎦  (6.133c)
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where cmf , ctmf  and cmE  are the mean compressive strength, the mean value of the tensile 

strength, and the secant modulus of elasticity of concrete at an age of 28 days. In equation 

(6.133b) α  is a parameter whose value depends on the considered age t  

 
1 for  t < 28 days
2 for  t  28 day
3

α
⎧
⎪= ⎨

≥⎪⎩

 (6.134)

In equation (6.133) ( )cc tβ  is determined from 

 ( )
1 228exp 1cc t s

t
β

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞= −⎢ ⎥⎨ ⎬⎜ ⎟
⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (6.135)

being 

 
0.38
0.25
0.20

for cement Class S
s for cement Class N

for cement Class R

⎧
⎪= ⎨
⎪
⎩

 (6.136)

To define the tensile diagrams described in section 3.3.2.2 of chapter 3, the mode I fracture 

energy must be supplied. An experimental program is necessary to obtain data to propose 

an equation that defines the evolution of the fracture energy with time. Since this 

experimental work is out of the scope of this thesis, a relation is proposed by using the 

coefficient of equation (6.135), which depends on the age of the concrete, t  

 ( ) ( ) 1I I
f cc fG t t G

α
β⎡ ⎤= ⎣ ⎦  (6.137)
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where I
fG  is the mode I fracture energy of concrete at an age of 28 days, and 1α  is a value 

that defines the evolution of ( )cc tβ  While no more reliable information is available, the 

values indicated in equation (6.134) will be used in the present work. 

If the mean temperature differs from the reference temperature, 20 ºC, the concept of 

equivalent age is commonly used. This concept can be defined as the age at which the 

hydration at the reference temperature has reached the same stage (Bosnjak 2000, Azenha 

2009), and can be determined by 

 ( )
1 1

273.15 273.15

0

e
a

ref

Et
R T t T

eqt dt
⎛ ⎞
⎜ ⎟− −⎜ ⎟+ +⎝ ⎠= ∫  (6.138)

or in an incremental form 

 ( )
1 1

273.15 273.15

1
e

a

i ref

E
n

R T t T
eq i

i
t t

⎛ ⎞
⎜ ⎟− −⎜ ⎟+ ∆ +⎝ ⎠

=

= ×∆∑  (6.139)

being aE  (Jmol-1) the apparent activation energy that depends on the type of cement, R  the 

ideal gas constant (8.314 Jmol-1K-1), refT  the reference temperature (20 ºC) and ( )iT t∆  the 

temperature in ºC during the time period it∆  in days. 

Equation (6.139) is very similar to equation (6.121) proposed by EC 2 (2004) for the age 

adjustment. Making some calculations, the equation of EC 2 (2004) assumes an apparent 

activation energy of about 33256 Jmol-1 for a reference temperature of 20 ºC. These two 

approaches are available to the equivalent age calculation. The equivalent age is introduced 

in the above equations for the evaluation of the mechanical properties of concrete. 
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6.5 UPDATE OF THE MULTI-FIXED SMEARED 3D CRACK MODEL TO 

TAKE INTO ACCOUNT THE TIME DEPENDENT EFFECTS 

In chapter 5 a multi-fixed smeared 3D crack model, under the nonlinear FEM framework, 

is proposed to simulate the behavior of concrete structures. In this section this model is 

adapted to include the time dependent effects. 

In this smeared crack model the strain components of the cracked material is the addition 

of the strain components in the smeared cracks, crε , with the strain components in the 

uncracked concrete between cracks, coε  

 co crε ε ε= +  (6.140)

Taking into account the time dependent effects described in section 6.3, the strain vector of 

the uncracked concrete is decomposed in order to include these effects. So, equation (6.82) 

is adapted and results in 

 ( ) ( ) ( ) ( ) ( ) ( )0
e c s T crt t t t t tε ε ε ε ε ε= + + + +  (6.141)

where eε , cε  , sε and , Tε  are the elastic, creep, shrinkage and thermal strain vectors, and 
crε  is the crack strain vector. A nonlinear transient analysis must be performed, since the 

total strain is time dependent, being its components evaluated during the time. 

If the maximum compressive stress is less than 0.4 of the compressive strength of the 

concrete, the mechanical strain for a uniaxial loaded concrete specimen can be obtained 

with 

 ( ) ( ) ( ) ( ) ( )0 0 0,m e ct t t J t t tε ε ε σ= + =  (6.142)
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where ( )0,J t t  is the compliance function or creep function, representing the strain, elastic 

plus creep, at time t  caused by a unit constant uniaxial stress acting since time 0t . Since 

the elastic strain is defined by 

 ( ) ( )
( )

0
0

0

e t
t

E t
σ

ε =  (6.143)

where ( )0cE t  is the modulus of elasticity at the time 0t , the compliance function can be 

given by 

 ( ) ( ) ( )0 0
0

1, ,J t t C t t
E t

= +  (6.144)

being ( )0,C t t  the specific creep. Therefore, the creep strain can be obtained with 

 ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0
0

1, ,c t C t t t J t t t
E t

ε σ σ
⎛ ⎞

= = −⎜ ⎟⎜ ⎟
⎝ ⎠

 (6.145)

or introducing the creep coefficient ( ) ( ) ( )0 0 0, ,t t E t C t tϕ = , the creep strain can be 

determined from 

 ( ) ( ) ( )
( )

0
0

0

,c t t
t t

E t
ϕ

ε σ=  (6.146)

Introducing equation (6.144) in equation (6.142) the mechanical strain is given by 

 ( ) ( ) ( ) ( )0 0
0

1 ,m t C t t t
E t

ε σ
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

 (6.147)
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Assuming that the strain caused by a generic stress history ( )tσ  can be determined by the 

decomposition of the stress history into small increments ( )d tσ ′  applied at times t′  

(Bazant 1988), the mechanical strain is 

 ( ) ( ) ( )
0

,
t

m t J t t d tε σ′ ′= ∫  (6.148)

By performing 

 ( ) ( ) ( )d t
d t dt t dt

dt
σ

σ σ
′

′ ′ ′ ′= =
′

 (6.149)

equation (6.148) can be rewritten as 

 ( ) ( ) ( )
0

,
t

m t J t t t dtε σ′ ′ ′= ∫  (6.150)

or, for a three-dimensional stress state, 

 ( ) ( ) ( )
0

,
t

m t J t t C t dtε σ′ ′ ′= ∫  (6.151)

where ( ) 1coC E D
−

= , being coD  defined by equation (5.12) of chapter 5. 

For an incremental time step t∆ , the incremental mechanical strain vector is obtained with 

 ( ) ( ) ( )1
m m m

n n nt t tε ε ε+∆ = −  (6.152)
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being ( )1
m

ntε +  and ( )m
ntε  the mechanical strain vector at the time 1nt +  and nt , 

respectively. 

Using equation (6.151) in (6.152) the mechanical strain increment vector is given by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

0 0

1 1, , ,
n n n

tn

t t t
m

n n nt J t t C t dt J t t C t dt J t t C t dtε σ σ σ
+

+ +′ ′ ′ ′ ′ ′ ′ ′ ′∆ = + −∫ ∫ ∫  (6.153)

or 

 ( ) ( ) ( ) ( ) ( ) ( )
1

0

1 1, , ,
n n

tn

t t
m

n n nt J t t J t t C t dt J t t C t dtε σ σ
+

+ +′ ′ ′ ′ ′ ′ ′⎡ ⎤∆ = − +⎣ ⎦∫ ∫
 

(6.154)

Multiplying this equation by the matrix 1C− , and taking into account that 1C D− = , 
equation (6.154) becomes 

 ( ) ( ) ( ) ( ) ( ) ( )
1

0

1 1, , ,
n n

tn

t t
m

co n n nD t J t t J t t t dt J t t t dtε σ σ
+

+ +′ ′ ′ ′ ′ ′ ′⎡ ⎤∆ = − +⎣ ⎦∫ ∫
 

(6.155)

where 1 coD E D−= . 

Considering that in the incremental time step, t∆ , a linear variation of the stress is 

assumed, its derivative is approximated by 

 ( ) ( ) ( ) ( ) ( )1

1

+

+

′∂ − ∆
′ = ≈ ≈

′∂ − ∆
n n n

n n

t t t t
t

t t t t
σ σ σ σ

σ  (6.156)

Substituting this relation in the second integral of equation (6.155) and making some 

arrangements, results in 
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 ( )
( ) ( ) ( ) ( )

( )
0

1

1

1

, ,

1 ,

n

n

tn

t
m

n n

n t

n

D t J t t J t t t dt
t

J t t dt
t

ε σ
σ

+

+

+

′ ′ ′ ′⎡ ⎤∆ − −⎣ ⎦
∆ =

′ ′
∆

∫

∫
 (6.157)

This equation can be written as (de Borst and van den Boogaard 1984) 

 ( ) ( )*( ) ( )m
con n nt E t D t tσ ε σ∆ = ∆ +  (6.158)

where 

 ( )
1

*

1

1( )
1 ,

n

tn

t

n

E t
J t t dt

t

+

+

=
′ ′

∆ ∫
 

(6.159)

and 

 ( ) ( ) ( ) ( )
0

*
1, ,

t

n nt E t J t t J t t dtσ σ+ ′ ′ ′⎡ ⎤= − −⎣ ⎦∫  (6.160)

with *
1n nt t t+ ≤ ≤  (using a generalized midpoint rule) 

To overcome the inconvenient of storing the entire load history, the use of Dirichlet series 

is commonly used, so the approximation of the compliance function is made by a series of 

real exponentials (Bazant and Wu 1973, Bazant 1988)  

 ( ) ( ) ( )

( )0

1

1 1, 1
t t

N

J t t e
E t E t

µτ

µµ

− −

=

⎛ ⎞
⎜ ⎟′ = + −

′ ′ ⎜ ⎟
⎝ ⎠

∑  (6.161)
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where µτ  are constants designated by retardation times, Eµ  are coefficients only 

depending on t′  that have the dimensions of an elastic moduli, and ( )E t′  is the 

instantaneous elastic modulus. The process for the determination of the retardations times, 

µτ , and the coefficients Eµ  can be found elsewhere (Bazant and Wu 1973, Bazant 1988, 

Póvoas 1991). Dirichlet series expansion of the compliance function, as presented in 

equation (6.161), can be interpreted as a Kelvin chain of N units (Bazant and Wu 1973). 

The incremental mechanical strain vector, mε∆ , can be related to the other components of 

equation (6.141), rewritten in an incremental form for the a time step t∆  

 ( ) ( ) ( ) ( ) ( )m s T cr
n n n n nt t t t tε ε ε ε ε∆ = ∆ −∆ −∆ −∆  (6.162)

Introducing this equation in equation (6.158) results in 

 ( ) ( ) ( ) ( ) ( )*( ) ( )s T cr
n n n n n nt E t D t t t t tσ ε ε ε ε σ⎡ ⎤∆ = ∆ −∆ −∆ −∆ +⎣ ⎦  (6.163)

Considering equations (5.5), (5.10) and (5.13) of chapter 5, written for the time nt , results 

in 

 ( ) ( )crcr
n nt T tσ σ∆ = ∆  (6.164a)

 ( ) ( )
Tcr cr cr

n nt T tε ε⎡ ⎤∆ = ∆⎣ ⎦  (6.164b)

 ( ) ( )crcr cr
n nt D tσ ε∆ = ∆  (6.164c)

Introducing equation (6.163) in the second member of equation (6.164a), results in 
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 ( ) ( ) ( ) ( ) ( )( )( )*( ) ( )cr s T crcr
n n n n n nt T E t D t t t t tσ ε ε ε ε σ∆ = ∆ −∆ +∆ +∆ +  (6.165)

Introducing equations (6.164b) and (6.164c) in equation (6.165), and making some 

arrangements, yields 

 
( ) ( )

( ) ( ) ( )( )

1
*

*

( )

( ) ( )

Tcr cr crcr
n

cr s T cr
n n n n

t D T E t D T

T E t D t t t T t

ε

ε ε ε σ

−

⎡ ⎤∆ = + ×⎣ ⎦

⎡ ⎤∆ − ∆ −∆ +⎣ ⎦

 (6.166)

By including equation (6.166) in (6.164b), it can be obtained 

 
( ) ( )

( ) ( ) ( )( )

1
*

*

( )

( ) ( )

T Tcr cr cr cr cr
n

cr s T cr
n n n n

t T D T E t D T

T E t D t t t T t

ε

ε ε ε σ

−⎡⎡ ⎤ ⎡ ⎤∆ = + ×⎢⎣ ⎦ ⎣ ⎦⎣
⎤⎡ ⎤∆ − ∆ −∆ + ⎥⎣ ⎦ ⎦

 (6.167)

and then introducing equation (6.167) in equation (6.163) and making some operations, the 

incremental stress vector is obtained with 

 
( ) ( )

( ) ( ) ( )( )( )

1
* *

*

( ) ( )

( ) ( )

T Tcr cr cr cr cr
n

s T
n n n n

t I E t D T D T E t D T T

E t D t t t t

σ

ε ε ε σ

−⎛ ⎞⎡ ⎤ ⎡ ⎤∆ = − + ×⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

∆ −∆ −∆ +

 (6.168)

Equation (6.168) replaces equation (5.20) in the multi-fixed 3D crack model presented in 

chapter 5. 

The incremental shrinkage strain is obtained by one of the models described in section 6.3, 

and the incremental thermal strain is determined from the temperature field, e.g., using the 

results of the thermal model described in section 6.2. For the three-dimensional case, these 

vectors are defined by 
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 ( ) 0 0 0
Ts s s s

ntε ε ε ε⎡ ⎤∆ = ∆ ∆ ∆⎣ ⎦  (6.169)

 ( ) 0 0 0
TT T T T

ntε ε ε ε⎡ ⎤∆ = ∆ ∆ ∆⎣ ⎦  (6.170)

and are obtained with 

 ( ) ( ) ( )1
s s s

n n nt t tε ε ε+∆ = −
  
;  ( ) ( ) ( )1

T T T
n n nt t tε ε ε+∆ = −  (6.171)

6.5.1 Numerical example 

The performance of the model is appraised by performing a thermo-mechanical analysis of 

a prefabricated reinforced concrete bridge beam with a U-shaped cross section (Ferreira 

et al. 2008), as represented schematically in Figure 6.20. 

 

Figure 6.20 – Geometry of the prefabricated reinforced concrete bridge beam with a U-shaped cross section. 

In the precast industry different heat curing regimes (Ferreira et al. 2008) are frequently 

used to provide an early age strength development capable of anticipating the process of 

demolding as much as possible. In the present numerical simulation, the beam is subjected 

to one of these heat curing regimes, and its consequence in the strength development and 

an eventual crack formation is assessed. In the analysis carried out, a beam segment of 
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10.0 m length is considered since Ferreira et al. (2008) has verified that lengths greater 

than 10.0 m have no influence on the results. Due to double symmetry of the problem, only 

one quarter of the beam is modeled in the thermal and mechanical analysis (see Figure 

6.22). The ordinary rebars and the prestressing cables are not taking into account since 

Azenha (2009) has verified their marginal influence on the thermal analysis. For the 

mechanical analysis the reinforcement has also a reduced influence up to the hardened 

phase of concrete. However, if cracking occurs the influence of the reinforcement in the 

cracking process can be significant, but the computing time required for the inclusion of 

the rebars on the simulation has supported the decision to postpone this study for a future 

publication. 

The values that characterize the heat generation rate defined by equation (6.72) are 

dependent on the type of cement used in the concrete of the beam. The following data was 

used to characterize the C50/60 self-compacting concrete (Ferreira et al. 2008): cement 

type I 52.5R ( 3332kg m ) with 1.2053E+09 332TA = × , 47.51kJ molaE =  and 

3383.13 332 kJ mtotalQ = × . The normalized heat generation rate ( )Tf α  used in the 

analysis is similar to that represented in Figure 6.12, and a value of 0.05 is considered for 

,T initα . 

The domain is discretized with 20-noded hexahedral finite elements (see Figure 6.22), and 

a 3×3×3 Gauss-Legendre integration scheme is used. The conductivity of the material is 

constant and equal to 2.6 Wm-1K-1, the volumetric heat capacity, cρ , is 2400.0 kJm-3K-1 

and the initial temperature is set to 25 ºC. The ambient temperature is defined by the heat 

curing regime imposed to the beam, and has the following development (see Figure 6.21): 

30 ºC during 1h, followed by an increase of 10 ºC/h until a temperature of 80 ºC is reached, 

then this temperature is maintained during 3h, followed by a decrease of 10 ºC/h until the 

temperature of 20 ºC is attained. An equivalent heat transfer coefficient of 12.0 Wm-2K-1 is 

assigned to all exposed faces of the beam. A Backward-Euler time integration scheme is 

used with an incremental time step of 3600s, being the total time of the analysis 72 h. 

Figure 6.21 represents the temperature evolution at two points located in the cross section 

of the beam coinciding with the longitudinal symmetry plane, one at the top flange, 
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P1 (0.0, 0.0, 210.0), and the other at the interior of the bottom flange, P2 (0.0, 166.0, 18.0) 

(see Figure 6.20 and Figure 6.22). The temperature curing regime is also represented and it 

can be observed that the temperature at P1 and P2 points rapidly increases in the first 

12 hours, and then decreases up to reach the ambient temperature. Temperature 

development in these points has similar shape format, but point P1 located at the top flange 

presented a higher temperature decrease rate than point P2 located at the interior of the 

bottom flange. Similar results were obtained by Ferreira et al. (2008), and the main 

difference between these two studies was registered in the peak temperature observed at 

about 12 hours after casting. A justification can reside on eventual small differences on the 

location of the points and on the boundary conditions adopted in both analyses, since this 

information is not clearly indicated in the reference Ferreira et al. (2008). 

The temperature field for different time steps of the transient analysis is represented in 

Figure 6.22. It can be observed that due to the high convection heat transfer in the external 

surfaces, the temperature field decreases from the center of the U-shape beam walls to the 

external surfaces, and tends, with time, for the ambient temperature of 20 ºC. 

 
Figure 6.21 – Heat curing regime and temperature evolution at two points of the symmetry plane of the beam. 
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Figure 6.22 – Finite element mesh of the structure represented in Figure 6.20, and temperature field for 

different time steps of the transient analysis. 
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The temperature field from the thermal transient analysis was used in the mechanical 

transient model described in the previous section, in order to predict the corresponding 

stress field. The evolution of the material properties, such as compressive strength, tensile 

strength and modulus of elasticity, was simulated by using equation (6.133). The 

equivalent age concept ( eqt ) obtained by equation (6.139) was used in equation (6.133), by 

substituting the time t  by eqt . The support conditions consist in prescribed displacements 

in z direction in all points of the bottom flange of the beam in order to simulate the vertical 

support provided by the formwork, and prescribed displacements to take into account the 

double symmetry of the beam. The material properties used in the numerical simulations 

are presented in Table 6.2. The values of the compressive strength, tensile strength and 

modulus of elasticity correspond to an age of 28 days for a C50/60 concrete strength class, 

and the value of the fracture energy for the same age is obtained according to CEB-FIP 

(1993). The value of the parameters that characterize the tensile softening diagram was 

also obtained according to CEB-FIP (1993) recommendations. The same finite element 

mesh and Gauss-Legendre integration scheme used in the thermal analysis is adopted in 

the mechanical transient analysis. 

Table 6.2 - Values of the parameters of the constitutive model used in the mechanical numerical simulations. 

Poisson’s ratio 0.2ν =  

Thermal coefficient -51.0 10 ºCα = ×  

Young’s modulus 37.0 GPacmE =  

Compressive strength 58.0 MPacmf =  

Tension softening diagram 
4.1 MPactmf = ; -6198.53 10 MN mI

fG = × ; 

1 0.061ξ = ; 1 0.15α = ; 2 0.4432ξ = ; 2 0.09α =  
Parameter defining the mode I 
fracture energy available to the 
new crack 

2 0p =  

Shear retention factor Exponential ( 1 2p = ) 

Crack bandwidth Cubic root of the volume of the integration point 

Threshold angle 30ºthα =  
cr cr

1 n,2 n,1/α σ σ= , 2 ,3 ,1/cr cr
n nα σ σ= , 1 ,2 ,/cr cr

n n uξ ε ε= , 2 ,3 ,/cr cr
n n uξ ε ε=  (see Figure 3.6) 
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Three numerical analysis were performed, one considering the concrete with elastic 

behavior, a second one using the crack constitutive model, and the last one using the crack 

constitutive model and taking into account the autogenous shrinkage. For the evaluation of 

the autogenous shrinkage the Eurocode 2 model (EC2 2004) was considered. The concrete 

maturity was present in all numerical simulations. 

Figure 6.23 and Figure 6.24 present the evolution of the normal stress in the x direction and 

the tensile strength development for points P1 and P2, respectively. From the analysis of the 

curves of Figure 6.23 it can be stated that until an age of about 13 h after casting, the stress 

development is similar in all the numerical simulations. An initial compression until an age 

of 9 h is observed, which is directly associated with the high imposed external heat curing 

that has conducted to an expansion of the concrete developing compression stresses in 

point P1, located near the surface. A quite different behavior is observed after an age of 

13 h for the analysis that assumes an elastic behavior for the concrete and for the analysis 

that simulates crack formation and propagation. The analysis assuming elastic behavior 

does not take into account that at this age the tensile stress is greater than the tensile 

strength and conducts to an unrealistic evolution of the stress field. Using the proposed 

updated 3D multi-fixed smeared crack model the real stress development at this point is 

captured. It is verified that at the moment of the interception of the stress development 

curve and the tensile strength curve, the concrete cracks and the stress starts decreasing 

immediately. It is also observed that the autogenous shrinkage has marginal effect on the 

stress evolution at this point. 

 
Figure 6.23 – Evolution of the normal stress in x direction and the tensile strength at point P1. 
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From the analysis of the curves of Figure 6.24, which correspond to the stress evolution of 

the normal stress in x direction and the tensile strength development at point P2, it can be 

concluded that all the simulations provide similar results. Only when the autogenous 

shrinkage is taken into account the numerical response has a small difference after an age 

of 18 h after casting. Up 9 h point P2 is subjected to tensile stresses, and then to 

compressive stresses as observed in Figure 6.24. However, the tensile stress is always 

smaller than the tensile strength development, so concrete does not crack. 

 
Figure 6.24 – Evolution of the normal stress in x direction and the tensile strength at point P2. 

The crack pattern for different times of the transient mechanical analysis using the crack 

constitutive model is represented in Figure 6.25. It is observed that for an age of 14 h, 

several cracks are formed, mainly in the exterior of the top flange and in the interception of 

the horizontal and lateral cross section walls near to the free end of the beam. In 

consequence of temperature decreasing, these cracks tend to close, as represented in the 

Figure 6.25 for an age of 24 h. However, for later stages the cracks reopen (see Figure 6.25 

for t=72 h), which indicate that for the heat curing regime imposed to the beam, visible 

cracks can be formed, compromising the durability of the structure during its service life. 
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(a) 14ht =  

 

(b) 24ht =  

                        
                                                           (c) 72ht =  

Figure 6.25 – Crack pattern for different time steps of the transient analysis: (a) opening crack status; (b) 

closing crack status; (c) reopen crack status. 

6.6 SUMMARY AND CONCLUSIONS 

In the present chapter a thermal model with general purposes was described in detail, and 

all the relevant aspects for its implementation in the FEMIX computer code were 

discussed, in order to enable steady-state thermal analyses, transient linear thermal 

analyses or nonlinear thermal analyses. The heat development due to the hydration process 

during the concrete hardening phase was coupled to the thermal model, resulting in a 

model capable of simulating the behavior of a concrete structure since its early age. The 
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model was appraised using examples from the literature and a good agreement is observed. 

The formulations for the time-dependent deformations, such as shrinkage, creep and 

temperature were also described and they were coupled with the multi-fixed smeared 3D 

crack model. An example was studied to evidence the potentialities of this multiphysics 

approach. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 7 

Conclusions 

7.1 GENERAL CONCLUSIONS 

The present work describes the development and the implementation of numerical tools for 

the simulation of the behavior of structures built with cement based materials. These tools 

have been implemented in the FEMIX computer code, which is based on the finite element 

method. 

To simulate the behavior of concrete laminar structures failing in bending and shear, a 

model based on the Reissner-Mindlin theory in the context of layered shells has been 

developed with special emphasis on the treatment of the shear behavior. The model is 

based on a multi-directional fixed smeared crack concept. Crack propagation through the 

thickness of a slab or shell can be simulated by considering the nonlinear behavior of each 

of its layers. Fracture mode I is modeled with a crack stress vs. crack strain softening or 

stiffening diagram. To simulate the out-of-plane shear strain gradient that occurs in 

punching regions, a softening diagram is proposed to model, after crack initiation, the 

corresponding shear components. To simulate slabs on grade with an eventual loss of 

contact between the slab and the ground, linear and nonlinear support conditions, unilateral 

or not, have been implemented. In order to increase the robustness of the numerical 

simulations, the internal algorithms associated with the stress update and the critical crack 

status changes have been improved with respect to the previous version of the code. 
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To improve the performance of the numerical model in terms of predicting the behavior of 

concrete structures where shear and flexural/shear failure modes are critical, two 

alternative strategies are proposed for the treatment of the crack shear component. One is 

supported on a total crack shear stress-shear strain approach to simulate the degradation of 

the shear stress transfer with the crack opening evolution, and the other is based on a 

constitutive softening relation between the crack shear stress and crack shear strain 

components. 

To predict the behavior of structures discretized with solid finite elements, a multi-fixed 

smeared 3D crack model is proposed. Softening diagrams are available in this model not 

only to model the fracture mode I, but also the two fracture sliding modes. With this 

strategy, the simulation of concrete structures governed by shear and punching failures 

modes can be improved. 

A thermal model with general purposes has been implemented in the code, in order to be 

possible to perform steady-state thermal analysis, transient linear thermal analysis or 

nonlinear thermal analysis. The heat development due to the hydration process during the 

concrete hardening phase was coupled to the thermal model, resulting a model capable of 

simulating the behavior of concrete structures since its early ages. 

A transient analysis algorithm was coupled to the developed multi-fixed smeared 3D crack 

model in order to allow the simulation of time-dependent effects in cement based 

materials, such as shrinkage, creep and temperature. 

The predictive performance of these numerical tools was appraised by comparison with the 

results of numerical simulations available in the literature, and with the results obtained 

from experimental programs carried out with specimens made with steel fiber reinforced 

self-compacting concrete, SFRSCC, (Barros et al. 2005a) or in the context of assessing the 

effectiveness of Carbon Fibre Reinforced Polymer (CFRP) composite materials for the 

flexural and shear strengthening of reinforced concrete beams (Barros et al. 2011). It is 

verified that the proposed techniques are crucial to assure accurate numerical simulations, 

namely the use of the out-of-plane shear softening diagrams to simulate the behavior of 



Conclusions 253 

 

laminar structures failing in punching, as well as the adoption of shear-sliding softening 

diagrams in the multi-fixed smeared 3D crack model applied to structures discretized with 

solid finite elements. The solution procedures implemented in the scope of the present 

work for the nonlinear finite element analysis of structures are also essential to increase the 

robustness of the numerical simulations. 

7.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

The pre-established objectives for the present work were successfully attained. In fact, a 

crack constitutive model for laminar structures was successfully implemented, the 

numerical instabilities associated with the internal algorithms of the stress updated have 

been overcome, and the accuracy of the numerical simulations was improved by the 

introduction in the computer code of new solution procedures for nonlinear finite element 

analysis. A multi-fixed smeared 3D crack model for the simulation of complex structures 

was implemented, and the time-dependent effects were also taken into account, enabling 

the transient analysis of cement based structures. However, some aspects deserve extra 

improvements in order to increase the accuracy, applicability and robustness of the 

developed models. 

The coupling between the softening diagrams in order to simulate the interaction between 

crack opening and crack sliding should be investigated. 

The behavior of concrete between cracks in the developed multi-fixed smeared 3D crack 

model was assumed to be linear-elastic. It is known, however, that the concrete behavior in 

compression is nonlinear and exhibits some irreversible deformations. Thus, a model based 

on the plasticity theory should be introduced in the developed 3D model resulting in an 

elasto-plastic multi-fixed smeared 3D crack model to simulate the behavior of concrete 

structures. 

The transient nonlinear thermal model should be complemented, in order to allow the code 

to perform thermo-mechanical analyses of structures under fire. 
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The moisture transfer phenomenon should be coupled to the thermal and mechanical 

model, in order to add to the code the capability of performing thermo-hygro-mechanical 

analyses for concrete structures. 
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The deduction of equation (2.20), which permits the determination of qδλ , is exposed 

below. 

The incremental displacement vector at the iteration q  of combination n  is given by 

 1

1

q
q i q q
n n n n

i
a a a aδ δ−

=

∆ = = ∆ +∑  (A.1)

being 1q
na −∆  the incremental displacement vector of the previous iteration, 1q − , and q

naδ  

the iterative displacement vector defined by equation (2.15), here rewritten for 

convenience 

 11 qq q q
n n na a aδ δ δλ δ −−= +  (A.2)

Substituting (A.2) into (A.1) yields 
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The product of 
Tq q

n na a⎡ ⎤∆ ∆⎣ ⎦  is developed taking into account equation (A.3), resulting 
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Equation (2.19) can be rewritten as 

 ( ) ( ) ( ) ( )2 2 2 21 1 12q q q q q q qλ λ δλ λ λ δλ δλ− − −= + = + +  (A.5)
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Considering now equation (2.12b), the inclusion of equation (A.4) and equation (A.5) leads 

to 
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Equation (A.7) can be written in the following form 
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The expressions defining the diagrams to simulate the fracture mode I crack propagation 

described in section 3.3.2.2 are exposed in this appendix. For a better explanation of these 

expressions, Figure 3.6 and Figure 3.7 are represented again. 

B.1 Tensile-Softening trilinear stress-strain diagram 

 
Figure B.1 – Trilinear stress-strain diagram to simulate the fracture mode I crack propagation. 

The definition of the tensile-softening trilinear crack stress-strain diagram is made by the 

expressions (B.1) 
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 cr
n,1 ctfσ =  (B.2a)

 cr cr
n,2 1 n,1σ α σ=  (B.2b)

 cr cr
n,3 2 n,1σ α σ=  (B.2c)

 ,2 1 ,
cr cr
n n uε ξ ε=  (B.2d)

 ,3 2 ,
cr cr
n n uε ξ ε=  (B.2e)

and ,
cr
n uε  obtained by equation (3.27). 
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( )cr cr

n n
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n

d
d

σ ε

ε
 and take into account the relations (B.2) and (3.27), the crack 

mode I stiffness modulus of each branch of the trilinear diagram is defined by the 

following equations 
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B.2 Tensile-softening exponential stress-strain diagram 

 
Figure B.2 – Exponential stress-strain diagram to simulate the fracture mode I crack propagation. 

The definition of the tensile-softening exponential (Cornelissen et al. 1986) crack 

stress-strain diagram is made by the expressions (B.4) 
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(B.4)

being c1 = 3.0 and c2=6.93 for normalweight concrete. 

Performing 
( )cr cr

n n
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n

d
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σ ε

ε
 and take into account that cr

n,1 ctfσ = , the crack mode I stiffness 

modulus is defined by 
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 (B.5)

were ,
cr
n uε  is obtained by equation (3.29). 

In both tensile-softening diagrams a secant approach is used when unloading or reloading 

occur during the crack propagation. In this case the crack mode I stiffness modulus is 

calculated using this relation 

 ,max
,sec

,max

cr
ncr

I cr
n

D
σ
ε

=  (B.6)

were ,max
cr
nσ  and ,max

cr
nε  are the maximum crack normal stress and the maximum crack 

normal strain stored in the softening branch before the unloading occur (see Figure B.1 and 

Figure B.2). 
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In this appendix the first derivative of the function f  defined by equation (4.20) in order 

to the incremental crack strain vector crε∆  is presented. 

Equation (4.18) can be rewritten as follows 

 ( ) *

,
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prevprevf T T D T D Tε σ σ σ ε ε⎡ ⎤∆ = + ∆ − − ∆ + ∆⎣ ⎦  (C.1)
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and 
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equation (C.1) can be written as 
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 (C.3)

The first derivative of (C.1) is necessary for the iteration q  of the Newton-Raphson 

method. Taking into account equation (C.3), the evaluation of the first derivative of (C.1) 

becomes 
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Substituting equation (C.5) in equation (C.4), results 
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Knowing that 
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and taking into account the second equation of (C.2b), equation (C.7) can be written in a 

matrix form as follows 

 
( )cr

Tcrcr cr co cr
cr

f
D D T D T

ε

ε

∂ ∆
⎡ ⎤= + + ⎣ ⎦∂∆

 (C.9)

where 

 
0 0

0
cr cr

crII
tcr

n

D D γ
ε

⎡ ⎤
⎢ ⎥= ∂⎢ ⎥
⎢ ⎥∂∆⎣ ⎦

 (C.10)

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




