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Abstract

In recent years concrete technology has been improved significantly due, mainly, to the
development of self-compacting concrete, ultra-fluid cement based materials, high
performance fiber reinforced concrete and engineered cement composites. These
developments have their main applicability in the pre-casting industry, where the earliest
demoulding of the pre-cast elements is an important aim for economic reasons. Due to the
relatively high cost of these advanced cement based materials, optimization of the behavior
of structural elements made with these materials is a fundamental issue for their
competitiveness. As a consequence, these materials are, in general, applied to relatively
thin elements that require special attention in terms of shear and punching resistance. With
the aim of studying these types of structures, a multi-directional fixed smeared crack model
for plane shells has been developed. This model implements an innovative approach for
capturing the behavior of laminar structures failing in punching, which is based on the
adoption of a softening diagram to simulate the behavior of the out-of-plane shear stress

components.

Since most advanced cement based materials have relatively high binder content, the risk
of cracking at an early age should be evaluated using models that can estimate the heat
generated by the hydration of pozolanic components and the induced stress fields. For this
purpose, a FEM-based heat transfer model has been developed and integrated into a
mechanical model that can simulate the crack initiation and propagation in structures
discretized with solid finite elements. The mechanical model is a 3D multi-directional
smeared crack model with the capability of simulating the behavior of structures failing in
punching and shear. Shrinkage and creep are also a concern mainly for service limit states

due to crack opening limits.

In the last two decades fiber reinforced polymer composite materials have also been used
for the structural rehabilitation of concrete structures, mainly for the flexural and shear

strengthening of reinforced concrete beams. The prediction of the behavior of the shear
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strengthened beams requires the use of crack constitutive models to simulate the decrease
of the shear stress degradation with the crack opening evolution, in agreement. Two
numerical approaches are proposed to simulate this phenomenon. One is based on the use
of a softening crack shear stress versus crack shear strain diagram to model the fracture
mode II, while in the other the total crack shear stress is obtained from the total crack shear

strain adopting a crack shear modulus that decreases with the crack normal strain.

Fiber reinforcement mechanisms are more effectively mobilized when support redundancy
of a structure is high, since the stress redistribution capacity provides to this type of
structure an ultimate load that is much higher than the load at crack initiation. However,
the supporting conditions of a structure can change during the loading process, and even a
loss of contact can occur. To simulate accurately these situations, linear, nonlinear and

unilateral support conditions are numerically implemented.

To increase the robustness of the developed numerical models, innovative numerical
strategies are implemented in the stress update phase of the nonlinear finite element
analysis process. Furthermore, to improve the convergence performance of the finite

element nonlinear analyses an arc-length algorithm is implemented.

All the numerical models are implemented in the FEMIX 4.0 FEM package, using the
ANSI-C computer language.
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Resumo

Nos ultimos anos tem havido um crescente melhoramento a nivel dos processos
tecnologicos do betdo, principalmente devido ao desenvolvimento de betao
auto-compactavel, de materiais de matriz cimenticia ultra-fluidos e de betdes de elevado
desempenho reforcados com fibras. Estes desenvolvimentos tém particular aplicagdo na
industria de pré-fabricacdo, onde a rapida desmoldagem dos elementos pré-fabricados ¢ um
objectivo importante por razdes econdmicas. Devido aos custos relativamente elevados
destes materiais avancados de matriz cimenticia, a optimizagdo do comportamento de
elementos estruturais constituidos por esses materiais ¢ fundamental para assegurar a sua
competitividade. Em consequéncia, estes materiais sdo, em geral, aplicados a elementos
relativamente delgados que podem exigir uma atengao especial em termos de resisténcia ao
corte € ao puncoamento. Neste contexto, no presente trabalho ¢ desenvolvido um modelo
de fendilhacdo para cascas planas com a possibilidade da ocorréncia de multiplas fendas
fixas distribuidas, integrando uma abordagem inovadora para simular o fenémeno de
pungoamento. Esta abordagem ¢é baseada na adop¢ao de um diagrama com amolecimento

que simula o comportamento das componentes de corte transversal.

Estes materiais avangados de matriz cimenticia tém uma quantidade de ligante
relativamente elevado, pelo que a possibilidade de ocorréncia de fendilhacdo nas primeiras
idades deve ser avaliada usando modelos que permitam estimar o calor gerado pela
hidratacdo do ligante durante o seu processo de cura, bem como a determinacdo das
correspondentes tensdes. Para o efeito, no presente trabalho ¢ desenvolvido um modelo de
transferéncia de calor baseado no método dos elementos finitos, o qual ¢ integrado num
modelo mecanico que permite simular o inicio de fendilhagdo ¢ a sua propagagdo em
estruturas discretizadas por elementos finitos de volume. Este modelo de fendilhagcdo 3D
tem a possibilidade de simular a ocorréncia de multiplas fendas fixas distribuidas, bem
como o comportamento de estruturas cujo modo de ruptura ¢ condicionado pelas
componentes de corte. A retrac¢do e a fluéncia também sdo fenomenos de relevancia em

estruturas constituidas por estes tipos de materiais, principalmente em estados limites de
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servico por abertura de fenda, pelo que a sua modelagdo foi também integrada no modelo

termo-mecanico.

Nas ultimas duas décadas, materiais de matriz polimérica reforcados com fibras continuas
tém sido utilizados na reabilitacdo estrutural de estruturas de betdo, principalmente para o
reforco a flexdo e ao corte de vigas de betdo armado. A previsdo do comportamento das
vigas reforgadas ao corte requer o uso de modelos constitutivos capazes de simular a
diminui¢do da capacidade de transferéncia de tensdo de corte com a evolugdo da abertura
de fenda. Duas abordagens numéricas sdo propostas para este fim. Uma delas baseia-se na
utilizagdo de um diagrama de amolecimento para a modelagao do modo II de fractura. A
outra suporta-se numa formulagao total para a relagcdo entre a tensao e a extensao de corte
na fenda, adoptando um modulo de rigidez correspondente ao modo II de fractura que

diminui com a extensdo normal a fenda.

De forma a aumentar a robustez dos modelos numéricos desenvolvidos, foram
implementadas algumas estratégias de actualizagao do estado de tensdo no material durante
o processo de andlise ndo linear. Com o objectivo de melhorar as caracteristicas de
convergéncia dos métodos numéricos utilizados foram introduzidos algoritmos baseados
na técnica arc-length. Condi¢des de apoio com comportamento linear, ndo linear e

unilateral também foram numericamente implementadas.

Todos os modelos numéricos foram implementados no software de elementos finitos

FEMIX usando a linguagem de programagao ANSI-C.
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Chapter 1

Introduction

1.1 INTRODUCTION AND MOTIVATION

Concrete structures are still widely used in civil construction. In the last decades some
developments were made on cement based materials to improve their resistance and
durability. The introduction of fibers in the concrete mix is presently common in many
applications. The benefits of fiber reinforcement in the improvement of the concrete
post-cracking resistance are well recognized. Fibers also reduce the maximum crack width,
decrease the crack spacing and increase the energy absorption capacity of cement based

materials.

Recent experimental studies with fiber reinforced cement composites, in terms of
optimizing the toughness of these materials, have conducted to the development of high
performance fiber reinforced cement composites of high tensile strength, and also
engineered cementitious composites presenting tensile strain stiffening behavior with high
tensile strain at peak tensile stress (Li and Fischer 2002, Naaman 2007). The development
of self-compacting concrete (SCC) (Okamura 1997, Okamura and Ouchi 2003) has
increased the potentialities of cement based materials. Combining the SCC capacity to
flow and fill the interior of the formwork passing through the obstacles, with the benefits
of steel fiber reinforcement, a new high performance material has resulted, being

designated steel fiber reinforced self-compacting concrete (SFRSCC).
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The durability of concrete structures can be largely affected by early age concrete damage,
such as the occurrence of micro-cracks at an early stage of the development of the material
mechanical properties. Several causes are behind the early age concrete damage, such as
the tensile stresses due to restrained shrinkage, or the thermal stresses as a result of the heat

generated during the hydration process.

Concrete is a composite material with high nonlinear behavior, due to its heterogeneous
composition based on constituents of distinct stiffness and strength, and on an interface
that is the weakest link of the concrete micro-structure. Concrete has a tensile strength that
is about 10 percent of its compressive strength, exhibiting an almost linear elastic behavior
up to peak stress. After cracking, the concrete behavior is largely dependent on its energy

absorption capacity, which is significantly improved when fibers are used.

To accurately simulate the behavior of concrete structures for serviceability and ultimate
limit states, sophisticated models must be used in order to capture the essential features of
this material. In the present work, constitutive models for the material nonlinear analysis of
concrete structures are presented. These models have been implemented in version 4.0 of
the FEMIX computer code (Azevedo et al. 2003, Sena-Cruz et al. 2007). The predictive
performance of these models is assessed using results available in the literature, and also
several sets of results obtained from experimental programs carried out with SFRSCC
(Barros et al. 2005a), and with reinforced concrete beams shear and flexurally strengthened

with Carbon Fibre Reinforced Polymer (CFRP) laminates (Barros et al. 2011).

1.2 OBJECTIVES

The recent improvements made in concrete technology and the study of its rheological and
mechanical properties must be accompanied by the development of numerical models
capable of simulating its behavior. Thus, the main objectives of the present work are the
development of numerical tools for the simulation of concrete structures considering the
concrete nonlinear behavior and its time-dependent effects. With this purpose, the main

achievements of the present work are:
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e development of a constitutive model for the simulation of laminar structures, with
special attention on the prediction of the shear failure mode that can occur in this type of
structures when subjected to high concentrated loads;

e development of a multi-fixed smeared 3D crack model capable of predicting the
behavior of structures discretized with solid finite elements — the three fracture modes
can be simulated with stress-strain diagrams capable of reproducing a softening or a
stiffening behavior;

e development of a thermal model with general purposes, including the heat development
due to the hydration process during the concrete hardening phase to analyze structures
since early ages;

¢ addition of new functionalities to the multi-fixed smeared 3D crack to perform transient
linear and nonlinear analyses taking into account the time-dependent effects, such as
shrinkage, creep and temperature;

¢ implementation of new strategies to avoid the numerical instabilities observed in some
simulations of concrete structures under plane stress state using the multi-fixed smeared
2D crack constitutive model available in the FEMIX computer code;

e implementation of additional numerical solution procedures into FEMIX to enable the

nonlinear finite element analysis of structures with complex behavior.

1.3 OUTLINE OF THE THESIS

Chapter 2 consists on an overview of recent developments about cement based materials.
Models to simulate crack initiation and propagation in these materials are presented, and
their main characteristics are discussed. Time-dependent phenomena, like shrinkage, creep
and temperature variation are also presented, and the importance of their numerical
simulation to predict the cracking risk at early age is analyzed. Numerical techniques used
in nonlinear finite element analysis that have been implemented in the FEMIX computer
code are briefly discussed and their benefits in terms of numerical robustness are

presented.

In chapter 3 the developed numerical model for the simulation of concrete laminar

structures is presented. The multi-fixed smeared crack model is implemented under the
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framework of the Reissner-Mindlin theory adapted to the case of layered shells, in order to
simulate the damage due to crack initiation and propagation. Special attention is dedicated
to the simulation of the out-of-plane shear components by proposing softening stress-strain
diagrams to improve the predictive performance of laminar structures where the
out-of-plane shear is the governing failure mode. A strategy to simulate supports with
linear and nonlinear behavior is presented, and special considerations are made on
unilateral support conditions. Improvements in the internal algorithms associated with the
stress update and the crack status change are described and their advantages are discussed.
The performance and the accuracy of the developed numerical tools are assessed using the
results from a punching experimental test of a panel fabricated with steel fiber reinforced

self-compacting concrete (SFRSCC) (Barros et al. 2005a).

In chapter 4 two strategies to improve the degradation of the shear stress transfer with the
crack opening evolution are described. One is based on the simulation of the crack shear
stress-shear strain relationship with a total approach instead of an incremental approach.
The other is based on the use of a softening diagram for the simulation of the relationship
between the crack shear stress and the crack shear strain components. All the relevant
aspects related with their implementation in the finite element computer code are described
in detail. These strategies are validated by performing numerical simulations using results
available in the literature and results available from an experimental program with
reinforced concrete beams shear and flexurally strengthened with composite materials

(Barros et al. 2011).

In chapter 5 a multi-fixed smeared 3D crack model developed for the simulation of the
nonlinear behavior of concrete structures discretized with solid finite elements is described.
The principal aspects of its implementation in the finite element computer code are also
detailed. Special attention is dedicated to the modeling of the shear fracture modes, being
the utilization of the simulation strategies described in chapter 4 discussed. The numerical
model is appraised using the results available from a punching experimental test with a
module of a panel fabricated with SFRSCC. This module is a structurally representative of

this panel for this type of loading configuration.
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In chapter 6 a thermal model with general purposes is presented. The inclusion of heat
development due to the hydration process during the concrete hardening phase to analyze
structures since its early ages is described. The time-dependent effects are coupled with the
multi-fixed smeared 3D crack model described in chapter 5. All the relevant aspects related
to the transient linear and nonlinear analysis and its implementation in the finite element
computer code are discussed. The performance and the accuracy of the developed

numerical models are assessed using results available in the literature.

Finally, the major conclusions are presented in chapter 7 and some suggestions for future

research are also given.






Chapter 2

An overview on the modeling of the
nonlinear behavior of cement based

materials

2.1 CEMENT BASED MATERIALS

Concrete is the most common material used in the construction industry. In terms of its
internal structure, concrete can be defined as a mixture of cement, sand (fine aggregate),
gravel (coarse aggregate) and water. The chemical reaction, known as hydration, between
cement and water leads to a hardening process, and the presence of aggregates (sand and
gravel) supplies the necessary strength. In a simple way, the cement paste binds the
aggregates together resulting in a rigid structure similar to an artificial rock. Due to its
simple fabrication and hardening process (from a liquid to a solid phase), concrete is a
material that is adaptable to any structural form, being well accepted in the construction

industry.

The mechanical properties of concrete can be obtained by performing several tests.
Concrete has a high compressive strength, but low tensile strength. According to the ACI
(2005) the tensile strength of concrete in flexure is about 10 to 15 percent of its
compressive strength. Since the tensile strength and the post-cracking residual strength of
concrete plays an important role in the deflection and crack pattern of a structure under

service loads, the addition of other materials to improve its relatively low tensile load
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carrying capacity, such is the case of steel bars, is current practice. This type of reinforced
concrete is widely used in the construction industry, combining the benefits of the high
compressive strength of concrete with those resulting from the high tensile strength of

steel. The excellent bond behavior between these two materials is also a positive factor.

Non-continuous (discrete) fibers are an interesting reinforcement solution for cement based
materials, since they can increase significantly the post-cracking residual strength of these
materials. Fibers also reduce the maximum crack width, which contributes to increase the
durability of the concrete and the life cycle of the structure. If randomly distributed in
concrete, the fibers can also contribute to prevent early age shrinkage cracking. Various
types of fibers are used in concrete mixtures and they can be grouped in steel, glass,
synthetic and natural fibers (ACI 1996). To restrain the formation and propagation of
cracks due to shrinkage, synthetic fibers are the most used, but steel fibers are also
currently adopted. Both types of fibers can also be added to concrete in order to provide
reinforcement mechanisms to control the crack propagation for early age and hardened
concrete phases. For the case of structural applications steel fibers are still the most widely
used due to cost and reinforcement level criteria, being the derived composite designated
steel fiber reinforced concrete (SFRC). Depending on the content and geometric
characteristics of the steel fibers, diffuse crack patterns can be formed due to the fiber
pullout mechanisms provided by fibers bridging the crack lips. When micro-cracks occur
due to shrinkage, the fibers can assure a relatively high residual tensile strength of the
SFRC, limiting the crack width to a small value, and permitting an eventual healing or
sealing of the cracks (ACI 1996). Furthermore, the addition of steel fibers to a concrete
mix improves the impact resistance, the energy dissipation capacity, the shear and flexural

strength of concrete, and the resistance to concrete spalling (ACI 1993).

In the past two decades, with the development of self-compacting concrete (SCC), also
designated self-consolidating concrete (Okamura 1997, Okamura and Ouchi 2003), new
advantages have emerged for the concrete technology. SCC can be defined as a concrete
mix that has the ability to flow and fill the interior of the formwork, passing through any

obstacles or reinforcing bars, and consolidating under its own weight, without vibration.
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According to the Precast/Prestressed Concrete Institute (2003), a SCC must satisfy the
following rheological requirements:
e filling ability — the ability of SCC to flow under its own weight, without vibration,
and fill completely all formwork spaces;
e passing ability — the ability of SCC to flow through complex spaces, e.g., between
steel reinforcing bars;
e stability — the ability of SCC to remain homogeneous during its transport,

placement, and after placement, i.e., resisting to segregation.

With the addition of steel fibers to the SCC, a high performance material is obtained, since
the benefits of the SCC can be combined with those derived from the reinforcement
mechanisms provided by the steel fibers. Research on the optimization of the mix design of
steel fiber reinforced self-compacting concrete (SFRSCC) and on the characterization of its
properties were made by several authors (Barros et al. 2005a, Pereira 2006, Dhonde et al.

2007).

Engineered cementitious composites (ECC) are the most recent advance in the concrete
technology. This material exhibits a tensile strain-hardening behavior after crack initiation,
and the post-cracking behavior is characterized by the formation of diffuse crack patterns
(Li and Fischer 2002). Therefore, the ECC can be classified as a high performance fiber
reinforced cement composite (HPFRCC) (Naaman and Reinhardt 2003, Naaman 2007).

To retrieve the benefits of the improvements introduced in the concrete technology along
the years, computer programs should be able to simulate with high accuracy the behavior
of structures built with these new types of concrete. For this purpose, these programs
should incorporate constitutive models capable of reproducing the behavior of these
materials. In the present work constitutive models for the analysis of concrete structures
are described. In the next sections a brief overview about crack constitutive models,
time-dependent effects and numerical strategies for the material nonlinear analysis of

cement based materials are presented.
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2.2 CRACK CONSTITUTIVE MODELS FOR CEMENT BASED MATERIALS

Presently, several finite element approaches are available to analyze the nonlinear behavior
of complex structures subject to arbitrary loads. The most recent ones are capable of
modeling the behavior of concrete structures presenting brittle failure modes, and

accurately predict crack formation and propagation.

Discrete cohesive fracture models (discrete) with fragmentation algorithms, strong
discontinuity approaches (continuum) with the embedded discontinuities method, and the
extended finite element method are examples of advanced methodologies that, together
with powerful mesh refinement algorithms, reveal great efficiency in modeling the
concrete fracture initiation and propagation (Yu et al. 2007). Alternative methods are based
on damage models (de Borst and Gutiérrez 1999), smeared crack models (Bazant and
Oh 1983)] and microplane models (Bazant 1984). These methods are less precise in the
prediction of the local phenomena related to crack propagation, but, in terms of
computational effectiveness and assessment of the global behavior of a concrete structure,
are more appropriate to analyze complex structures with a large number of degrees of

freedom.

As shown by de Borst (2002), “fixed and rotating smeared crack models, but also
microplane models, can be conceived as a special case of (anisotropic) damage models™.
These three FEM-based solutions are closely related and produce similar results. Taking
into account the main characteristics of all these approaches, the multi-directional fixed
smeared crack model (de Borst 1987, Rots 1988, Dahlblom and Ottosen 1990), already
implemented in the FEMIX 4.0 computer program (Azevedo et al. 2003, Sena-Cruz 2007)
for plane stress problems, has been improved and extended to plane shells and structures
discretized with solid finite elements. In the implementation process some innovative
aspects have been developed. Since the majority of the structures analyzed in this work are
made with SFRC, where diffuse crack patterns can be formed, the option for the
multi-directional fixed smeared crack model is conceptually justified, as long as an

appropriate constitutive law is used to model the post-cracking behavior of these materials.
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2.3 TIME-DEPENDENT PHENOMENA

The development of cracks in concrete at early ages, caused by shrinkage and temperature
variation, has concerned various researchers over the years. Concrete is a brittle composite
that exhibits a low tensile strength in comparison with its compressive strength. If the
magnitude of tensile stresses due to shrinkage (for example: plastic, drying or thermal)
reaches the tensile strength of concrete, then cracks are formed. Preventing or controlling
the magnitude of these cracks, i.e. width and pattern, is important for the durability,

performance and aesthetic appearance of the structure.

When shrinkage is actuating, cracking in concrete members only appears if they are not
free to shrink (Koenigsfeld and Myers 2003). In fact, tensile stresses do not develop if
concrete shrinks freely. In current concrete structures, however, their structural elements
are in general partially or totally restrained, and therefore shrinkage cracking has a high
probability of occurrence. The degree of shrinkage depends on the water-to-cement (w/c)
ratio, relative humidity associated with the temperature of the environment, type of cement

and geometric characteristics of the element.

Figure 2.1 illustrates the volume change under unrestrained shrinkage, the stress

development, and the cracking phenomenon due to restrained shrinkage (ACI 2001).

To control restrained shrinkage cracking various methods/techniques can be used. All have
the same goal: prevent that, at a certain age, the tensile stresses due to shrinkage reach the
tensile strength of concrete. To reduce the w/c ratio and to assure proper curing conditions
are the most common shrinkage mitigation strategies. Other methods are the use of
expansive cements to counteract the shrinkage effect, or the use of Shrinkage Reducing
Admixtures (Weiss et al. 1998, D’Ambrosia et al. 2001). Fiber reinforcement has also
gained importance due to its cracking control efficiency and facility of distribution in the

concrete mixture with minor modifications of the concrete production technology.
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Figure 2.1 — Cracking of concrete due to drying shrinkage and restrain (ACI 2001).

The phenomenon of shrinkage in cement based materials is important because it can be

associated with different types of damages that can occur in concrete structures, especially

in early ages. Cracks are undesirable because they reduce the load capacity, and expose the

reinforcement to eventually aggressive environmental conditions, resulting in a decrease of

the service-life of a structure.

The residual stress and concrete strength along the concrete ageing process, represented in

Figure 2.2, was presented by Weiss (1999). The concrete cracks when the functions

intersect (point A). Weiss also concludes that when the phenomenon of creep is taken into

account the stress level decreases due to creep relaxation, delaying the cracking age

(point B).
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Figure 2.2 — Influence of creep relaxation on the shrinkage cracking of concrete (adapted from Weiss 1999).



An overview on the modeling of the nonlinear behavior of cement based materials 13

In order to predict the stresses related to shrinkage it is necessary to understand the
corresponding phenomenon, and, therefore, an overview of the associated terminology and

its meaning is presented below.

Bastos and Cincotto (2000) classify the shrinkage according to four criteria: physical state,
nature, degree of restriction and permanence, as indicated in Table 2.1. They also discuss

the simultaneous occurrence of these types of shrinkage.

Table 2.1- Shrinkage classification (Bastos and Cincotto 2000).

Shrinkage at fresh
Physical State state (Plastic shrinkage)

Shrinkage at hardening state

Drying shrinkage

Hydration shrinkage
Nature of the

phenomenon Autogenous shrinkage

Carbonation shrinkage
Thermal shrinkage

o Free shrinkage
Degree of restriction . .
Restrained shrinkage

Permanence of the Reversible shrinkage
phenomenon Irreversible shrinkage

Weiss (1999) has classified the shrinkage phenomenon in only two main groups: thermal
shrinkage and water related shrinkage. Thermal shrinkage is caused by the hydration of the
cement or the diurnal or seasonal temperature changes. The water related shrinkage is
caused by the loss of water from the concrete. The loss of water due to its movement to the
environment causes a volumetric change of the concrete structure, and tensile stresses
develop due to partial or total restrain of its movement. Plastic, drying, carbonation and
autogenous shrinkage are classified as water related shrinkage. In thin structures water can
escape more quickly and, consequently, they are more sensitive to shrinkage than thick
structures. Therefore, the development of stresses due to drying shrinkage is more

intensive in thin than in thick structures. This type of shrinkage is especially important in
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pavements, slabs and bridge decks due to their large area to volume ratio. In contrast,
thermal shrinkage is more important in thick structures than in thin structures due to the
slower transfer of the cement hydration heat. Shrinkage occurs as a result of the cooling

process, being more prominent in this type of structures.

Plastic Shrinkage

Plastic shrinkage is the loss of water (i.e. evaporation) in a fresh concrete surface. Plastic
shrinkage occurs at the first hours of concrete curing, and its magnitude depends on the
environmental conditions including solar effects, wind speed, temperature and relative
humidity. To prevent cracking due to plastic shrinkage, the use of a plastic sheet cover is
common to block the early age evaporation of water. Wind breaks and the use of special
concrete admixtures are also strategies that reduce plastic shrinkage. Fibers, especially
polypropylene fibers, are being considered by designers, suppliers and constructors

because they significantly reduce the width of cracks formed due to plastic shrinkage.

Drying Shrinkage

The drying shrinkage occurs in hardened concrete and is caused by the loss of water
through the surface. The water movement is affected by the difference between the internal
and external relative humidity. Less relative humidity in the atmosphere increases the
drying shrinkage and the potential for the occurrence of cracking. The water-to-cement
ratio (w/c) also influences this type of shrinkage, since the water content in the pores
decreases with the w/c ratio. Therefore, the lower the amount of water available to be

expelled through the surface is, the smaller the drying shrinkage effect becomes.

Autogenous Shrinkage

It is the shrinkage that occurs in a concrete volume without interchanges of humidity with
the outside environmental conditions. This can occur in the core of a thick concrete
structure or in specimens where the loss of water through the surface is not allowed. Due to
the hydration reaction of binder materials, there is an internal consumption of water called
self-desiccation and, in combination with its volume reduction as a result of the chemical

reaction, the autogenous shrinkage occurs.
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Carbonation Shrinkage
This type of shrinkage occurs at the surface of the concrete as a result of the reaction
between the carbon dioxide (CO2) present in the atmosphere and the hydrated cement.

This reaction leads to the shrinkage of the concrete.

Thermal Shrinkage

As a result of hydration of binder materials during the concrete curing phase, an
exothermic reaction occurs with the generation of a large quantity of heat. The dissipation
of this heat is faster in thin than in thick structures. During the concrete cooling process
after the curing phase, and since heating/cooling phases can occur simultaneously in
distinct parts of a concrete element, tensile stresses are developed (thermal stresses) in the
parts that are shrinking, leading to the formation of cracks. Thermal stresses also occur in
hardened concrete due to diurnal and seasonal temperature changes, and the dimensional

variation can also cause the development of cracks.

Creep and Shrinkage

According to the ACI (1992) creep can be defined as the time-dependent increase of strain
in concrete subjected to sustained stress. Basic creep occurs under conditions of no
moisture movement to or from the environment, while drying creep is the additional creep

caused by drying.

In Figure 2.2 it can be observed that the creep has an effect of relaxation of the residual
stress, resulting an increase in the concrete age when it cracks. The strength increase in this
period of time can avoid the formation of cracks, which is a favorable contribution of creep
in the context of concrete shrinkage. Shrinkage and creep are time-dependent phenomena
that are interrelated and cannot be completely dissociated. In the past years a special
attention has been dedicated to the tensile creep of concrete, and its influence on shrinkage
induced cracking when the concrete is restrained (Altoubat and Lange 2001, D’ Ambrosia
et. al. 2001, Bissonnette et al. 2007). When the concrete is restrained it is subjected to
tensile stresses and the cracking potential increases. Tensile creep stresses and the

corresponding strains counteract the shrinkage strains and have a beneficial effect.
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For example, during the first days of a concrete slab on grade, shrinkage is the critical
condition. The restrain imposed by the concrete/soil friction introduces tensile stresses in
the concrete that, depending on the restrain characteristics, concrete and environmental
conditions, cause the formation of cracks. Since the concrete is submitted to tensile stresses
during this period, creep strain has a beneficial effect since it decreases the strains due to

shrinkage.

The simulation of the time-dependent phenomena, such as shrinkage, creep and
temperature variation, is crucial not only to predict the cracking risk, but also to contribute
to a more accurate prediction of the global behavior of concrete structures from their early
ages to the hardened phase. This approach has been integrated in the FEMIX computer
code (Azevedo et al. 2003, Sena-Cruz 2007) and is exposed in chapter 6.

2.4 SOLUTION PROCEDURES FOR NONLINEAR PROBLEMS

2.4.1 Introduction

The use of the finite element method (FEM) to obtain the solution of civil engineering
problems where no analytical approach is available is very common. According to the
FEM, the continuum is divided in several finite elements (Zienkiewicz and Taylor 2000a)
and the displacement field is based on shape functions and nodal displacements. When the
material exhibits a nonlinear behavior, the resulting equations from the application of the
principle of virtual work are also nonlinear, and an incremental/iterative procedure is used
to solve the nonlinear system of equations. The Newton-Raphson method is widely used in

this framework.

The equilibrium equation of a structure can be written as

Ka=F (2.1)

where K, a and F are the stiffness matrix, the displacement vector and the vector of the

forces that are equivalent to the external applied loads, respectively, corresponding to the
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nodal degrees of freedom of the structure. In the context of structural nonlinear analysis,
equation (2.1) is not linear, due to the dependence of the stiffness matrix on the nodal
displacement vector (Zienkiewicz and Taylor 2000b). To obtain the structural response it is

convenient to apply the load incrementally

F,=F,  +AF 2.2)

n = n-1 = n

where AF, is the incremental load vector in the load combination n, F, , is the load in
the previous combination n—1, and F, is the load in the current combination #. In this
context, each combination corresponds to an increment of the load. Thus, for the

combination n the equation of the unbalanced forces i( gn) can be defined by

¥(a,)=F,~F(a,) (23)

being F’ (gn) the vector of the internal equivalent nodal forces, and a, the vector of the

nodal displacements. For a current combination n the vector of unbalanced forces must be

null, i.e.,
¥(a,)=0 (2.4)

Equation (2.4) can be solved by the Newton-Raphson method. Considering the first two

terms of the Taylor series expansion, equation (2.4) can be approximated as
o)
W(al)~ 2(23“){——) sal =0 (2.5)

where the subscript ¢ is the iteration counter. In equation (2.5)
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o) (aE . e
(a), A5 e 88

is the Jacobian matrix, which, in the context of structural analysis, corresponds to (5 T )Zfl

multiplied by (-1). (K, )Z_l is the tangential stiffness matrix in the g—1 iteration of the

current combination 7 . Substituting (2.6) in (2.5) yields
(K,)! " 5a)=¥(al") 2.7)

An iterative procedure is required to obtain the solution of equation (2.4), and in each

iteration the vector of the displacements is updated as follows

al=a""+8a" =a, +Ad (2.8)

n

with

9q .
Aay =Y ba,=Ada]" +5a] (2.9)

i=1
being gﬁ =a,, and AQS =0 1n the beginning of each iteration process.

Figure 2.3 represents a load-displacement relationship of a system with one degree of
freedom that presents a post-peak softening. The numerical simulation can be made by
applying load increments AF , being this technique designated load control procedure. It is
observed that with the load control procedure the numerical solution cannot be obtained
for the post-peak phase, i.e., the curve between points A and B. This can be overcome if a
displacement control procedure is adopted for the numerical simulation, i.e., by applying
displacement increments, Aa, instead of load increments. In this case, as shown in Figure

2.4, the post-peak curve can be numerically obtained.
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Figure 2.3 — Load control procedure.
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Figure 2.4 — Displacement control procedure.

Figure 2.5 represents a load-displacement response of a structure with a complex behavior.
Applying the load control procedure, the curve between points A and D is not obtained,
1.e., the numerical response includes the points between O and A and the points after D.
This is referred to in the literature as a snap-through behavior. When a displacement
control procedure is used, it is verified that the points on the curve between B and C are
not obtained, i.e., the numerical response only includes the points between O and B and the

points after C. This phenomenon is known as snap-back behavior. To overcome these
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difficulties and obtain the entire numerical response shown in Figure 2.5, several
researchers have proposed different numerical strategies, among which stands out the
arc-length technique. This technique was originally proposed by Riks (1970) and Wempner
(1971), and was subsequently modified by several researchers (Crisfield 1983 and 1986,
Bashir Ahmed and Xiao-zu 2004).

To overcome the difficulties associated with solving a system of nonlinear equations, some
iterative techniques, such as the arc-length and related methods, introduce a load factor
during the iterative process corresponding to the Newton Raphson-method. The load level
is now also an unknown and it is necessary to consider an additional equation. This

equation constrains the solution to meet a certain criteria.

In the following sections the arc-length technique and related methods are presented. These
techniques are implemented in the FEMIX computer code, and the details can be found

elsewhere (Ventura-Gouveia et al. 2006).

F
snap-th h
ap-through b
A
B
snap-back C
0 a

Figure 2.5 — Snap-through and snap-back.

2.4.2 Arc-length technique
Figure 2.6 represents a nonlinear relationship between the load and displacement in a

structure with one degree of freedom.
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To simulate the nonlinear behavior of this structure an incremental loading procedure is
used. Figure 2.6 also represents the load and displacement variation corresponding to the

load increment between the combinations #—1 and n . The use of an incremental load AF,

leads to a solution that moves away from point A, and bypasses the peak corresponding to
point C, being the behavior of the structure between points A and D not captured. To
reproduce the full path, the load increment is multiplied by a factor 4 whose value is set

by the following restriction

2

(Aa,) +22 b*(AF,) =AL (2.10)

In this equation b is a scale factor that converts the magnitude of load to the magnitude of

the displacement.

Fl
~———  F.+AF . b
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Figure 2.6 — Arc-length technique applied to a system with one degree of freedom (b =1.0).

According to Figure 2.6 the external force is now a function of A, and using equation (2.3)

the unbalanced forces become

¥,=¥(a,.A)=F, ()-F'(a,)=F, ,+A AF,~F'(a,)=0 (2.11)
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In the ¢ iteration, equations (2.10) and (2.11) must be taken into account, resulting, for a

system of more than one degree of freedom, in

W(ay.2)=F;(2")-F'(a})=F,, + A'AF, - F'(a}) =0 (2.12a)

f(Aaq /W) = [AQZT Ad!+b* (A7 )2 [AE,] AF,-A*=0 (2.12b)

=n>

According to Crisfield (1991) the factor b can be considered null for current problems. In
the present implementation the factor b is taken into account and can be advantageously

used in the solution of nonlinear problems.

In the present work the Newton-Raphson method can be used without the arc-length
technique by applying different load increments AF, up to a predefined combination is
reached, followed by a set of combinations in which the arc-length technique is used with a
constant load increment AF,. In this context the increase of external force is designated by

AF . Figure 2.7 represents the Newton-Raphson method without and with the arc-length

technique.
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Figure 2.7 — Newton-Raphson method without and with arc-length technique.
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The iterative process corresponding to the Newton-Raphson method with the arc-length

technique is represented in Figure 2.8.
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Figure 2.8 — Iterative process associated with the arc-length technique applied to a system with one degree of

freedom (b =1.0).

In order to use the Newton-Raphson method to obtain the solution of (2.12), the first two

terms of the corresponding Taylor series expansion are considered (Ventura-Gouveia et al.

2006), resulting in
~(K),” AF {
2[Agﬂr 26° 2 [AF] AF

oa’
oA?

A (g, 27)

w(ar2)
(2.13)
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This system of linear equations has a non-symmetric matrix. To overcome this
disadvantage, Crisfield (1991) proposes the replacement of Aa! in the constraint (2.12b).
This development is described in detail in Ventura-Gouveia et al. (2006). In the present

exposition only a general approach is made.

Thus, considering (2.12a) and making some developments, yields

(K,)! " oal =% (at, 27" )+ AF 52° (2.14)
Rewritting (2.14) in terms of the iterative displacement, 5a_ , results in

sal=[ (k)] (a2 ) (k)] AE 67

(2.15)
=sa’ +or'sal”
being
—q-1 g1 g-1 4g-1
oa, =[(&)n ] w(ar', 2 (2.16)
and
—q-1 q-1 -1
sa <[ (k)" | AF 2.17)
with
wla 27 )=F, + A - F'(a") (2.18)

The successive approximation to the solution is made using equation (2.8), being the load

factor A7 updated with
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A =2 w600 (2.19)

Including equations (2.9), (2.15) and (2.19) in equation (2.12b) yields (see Appendix A)
a,(52) +a, 62" +a, =0 (2.20)
where 047 is the unknown and

a=[sa"] 6+ [AF] AF
a, = 2[5@2‘1 }T (aal " +sa")+20° 2 [AF] AF 2.21)

a,=[Aat" +oa | (Aal" +6a )+ b? () [AE] AE - AL

2.4.3 Displacement control at a specific variable

The application of the arc-length technique to the numerical simulation of some structural
problems with localized nonlinearities may cause instabilities in the convergence of the
incremental/iterative process. This deficiency can be avoided by following a strategy
proposed by Batoz and Dhatt (1979) that consists on the restriction of the incremental
displacement of a particular variable to a predefined value. This displacement control is
made without the addition of any support. This procedure is called displacement control at

a specific variable.

The equation (2.12b) is replaced with

Ad' = Aa (2.22)

n,i

being Aa’, the i" component of the vector Aa, and Ag, its predefined incremental

magnitude.
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During the iterative process the incremental value of the i” component of the vector Aa’
remains constant and equal to Ag,, i.e., the iterative variation of this component, daj;, is

null. Given this fact, equation (2.9) can be written for the i component of the vector Aa’

in the following format

Aa!, =Aal]' +6al, = Aal)' = Aa, (2.23)

For a given combination n, the iterative displacements, da’, are obtained with equation
(2.15). Writing this equation for the i” component yields

sa!, =da’ +s1'sa); (2.24)
Knowing that the iterative variation day, is null, and solving equation (2.24) in order to
obtain 047 the following expression is obtained

sa’’ (2.25)

sal’

527 = -

n,i

being 55:;1 and 55:;1 the i” component of the first member of equations (2.16) and

(2.17), respectively.

2.4.4 Relative displacement control between two specific variables

As mentioned in the previous section, the numerical simulation of structures where
localized nonlinearities occur becomes sometimes impossible due to equation (2.12b). In
an attempt to avoid the instability in the convergence of the incremental/iterative process,

de Borst (1986) suggests that in equation (2.12b) only some preselected components of

vector Aa’ should be considered in the analysis. In certain structures, such is the case of
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those governed by the relative movement of the faces of existing critical failure cracks, by
selecting two appropriate degrees of freedom (displacement components), one in each face
of the crack, and imposing a relative displacement value that represents the movement of
the faces of the crack during the loading process of the real structure, these types of
instabilities can be avoided. The relative displacement control between these points is
accomplished without the addition of any support. In order to implement this technique,

equation (2.12b) is replaced with

Aa’

n,j

~Aaf, =Aa,, (2.26)

being Aa;, and Aa;

n,j >

respectively, thei and j components of the vector Aa’, and Aa "

—=n?

the predefined incremental displacement between these two components.

During the iterative process the relative incremental value between i and j components of

the vector Aa’ remains constant and equal to Aa; 1.e., the relative iterative variation

between these components (5a3’ ;—oa, ) is null. Given this fact, equation (2.9) can be

n,i

written for the i and j components of the vector Aa’ in the following form

AaZ,j —Aaq’, = (Aaq:jl i 5aq.')_(Aag;1 +5aq")
=Aay; ~Aay} 2.27)

For a given combination 7, the iterative displacements, Sa’, are obtained with equation

=n?

(2.15). Writing this equation for the i and j components yields

sa!, =da’' +o1'6a); (2.282)

sal  =sal ! +or'sal) (2.28b)

n,j
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The relative iterative displacement between the i and j components is defined by
sal  -dal, =(sa; ) +or'sa;) )~ (sal, +or'sal;’) (2.29)

Knowing that (5a;’, I 5aZ,i) is null, and solving equation (2.29) in order to obtain 517, the

following expression is obtained

510 O, —0a;; (2.30)
- sa'!-sal)

In this equation 55,?;1 and 5(75,;1 are the i and ; components of the first member of

equation (2.16), and da‘;' and 5621,;{;1 are the 7 and j components of the first member of

n,i

equation (2.17).

With this procedure, termed relative displacement control between two specific variables,
the numerical response of a structure that exhibits a snap-back behavior can be obtained
(see Figure 2.5). Another possible application of this technique is the simulation of tests in
which the opening of the crack is controlled (Crack Mouth Opening Displacement
control - CMOD) (Rots 1988).

2.5 SUMMARY AND CONCLUSIONS

In this chapter an overview on the developments of cement based materials in the past
years is made. Some models to simulate the crack initiation and propagation of these
materials are presented and time-dependent phenomena, like shrinkage, creep and
temperature variation are also discussed. Numerical solutions used in nonlinear finite
element analysis and implemented in the scope of the present work in the FEMIX
computer code are briefly introduced and their benefits in terms of numerical simulation

robustness are presented.
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Numerical model for concrete laminar

structures

3.1 INTRODUCTION

In this chapter a multi-directional fixed smeared crack constitutive model to simulate the
flexural/punching failure modes of concrete laminar structures is presented. The
constitutive model is implemented in a computer program based on the finite element
method, called FEMIX (Azevedo et al. 2003, Sena-Cruz et al. 2007), being the laminar
structures simulated according to the Reissner-Mindlin shell theory (Reissner 1945,
Mindlin 1951, Barros and Figueiras 2001). The thickness of the laminar structure is
discretized into layers that are assumed to be subjected to a plane stress state. In this
approach, the use of constitutive models to simulate the nonlinear behavior, after crack
initiation, for the in-plane fracture modes is appropriate in most cases, and the
deformational response of a structure subjected to load configurations that induce flexural
failure modes can be predicted with sufficient accuracy. However, the simulation of
laminar structures failing in punching is a much more complex task, being the treatment of

the out-of-plane shear components of paramount importance.

A stress-strain softening diagram is proposed to simulate the mode I fracture propagation,
while the in-plane shear crack component depends on a shear retention factor, defined as a

constant value or by a crack normal strain dependent law. The in-plane shear crack
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component can also be determined by a crack shear stress-strain softening diagram (see

Chapter 4).

To capture the punching failure mode, a softening diagram is proposed to model, after
crack initiation, the decrease of the out-of-plane shear stress components with the increase
of the corresponding shear strain components. With this relatively simple approach,
accurate predictions of the behavior of fiber reinforced concrete (FRC) structures failing in

bending and in shear can be obtained.

Improvements made in the subalgorithms associated with the stress update and with the

critical change of crack status are presented and their advantages are discussed.

The formulation of elastic supports, such as surface, line and point springs, with linear and
nonlinear stiffness, is also presented in this chapter, and a special attention is made about
unilateral support conditions. With this approach, the loss of contact between a structure
and a supporting system, such is the case of a slab supported on ground, can be correctly

simulated.

To assess the predictive performance of the model, an experimental punching test of a
module of a facade panel fabricated with steel fiber reinforced self-compacting concrete
(SFRSCC) is numerically simulated. The influence that some parameters defining the
softening diagrams have on the predictive performance of the model for this type of

simulations is analyzed.

3.2 GENERAL LAYERED APPROACH TO DISCRETIZE THE THICKNESS OF
A LAMINAR STRUCTURE

3.2.1 Introduction
The Reissner-Mindlin theory (Reissner 1945, Mindlin 1951, Barros and Figueiras 2001) is
widely used to simulate the behavior of laminar structures. In structural engineering

applications, a laminar structure can be defined as a three-dimensional body with two
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dimensions that are considerably larger than the other one, which is its thickness. Industrial
floors, pavements of buildings or roads, and bridge decks are examples of laminar

structures.

Since the last century structures of this type are mainly constructed with cement based
materials, such as reinforced concrete (RC) and, more recently, with fiber reinforced
concrete (FRC) or steel fiber reinforced self-compacting concrete (SFRSCC). It is known
that these materials exhibit a nonlinear behavior, even when subjected to service loads, due
to crack formation and propagation. This material nonlinearity may be accentuated when
early cracks appear (e.g., due to shrinkage restrain or temperature development), which can
compromise the durability of the structure. An accurate prediction of the behavior of such
structures is of great importance to improve its service life, and to prevent its excessive

deformability and early failure.

3.2.2 Formulation

In this section a brief overview of the Reissner-Mindlin formulation applied to a layered
plane shell approach is presented. The theory of plates and shells can be found in
Timoshenko and Woinkowsky-Krieger (1959), and its implementation using FEM was
done by several researchers, such as: Ugural 1981, Huang 1989, Barros 1989, Barros 1995,
Onate 1995.

A plane shell is a flat laminar structure with in-plane and out-of-plane shear deformations.
The in-plane deformations can be caused by membrane forces and bending moments.
Therefore, a plane shell combines the behavior of a slab (development of bending and
out-of-plane shear deformations) with those of a wall (development of membrane

deformations).

The basic assumptions of the Reissner-Mindlin theory applied to the case of plane shells

are:
e the u, and u, displacements of the shell middle surface (see Figure 3.1) are not

neglected (the presence of membrane deformations is allowed);
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e in comparison with the shell thickness, the displacement normal to the shell middle

surface, u, (see Figure 3.1), is small;

e the stress acting in the direction normal to the shell middle surface, oy, is small

when compared with the other stress components, being neglected;
e straight fibers normal to the middle surface of the shell are considered to remain
straight but not necessarily orthogonal to the middle surface during the deformation

Process.

Shell middle surface

Shell middle surface /[0 o

Figure 3.1 — Multi-layer plane shell: displacements, rotations and k layer geometry definition.

As mentioned before, the behavior of cement based materials is clearly nonlinear. This
nonlinearity results primarily from the fact that this material has a relatively small cracking

stress.

A layered shell model to simulate the nonlinear behavior of laminar structures can simulate
the damage resulting from crack propagation through the thickness of a shell due to
in-plane stresses. In this approach the strains at different levels along the shell thickness

(middle surface of each layer) are obtained from the displacements of the finite element
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nodes, and the stresses are determined according to the constitutive laws that simulate the
behavior of the material of this layer. Thus, for the finite element material nonlinear
analysis, a plane shell structure is divided not only in Mindlin shell finite elements, but

also in layers through the thickness (see Figure 3.1).

For example, as shown in Figure 3.2, a plane shell element is discretized into an eight-node
serendipity 3D Mindlin shell finite element (five degrees of freedom per node). Four or
nine node Lagrangian 3D Mindlin shell finite elements are also available in the FEMIX
computer code. Each 3D finite element is divided into layers through the thickness. These
layers can have thickness and material properties different from each other. The strains and
stresses are evaluated at the middle surface of each layer and their relation depends on the
constitutive law assigned to the layer. So, the present formulation is implemented with
general purposes, and any plane shell structure composed of different materials through the

thickness can be numerically simulated.
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(a) Plane shell element

g
X3

/ / Shell middle surface

(b) Mindlin shell (3D) finite element idealization

Serendipity
8-node element

(c) Cross section multi-layer approach

et N\
S

' il
i
HE

(Layers with different material properties)

Figure 3.2 — Example of a finite element idealization of a plane shell element according to the multi-layer

approach.
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When the response of the elements of a structure becomes nonlinear, the stiffness begins to
depend on the strain state that these elements are subjected to. In the case of laminar
structures, this strain state can vary through the thickness, and in a multi-layer approach,
from layer to layer. So, the contribution of each layer to the element stiffness matrix is

different, being the stiffness matrix thus obtained called the tangent stiffness matrix.

To account for the material nonlinear behavior, the relationship between the stress and the

strain state is established in an incremental way, i.e.

where D, is the tangent constitutive matrix, Ao the incremental stress vector and A¢ the

incremental strain vector.

In the calculation of the stiffness matrix of each finite element the following procedure is
used (see Figure 3.3):
e from the known displacements in the finite element nodes, evaluate the
displacements, a, at the integration points (Gauss Points);
e calculate the strains, ¢ at the middle surface of each layer;
e calculate the tangent constitutive matrix, D, , taking into account the constitutive
relation of the material of each layer;

e calculate the element tangent stiffness matrix, K\ .

3D plane shell

a K
element level: o

U ]
Cross section level

& = QT
(layered approach):

Figure 3.3 — Procedure to obtain the tangent stiffness matrix of an element.
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Taking into account the through-thickness layer discretization (see Figure 3.1), the element

tangent stiffness matrix, K (Te) , can be obtained from the submatrices associated with the

(e)

m

membrane deformations, K,’, membrane-bending and bending-membrane deformations,

(e)

A\

K" and K, bending deformations, K", and out-of-plane shear deformations, K

bm >

The submatrix K ) is obtained from

m

K = j B! D, B,dA (3.22)
A(e) .
where
A hl/2 quvers
D, = I_/1/22,nb dx; = Z D, (x;,k _x;k) (3.2b)

k=1

In (3.2b) & is the shell thickness, N, . 1s the number of layers of the through-thickness

ayers

discretization, D,,,, is the constitutive matrix associated with the membrane-bending

deformation of the k layer and (xé,k —xé”k) is the k layer thickness 7, .

The submatrices K ) and K E,fn) are obtained from

mb

(0 _ TR
Kmb - b §m me EbdA (3.33)
kY= (B D,,B,dA
2 bm A(E) =b=bm=m (3 3b)

where
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A A hi2 Niers
D,,=D,, = 7h/22mb x; dx; = Z D, x;jk (xé,k _x3b,k) (3.3¢)
k=1
being x;, the x, coordinate of the middle surface of the k layer.
The submatrix gﬁf) is obtained from
ng) = J. E;ngbdA (3.4a)
A(")
where
A ni2 . layers W N2 ,
D,= '[_h/szb x;" dxy = ; D,y (x3,k) (x3,k _x3,k) (3.4b)
The submatrix K EE) is obtained from
K'Y = I B{D,B,d4 (3.52)
A(“) ’
where
A hl2 NI(I}’(’VS
Qs = th/ZQS dx3 = ; Qs,k (xg,k _x?ik) (35b)

being D, the constitutive matrix associated with the out-of-plane-shear deformation of

the k layer.
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To also take into account the flexural stiffness of each layer, equation (3.3¢) is substituted

with (Barros 1989)

e ' 2 _ b 2
Dy =Dy =["" D,y x, d, = NZ D, (x”‘) 2(x3’k) (3.6)
and equation (3.4b) is replaced with
t Y ()
21’ - J.h;f/zz—mb X" dx, = Z D,y (xxk) (XM) (3.7)

3

Equations (3.6) and (3.7) are used in the current layered model in order to keep it suitable

for the analysis of a laminar structure with linear elastic behavior using only one layer.

The B,,, B, and B, matrices in equations (3.2) to (3.5) are used to obtain the membrane,

bending and shear deformations from the corresponding degrees of freedom in the finite

element (Barros 1995, Ofiate 1995).

The constitutive matrix associated with the membrane-bending deformation of the & layer,
D, ., used in equations (3.2) to (3.4) and equations (3.6) and (3.7), depends on the

material state or regime assigned to this layer, i.e., linear or materially nonlinear behavior.

The definition of these matrices can be found in section 3.3.

The constitutive matrix associated with the shear deformation of the & layer, D, ,, used in
equation (3.5), depends also on the out-of-plane shear material behavior assigned to the

layer. The D, matrix for a linear elastic material is presented in section 3.3, while for a

material with nonlinear behavior, D, is detailed in section 3.4.
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As already described in section 2.4, at a given stage of a nonlinear analysis, the nodal

forces that are equivalent to the external applied loads must balance the nodal forces that

are equivalent to the stress state developed in the structure, named internal equivalent

nodal forces, z .- These internal equivalent nodal forces are intrinsically dependent on the

material behavior, i.e., they depend on the constitutive model assigned to the material.

The calculation of the internal equivalent nodal forces of each finite element is performed

according to the following procedure (see Figure 3.4):

from the known displacements in the finite element nodes, evaluate the
displacements, a, at the integration points (Gauss Points);
calculate the strains, ¢ at the middle surface of each layer;
calculate the stress vector, o, at the same level of the strain calculation, taking into

account the constitutive law of the material where the stress vector is being
calculated;

calculate the generalized forces, £, by integrating the stresses across the thickness;

calculate the element internal equivalent nodal forces, f 1(;: .

3D pl hell .
plane sne a Zl(m)
element level:
y ]
Cross section level
£ = c=F
(layered approach):

Figure 3.4 — Scheme to obtain the internal equivalent nodal forces of an element.

In a plane shell decomposed into layers, the element internal equivalent nodal forces can

be obtained from the vectors associated with the membrane forces, f (et) bending

’
int,m

moments, f f;)b , and out-of-plane shear forces, f f;) E
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The vector i ](:t)m is obtained from
19 =], B Ndd (3.82)
where
A T phi2 Nipers , b
N= [Nl N, le] = J._h/zgmb dx, = Z O b i (x3,k _x3,k) (3.8b)
k=1
are the membrane forces.
The vector J_’ f:t)h is obtained from
1 =], By Mad (3.92)
where
n r hi2 Niayers
M = [M1 M, M12] = j—h/z Xy O, dX; = Z O b ke x;',’k (‘xé,k _xf,k) (3.9b)
k=1
are the bending moments.
The vector Lf f:t)s is obtained from
S =], Bl Qd4 (3.10a)
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where

ayers

hl2

hi2 g, de - Z Ok (xé,k _xf,k) (3.10b)

k=1

Q = [Q23 Q31]T :I

are the shear forces.

When a particular layer has linear elastic behavior, the equations (3.8b) and (3.9b) are
substituted with equations (3.11) and (3.12), respectively (Barros 1989). This is important

when the thickness of the plane shell has only one layer (for the case of a linear elastic

analysis).
layers t 2 _ b 2
N = Nz me,k £ (Xé,k - xé),k ) +me,k gf (X&k) 5 (xak) (3.11)
k=1
iS5 J ), b, &, X ) ;(x;" ) (.12)
k=1

where £, and &, are, respectively, the membrane and bending strains.

In the framework of the finite element method, the stiffness submatrices from equations
(3.2) to (3.5) and the vectors from equations (3.8) to (3.10) are calculated applying the
Gauss-Legendre integration rule (Cook 1995, Zienkiewicz and Taylor 2000a).

3.3 CRACK CONSTITUTIVE MODEL

3.3.1 Introduction
Smeared and discrete crack concepts can be used to model the crack propagation in
concrete structures (de Borst et al. 2004). Since fiber reinforcement can assure the

formation of diffuse crack patterns, a smeared crack model can be conceptually more
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appropriate, and more effective from the computational point-of-view, for the simulation

of the behavior of fiber reinforced concrete structures.

3.3.2 Formulation

In the context of finite element analysis of materially nonlinear shell structures, the
developed constitutive multi-fixed smeared crack model is implemented under the
framework of the Reissner-Mindlin theory adapted to the case of layered shells, in order to
simulate the progressive damage induced by cracking. So the shell element is discretized

into layers, and in each layer a plane stress state is assumed.

In this section the formulation of the multi-fixed smeared crack model, implemented under
the framework of the Reissner-Mindlin theory, is presented. Its description refers to a
generic (k) concrete layer and to the domain of an integration point (IP) of a finite
element. However, to simplify the symbols of the formulation, the subscript & is dropped.
The adopted constitutive laws and some model options are also discussed. An incremental
approach is used for the in-plane components, while a total approach is adopted for the

out-of-plane components.

According to the adopted constitutive law, stresses and strains are related by the following

equation
{Agm,,}{gi:b Q}[Aémb} 1)
g 0 DY]L &

being
Ac,, = [Ac, Ao, Az,] (3.14)

and
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Ag,, = [A51 Ag, A7/12]T (3.15)

the vectors of the in-plane incremental stress and incremental strain, while

o, = [723 Tsl]r (3.16)

and

e =[rn 7l (3.17)

are the vectors of the out-of-plane total shear stress and total shear strain.

The vector of the total in-plane stress components, needed for the evaluation of the internal

forces in equations (3.8) and (3.9), is obtained by adding to the previous one, o', , the
vector of the in-plane incremental stress components obtained with equation (3.13)

Oy = QZ’:V +AC,, (3.18)
The vector of the in-plane total strain components is also updated with

Epy =Epy TAE,, (3.19)

In equation (3.13), D, and D!’ are, respectively, the in-plane stiffness matrix and the

out-of-plane shear stiffness matrix.
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3.3.2.1 Linear elastic uncracked concrete

For the case of linear elastic uncracked concrete, D', of equation (3.13) is the constitutive

matrix of concrete with a linear elastic behavior, designated by D/, ., and defined

—mb,e >

according to the Hooke’s law as

E 1 v 0
D,,. = slv 1 0 (3.20)
1-v
0 0 (1-v)/2

while D¢’ in equation (3.1.3) is designated with D;, and is defined by

DY =FG b 3.21
e c O 1 ( . )

being E the elasticity modulus of concrete, v the Poisson’s ratio, and G, the shear

modulus defined by
E
G =
c 2(1+v) (3.22)

The shear correction factor F is introduced in equation (3.21) to take into account the
nonuniform out-of-plane shear stress distribution through the thickness of the shell. Its

value is considered equal to 5/6 (Barros 1995, Onate 1995).

3.3.2.2 Linear elastic cracked concrete

In smeared crack models the incremental strain vector A¢ , , derived from the incremental

mb

nodal displacements obtained under the framework of a nonlinear FEM analysis, is



Numerical model for concrete laminar structures 45

cr
mb >

decomposed into an incremental crack strain vector, Ag,, and an incremental strain

vector of the concrete between cracks, Ae’, (Rots 1988, Barros 1995, Sena-Cruz 2004).
Ae,, =A¢g,, +As,, (3.23)

In cracked concrete, with the concrete between cracks in linear elastic state, D', is

Crco

replaced in equation (3.13) with the in-plane cracked concrete constitutive matrix, D ",

obtained with the following equation (Sena-Cruz 2004)

—mb = mb,e =mb,e = mb,e —mb,e

DI = p°  _ [Zcr]T ( D +T° D [TW]T )1 T D% (3.24)

where Q;fb is the constitutive matrix defined by equation (3.20) and 7 is the matrix that

transforms the stress components from the coordinate system of the finite element to the

local crack coordinate system

- cos’ 0 sin® @ 2sinfcos O
"=\ | . ) . (3.25)
—sinf@cosd sinfcosd cos @—sin"H
and D is the crack constitutive matrix
o DCI‘ 0
pr=| P 0 (3.26)
0 D,

In equation (3.25), € is the angle between x; and n (see Figure 3.5). In equation (3.26)
D;” and D, represent, respectively, the constitutive components relative to the crack

opening mode I (normal) and mode II (in-plane shear).
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/ "

Crack

Figure 3.5 — Stress components, relative displacements and local coordinate system of the crack

(Sena-Cruz 2004).

To take into account the formation of several cracks at the same IP, the crack constitutive

matrix, D, and the transformation matrix, 7, of relation (3.24) are substituted with the

matrices that include the transformation matrix and the crack constitutive matrix of each

crack that can occur at a specific IP (Sena-Cruz 2004).

The crack opening propagation can be simulated with the tensile-softening trilinear
diagram represented in Figure 3.6, which is defined by the parameters ¢; and ¢, relating

stress with strain at the transitions between the linear segments that compose this diagram.
The ultimate crack strain, &,,, is defined as a function of the parameters ; and &, the
fracture energy, G} , the tensile strength, o, = f,,, and the crack bandwidth, /, , as follows

(Barros 1995, Sena-Cruz 2004)

I
cr 2 Gf

" Stad —ad +a, [l

(3.27)
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being

o =0,,/0,) (3.28a)
a,=0,,/0, (3.28b)
& =¢,/¢&,, (3.28¢)

& =¢g5ls,, (3.28d)

o)\

cr

(Tn,] L

cr

a1,2 4--

cr

On,muxiiiiiii ! or

N G,

O |5 D /
n3 1T T AT ! -

EnrEnmax €1 En o
Figure 3.6 — Trilinear stress-strain diagram to simulate the fracture mode I crack propagation (o, = f,,,

or »
GnZ_aIGVt]’GnJ aZO-n]’ )12 51 nu’ n3 §2€nu

An exponential tensile-softening diagram to simulate crack opening propagation is also

available. This diagram, proposed by Cornelissen et al. (1986), is represented in Figure 3.7.

The ultimate crack strain, &, is defined as

nu?

. 16

g 3.29
T (3.29)
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where

3
k= L 1+6(ﬁ] _{L+cf[i+%+%+%]+%(l+cf)} exp(—c,) (3.30)

G G G G
being c¢; = 3.0 and ¢,=6.93.

o)\

cr

Gn,u

D[ cr
1
cr
O, nax| / RN G,
cr
DI‘,SI:‘L lb
/ @ —
cr cr
gn, max (C;/zc:t (C;n

Figure 3.7 — Exponential stress-strain diagram to simulate the fracture mode I crack propagation.

The complete equations that define the trilinear diagram of Figure 3.6 and the exponential
diagram of Figure 3.7 are exposed in the Appendix B. A secant approach is used to

simulate the unloading and reloading branches in both diagrams.

The value of the fracture energy, G;, can be obtained with the equation proposed in the

CEB-FIB (1993) or with experimental tests as described in section 3.7.1.

The parameters ¢; and ¢ that define the shape of the trilinear tensile-softening diagram

depend significantly on the composition of the cement based material used, e.g., plain
concrete, FRC, SFRSCC. The values of these parameters can be assessed by performing an

inverse analysis, as described in section 3.7.1.
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The crack bandwidth, /,, associated with the smeared crack approach, must be mesh

dependent to assure mesh objectivity. In the literature, several values or methods for its
calculation are presented (Bazant and Oh 1983, Rots 1988, Oliver 1989, Hofstetter and
Mang 1995, Lourengo et al. 1997). In the present work, the crack bandwidth can be
calculated as the square root of the area associated with the IP of the finite element, as the

square root of the area of the finite element, or can adopt a supplied constant value.

The fracture mode Il modulus, D;; , is obtained with

o_ B
Dy = l_ﬁGc (3.31)

where G, is the concrete elastic shear modulus (see equation (3.22)) and g is the shear

retention factor. The parameter B is defined as a constant value or as a function of the

and of the ultimate crack normal strain, & , as follows,

nu?’

current crack normal strain, &

n 2

p= {1— g J (3.32)

When p, is unitary, a linear decrease of B with the increase of & is assumed. Larger
values of the exponent p, correspond to a more pronounced decrease of the parameter 3,

in order to simulate a higher in-plane shear stress degradation with the increase of the

crack opening (Barros et al. 2004).

A softening constitutive law to model the in-plane crack shear stress transfer has also been
developed and implemented in the FEMIX computer code. This shear softening law is

described in detail in Chapter 4.
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co

The out-of-plane shear stiffness matrix, D, can be obtained with equation (3.21) if a

s 9

linear elastic behavior for the transverse shear is assumed, or with an out-of-plane shear

softening diagram exposed in detail in section 3.4.

3.4 OUT-OF-PLANE SHEAR SOFTENING DIAGRAM

3.4.1 The punching problem in laminar structures

Punching is a complex phenomenon and one of the most difficult problems to solve in the
design of RC laminar structures. Several model approaches have been developed and
practically all the design codes for concrete structures have paid specific attention to this
type of failure. The Fib technical report n® 12 (Fib 2001) is dedicated to the problem of
punching of concrete slabs. An examination of the punching problem is presented, and

special attention is dedicated to the numerical simulations of punching using FEM.

Punching is fundamentally a shear failure mode, and in the last decades concerns regarding
this phenomenon have increased due to the generalization of the use of thin structures,
such as flat plates with small thickness and large dimensions supported by columns (see
Figure 3.8). This type of failure can also be a concern in industrial floors subjected to

highly concentrated loads.

Celumn A

Failure surface

| Vol
! ~ 2

—-—|I|"\—__.

—_p

Figure 3.8 — Punching failure surfaces of a flat slab (Ngo 2001).

A concentrated load or reaction acting on a relatively small area of a slab or foundation can
cause punching shear failure (EC2 2004). This type of failure may occur along a truncated

cone or pyramid around the concentrated load or reaction area (ACI 2005).
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The punching shear failure is usually brittle, and in the numerical prediction of the conical
failure surface when, for example, a column suddenly perforates the supported slab a

tridimensional model is required (Barzegar and Maddipudi 1997a).

A numerical model based on the formulation of the Reissner-Mindlin shell theory applied
to the case of a multilayer approach has a lower computational effort in comparison with a
full tridimensional model (Polak 2005). To explore the possibility of using the former
formulation to predict shear failure modes, a softening diagram is proposed for the

out-of-plane shear components of equation (3.13).

3.4.2 Description of the diagram

When the tensile strength is reached at an IP of a finite element, the portion of concrete
included in its influence area changes from uncracked to cracked state. This local status
change affects the global behavior of a structure, and consequently the numerical
simulation must be capable of reproducing these phenomena. The use of a multi-fixed
smeared crack model to numerically predict the behavior of laminar shell structures failing
in bending is, in most cases, acceptable as long as the fracture parameters used in the
constitutive crack stress-strain relation are accurately predicted. The prediction of the
behavior of a structure that fails in shear or in punching is, however, a much more difficult

task, as already mentioned.

The proposed out-of-plane (OP) shear diagram is represented in Figure 3.9. The

out-of-plane shear behavior is assumed to be linear elastic for both components until the
concrete tensile strength, f,,, is reached. When the portions of concrete associated with the
IP change from uncracked to cracked state, the out-of-plane shear stresses (2'2031; and 2'3013)

are stored for later use, and the relation between each out-of-plane shear stress-strain

( 7,3 —7,; and 73, — ;) follows the softening law depicted in Figure 3.9.
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Figure 3.9 — Relationship between out-of-plane (OP) shear stress and shear strain components.

The positive branches of the diagram represented in Figure 3.9 are simulated with the

expressions shown in equation (3.33). The negative part can be obtained by analogy.

FG, y“" 0<y” <y
TOP
ey )= s (P ) v <y <y (3.33)
(7" =)
0 }/OP > 7/01’

In the unloading or reloading branch (see section 3.4.3 for the definition of the out-of-plane

shear status), the out-of-plane shear stress is calculated with a secant approach, given by

TOP
TOP(}/OP):%}/OP (3.34)

max

OP OP . .
where 7, and y,  are the maximum out-of-plane shear stress and the maximum

out-of-plane shear strain observed in the softening branch before the start of the unloading

phase.
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The definition of the out-of-plane shear stiffness matrix in equation (3.13), D.’, is now
based on the diagram represented in Figure 3.9, and named out-of-plane shear cracked

concrete constitutive matrix, D{ . Therefore, the D" matrix is defined by

23
D 0
creo 1l ,;sec
D= = 0 D (3.35)
11 ,sec
being
opP opr
DB = 73, max D= T31,max
Hlsec —  OP H ll,sec — _ OP (336)
23, max 31,max

opP
2-ij,max

in accordance with the secant approach shown in Figure 3.9, where and 7,;),; .. are the

maximum out-of-plane shear stress and shear strain observed in the softening branch of

each shear component, respectively.

Each out-of-plane peak shear strain, }/Zofp or 7/3011;, is calculated using the stored

e orP oP .
out-of-plane peak shear stress at crack initiation, 7,;, or 73 ,, and the concrete elastic

shear modulus, G, as follows

OP OP
oP _ T23,p _ T31,P

Vo, = G’ Vip = G

c c

(3.37)

Each out-of-plane ultimate shear strain, 7203}; or }/ﬁi, is defined as a function of the
corresponding out-of-plane peak shear strain, }/I?P, the out-of-plane shear strength, T]?P,

the mode III (out-of-plane) fracture energy, G}” , and the crack bandwidth, /, , as follows
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2G1H 2G111

OP __ _OP f OP _ , OP S

Yosu =V T 0p ;o Vst = Va1, T op / (3.38)
Tozp by T3ip by

The present approach assumes that the crack bandwidth used to assure mesh independence

when modeling fracture mode I can also be adopted in the out-of-plane fracture process.

To improve a faster loss of out-of-plane shear stress with the increase of out-of-plane shear
strain, two alternative diagrams are also implemented in the FEMIX computer code. These
diagrams are very similar to the one presented in Figure 3.9. The main difference is located
in the softening branch. Instead of a linear softening branch, one of the proposed
alternatives is based on the trilinear softening diagram, and the other is based on the
exponential Cornelissen diagram used in the definition of crack opening mode I, as
described in section 3.3.2.2. These two diagrams are represented in Figure 3.10 and Figure
3.11, respectively. Only the positive branch of the out-of-plane shear stress-strain

relationship is represented.

The out-of-plane shear softening trilinear diagram represented in Figure 3.10 is simulated
with the expressions shown in equation (3.39). As for the case of equation (3.33), only the

positive branch of the diagram is treated. The negative branch can be analogously defined.

FG, y*" 0<y” <y
OP_TpOP_TIOP op __op OP _ 0P 0P
o) ——— (7)) <y <y
}/l 7/1)
OP( or\ _ 0P_710P_720P op __op or oP 0P
o7 )— @ ﬁ(ﬂf 7 ) Yo <y =0 (3.39)
Va2 N
op _ Tzo " ( op __op or oP 0P
o o __or\V 72 ) Vo <V 27,
}/u 7/2
0 }/OP>]/u0P

Some constants are defined as follows
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'’ =a, Z'I?P (3.40a)
" =a, ) (3.40b)
7 =b, (y =y (3.40¢)
" =b, (v -7 (3.40d)
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Figure 3.10 — Trilinear softening diagram to simulate the relationship between the out-of-plane shear stress

and shear strain components. Only the positive branch is represented.

Each out-of-plane ultimate shear strain, }/2031; or }/3011;, is defined as a function of the
parameters a; and b,, the corresponding out-of-plane peak shear strain, }/I?P, the

out-of-plane shear strength, T;)P, the mode III (out-of-plane) fracture energy, G}H, and the

crack bandwidth, 7, , as follows

i
2 G/

OP
b +ab,-a,b +a, Ty, [,

(3.41)

op _ _op
Vau =V, T

and
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) G
v o , 3.42
Vatu = V31p b +ab,—a,b +a, T301i, l, ( )

Some constants are defined as follows

a=7" [t (3.43a)
a,=15" [t (3.43b)
b=y (v =7 (3.43¢)
b=y (7" -7") (3.43d)

The out-of-plane shear softening exponential diagram is simulated with the expressions
shown in equation (3.44). As for the other cases, only the positive branch of the diagram is

defined here. The negative branch can be analogously obtained.

z_OP (7/01)) —

FG, y” 0<y” <y (3.44)
=7 [(l+(clA)3)exp(—cZA)—A(1+cf)exp(—cz)J y <y <y

0 7/0P > }/OP

In this equation the parameter A4 is defined by

P

A_7O -7

- _OP OP
Yo —7p

(3.45)

being ¢; = 3.0 and ¢,=6.93.
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Figure 3.11 — Exponential softening diagram to simulate the relationship between the out-of-plane shear

stress and shear strain components. Only the positive branch is represented.

Each out-of-plane ultimate shear strain, 7/2(;11 or 7/3(?; , of the exponential softening diagram

represented in Figure 3.11 is obtained with the following equation

1 11
1 G 1 G,
or _ ,OP S OP _ , OP f
Y3 = Va3, +; or > V3T Va1p +E oP (3.46)
Tos,p by Dip by

where the parameter £ is defined by equation (3.30).

3.4.3 Out-of-plane shear status
In section 3.4.2 an out-of-plane shear stress-strain diagram is proposed, and a secant

approach for the calculation of the out-of-plane shear cracked concrete constitutive matrix,
D!, is presented.

For the calculation of the internal forces corresponding to the out-of-plane shear
components, f f:t)q, as described in section 3.2.2, the shear stresses must be calculated. For
the case of a nonlinear analysis, the stress history is fundamental in the prediction of the

current behavior of the structure. Therefore, to take this into account, the shear strains and

stresses are stored and five out-of-plane shear statuses are considered. With this procedure,
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the diagram represented in Figure 3.9 is completely defined and, at each loading stage, for
a given out-of-plane shear strain the out-of-plane shear stress can be evaluated and,

consequently, the corresponding internal forces are obtained.

The five crack statuses are represented in the diagram of Figure 3.12. Two sets of crack
statuses are stored, one for each out-of-plane shear component, to account for their
independent behavior. The explanation of each status is supplied only for one of these

components.

The five out-of-plane shear statuses represented in Figure 3.12 take into account the
following assumptions:

e Stiffening status, when the normal stress is smaller than the tensile strength. A
linear behavior is assumed for the out-of-plane shear stress-strain relationship;

e Softening status, after the normal stress reaches the concrete tensile strength. A
decrease of the out-of-plane shear stress is observed with the increase of the
out-of-plane shear strain;

e Unloading status, when a decrease of the out-of-plane shear strain is observed and
the previous status is softening. In this case a secant approach is followed;

e Reloading status, when an increase of the out-of-plane shear strain is observed. The
branch of the unloading status is followed;

e Free-sliding status, when the out-of-plane shear strain is greater than the

out-of-plane ultimate shear strain.
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T OP ,
o E—

Y
\ A

2
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3
AN 4 Out-of-plane
2
2~ Shear Statuses

/1 1 - Stiffening

2 - Softening
3 - Unloading
4 - Reloading
5 - Free-sliding

opr
Lo =Ty

Figure 3.12 — Out-of-plane shear statuses.
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When the status is "Free-sliding", the out-of-plane shear modulus D, ... is null. When this

occurs for both out-of-plane shear components, the matrix D{" (see equation (3.35))

becomes a null matrix. To avoid numerical instabilities associated with this occurrence, the

matrix D{" is initialized as follows

D23

111 ;sec

=10°G., D} .. =10°G, (3.47)

As described in section 3.4.2, a linear behavior for the out-of-plane shear components is
considered until the portion of concrete associated with an IP is assigned a cracked status.
Afterwards, a softening behavior is followed using one of the diagrams presented in this

section.

There is no coupling between the normal (tensile) softening stress-strain diagram (that
commands the crack initiation) and the out-of-plane shear softening diagram. Since the
out-of-plane shear stress transfer would decrease with the crack opening, a possible
strategy to simulate this effect is the activation of a softening diagram for the out-of-plane
shear stress components. The softening phase for the out-of-plane shear stress components
can be activated when a certain shear stress threshold value is attained. This strategy was

implemented in version 4.0 of FEMIX.

3.5 IMPROVEMENTS MADE IN INTERNAL ALGORITHMS

3.5.1 Stress update

As mentioned before, the proposed crack constitutive model is implemented in the FEMIX
computer code (Azevedo et al. 2003) under a FEM framework, being applied to the
Reissner-Mindlin multi-layer shell approach. The computational and algorithmic aspects of
this model are similar to the ones implemented by Sena-Cruz (2004) in FEMIX for the

case of a multi-fixed smeared crack model used in the context of plane stress analysis.
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In this section some problems associated with the internal convergence related to the

sub-incrementation of the in-plane incremental strain vector, Ag, ,, in order to fit the law

mb >
of the crack mode I are presented. The solution procedure adopted to overcome these

problems is also exposed.

Firstly, the assumptions made in the algorithm for the stress update of a generic layer of an
IP are presented. In a nonlinear problem the stress update is necessary to obtain the correct

evaluation of the internal forces of the element that contains the IP.

All the data related to each layer at the level of an IP, e.g., stress and strain history and
information corresponding to the active cracks, is stored for later use. Due to the nonlinear
material behavior, an incremental-iterative procedure must be implemented to obtain the
solution of the problem, as described in section 2.4 of chapter 2. In a specific iteration of
the Newton-Raphson method (with or without the use of the arc-length technique or related
methods) the internal forces are calculated and compared with the external forces to verify

the equilibrium. This procedure is executed until convergence is achieved.

At the level of an IP the internal forces, i .- are obtained with the procedure presented in

section 3.2.2. As stated before, the stress vector, o, calculated at the middle surface of
each layer that discretize the thickness of the shell, is obtained from the strain vector &,

taking into account the constitutive relation of the material of the corresponding layer. For
the in-plane components an incremental approach is used. When the material of a certain

layer is in cracked state, and is submitted to an increment Ag, ,, the corresponding

mb >

incremental stress vector, Ao, , must be obtained taking into account the cracked state of

mb >

the material, and, afterwards, the stress vector o, , is updated.

In the stress update procedure of the in-plane components, the following system of
nonlinear equations must be solved (Sena-Cruz 2004) (to simplify the notation the

subscript mb is dropped at this stage)
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f(8e))=e 7t AcT-T" g, ~T7 DAs +T° D [T ] Aci =0 (3.48)

=~ prev = = =

In this equation o, is the crack stress vector of the previous state in the local crack
coordinate system /¢ (see Figure 3.5), Ao | is the incremental crack stress vector that

depends on the current incremental crack strain vector Agy , T is the matrix defined by

v

equation (3.25), D is the matrix defined by equation (3.20) and O ., 18 the stress vector

of the previous state.

Two algorithms are available to solve equation (3.48), namely the Newton-Raphson
method and the fixed-point iteration method. The later is only used when the convergence

is not achieved with the former.

It could be verified that in some numerical simulations these internal algorithms did not
achieve convergence, causing the interruption of the analysis and forcing the user to
perform successive restarts with a smaller load increment. Even with this restart

mechanism in some cases the simulation could not proceed.

The problems that justify the non convergence of both iterative methods are the following:

e the sudden change in the stiffness of fracture mode I modulus when the trilinear
tensile-softening is used (see Figure 3.6);

e the presence of two cracks in the same IP, with, for example, one of the cracks
trying to close and the other trying to become fully open;

e in successive iterations a repeating pattern is observed, i.e., in a specific iteration
the crack normal strain evolves from point A to point B (see Figure 3.13) and does
not achieve convergence, so in the next iteration it evolves from point A to point C
and again fails to achieve convergence. In subsequent iterations this pattern is
repeated until the maximum number of iterations is reached and the algorithm

stops without convergence;



62 Chapter 3

e with the introduction of a softening constitutive relation for modeling the in-plane
crack shear component, as described in chapter 4, these problems are greatly

aggravated and also the difficulty in achieving convergence.

-9 —
cr

-
t T
cr cr cr
(c"n, 2 ‘gn, 3 gn, u 8"

Figure 3.13 — Critical change of the fracture mode I modulus — convergence difficulties.

The convergence of each iterative method is considered to be reached when the infinite

norm of the vector H S (Ag?) is smaller than a residual value named T7oler. This

o0

parameter is assumed to be equal to 10° £,, being f. the concrete compressive strength.

To overcome the lack of convergence due to the previously enumerated problems, the
following procedure is adopted: when the Newton-Raphson method fails to converge, the

fixed-point method is activated and in a first phase the situation that leads to the smallest

infinite norm of the vector f (Agjr) is stored; in a second phase the convergence is

assumed for this situation, all the vectors are updated and the procedure is continued.
Although the enlargement of the Toler, a maximum value for it is imposed to prevent an

excessive error.

It could also be verified that in some cases the minimum infinite norm of the vector

S (Agzr) was 107 £, or 107 £, and the convergence was not achieved due to a very small

gap in the internal assumed convergence criterion (107 £).
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The relation between the global stress vector, o, and the local crack stress vector, o ;' , is

given by

o=T"c (3.49)

When Toler is assumed to be greater than 10~ ., the equilibrium imposed by this relation

is also affected. However, it must be emphasized that in subsequent iterations these
quantities are present in equation (3.48) and consequently the enlargement of 7oler can be

minimized.

In conclusion, with this procedure and in terms of a global analysis, this increase of Toler
at a specific layer of an IP can be acceptable, being the robustness of the numerical

simulation greatly improved.

3.5.2 Critical crack status change

In order to fit the tensile-softening diagram associated with the crack mode I, the

incremental strain vector, Ag,,, must be decomposed when one of the critical status

change occurs during the strain increment (Barros 1995, Sena-Cruz 2004). The critical
crack statuses are: new crack initiation, closure of an existent crack and reopening of a

closed crack.

Therefore, after the calculation of the incremental strain vector, Ag,, , a verification of the

occurrence of a critical status is made. When one of these occurs, the incremental vector is
sub-incremented. For the calculation of the transition point corresponding to a new crack

to a closure of an existent crack, k&

initiation, k,,,, close »

and to the reopening of a closed

crack, k

reopen

two algorithms are available. One is based on the Newton-Raphson method,

and the other is based on the bisection method, being used when the former does not

converge (Sena-Cruz 2004).
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In some numerical simulations it could be verified that, even with these two algorithms, the

value of the transition point could not be obtained, in particular the & and the £k

reopen close
values. In this case the numerical simulation stops and to overcome this problem a restart
procedure with a reduced incremental load can be tried, but, in some cases, this restart

procedure does not solve the problem.

An exhaustive analysis has been made and it could be verified that additional convergence

problems might occur, as described below for a generic k layer of a specific IP:

e the transition point for a crack that tries to reopen is obtained, & and the new

reopen

stress vector is calculated using the current incremental strain vector &, Ag, , .

reopen

reopen )Agmb, a new stress vector is calculated

With the remaining strain vector, (1 —k
and the verification of the occurrence of a critical status change is performed. At
this moment the crack that reopens in the earlier stage is trying to close. This
pattern is repeated and the numerical solution cannot be obtained,

e the transition point for a crack that tries to close is obtained, & and a new stress

close °

vector is calculated using the current incremental strain vector, &, Ag¢,,. With the

close ==

remaining strain vector, (l—k )Agmb, a new stress vector is calculated and the

close
verification of the occurrence of critical status change is made. At this moment the
crack that closes in the earlier stage tries to reopen. This pattern is repeated and the
numerical solution cannot be obtained;

e when two or more cracks occur, more than one critical crack status change can also

occur at the sub-incrementation of the incremental strain vector, Ag,,, and the

convergence becomes more difficult, even not attained in some cases, e.g., a closed

crack tries to reopen and a new crack is initiated.

The solution encountered for these problems is treated separately for the crack reopening
and for the crack closing processes. The adopted procedure is similar to the one

implemented by (Sena-Cruz 2004) for the case of the initiation of a new crack.
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For example, after the calculation of the current k., Ag,,, the crack is considered a

reopen —=mb >

potentially reopened crack. With the remaining strain vector, (l—kmpm)Agmb, the

reopened crack is considered in equation (3.48) and is converted into a definitive reopened
crack if the crack at this phase does not close. If the crack closes, the crack that in the first
phase has indicated as potentially reopened is not allowed to change its status from closed

to reopening, and its historical data is restored.

To permit a future crack reopen, the crack normal stress stored in the historical data to

allow a crack reopen is updated with

cr ___cr -6 . cr -6 cr
Un,reopen,new - O-n + 10 f‘c lf O-n + 10 f; > O-n,reopen,prev (350)
being O, pppen prev the crack normal stress stored in the historical data when the crack has
cr b .
closed, o, . 18 the new updated crack normal stress for crack reopen, . is the

compressive strength and o is the current crack normal stress.

A similar treatment is made for a crack that tries to close. For example, after the

calculation of the current k£, Ag,,, the crack is considered only a potentially closed crack.

close—=

With the remaining strain vector (l—k )Aé‘mb, the closed crack is not considered in the

close
equation (3.48) and is converted into a definitive closed crack, only if at this phase does
not try to reopen. If the crack reopens, the crack that in the first phase has indicated as

closed is not allowed to change its status, and its historical data is restored.

As describe before, to permit a future crack close, the crack normal strain stored in the

historical data to allow a crack closure is updated with

&’ =g’ -10"° if & -10°<g” (3.51)

n,close,new n,close, prev
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cr
n,close,new

being & the new

Jclose, prev

the crack normal strain stored in the historical data, &

updated crack normal strain for crack close, and ¢ the current crack normal strain.

With the described procedures the starting axes of the crack tensile-softening diagram for
the specific crack where such problems occur are marginally moved, as schematically
represented in Figure 3.14. It must be stated that the global accuracy is not significantly

affected, being the robustness of the numerical simulations significantly improved.

o\ o'\ |

(@) (b)

— I
gu‘ gu’

|
& cr
n,close,new

Figure 3.14 — Adopted criteria to: (a) update the crack normal stress for a crack reopen; (b) update the crack

normal strain for a crack close.

3.6 SUPPORTS WITH LINEAR AND NONLINEAR BEHAVIOR

3.6.1 Deformable point, line and surface support system

A structure can have some of its nodal points connected to elements that can exhibit an
elastic or inelastic behavior. These elements can be, for example, the ground supporting
system, bars or any other structural element whose deformability is proportional to the load
applied to this element, etc. The contribution of these elements to the behavior of a
structure is taken into account by adding their stiffness to the stiffness of the structure

(Ventura-Gouveia 1996).

In general, they can be considered as point springs, line springs or surface springs, i.c., a

point spring when one point of a structure is connected to a deformable element, such as a
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plate supported on a column, a line spring when the support conditions of a structure are
provided continuously along a line, such as a plate supported on a wall, and a surface
spring when the contact between the structure and the supporting system is a surface, such

is the case of a slab on grade.

In the framework of the FEM, the contribution of these supporting elements to the stiffness

of the global system can be calculated as follows:

Point springs

In this case, the stiffness of the spring is directly added to the diagonal terms of the
stiffness matrix of the structure in correspondence with the degrees of freedom of the point
that is connected to the spring. This addition process takes into account the coordinate
system of the structure and the direction vector of the spring. A generic representation of

point springs connected to a structure is represented in Figure 3.15.

g
X3

g
Xy

Point spring

Figure 3.15 — Point springs: global coordinate system, x¥, local coordinate system of the structure, x, , and

spring direction vector, s. .
1

The point spring stiffness K" " in the global coordinate system is obtained from

K'"=T"k T (3.52)

—S
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where T is the transformation vector relating the global coordinate system and the spring

direction vector (see Figure 3.15) and £, the spring stiffness.

Line springs
A generic representation of a line spring connected to an edge of a structure is represented

in Figure 3.16.

Finite element

g
X3 . .
Line spring

g
X

Figure 3.16 — Line spring: global coordinate system, x¢ , local coordinate system of the structure, x, , and

i

line spring direction vector, s .

line

The line spring stiffness K~ contribution to the stiffness of the edge of the finite element

s

where the line spring is connected is obtained with

line T T
K" =] N'T'k,TNdL (3.53)
where 7T is the transformation vector relating the global coordinate system and the line
spring direction vector (see Figure 3.16), N is the matrix of the shape functions of 1D

finite elements, and £, is the spring stiffness.
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Surface springs

In Figure 3.17 a surface spring connected to a face of a structure is represented.

Finite element

g
X3

Structure

Surface spring

Figure 3.17 — Surface spring: global coordinate system, x?, local coordinate system of the structure, x, , and

surface spring direction vector, s .

The surface spring stiffness K sz contribution to the stiffness of the finite element where

the surface spring is connected is obtained with

surf T T
K" =| N'T'k,T N dd (3.54)
where T is the transformation vector relating the global coordinate system and the surface
spring direction vector (see Figure 3.17), N is the matrix of the shape functions of 2D

finite elements, and £, is the spring stiffness.

The spring stiffness, k,, of equations (3.53) and (3.54) is obtained at each IP using the

shape functions of the 1D finite element or the shape functions of the 2D finite element,
respectively. With this procedure a line spring with different stiffness values along its

length can be numerically simulated, and, in the same way, a surface spring with non
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constant stiffness can be treated (for example the simulation of a slab supported on a

heterogeneous soil).

The definition of the shape functions used in the above equations can be found elsewhere

(Zienkiewicz and Taylor 2000a).

3.6.2 Unilateral supports

In the previous section a general approach for the calculation of the contribution of
different types of springs for the stiffness matrix of the structure is presented assuming a
linear-elastic behavior for the springs. These springs can be connected to the various types
of finite elements available in the FEMIX computer code (Azevedo et al. 2003, Sena-Cruz
2004).

Alternatively, there can be situations in which a supporting system can be idealized by a
spring system with nonlinear behavior, as for the case of a soil. The evaluation of the
tangent soil reaction modulus can be performed with plate-loading tests (Barros and
Figueiras 1998), and results of these tests have revealed that the soil pressure-settlement
relationship can be simulated with a multilinear or linear-parabolic diagram (Barros and

Figueiras 2001).

There are other situations in which the stiffness of the supporting system of a structure
depends on the type of load acting on this supporting system, and it can even be neglected
for certain type of loading, as for the case of a soil subjected to tensile stresses. These types
of supports are named in the present work as unilateral supports. In the next sections
details of two diagrams to simulate this type of supports are presented: a linear-parabolic
diagram to predict soil nonlinear behavior and its loss of contact with the supported
structure; a bilinear-exponential diagram that can be assigned to supports considered to be
active only in certain circumstances. A parametric study carried out with a slab on grade is

also presented.
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3.6.2.1 Linear-parabolic diagram
To provide the developed model with the possibility of numerical simulations of slabs on
grade, a linear-parabolic diagram between pressure and settlement has been included in the

model (Barros 1995, Barros and Figueiras 2001), being represented in Figure 3.18.

P
(pressure)
p\‘ui 777777777777777777777777777777 ® —1&
pmaxi 777777777777777777777 //: i
k. 3// Statuses
1 - Loading
ap Ny : 2 - Unloading
sl ; 3 : 3 - Reloading
1/ | /2 4 - Inactive
ksl i /// i 3
y 1 ‘ : —
as] as2 asmax asu (Settlement) as

Figure 3.18 — Pressure-settlement linear-parabolic diagram.

The pressure-settlement linear-parabolic diagram is defined by the following expressions

k,a, O<a,<a,
p(as): &af _J/kslas-i-ksla‘l(y-i_l) asl <as Sasu (355)
2asu 2
p?u ax > asu
where
asu
a,=a’* (3.56a)
a-1
A
P (3.56b)
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being « a parameter that defines the transition point from the linear to the parabolic

branch (see Figure 3.18). The values of p_, a, and k, are obtained by curve fitting

Su

based on the experimental results of plate-loading tests (Barros and Figueiras 1998).

An elastic branch is assumed for modeling the unloading/reloading phase of the
pressure-settlement relation, although the experimental results obtained from plate-loading
tests (Barros and Figueiras 1998) reveal that the unloading /reloading cycles can be stiffer

than the initial elastic phase.

For the unloading or reloading branch (see Figure 3.18) the pressure is given by the

following equation
p (as) = ksl (as - asZ) asZ < as S asmax (357)

being a,, the residual settlement obtained with

pmax
asZ - asmax - k

(3.58)

sl

where a,,, and p, . are the maximum applied settlement and the corresponding pressure,

pertaining to the pressure-settlement envelope curve, whose values are stored for the

evaluation of the unloading-reloading branch.

The soil reaction tangent modulus in the parabolic branch, k,, is obtained with the

t o

following equation

ky(a,)=7k, (j—s—lj (3.59)

su
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In a nonlinear analysis, as described in section 2.4 of chapter 2, the internal forces must be
obtained. With this aim, the element nodal forces that are equivalent to the soil pressure are

calculated with

f(e) - IA(") NTZTP (as )dA (360)

“_int,soil

where T is the transformation vector relating the global coordinate system and the surface
spring direction vector, N is the matrix of the element surface shape functions where the

surface spring is connected, and p(as) is defined by the expressions (3.55) or (3.57).

In the framework of the finite element method, the integrals in (3.53), (3.54) and (3.60) are
calculated using the Gauss-Legendre quadrature rule (Cook 1995, Zienkiewicz and Taylor

2000a).

The soil contribution to the stiffness of the global structural system is computed with

equation (3.54), using the soil reaction tangent modulus, k£, or k,, in the place of &,

t o

according to the pressure-settlement linear-parabolic diagram represented in Figure 3.18.

This nonlinear behavior, idealized by the linear-parabolic diagram of Figure 3.18, is
assigned to the surface springs that are orthogonal to the middle surface of a laminar

structure. The friction between the laminar structure and the soil is neglected.

At each stage of a nonlinear analysis the history of some parameters, for example pressure
and settlement, must be known. For this reason the FEMIX computer code stores the
spring historical data, independent of the historical data related to the elements of the
structure. For this purpose the four statuses indicated in Figure 3.18 are considered. With
this procedure the diagram is completely defined at each stage of the nonlinear analysis

and for the surface spring associated with each IP.
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For the case of a slab on grade, when the concrete slab loses contact with the soil at an IP,
the portion of soil that corresponds to this IP does not contribute to the stiffness of the
slab-soil system and, consequently, the surface spring has an inactive status. When contact
is re-established the soil stiffness is taken into account, being its value dependent on the
branch of the diagram represented in Figure 3.18 and on the previous status before the
spring had became inactive. This information is obtained from the data stored in the spring

historical data.

Although the diagram of Figure 3.18 has been idealized for soil-structure simulation, it is
also implemented for the simulation of point springs and line springs with nonlinear
behavior. The necessary adaptations in the calculation of the stiffness matrix and internal

forces are included in the computer code.

3.6.2.2 Bilinear-exponential diagram

The bilinear-exponential diagram described in this section and represented in Figure 3.19

can be assigned to point springs. This diagram is defined by three points, £ =(al,Fl),

P, = (az,Fz), and P, = (a3,F3) , and by the parameter p used in the definition of the third

branch. When a unitary value is attributed to this parameter the third branch is linear.

F
(force)
F 41;
3 y ’/ (a F)max T
ki 4 |
E ! 31 / : Statuses
’ 1// 1 - Loading
| M | 2 - Unloading
k. : | 3 - Reloading
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k
: : 1 —
Ya, a, a, a, (displacement) ¢

Figure 3.19 — Force-displacement bilinear-exponential diagram.
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The equations that define the relation shown in Figure 3.19 are the following

ka O<a<a,
k,(a—a,)+F, a,<a<a,
F(a)= b 3.61
(4) F3+(Fz—F3)[a3 aj a,<a<a G.61)
a;—a,
F, a>a,
where
F
k=21
1 a, (3.62a)
F,-F
1c2=M (3.62b)
(a,~a,)
(F,-F,)( a,~a -
k, =— . 3.62
3t p(aj_az) a3 a2 ( C)

In analogy with the diagram described in section 3.6.2.1, the statuses of this curve are also

represented in Figure 3.19. The point internal forces are determined with

fP()int — ZTF (363)

Z_int

being I the transformation vector relating the global coordinate system and the spring

direction vector.

The stiffness matrix is obtained with equation (3.52), considering the substitution of £,

with one of the values defined by expression (3.62).
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This diagram can simulate an eventual gap between the structure and a support. This is a
very important feature since in some cases a structure becomes in contact with a support

only after a certain displacement has occurred. Figure 3.20 represents the simulation of a

gap. The value of a, is the gap between the structure and the point spring.

A point spring simulated with the nonlinear constitutive relation proposed in this section
can be activated to work only in compression or only in tension, e.g., if the support of a
structure only works for compression forces, than the loss of contact is activated if a tensile
force is applied to the support. This model is available in the FEMIX computer code and

can be used to simulate nonlinear unilateral supports.

-9

: —
a, (displacement) ¢

Figure 3.20 — Gap simulation between a support and a structure.

An elastic unloading/reloading is assumed in this diagram (Figure 3.20), being its

inclination, &

max 2

assumed as the maximum stiffness provided by equations (3.62). For the

case represented in Figure 3.20, k,  is equal to k,. In the unloading/reloading phase the
force is obtained with

F(a)=k,,(a—a,) a <a<a, (3.64)

being a, the residual displacement obtained with
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ar = amax - e (3'65)

where a,, and F,  are the maximum applied displacement and the corresponding force

pertaining to the force-displacement envelope curve, whose values are stored for the

evaluation of the unloading/reloading branch.

3.6.2.3 Parametric study of a slab on grade

Industrial floors are one of the most common applications of steel fiber reinforced concrete
(SFRC). Crack control joints are built to concentrate the crack propagation in these
weakness-induced surfaces, resulting in a floor divided into panels. The design of a SFRC
floor is, in general, restricted to the analysis of a representative panel. For the most
common situations a point load in a corner of the panel is the most unfavorable load
configuration. The model described in section 3.6.2.1 is used for the soil simulation in a
parametric study of a SFRC slab on grade (Barros et al. 2005¢). When the concrete slab
loses contact with the soil at an IP, the part of the soil that corresponds to this IP does not

contribute to the stiffness of the slab soil system. In this study, the influence of the slab

thickness (%), the soil reaction modulus (k) and the amount of fibers (Q, ) is taken into

account, as shown schematically in Figure 3.21.

15
=il 25
— Q; =
(kg/;) 35
_ |160
™ |200
240
0.01
0.04
(N/mm?) |0.08

Figure 3.21 — Parametric study of a SFRC slab on grade.
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The adopted finite element mesh used to analyze the behavior of the 5x5 m?® panel is
represented in Figure 3.22. Since the elements outside the dashed line square are not
affected by any concrete nonlinear phenomenon, they are assumed to behave linearly. The
elements located inside this square are assumed to exhibit a nonlinear material behavior.
The panel thickness is decomposed in 10 layers of equal thickness. The SFRC fracture

cr cr

parameters used to define the o —¢& trilinear diagram adopted to model the fracture

mode I are presented in Table 3.1. An average compressive strength of 38 MPa and a
Young's Modulus of 32 GPa are considered in the analysis. The soil is simulated with

surface springs that are orthogonal to the laminate structure. For example, Figure 3.23

represents the crack pattern for the slab with h=160mm, Q,=25kg/ m’ and

k,=0.01 N/mm’, at a load level corresponding to a maximum crack opening of 0.3 mm.

More details about this study can be found elsewhere (Barros et al. 2005¢).
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Load
Main crack zone
Figure 3.22 — Finite element mesh. Figure 3.23 — Crack pattern at the slab top surface for

a load level corresponding to a maximum crack

opening of 0.3 mm.
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Table 3.1 - Parameters defining the trilinear diagram of Figure 3.6 for the analyzed SFRC.

O | o | G2 | Gu | EGn | En | G
(kgm’) | (MPa) | o, e € €y | (N/mm)
15 | 240 | 035 | 011 | 255 | 0.10 | 2.30
25 | 260 | 051 | 031 | 128 | 079 | 3.90
35 195 | 070 | 022 | 297 | 063 | 3.60

45 342 0.60 0.60 0.05 0.14 6.60

3.7 NUMERICAL SIMULATION OF A PUNCHING TEST WITH A MODULE
OF SFRSCC PANEL

To access the predictive performance of the developed model, an experimental punching

test with a module of a steel fiber reinforced self-compacting concrete (SFRSCC) panel is

numerically simulated in this section. The numerical results are compared with the

experimental ones, and the influence of some model parameters in the numerical

predictions is discussed.

SFRSCC is a relatively recent cement based material that combines the benefits of the
self-compacting concrete technology (Okamura 1997) with the advantages of the addition

of fibers to a brittle cementitious matrix (Pereira 2006).

To manufacture the lightweight panel system schematically represented in Figure 3.24,
which can be applied in building fagades, a developed SFRSCC was used and described
elsewhere (Barros et al. 2005a). The mix composition of the SFRSCC used to manufacture

the panel is presented in Table 3.2. In the composition of the SFRSCC, 30 kg/m’ of hooked
ends steel fibers with a length (l f) of 60 mm, a diameter (d f) of 0.75 mm, an aspect ratio
(lf / df) of 80 and a yield stress of 1100 MPa were used. At seven days the average value

of the compressive strength and modulus of elasticity of this SFRSCC was 52 MPa and
31 GPa, respectively.
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Figure 3.24 — Concept of a lightweight steel fiber reinforced self-compacting concrete panel [all dimensions

are in mm] (Barros et al. 2005a).

The flexural strength of this type of structural elements is a key aspect in their design,
since, in general, the bending moments of the wind load combination are an important
factor in the design process of the panel. To assess the panel flexural behavior,
representative modules of the SFRSCC panel system were tested, being the details of the
experimental program described elsewhere (Barros et al. 2007a). Numerical simulations of
these panels were also made using the developed model and can be found elsewhere

(Barros et al. 2007b)

The punching resistance is also a key aspect in the design of this type of panel, since its
lightweight zones consist of a thin layer that is only 30 mm thick. To evaluate the punching
resistance of these zones, representative modules of the panel system are submitted to a
load configuration that implies the occurrence of this type of failure mode (Barros et al.

2005a, Barros et al. 2007a).

In the next sections the results obtained in one of these tests are compared with the
numerical simulations in order to assess the predictive performance of the developed

model. Several numerical simulations are carried out to assess the influence of some
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parameters that define the softening diagrams (Ventura-Gouveia et al. 2011). The objective
of these simulations is to understand how each parameter affects the response of a laminar
FRC structure failing in punching. The influence of the in-plane mesh and

through-thickness refinement of the simulated structure is also analyzed.

The possibility of defining the fracture parameters that characterize the fracture mode I
strain-softening diagram by performing an inverse analysis (Barros et al. 2005b) is also
discussed. The inverse analysis is based on the results obtained in three point notched
beam bending tests carried out according to the RILEM TC 162-TDF recommendations
(Vandewalle et al. 2002).

Table 3.2 - Composition for 1 m’ of SFRSCC including 30 kg/m” of fibers

Paste Cement
total CEM1 | Limestone Super- Fine Coarse Crushed
volume 42.5R filler Water | plasticizer’ sand sand aggregates
(%) (kg) (kg) (dm’) (dm’) (kg) (kg) (kg)
0.34 364.28 312.24 93.67 6.94 108.59 | 723.96 669.28

" Third generation based on polycarboxilates (Glenium® 77SCC)

3.7.1 Evaluation of the mode I fracture properties by inverse analysis

This section describes the inverse analysis methodology adopted to evaluate the fracture
mode I parameters of the SFRSCC used in the panel prototype that was experimentally
tested and numerically simulated. Detailed information about this inverse analysis can be

found elsewhere (Barros et al. 2005b, Sena-Cruz et al. 2004).

As already mentioned, in the implemented smeared crack constitutive model the
post-cracking behavior of SFRSCC under tension can be described by a trilinear

stress-strain softening diagram (see Figure 3.6). This function is defined by a set of fracture
parameters (o, &, Gy, f, and ), being the accuracy of the FEM modeling largely

dependent on the values that are assigned to these parameters. In this context, the

experimental behavior of an element failed in bending may be predicted by a FEM model,
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as long as the correct values of the material fracture parameters are introduced in the

constitutive model.

The adopted strategy consists in the evaluation of the &, &, and G; parameters that define

the shape of the trilinear o —&" constitutive law, based on the minimization of the error

parameter

_ exp __ gnum
err =|A;."s — A

/45, (3.66)

being A;*; and A4;"; the areas beneath the experimental and numerical load-deflection

curves corresponding to a three point notched beam bending test (Sena-Cruz et al. 2004).

The experimental curve corresponds to the average results observed in prismatic SFRSCC
notched specimens, tested according to the RILEM TC 162-TDF recommendations at the
age of 7 days (Vandewalle et al. 2002), while the numerical curve consists of the results
obtained by FEM analysis, being the specimen, loading and support conditions simulated

in agreement with the experimental flexural test setup as represented in Figure 3.25.

In this context, the specimen is modeled with a mesh of 8 node serendipity plane stress
finite elements. The Gauss-Legendre integration scheme with 2x2 integration points is
used in all elements, with the exception of the elements at the specimen symmetry axis,
where 1x2 integration points are used. With this particular integration point layout, the
numerical results have a better agreement with the experimental observations, since a
vertical crack may develop along the symmetry axis. Linear elastic material behavior is
assumed in all the elements, with the exception of those above the notch, along the

symmetry axis. In this region an elastic-cracked material model in tension is adopted. The

crack bandwidth, /,, is assumed to be equal to 5 mm, being this value coincident with the

width of the notch and of the elements located above it.
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Figure 3.25 — FEM mesh used in the numerical simulation of a three-point notched beam flexural test at

7 days (Pereira et al. 2008).

In Figure 3.26 the results experimentally obtained in the flexural tests are compared with
the numerical results. The curve of the numerical simulation, obtained with the optimized
fracture parameters, is not perfectly coincident with the experimental curve, suggesting

that additional parameters should be considered in order to obtain a better fitting. The
values of the fracture parameters &, o, and G} that lead to the numerical results

represented in Figure 3.26 are listed in Table 3.3.

25

Load [kN]

5 | N\\! scatter of experimental results

experimental average results

numerical simulation

0 T T T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Deflection [mm]

Figure 3.26 — Experimental average results and numerical simulation of the three-point notched beam

flexural test at 7 days (Pereira et al. 2008).
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3.7.2 Test setup and values of the parameters used in the numerical simulations

The punching test of a module of the developed SFRSCC lightweight panel is used to
assess the predictive performance of the proposed multi-fixed smeared crack model. The
test layout and the test setup are represented in Figure 3.27. More details about the

corresponding experimental program can be found elsewhere (Barros et al. 2007a).

Steel plate
(100x100x10)

7725750502077
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Polystyrene — 30
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7 74" " al
C ®iso | 300(x300) 10 |
T ‘ 500 i |
(b)

Figure 3.27 — (a) Test panel module, and (b) test setup [all dimensions are in mm] (Barros et al. 2007a).

The influence of mesh refinement and some model parameters in the results of the
numerical simulations is assessed and discussed in the next sections, namely: the values
adopted for the fracture mode I parameters used to define the trilinear diagram, and the
values used to define the out-of-plane shear stress-strain diagram. The numerical
simulations are performed using the Newton-Raphson method, with displacement control

at a specific variable (see section 2.4.3 of chapter 2).

The values of the parameters of the constitutive model used in the numerical simulations of

the punching test are listed in Table 3.3.
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Table 3.3 - Values of the parameters of the constitutive model used in the numerical simulations of the

punching test.

Poisson’s ratio

v=0.15

Initial Young’s modulus

E. =31000.0 N/mm?

Compressive strength

f. =52.0 N/mm®

Trilinear tension softening diagram of
SFRSCC (used in the numerical
simulations of section 3.7.3.
Parameters values obtained from
inverse analysis)

£, =3.5N/mm’; G; =43N/mm;
£=0.009; &, =0.5; & =0.15; @, =0.59

Trilinear tension softening diagram of
plain concrete (used in a numerical
simulation of section 3.7.3. Parameters
obtained from the compressive
strength of the SFRSCC according to
CEB-FIP 1993 recommendations)

f, =35N/mm*; G} =0.08732 N/mm;
£=0.072; @,=0.15; & =0.4432; a, =0.09

Trilinear tension softening diagram of
SFRSCC (used in the numerical
simulations of section 3.7.4. Parameter
values obtained by
increasing/decreasing +50% those

obtained from inverse analysis)

£, =3.5N/mm?;

G; =-50%x4.3 N/mm;

£ =+50%x0.009 ; @ =+50%x0.5;
£ =+50%x0.15 ; @, == 50%x 0.59

(- depends on the numerical simulation)

Fracture energy (mode III) used in the
out-of-plane shear stress-strain
diagram

from G;' =1.0N/mm to G} =5.0 N/mm

(depends on the numerical simulation)

Parameter defining the mode I fracture
energy available to the new crack

p,=2

Shear retention factor

Exponential (p, =2)

Crack bandwidth

Square root of the area of the integration point

Threshold angle

a, =30°

_ e cr __cr cr _cr cr _
al - O-n,Z /O-n,l > az - O-n,3 /O-n,l > él - gn,Z /gn,u > 52 -

&,/ &,, (see Figure 3.6)

3.7.3 Analysis based on the values obtained from inverse analysis

3.7.3.1 Influence of the out-of-plane shear softening diagram
The results of the numerical simulations are compared with the experimental data obtained

in the punching test of the panel module. The finite element idealization, load and support
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conditions used in the numerical simulations of the punching test are shown in Figure
3.28a). Due to double symmetry, only one quarter of the panel is considered in the
simulations. The mesh is composed of 6 x 6 eight-node serendipity plane shell elements.
The elements are divided into 11 layers, each one being 10 mm thick. Since the panel has
lightweight zones (shaded elements in Figure 3.28a), materialized by the suppression of
80 mm of concrete in the central zone, null stiffness is assigned to the 8 bottom layers of
the corresponding finite elements (see Figure 3.28b). The material of the remaining three
layers has an elastic-cracked behavior, as described in section 3.3.2.2. This model is also

used in the elements located outside the central lightweight zone.

X, |
(@) Point load =----;
® N . 1/ E
. g
A A EE
g — o
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; Suﬁﬁéﬁs é) E
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S gy By ) e By gy A 3 %10 mm
> 0 L L ] B Y 7 (Tl
(S i iy |
P G\ )
= b = = = 8 x10 mm
(S S i

Layers with SFRSCC properties
0 Layers with null stiffness

Figure 3.28 — (a) Geometry, mesh, load and support conditions used in the numerical simulation of the

punching test — Coarse Mesh (CM); (b) Properties of the layered cross section.



Numerical model for concrete laminar structures 87

A trial-and-error procedure is required to estimate reasonable values for the out-of-plane
components of the elastic-cracked constitutive matrix, D{” (see section 3.4), since their

experimental evaluation is quite complex and beyond the scope of the present work. The

out-of-plane shear fracture energy that leads to the best agreement with the experimental

results of the punching tests, G}” =3.0 N/mm, is determined with this procedure.

The values of the mode I fracture parameters that take part in the in-plane elastic-cracked

constitutive matrix for concrete, D’,°, are obtained by inverse analysis, as described in

—mb °

section 3.7.1.

In Figure 3.29 responses obtained with the numerical model are compared with the
experimental results. A good agreement can be observed up to a deflection of 2.5 mm. For
larger deflections, an overestimation of the load carrying capacity of the prototype panel
occurs when a linear elastic behavior is assumed for the out-of-plane shear components. At
a deflection of about 3 mm, the experimental curve suddenly falls, indicating the failure of
the panel by punching, as visually confirmed in the experimental test. This load decay that
is not reproduced when assuming a linear elastic behavior for the out-of-plane shear
components is, however, well captured when the bilinear diagram represented in Figure 3.9

is used to model the softening behavior of the out-of-plane shear components, with
G}” =3.0 N/mm, and assuming a crack bandwidth, 1, , equal to the square root of the area

associated with the corresponding IP. The abrupt load decay from approximately 41 kN to
20 kN, which is observed in the experimental test, is accurately simulated by the numerical
model, as well as the subsequent extended stage of residual load carrying capacity

exhibiting a very small load decay.
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Figure 3.29 — Relationship between load and deflection at the center of the test panel.

Up to a 10 kN load, all the curves depicted in Figure 3.29 are practically coincident.
Afterwards, the straight line that represents the response assuming a linear elastic behavior
no longer follows the curves that correspond to the experimental test and to the numerical
analysis with material nonlinear model. These results suggest that some cracks start to
form at a very early stage of the experimental test. The nonlinear numerical model
accurately captures the formation of bending cracks at the top surface (see Figure 3.30a), in
agreement with the experimentally observed crack pattern. Figure 3.30b shows the crack
pattern at the top surface observed at the end of the test sequence. The numerical model
also indicates the formation of bending cracks at the bottom surface of the lightweight
zone. These cracks initiate at the center of the panel, beneath the loaded area, and then
progress to the corners of the lightweight zone, showing some similarities with the
classical yield lines formed in square concrete slabs failing by flexure. These cracks can

also be observed in the experimental test (Pereira 2006).



Numerical model for concrete laminar structures 89

flexure crackyg () hat m,aLphp e
in integration pojnts =

lichtweibt zone
HHEREW ST EHZOR

pqnel upper face defllection = 0.12 mm

Figure 3.30 — Punching test simulation: (a) top surface cracks predicted by the numerical model (using a
FEM mesh with 12 x 12 eight-node serendipity plane shell elements) , and (b) photograph showing the
cracks at the top surface of the panel, at the end of the test sequence (Pereira 2006).

In conclusion, the results indicate that flexure mechanisms prevail in the deformational
behavior up to a deflection of approximately 2.5 mm. For larger deflections, the punching
failure mechanisms start to assume a greater relevance, and the overestimation of the panel
out-of-plane rigidity components, when linear out-of-plane shear behavior is assumed,
leads to a divergence between the numerical model and the experimental observations.
With the adoption of a softening law for the out-of-plane shear components, the numerical
model becomes much more accurate in the prediction of the complete behavior of the panel
failing in punching, capturing the sudden load decay associated with punching failure

mechanisms.

To estimate the contribution of fiber reinforcement to the punching resistance, a numerical
simulation was performed adopting for the fracture mode I the parameters indicated in
Table 3.3, which correspond to plain concrete with compressive strength matching the
developed SFRSCC. Comparing the curves in Figure 3.31 it can be concluded that fibers
not only increased significantly the punching resistance, but also, and especially, improved

the ductility.
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Figure 3.31 — Influence of fiber reinforcement in the punching resistance.

Figure 3.32 represents the vertical displacement field for a deflection of 10 mm at the
center of the panel for the case of the numerical simulation considering out-of-plane shear
softening. The obtained strong gradient of vertical displacements matches with high
precision the experimentally observed location of the interception of the punching failure
surface with the top panel face (see Figure 3.30b). This evidences the suitability of the

developed approach for the simulation of this complex failure mode.
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Figure 3.32 — Vertical displacement field (in mm) for the numerical simulation with out-of-plane shear

softening (for a deflection of 10 mm at the center of the panel).
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As already mentioned, the selection of a value for GJI(H has no experimental support. In

order to analyze its influence on the results of the numerical simulation using a softening
law for both out-of-plane components, a parametric analysis is carried out consisting in the

variation of its value from 1.0 to 5.0 N/mm. The results depicted in Figure 3.33 show that a
value of ij[ =3.0N/mm leads to a perfect prediction of the abrupt load decay
experimentally observed at a deflection of about 3 mm. Increasing or decreasing the value

of G}” implies the occurrence of the abrupt load decay at a larger or smaller deflection,

respectively. The conclusion of this study is that, independently of the value of G}” , when

using the model described in this work, it is essential to use a softening law for the
out-of-plane shear components in order to simulate the sudden load decay observed in the

punching test.
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Figure 3.33 — Influence of G, using the in-plane coarse mesh and 3 layers in the lightweight zone, on the

numerical relationship between load and deflection at the center of the test panel.

Similar results were obtained in numerical simulations in which the supports of the panel,
represented in Figure 3.28a by the dashed line, were simulated with line springs with
“infinite” stiffness in compression and null strength in tension using the linear-parabolic
diagram described in section 3.6.2.1, in order to simulate the loss of contact between the

panel and the support during the loading process (Ventura-Gouveia et al. 2007).
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3.7.3.2 Influence of the through-thickness refinement of the panel

In this section, the influence of through-thickness refinement of the panel on the
load-deflection relationship is analyzed. The parameters used to simulate the fracture
mode I and the out-of-plane shear softening diagram are those that have best fitted the

experimental results, according to the strategy described in the previous section.

For this purpose, the following two refinements are considered: 6 layers in the lightweight
zone and 22 layers in the remaining parts; 10 layers in the lightweight zone and 26 layers

in the other zones.

In Figure 3.34 the load-deflection relationships of these numerical simulations are
compared with the experimental one, indicating CM /L the curve obtained with a j-layer

discretization in the lightweight zone.

60 7
50 1 A
40 A / — Experimental

E ,,f' — Softening out-of-plane shear (CM_3L)

< 304 i .

S J gy Softening out-of-plane shear (CM_6L)

~ / |
20 4 / R Softening out-of-plane shear (CM_10L)
10 4

0 T T T T T T T T T T T T T T T T T T T 1

Deflection [mm]

Figure 3.34 — Influence of the number of layers discretizing the thickness of the panel in the lightweight zone

(results for 3, 6 and 10 layers are shown).

It can be observed that by increasing the number of layers in the lightweight zone from
3 to 6, the maximum load increases approximately 17%, and the stiffness corresponding to
the branch between crack initiation and peak load also increases. This behavior can be
justified by the fact that the flexural stiffness of each layer is not considered in the

evaluation of the internal forces of the Mindlin shell finite elements when a material
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nonlinear analysis is performed. Therefore, the larger the number of layers discretizing the
element, the higher the flexural stiffness of the element is, resulting in a smaller
deformability of the panel and a higher load carrying capacity. However, Figure 3.34 also
shows that when the number of layers increases from 6 to 10, only a marginal increase of
the maximum load is observed, which indicates that the increase ratio of the flexural
stiffness and load carrying capacity of the layered Mindlin shell element decreases with the

number of layers.

It is also interesting to observe that the deflection at the abrupt load decay, as well as the
residual load carrying capacity of the panel, are very similar in all three numerical

analyses.

3.7.3.3 Influence of the in-plane mesh refinement of the panel

In order to assess the influence of the in-plane mesh refinement on the load-deflection
relationship, an alternative and more refined mesh (RM) is considered (see Figure 3.35),
being the corresponding results presented below. Eight-node serendipity plane shell

elements are used, with 10 layers in the lightweight zone and 26 layers in the other zones.
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Figure 3.35 — Geometry, mesh, load and support conditions used in the numerical simulation of the punching

test — Refined Mesh (RM).
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The load-deflection relationship for the RM is represented in Figure 3.36, being compared
with the one obtained with the previous coarse mesh (CM), and with the one
experimentally registered. As expected, the deformability of the panel increases with the
mesh refinement, causing the abrupt load decay to occur for a larger deflection (3.3 mm).
Due to the higher flexibility of the panel discretized with the RM, a decrease of about 5%
in terms of load carrying capacity is observed. Therefore, the shape of the load-deflection
(F-u) curve for the RM is approximately the result of the rotation of the F-u curve for the

CM about the point that corresponds to the crack initiation.

With the increase of the number of finite elements (and integration points), the concrete in
cracked status and the corresponding consumed mode I fracture energy also increase. This
can be a possible justification for the more deformable response in the numerical

simulation of the in-plane RM .
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Figure 3.36 — Influence of the in-plane mesh refinement on the numerical load-deflection response at the

center of the test panel.

3.7.3.4 Influence of the fracture energy (G;H) used in the out-of-plane shear softening
diagram
To assess the influence of the fracture energy used to define the out-of-plane shear

softening diagram, G_I-H , on the load-deflection relationship, its value is varied between
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1.0 N/mm and 5.0 N/mm. In these analyses the in-plane CM and the RM are used, with
10 layers discretizing the thickness of the panel in the lightweight zone. The obtained

numerical curves are represented in Figure 3.37 and Figure 3.38, respectively. It is

observed that in the RM the G}” value mainly affects the residual load carrying capacity

after the abrupt load decay. When using the CM, the value attributed to G}H not only

affects the residual load carrying capacity but also influences the value of the deflection
corresponding to the abrupt load decay. This influence, however, is less pronounced than
when using an in-plane CM with 3 layers discretizing the thickness of the panel in the
lightweight zone (see Figure 3.33). Therefore it can be concluded that when a RM is used,

suitable predictions can be obtained with G;' = G}, but further research needs to be carried

out for a more reliable estimation of Gf’.” .

Figure 3.39 and Figure 3.40 show the consumed out-of-plane fracture energy (fofc) up to a

deflection of 3.5 mm for the in-plane CM and RM, respectively. At each integration point,
this consumed fracture energy receives the contribution of the two out-of-plane shear
components in all layers, and can be regarded as an indicator of damage due to the
punching failure mode. It can be observed that the punching failure pattern is well
predicted when using the RM. When using the in-plane CM refinement the shear failure
bandwidth is larger, thus justifying the higher sensibility of the deflection corresponding to

the abrupt load decay to the adopted G}” value (see Figure 3.37).
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Figure 3.37 — Influence of G on the numerical relationship between load and deflection at the center of the

panel, when using the in-plane coarse mesh and 10 layers in the lightweight zone.
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Figure 3.38 — Influence of G on the numerical relationship between load and deflection at the center of the

panel, when using the in-plane refined mesh and 10 layers in the lightweight zone.
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Figure 3.39 — Representation of the consumed out-of-plane fracture energy, G

fie?

coarse mesh and 10 layers in the lightweight zone, for a deflection of 3.5 mm.

when using the in-plane

Figure 3.40 — Representation of the consumed out-of-plane fracture energy, G

fie?

refined mesh and 10 layers in the lightweight zone, for a deflection of 3.5 mm.

when using the in-plane

3.7.4 Influence of the parameters that define the fracture mode I
In order to assess the influence of the parameters that define the fracture mode I
constitutive law (Figure 3.6) on the load-deflection relationship predicted by the numerical

model, the values of these parameters are decreased and increased by 50 % relatively to
those obtained by inverse analysis. The crack stress vs. crack strain (o, —¢!") for these

analyses and the corresponding load-deflection relationships are depicted in Figure 3.41 to

Figure 3.45.
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All these numerical analyses utilize the refined mesh and use 10 layers for the

discretization of the thickness of the lightweight part of the panel. From the analysis of

cr

these graphs it can be concluded that the inclination of the first branch of the o —&;

cr

diagram (D, in Figure 3.6) governs the point corresponding to the first drop in the

load-deflection relationship. In fact, the less abrupt this branch is, the higher the load at this
point becomes. Consequently, it is observed that the load carrying capacity of the panel is
quite sensible to the slope of this branch. Direct tensile tests with SFRSCC similar to the
one used in the tested panels showed, in fact, an abrupt stress decay immediately after

crack formation.

Figure 3.42b evidences that the numerically predicted load carrying capacity of the panel is

quite dependent on the «;, parameter, since a pronounced softening and a significant
hardening deflection are estimated when a value of «, smaller or larger than the one

obtained by inverse analysis is used (see Figure 3.42a). The higher strength o" (8;" ) of the

second branch of o —&’", when adopting higher values for the ¢, parameter (see Figure

3.42a), also contributes to increase both the load carrying capacity of the panel and the

deflection corresponding to the punching failure. However, Figure 3.44 reveals that the

strength " (8;") corresponding to the first branch of o, —¢," diagram has a much higher

influence on the load carrying capacity of the panel than the strength o (8;’) of the

second branch. Nevertheless, Figure 3.44 and Figure 3.45 also demonstrate that the slope
of the load-deflection branch before the punching failure grows with the value of D,
(Figure 3.6). Finally, the decrease of the fracture energy is mainly reflected at the point
corresponding to the first drop of the load-deflection relationship (Figure 3.45b). This

cr

decrease leads to a more abrupt decay of the first branch of the o, —¢&," diagram (Figure

3.45a), resulting in a decrease of the load at this point.
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Figure 3.41 — Influence of the &, parameter: (a) trilinear softening diagrams and (b) relationship between

load and deflection at the center of the test panel.
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Figure 3.42 — Influence of the ¢, parameter: (a) trilinear softening diagrams and (b) relationship between

load and deflection at the center of the test panel.
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Figure 3.43 — Influence of the &, parameter: (a) trilinear softening diagrams and (b) relationship between

load and deflection at the center of the test panel.
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Figure 3.44 — Influence of the «, parameter: (a) trilinear softening diagrams and (b) relationship between
load and deflection at the center of the test panel.
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Figure 3.45 — Influence of Gy : (a) trilinear softening diagrams and (b) relationship between load and

deflection at the center of the test panel.

3.8 NUMERICAL SIMULATION OF A PUNCHING TEST WITH A FLAT SLAB
An experimental program was carried out by Afonso (2010) with reinforced concrete slabs
subjected to a test configuration that conducts to the punching failure of the tested slabs. In
two slabs steel fibers were introduced in the concrete mix and one of them, FCO (Afonso

2010), 1s in this section numerically simulated using the developed model.
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The geometry, supports, load conditions and test setup are represented in Figure 3.46 and
Figure 3.47. The square slab of 2500 mm edge has a thickness of 180 mm and the load is
applied to a pile (250x250x320 mm®) casted in the central zone of the slab to simulate a
real field case. More details about the corresponding experimental program can be found

elsewhere (Afonso 2011).
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Figure 3.46 — Geometry and support conditions [all dimensions are in mm] (Moraes Neto et al. 2012).
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Figure 3.47 — Punching test setup [all dimensions are in mm] (Moraes Neto et al. 2012).
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The finite element idealization, load and support conditions used in the numerical
simulations of the flat slab punching test are shown in Figure 3.48. Due to double
symmetry, only one quarter of the panel is considered in the simulations. The mesh is
composed of eight-node serendipity plane shell elements. A Gauss-Legendre integration
scheme with 3x3 IP is used. The elements are divided in 16 layers, being the first 12 layers
11.7192 mm thick, followed by a layer with 1.6848 mm thick (to simulate the tensile
reinforcement — see Figure 3.49) and 3 layers with 11.9298 mm thick to simulate the
concrete cover. The surface load is applied in the shaded elements shown in Figure 3.48,
and the supports are simulated by point springs with a linear elastic behavior. The
Newton-Raphson method with displacement control at a specific variable (central vertical

displacement) is used in the nonlinear analysis (see section 2.4.3 of chapter 2).
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Figure 3.48 — Finite element mesh.
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Figure 3.49 — Longitudinal steel bars — tensile reinforcement (Moraes Neto et al. 2012).

The values of the parameters of the constitutive model used in the numerical simulations

are indicated in Table 3.4. The compressive strength, f,, the concrete tensile strength, f,

and the modulus of elasticity, E_, are determined experimentally (Afonso 2010), being the

values for characterizing the trilinear tension softening diagram (see Figure 3.6) and
out-of-plane shear stress-strain diagram (see Figure 3.9) obtained by back-fitting analysis
in order to approximate as much as possible the experimental curve in the post-cracking

phase, since no experimental data was available.

Tree numerical simulations are performed. One uses a linear elastic behavior for the
concrete, and the others uses the proposed constitutive model varying only in the treatment
of the ou-of-plane shear components. Figure 3.50 represents the experimental and
numerical relationships between the load and the deflection at the central point for the
tested FCO flat slab. Using a linear elastic behavior for concrete the numerical response
diverges from the experimental one just after crack initiation, indicating that some cracks
start to form at a very early stage of the experimental test. When a linear elastic behavior is
assumed for the out-of-plane shear components a good agreement can be observed up to a
deflection of 11.8 mm. After this deflection the experimental curve indicates a decrease in
the load carrying capacity and then suddenly falls, suggesting the failure of the flat slab by
punching. This load decay is not well reproduced when assuming a linear elastic behavior
for the out-of-plane shear components, and this numerical simulation has predicted a slight
high load carrying capacity. However, if the bilinear diagram represented in Figure 3.9 is
used to model the softening behavior of the out-of-plane shear components, the abrupt

decay in the load carrying capacity is better captured.
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Table 3.4 - Values of the parameters of the constitutive model used in the numerical simulation of the flat

slab punching test.

Poisson’s ratio

v=0.15

Initial Young’s modulus

E. =25000.0 N/mm?

Compressive strength

£, =39.3N/mm’

Trilinear tension softening diagram
(assigned to the concrete layers)

f,,=3.5N/mm’; G} =0.015N/mm;
£=03;2,=05; &=05; a,=025

Fictitious parameters assigned to the
layer to simulate the tensile
reinforcement

f,, =450.0 N/mm’ ; G} =120N/mm;
E=01; a=10; &=025; a,=1.05
E, =205000.0 N/mm?

Fracture energy (mode III) used in the
out-of-plane shear stress-strain diagram

G/ =0.015N/mm

Parameter defining the mode I fracture
energy available to the new crack

p,=2

Shear retention factor

Exponential (p, =2)

Crack bandwidth

Square root of the area of the IP

Threshold angle

a, =30°

Maximum number of cracks per each IP

2
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Figure 3.50 — Relationship between load and deflection at the center of the FCO slab.
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3.9 SUMMARY AND CONCLUSIONS

In the present work a model based on the finite element method is proposed to simulate
concrete laminar structures failing in bending and shear. The Reissner-Mindlin theory in
the context of layered shells is presented and special emphasis is placed on the treatment of

the shear behavior.

The proposed model is based on a multi-directional and fixed smeared crack concept. By
considering the nonlinear behavior of each shell layer, crack propagation through the

thickness of these structures can be simulated.

Fracture mode I is modeled with a crack stress vs. crack strain trilinear diagram, whose
defining parameters can be obtained by inverse analysis using the load-deflection
relationship obtained with three-point notched beam tests, carried out according to the
RILEM TC 162-TDF recommendations. With this strategy the values of the fracture
parameters that define the normal stress-strain crack constitutive relationship are obtained.
Since this type of test is much simpler and faster to execute, it becomes an advantageous
alternative to the direct tensile tests recommended to evaluate the fracture mode I
parameters of cement based materials. The adopted inverse analysis strategy is presented

and discussed in section 3.7.1.

To simulate the out-of-plane strain gradient that occurs in punching tests, a softening

diagram is proposed to model, after crack initiation, the out-of-plane shear components.

The formulation of linear and nonlinear support conditions, such as surface, line and point
springs, is presented, and a special attention is dedicated to unilateral support conditions.
With this approach, the loss of contact between the structure and the supporting system can
be simulated, e.g., for the case of a slab supported on ground. A parametric study based on
a steel fiber reinforced concrete slab supported on soil, using a nonlinear model for the

simulation of the slab support conditions, is also presented.
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The improvements made in the internal algorithms associated with the stress update and

with the critical crack status changes are presented and their advantages are discussed.

The adequacy and accuracy of the proposed model is appraised using the results obtained
in a punching test of a panel prototype built with steel fiber reinforced self-compacting
concrete (SFRSCC) and in a punching test of a reinforced concrete flat slab that also
included steel fibers in the concrete matrix. The proposed numerical strategy allows for an
accurate simulation of the load-deformational process of the experimentally SFRSCC
tested panel, which exhibited a brittle punching failure. Several numerical simulations are
presented and discussed. Mesh refinement, data obtained with inverse analysis to define
the trilinear diagram and a softening out-of-plane shear diagram are alternatives whose
influence on the prediction of the experimental panel response is investigated. The
load-deformational process of the experimentally tested reinforced concrete flat slab was

also well predicted.

The use of softening laws to simulate the mode I crack opening and the out-of-plane shear
components is crucial in order to obtain accurate numerical simulations The numerical
simulations carried out with the proposed model and its comparison with the results of the
experimental tests used in this work lead to the conclusion that the behavior of laminar
structures failing in punching can be numerically predicted by a FEM-based
Reissner-Mindlin shell approach as long as a crack constitutive model that includes a

softening diagram for modeling both out-of-plane shear constitutive laws is used.






Chapter 4

Modeling of the crack shear component

4.1 INTRODUCTION

In the previous chapter a model for concrete laminar structures based on the formulation of
the Reissner-Mindlin layered approach is described. Each layer is considered to be in a
state of plane stress. To simulate the nonlinear behavior of the intervening materials, as
occurs, for example, in the crack propagation through the thickness of a shell, a crack
constitutive model is proposed and explained in section 3.3. To improve the predictive
accuracy of the model for the simulation of the behavior of laminar structures failing in
punching, special attention is dedicated to the treatment of the out-of-plane shear

components by proposing a softening diagram after crack initiation (see section 3.4).

For the case of cracked concrete, stress and strain in-plane components are related by a
cracked concrete constitutive matrix, D, , defined by equation (3.24). For the simulation

of the mode I crack opening, two tensile-softening diagrams can be used, being the crack

mode II (in-plane shear) modulus calculated using the concept of shear retention factor, /3,

defined as a constant value or as a function of the crack normal strain, as shown in
equations (3.31) and (3.32). As observed, the adoption of a softening tensile-diagram to
simulate the crack opening propagation is a suitable strategy to accurately assess the
behavior of structures governed by flexural failure mode. However, an accurate simulation
of structures failing in shear or in flexural/shear is still a challenge in the computational

mechanics domain. To improve the predictive accuracy of the model for the simulation of
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the behavior of structures governed by this type of failure, two strategies to simulate the
crack shear component that appears in the formulation of the smeared crack constitutive

model described in section 3.3.2.2 are presented and discussed in this chapter.

These strategies are exposed for the in-plane components of a specific k layer of the
laminar structure, but they were also implemented in the already available smeared
multi-fixed crack model developed for plane stress, as well as in the three-dimensional
multi-fixed smeared crack model described in chapter 5. Therefore, for the exposition of
these strategies the subscript mb used in the formulation presented in section 3.3 is not

used.

The main purpose of the implementation of these two strategies is to improve the
simulation of the degradation of the shear stress transfer with the crack opening evolution.
One of the strategies is based on the adoption of a total approach for the crack shear
stress-shear strain relationship. The other strategy is based on the introduction of a
softening diagram for the relation between the crack shear stress-shear strain components.
Numerical simulations are performed to evidence the main differences provided by both

strategies when they are applied to shear-failure structures.

4.2 INCREMENTAL VS. TOTAL APPROACH FOR MODELING THE SHEAR
CRACK COMPONENT
When the material corresponding to a specific integration point (IP) is assumed to be in a

cracked state and is submitted to an incremental strain, Ag, the strain field in this IP is

modified and the stress state must be updated.

In the following sections two formulations are presented for the stress update. The first one
is an incremental approach for both, normal and shear crack components, and the second
one is an incremental approach for the normal crack component and a total approach for
the crack shear component. The formulations are restricted to one crack, but its

generalization to the case of multiple cracks at each IP is a straightforward process.
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The concept of the incremental and total approach for the crack shear stress-shear strain

relationship is represented in Figure 4.1.

cr
77
U *
4 cr 15
¢ ‘ cr
R4 D11,3
.I
4
'I
per —— Total approach
’ 1,2
; ---= Incremental approach

. —

%CV

Figure 4.1 — Example of crack shear stress-strain relation for the incremental and total approaches.

In the incremental approach the crack shear stress 7;” provided by the aggregate interlock

effect at a certain crack shear strain stage is obtained with

2_cr =7 cr +Az_cr _ Tcr +D[c[rA ytcr (41)

t t,prev t = Ytprev

where 7,7, is the crack shear stress in a previous state at the same IP, Az is the

increment of the crack shear stress, D, is the mode Il stiffness modulus, defined by

equation (3.31), and Ay,” is the incremental crack shear strain.

It can be observed in Figure 4.1 that the increment of the crack shear stress Az, is only

null when Dj =0, ie., for & >g,, (see equations (3.31) and (3.32)). Therefore, even
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when the crack width is increasing, the crack shear stress 7, can also increase up to an

asymptotic value, regardless the crack is no longer capable of transferring normal tensile
stresses. This can lead to the formation of a new crack, resulting in several cracks at an IP,
which introduces severe difficulties in accomplishing the constitutive laws of the cracks
formed at the IP, even when a rigorous strain-decomposition concept is adopted for this
purpose (Sena-Cruz 2004). The occurrence of quite high crack shear stresses can also
contribute to numerical predictions with higher stiffness and load carrying capacity than

the values registered experimentally, mainly in elements failing in shear.

In the total approach the crack shear stress 7, at a certain crack shear strain stage is

obtained with
7= D5 1 = Dy (et AV ) = D Ve + D A7 (4.2)

By observing Figure 4.1, it can be stated that for an increment of the crack shear strain

A}/CV

" a decrease in the crack shear stress 7,” can occur due to a significant decrease of D), .

Therefore, the aim of the total approach, proposed in the present work for modeling the

fracture mode 11, is to reproduce numerically a decrease of crack shear stress transfer 7"
with the increase of the crack shear strain y,", after a first phase where 7;" increases with

7" (Abaqus 2002), as is expected when crack opening &!" is also increasing.

4.2.1 Incremental approach
The relationship between the in-plane stress components in the coordinate system of the

finite element, o, and the crack stress components in the local crack coordinate system,

o, , is obtained with equation (3.49), rewritten at this phase for convenience.

o =T" & 4.3
p =L (
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where

o = [Gcr Tcr]T (4.4)
and

o=[e, o ] (4.5)

being o and 7" the crack normal and shear stresses in the crack, respectively, and T

is the matrix that transforms the stress components from the coordinate system of the finite

element to the local crack coordinate system (see Figure 3.5) for a specific crack in the IP.

Taking into account equation (3.18), equation (4.3) can be rewritten as follows

O et A =T (C,., +Ac) (4.6)
where the subscript prev indicates, in this case, the stress in a previous state in the I[P, Ao
the incremental stress vector for the in-plane components in the coordinate system of the
finite element defined by equation (3.14) and Ao, the incremental local crack stress

vector defined by

Ac) = [Aojr AT"]T 4.7)

t

being Ao, and Az the incremental crack normal and shear stress components,

respectively.
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Using the strain decomposition concept, Ag=Ag” +Ag” and knowing the relationship

between the incremental crack strain components in the coordinate system of the finite

element A¢” and the crack strain components in the local crack coordinate system Ag "

ae”=[17] At @43)
where

Ael = [Asr Ayt (4.9)
and

Ae =[Ae, Ag, Ap,] (4.10)

the incremental stress is obtained with

", 2 T .
Ac=D“Ag “= D" (Ag —[z”] A&’ ) (4.11)

being D defined by equation (3.20).

Including equation (4.11) in equation (4.6) and making some arrangements, this equation

can be written as

. . T
g Z‘prev_i_ Ag Zr _ZCI o _TCV DCOAg + TCI QCO [ZC}"] Aé;r — Q (4‘ 12)

— prev —_— — — —_

where Ao ;" depends on A¢ |, being obtained with this equation
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o | AT D 0 ||Ag)
Ag t = cr = cr cr (4' 1 3)
At 0 Dy |lAy,

t

In equation (4.13) D,” and D, represents, respectively, the constitutive components of

the crack opening mode I (normal) and crack sliding mode II (shear). The D;” can be
obtained with a diagram characterizing the crack fracture mode I propagation, while the
Dj/ can be determined from shear retention factor concept defined in the section 3.3.2.2 of

chapter 3.

As referred in section 3.5.1, to solve the system of nonlinear equations represented in
equation (4.12), where the unknowns are the components of the crack strain vector Ag ¥,
two algorithms for the stress update are available, being one based on the Newton-Raphson

method, and the other based on the fixed point iteration method. Both these methods are

described elsewhere (Sena-Cruz 2004).

4.2.2 Total approach
The total approach is applied only to the shear components. In this case equation (4.6) can

be written as

cr cr
|:O-n,prev + AG}Z } —
cr
T, ,
) ., _ o, Ao, (4.14)
cos” @ sin” @ 2sin @ cos @
= . . 2 ) 0-2 + AGZ
—sinfcos@ sinfcosf cos @—sin” @
T2 e Aty

where

Ao =D A&’ (4.15)
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and 7" is defined by (4.2).
Substituting equations (4.15) and (4.2) in the left term of the equation (4.14)
e |, {D;’As:'} _
Dy e L Dgare ],
5 ., ) o, A(yl (4 1 6)
cos” 0 sin” @ 2sin@cos
= . . 5 . 9 0, + A(72
—sinfcos@ sinfcosd cos” @—sin” O
T2 prev AT]Z
or in matrix form
ot ho =T (g,,, +Ac) (4.17)
and introducing equation (4.11) in (4.17) results
* cr Ccr co cr co cr T cr
Ot AT =T 0, ~T" D Ac+T" D" T7 | Agf =0 (4.18)
being
CV* cr cr cr r
g l,prev: ':Gn,prev D[I j/t,prev ]k (4 1 9)

the modified crack stress vector (only the shear component) from a previous state. The

components of Ao | are obtained with (4.13).

Similarly to the incremental approach, the crack strain vector Ag ;" can be obtained with

the Newton-Raphson or the fixed-point iteration methods.
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Equation (4.18) can be reduced to
f(ag7)=0 (4.20)

At iteration ¢ of the Newton-Raphson method the first derivative of f in order to the

incremental crack strain vector Ag; must be obtained, being defined by (see Appendix C)

of |Agy o T
(—C:)=Q"+Q +T“ D [Z”J (4.21)
OAg,
where
0 0
D =| oDy ¥ 0 (4.22)
OAe!"

being D, obtained with equation (3.31).

Equation (4.22) is similar to the one used in the incremental approach described in

(Sena-Cruz 2004), being the main difference the replacement of the incremental shear

crack strain, Ay;", with the total shear crack strain, y," .

4.2.3 Numerical simulations

As mentioned above, the total approach for the crack shear component is also included in
the smeared crack model previously implemented for plane stress analysis with the
incremental approach. In this section, to validate the exposed approaches, two numerical
simulations are made. The first one is a more theoretical numerical simulation, whose main
purpose is to show the differences between both approaches and the capabilities of the total

approach to simulate the degradation of the stresses at an IP. The second example is
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dedicated to the numerical simulation of reinforced concrete beams shear and flexurally

strengthened with composite materials.

4.2.3.1 Single element

To compare the capabilities of the total and incremental approaches two numerical
simulations are made in this section. One with an incremental approach for both crack
normal and shear components, and the other with an incremental approach for the crack

normal component and a total approach for the crack shear component.

A single element considered to be subjected to a plane stress state is used for both these
numerical simulations. Figure 4.2 represents the geometry, load and support conditions of
the element, and Table 4.1 includes the values of some parameters required by the model.
A four-noded plane stress finite element with one IP (Gauss point) is used, and a
tensile-softening trilinear diagram is adopted to simulate the mode I fracture propagation.
The Newton-Raphson method with displacement control at a specific variable is utilized in

this example.

xz , I/lz A
Point load
7 [
g
g g
g + .
e
N %
2
<
.8
<=
H
| Supports (u,= u,=0)
e —
\l]\ \l]\ .Xl R ul

25 mm

Figure 4.2 — Geometry, load and support conditions of the single element mesh.
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Table 4.1 - Model properties used in the single element simulation.

Poisson’s ratio v=02
Initial Young’s modulus E. =31000.0 N/mm®
Compressive strength £, =38.0N/mm?
Trilinear tension softening fiy =2.9N/mm’ ; G;' =0.075 N/mm ;
diagram £=02; 0,=07; £=075; a,=05
Parameter defining the mode |
fracture energy available to the p, =2
new crack
Shear retention factor Exponential ( p, =2)
Crack bandwidth Square root of the area of the element
Threshold angle a, =30°
300 A
T T T T \\
250 A e - \\
\
200 A \
= N
T 150 ~
S}
~
100 4
— —Incremental approach
50 4 — Total approach
0 T T T T T T T T T T T T T T T T T T T 1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Horizontal displacement [mm]

Figure 4.3 — Load-horizontal displacement relationship.

The load-horizontal displacement relationship is represented in Figure 4.3, using the total
and the incremental approach for the crack shear component. Until a load of 216 N, a
linear-elastic behavior is observed for both simulations. At this level cracking is initiated in
the concrete and the curves follow different paths, mainly after 0.02 mm, which is where

the incremental response presents a hardening behavior leading to a higher load carrying
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capacity, maintaining a high residual load in comparison with the total curve that presents

a softening behavior up to the complete loss of load carrying capacity.

This behavior can be justified by the analysis of the stress-strain relationship for fracture
mode I and mode II obtained in the IP for each approach, and represented in Figure 4.4 and

Figure 4.5.

Figure 4.4 represents the crack normal stress-strain relation in the crack coordinate system
(CrCS), and Figure 4.5 the crack shear stress-strain relation in the same CrCS. As
expected, both approaches provide similar crack normal stress strain diagram, because the
total approach is only applied to the crack shear component. In fact, Figure 4.5 shows that
quite different crack shear stress-strain diagrams can be obtained for both approaches. In
the total approach the crack shear stress decreases with the crack opening process, while in

the incremental approach the crack shear stress increases up to an asymptotic value.

— —Incremental approach
— Total approach

Crack normal stress - CrCS [N/mm?]

0 0.0005 0.001 0.0015 0.002 0.0025
Crack normal strain - CrCS

Figure 4.4 — Crack normal stress-strain relationship in CrCS.
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— —Incremental approach
/ — Total approach

Crack shear stress - CrCS [N/mm?]
o

0 . . . . . .
0 0.0005 0.001 0.0015

Crack shear strain - CrCS

Figure 4.5 — Crack shear stress-strain relationship in CrCS.

The stresses and strains developed at the IP in the global coordinate system (GCS) are
represented in Figure 4.6 to Figure 4.8. It can be observed in all of these charts that the

behavior of each approach is similar up to crack initiation and, then, they gradually follow

a different path, leading, for the cases of the x, normal stress and x,x, shear stress, to a

very different post-peak residual value (see Figure 4.7 and Figure 4.8). This difference can
be justified by the fact that in the incremental approach the crack shear stress has an
asymptotic residual value, as shown in Figure 4.5. Due to its contribution to the stresses in
the global coordinate system, higher stress components are obtained using the incremental

approach.

A numerical simulation of the single element with four integration points was also

performed, and similar conclusions were obtained.
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Figure 4.6 — X, normal stress-strain relationship in GCS.

-8E-5 0E+0 8E-5 2E-4 2E-4 3E-4 4E-4

L 1 0 1 1 1 1 1 1 L L 1 J
£
£ /
n { 2 1
O
O /
% f’ 3 4 — —Incremental approach
‘E | — Total approach
By ]
5N\ 4
RN e
= ~ -3~

5 4

X, normal strain - GCS

Figure 4.7 — X, normal stress-strain relationship in GCS.
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Figure 4.8 — X, X, shear stress-strain relationship in GCS.

4.2.3.2 Strengthening of RC beams

The flexural strengthening of reinforced concrete (RC) beams with small concrete cover
thickness by using the Near Surface Mounted (NSM) technique demands to cut the bottom
arm of the still stirrups for the installation of the Carbon Fiber Reinforced Polymer (CFRP)
laminates. To assess the influence of this intervention on the load carrying capacity of the
beams, an experimental research program was carried out. The details of the experimental
program composed of three series of beams of distinct cross section depth can be found

elsewhere (Costa and Barros 2010).

The NSM technique for the flexural strengthening of RC beams or slabs consists of
installing CFRP laminates into thin slits open onto the concrete cover of the RC elements
to strengthen bonded with an epoxy adhesive to the surrounding concrete. The efficiency
of this technique can be found elsewhere (Téljsten et al. 2003, El-Hacha and Rizkalla
2004, Sena-Cruz 2004, Barros and Fortes 2005, Bonaldo et al. 2008, Barros et al. 2008). In
a tentative of avoiding the occurrence of shear failure in the NSM-flexurally strengthened
beams, wet layup CFRP strips of sheet of U configuration were also applied according to
the Externally Bonded Reinforcement (EBR) technique (ACI Committee 440, 2007). The
U shape CFRP strips were placed between the existing steel stirrups (see Figure 4.9).



126

Chapter 4

l |/|—Existing steel stirrups

1=

200 s, 5,100 L 200

Nt

Figure 4.9 — Localization of the NSM CFRP laminates and of the EBR strip of wet layup CFRP sheet

[dimensions in mm] (Barros et al. 2011).

In the numerical simulation of these beams, the total and incremental approaches for the

crack shear component were used. In this section, only the numerical results of the beams

of the first series are presented. The complete numerical research can be found in Barros et

al. (2011).

The designations of the beams used in the experimental research are the following:

VRI1 - reinforced concrete reference beam;

VE1 - VR1 beam with the bottom arm of the steel stirrups cut;

VL1 - VE1 beam flexurally strengthened with NSM CFRP laminates;

VLMI - VLI beam shear strengthened with EBR strips of wet layup CFRP sheets

of U configuration.

The geometry, support and loading conditions of the beams are represented in Figure 4.10.

For the case of the beams of series 1: L, =550mm ; L, =950mm; b =200mm ; h=250mm

longitudinal steel bars at bottom surface A = 2¢10+1¢6(185mm2) and longitudinal steel

bars at top surface A_ = 2¢10(157mm2) :

20 4 Control LVDT

20
4l

Figure 4.10 — Beam geometry, support and loading conditions [dimensions in mm] (Barros et al. 2011).
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Under the framework of the finite element analysis, the tested beams are considered as a
plane stress problem. Therefore, the beams are modeled with a mesh of 8-noded
serendipity plane stress finite elements. A Gauss-Legendre integration scheme with 2x2 [P
is used in all the concrete elements. The steel bars, the NSM laminates and the EBR CFRP
strips are modeled with 2-noded perfectly bonded embedded cables (one degree-of-

freedom per node).

For modeling the behavior of the steel bars, the stress-strain relationship available in the
FEMIX computer code is used (Sena-Cruz 2004). The curve (under compressive or tensile
loading) is defined by the points PT1 = (gsy,asy) , PT2 = (ESh,O'Sh) and PT3 = (Esu, Su)
and a parameter p that defines the shape of the last branch of the curve. Unloading and
reloading linear branches with slope £, =0, / &,, are assumed in the present approach. For

modeling both the NSM laminates and EBR strips of sheet, a linear elastic stress-strain

relationship is adopted.

The values of the parameters of the constitutive model used in the numerical simulations

are indicated in Table 4.2, Table 4.3 and Table 4.4. Using the average compressive

strength f,, determined experimentally, and the equations proposed by CEB-FIP (1993),

the concrete tensile strength £, and the fracture energy G} are obtained.

As suggested by Stevens (1987), the tensile yield stress and the stress values corresponding

to strains higher than the tensile yield strain of the steel bars are reduced by the term

Ao, =75f,/4,, being f, the concrete tensile strength in MPa, and ¢, the diameter of

the steel bar in mm. This reduction is to take into account that the stress in the steel
reinforcement at the concrete crack plane is higher than the average stress determined in
the IP of the corresponding embedded cable element. This stress is obtained from the

displacements of the “mother element” of the embedded cable.
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Table 4.2 - Properties of CFRP laminates and strips Table 4.3 - Steel properties.
of sheets. ¢S=6 o ¢S:10 -

La(Iillzlilte ¢ ZSélllg ° Jom (MP2) 71 548
fiu (MPa) 2783 3257 Jsum (MPa) 662 648
Ey(GPa) 157 237 &y (%0) 3.1 3.0
& (%o) 17.8 13.77 oy (MPa) 515 514
ty(mm) 1.42 0.117 &sn (%o0) 25 25
g (MPa) 579 576
Esu (%0) 50 50
o5, (MPa) 643 637

p 1 1

Table 4.4 - Model properties used for the beams simulation.

Poisson’s ratio v=0.2

Initial Young’s modulus E. =28900.0 N/mm”

Compressive strength f. =310 N/ mm®

Trilinear tension softening Ju=15 N/ mm” ; G/{ =0.0665 N/mm ;
diagram E=01;,=05; £=03; a,=02
Parameter defining the mode I

fracture energy available to the p, =1

new crack

Shear retention factor Cubic (p, =3)

Crack bandwidth Square root of the area of the IP
Threshold angle a, =30°

Maximum number of cracks per

each IP 2

In Figure 4.11 the experimental relationship between the load and the deflection at the

loaded section for the tested beams and the numerical ones obtained with the incremental
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and the total approaches are compared. The dash-dot horizontal line corresponds to the

maximum experimental load of each beam.

Figure 4.12 represents, for each beam and for the numerical simulations involving both
approaches, the crack patterns at the end of the analysis, i.e., for the last converged load

increment. The cracks are represented by quadrilateral 4-noded finite elements centered at

the IP, being drawn with a width that is proportional to the crack normal strain, &;" . More

details about the status of the cracks are supplied in the caption of the Figure 4.12.
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Figure 4.11 — Load-deflection at the loaded section for the beams of series 1 (Barros et al. 2011).

From the analysis of Figure 4.11 and Figure 4.12, it can be concluded that both numerical

approaches simulated accurately the deformational response of the VR1 and VEI beams,
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and predicted with good accuracy the deformational response of the VL1 and VLMI
beams. However, comparing the crack pattern of VL1 beam represented in Figure 4.13
with the crack patterns obtained numerically and represented in Figure 4.12, it can be
concluded that only the total approach captured with high precision the localization and

profile of the shear failure crack.

The longitudinal steel bars of the VL1 and VLMI1 beams have already yielded at the
moment of the shear failure. This is well predicted by the numerical simulations using the
total and incremental approaches, since vertical completely open cracks are observed near

the loaded section (see Figure 4.12).
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Figure 4.12 — Crack patterns of the beams of series 1 (in pink color: crack completely open (& > &, ); in

nu

red color: crack in the opening process; in cyan color: crack in the reopening process) (Barros et al. 2011).
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Figure 4.13 — Crack patterns at the end of the tested VL1 beam (Barros et al. 2011).

4.3 CRACK SHEAR SOFTENING DIAGRAM

The use of softening diagrams to reproduce the fracture mode I process is common in
smeared and discrete crack models, but the use of softening diagrams to model the shear
stress transfer across the crack is less usual. To simulate the fracture mode II process a
shear retention factor is currently used (Rots and de Borst 1987). According to this last
approach, the shear stress transfer between the crack planes decreases with the increase of
the normal crack strain (see equation (3.32)). In most structures assumed to be in a state of
plane stress, this strategy leads to simulations with reasonable accuracy. Exceptions occur
in structures that fail by the formation of a critical shear crack. For these cases the
simulation of the structural softening with high accuracy requires the adoption of a

softening crack shear stress vs. crack shear strain relationship.

In this section a softening diagram to simulate the crack shear stress-strain behavior is
described. This constitutive model is implemented in FEMIX, and can be used in the
simulation of plane stress structures, Reissner-Mindlin shells and 3D structures discretized
with solid elements. Its capabilities are assessed by performing a numerical simulation of

an experimental test available in the literature (Arrea and Ingraffea 1982).

4.3.1 Description of the diagram

The proposed crack shear diagram is represented in Figure 4.14. The shear softening
diagram starts at the origin because, according to the crack initiation criterion, when a
crack initiates the crack shear stress is null. As a consequence of the rotation of the

directions of principal stresses, shear stresses can develop across the surfaces of the crack
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(Rots and de Borst 1987). The crack shear stress increases linearly until the crack shear
strength is reached (first branch of the shear crack diagram), followed by a decrease in the

shear residual strength (softening branch).

el
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Figure 4.14 — Diagram to simulate the relationship between the crack shear stress and crack shear strain

component and possible shear crack statuses.

The diagram represented in Figure 4.14 (based on Rots and de Borst 1987) is defined by
the expressions shown in equation (4.23). The positive part of the diagram is explained

here, being the treatment of the negative part straightforward.

D,y 0<y” < yf’p
ﬂ@ﬁ=fﬁ7g%7gw“ﬁﬂ e, <<y (4.23)
0 7> Vi

The initial shear fracture modulus, D},

is defined by

cr ﬂ
pi=-—L_¢
n =15 (4.24)
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where G, is the concrete elastic shear modulus and £ is the shear retention factor, defined

as a constant value in the range ]0,1[ , in this case.

The peak crack shear strain, y,’,, is obtained using the crack shear strength (from the input

data), 7;,, and the crack shear modulus is obtained with equation (4.24)

cr

Viv = D (4.25)
1,1

The ultimate crack shear strain, 7, , depends on the crack shear strength, 7, , on the shear

fracture energy (mode II fracture energy for the case of in-plane shear), G, , and on the
crack bandwidth, /,, as follows
o 2G,,
Viw= "o 1 (4.206)
7., L

In the present approach it is assumed that the crack bandwidth, used to assure that the
results are independent of the mesh refinement, is the same for both fracture mode I and

mode II processes.

When the softening constitutive law represented in Figure 4.14 is used to evaluate the
fracture mode II stiffness modulus D, of equation (3.26), its value depends on the

branches defining the diagram. For this reason five shear crack statuses are proposed and

their meaning is explained in the next section.

The crack mode II stiffness modulus of the first linear branch of the diagram is defined by

equation (4.24), the second linear (softening) branch is defined by



134 Chapter 4

cr

) T
Dy =Dy =~——"— (4.27)
j/t,u _}/t,p

and the crack shear modulus of the unloading and reloading branches is obtained from

cr

cr cr z-t,max
Dy =D, =—— (4.28)

cr
yt,max

being y, ... and 7, . the maximum crack shear strain already attained and the

t,max
corresponding crack shear stress determined from the softening linear branch. Both

components are stored to define the unloading/reloading branch (see Figure 4.14).

To increase the generality of the simulation of the post-peak crack shear stress, two
alternative crack shear stress-strain diagrams are proposed, being their shapes represented
in Figure 4.15 and Figure 4.16. For the case of Figure 4.15, the post-peak phase is

simulated with a trilinear diagram, while in Figure 4.16 this branch is exponential.

The crack shear softening diagram of Figure 4.15 is defined by the expressions shown in

equation (4.29). Similarly to equation (4.23), only the positive part of the diagram is

treated in
cr cr cr
Dy, 0<y" <7,
cr TZ; - Tfr cr cr cr cr < cr
Tt,p_ or V4 _7t,p yt,p<7/t =N
}/1 _}/t,p
cr Ci
cr cr _ cr _ Tl _T2r cr _ cr cr < cr < cr
Tt 71 - 2-1 7cr_7/cr }/z 7/1 7/1 7/1 —72 (429)
2 1
cr
cr _ 2 cr _ cr cr < cr < cr
Tz cr cor 7; 7/2 }/2 7/1 _j/t,u
yt,u _}/2
cr cr
0 Vi 27V

being
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T =¢1, (4.30a)
T, =6, 7T, (4.30b)
v =d, (v -y) (4.30¢)
s =d, (v -7) (4.30d)

,z-t cr A

constant shear
retention factor

cr /)
Tt,p """"""

cr
- yt u

Figure 4.15 — Diagram to simulate the relationship between the crack shear stress and crack shear strain

component with post-peak trilinear branches.

The ultimate crack shear strain, y;, is defined as a function of the parameters ¢, and d,,
the peak crack shear strain, y;’,, the crack shear strength, z,’, the mode II (for in-plane

shear) fracture energy, G/f[ =G

s> and the crack bandwidth, 7, , as follows

4.31)

cr
d +cd,—c,d +c, T, IA

cr __ ,cr
yt,u _yt,p +

being

cr cr
_ Tt,p }/t,p l

= 4.32
faux Zb 2 b ( )



136 Chapter 4
and
¢ =1/ (4.33a)
¢, =15/t (4.33b)
d, =y (v -7 (4.33¢)
d, =75 (v -7) (4.33d)

The crack mode II stiffness modulus of the first linear branch of the diagram is defined by

equation (4.24), while for the post peak branches it is obtained from the following

equations

DCV*

1,2

D”**

1,2

o
D

1,2

(l—cl)(d1 +cd, —c,d, +cz) Lf:

— =~ o (4.34a)
1 faux
- (¢, —¢,)(d,+edy—cyd, +¢,) L, f? (4.34b)
2d-d) G |
+edy,—cd +c,) I f2
:_02 (61 201(12_dc2) 1 cz) Gbecz (4.34b)
2 faux

For the unloading and reloading branches, the crack mode Il stiffness modulus is

determined by equation (4.28).

The exponential branch of the crack shear softening diagram represented in Figure 4.16 is

based on the Cornelissen diagram used in the definition of the crack opening mode I.

Equation (4.35) gives expressions of the positive part of the proposed softening diagram
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“07)-
Dy 0<y" <75 (4.35)
=47 [(1+(CIB)3)exp(—czB)—B(l+c13)exp(—c2 )J e <y <y
0 75>V
being
gt " (4.36)

cr cr
?/t,u - ?/t,p

and ¢; = 3.0 ; ¢,=6.93.

constant shear
cr retention factor
(27—
cr
A G,
cr cr DU 3 l
_7/ _7/ Ll ;Dcr b
Lu Lp 34
| cr Ci ]
; Vo Vw7
| cr
oo -Tt,p

Figure 4.16 — Diagram to simulate the relationship between the crack shear stress and crack shear strain

component with post-peak exponential branch.

The ultimate crack shear strain, y,, , of the crack shear softening diagram represented in

Figure 4.16 is defined by
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Vg

cr _ ,cr +1Gf,aux (4 37)
yt,u ]/t,p k Z'IC’; Zb .

where the parameter & is defined by equation (3.30) and G? by equation (4.32).

S raux

The crack mode II stiffness modulus of the first linear branch of the diagram is defined by
equation (4.24), for the unloading and reloading branches by equation (4.28) and for the

exponential (softening) branch by

2
cr cr
- - c
D" =77 | 3| ¢ Lt Lexp| —c Ve |y
1,2 t,p 1 cr cr 2 er
7/t,u 7/t,u ]/t,u

3
cr cr 3
+exp[—c2 7;][— % 1+(c1 7;] —1+Cf1 exp(—c,)

cr
t,u yl,u

(4.38)

being y,’, obtained with equation (4.37).

4.3.2 Crack shear status

As a consequence of the formation of other cracks in the neighborhood of existing cracks,
these existing cracks can close or reopen. The model must take into account this change of
crack status. For the opening mode I the model takes this into account (Sena-Cruz 2004)

and for the crack shear component a similar approach is used.

The shear crack status is shown in Figure 4.14 and its definition takes into account the

following assumptions:

o Stiffening status, if the crack shear strain is less than the crack shear strain at peak

crack shear stress, 7,’,, obtained with equation (4.25) and assuming a constant

shear retention factor for the evaluation of the fracture mode II stiffness modulus;
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e Softening status, after the crack shear strain has reached 7,’,. A decrease in the

crack shear stress is observed with the increase of the crack shear strain;

e Unloading status, when a shear softening crack experiences a decrease of crack
shear strain. In this case a secant approach is followed;

e Reloading status, when a crack with an unloading status experiences an increase of
crack shear strain. The same branch of the unloading status is followed;

e Free-sliding status, when the crack shear strain is greater than the ultimate crack

shear strain.

These crack shear statuses are stored to be used in the subsequent steps of the nonlinear
analysis. With this procedure, at each instant the shear softening diagram is well defined.
For example, Figure 4.17 to Figure 4.22 illustrate the possible paths that can be followed at
each increment of crack shear strain, and, consequently, the complexity of the associated

crack status changes.

z_crA z_crA
cr cr
T Tl -
N AN
N / N
A > N A / > N
N N
- _ascr S N
_}/uu 7/]7 D _ H N —
~ ' cr cr cr ~ cr cr
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N Lo N
N ' / N
N L
Y
, cr
N SR -7,
cr
a) Ay >0 b) Ay? <0

Figure 4.17 — Increment of the crack shear strain Ay : possible paths when the starting point is positive and

in Stiffening shear crack status (point A).
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Figure 4.18 — Increment of the crack shear strain Ay

: possible paths when the starting point is negative and

in Stiffening shear crack status (point A).
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Figure 4.19 — Increment of the crack shear strain Ay

: possible paths when the starting point is positive and

in Softening shear crack status (point A).
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Figure 4.20 — Increment of the crack shear strain Ay : possible paths when the starting point is negative and

in Softening shear crack status (point A).
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Figure 4.21 — Increment of the crack shear strain Ay : possible paths when the starting point is positive and

in Unloading or Reloading shear crack status (point A).
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Figure 4.22 — Increment of the crack shear strain Ay : possible paths when the starting point is negative and

in Unloading or Reloading shear crack status (point A).

In Free-sliding status the crack mode II stiffness modulus, D, =D/, is null. To avoid

numerical instabilities in the calculation of the stiffness matrix and in the calculation of the
internal forces, when the crack shear status is Free-sliding, a residual value is assigned to

this term. This topic is described in chapter 5.

The control of the crack evolution is made by the opening mode I, whose behavior is
defined by one of the tensile-softening diagrams discussed in section 3.3.2.2. When a
softening diagram is also used for the crack shear component some assumption must be
made since there is no coupling between the two softening diagrams used for the normal
component and for the shear component. Therefore, the crack can be in a Softening status

for the opening mode I and in an Unloading status for the mode II.

n,u

The following problem occurs in some analyses: the crack is Fully Open (g;" >e” ) and
the crack shear component, defined by one of the diagrams presented in the previous
sections, is in Stiffening or in Softening status. It is obvious that if the crack is Fully Open

the shear stress transfer between the crack planes is null. Therefore, the solution adopted is

to assign a Free-sliding status to the shear crack status of this crack.

Another problem that sometimes occurs consists on the reopening of a closed crack. At the

moment of closure, the crack adopts a linear elastic behavior in compression. If this closed
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crack reopens at a subsequent step, i.e., the normal stress of the crack becomes tensile, the
opening mode I behavior follows the unloading/reloading branch of the tensile-softening
diagram (see for example Figure 3.6) and the data relative to strain and stress is updated. A
more complex task is the update of the crack shear strain and stress when a softening
diagram is used, because the crack shear stress at crack closure can be very different from
the crack shear stress when the crack reopens. This is similar to the treatment of the
rotation of the principal axes when the status of the crack is Closed. This problem was
reported by Rots and de Borst (1987) and the proposed solution was to impose that the

shear crack component enters immediately in a softening phase. For this purpose, the 7,

and y,’, components (see Figure 4.14) that define the new shear softening diagram is the

crack shear stress upon reopen and the stored crack shear strain at closure of the crack,
respectively. The ultimate crack shear strain of the new diagram, y,, is updated in order
to maintain the same mode II fracture energy. This procedure was implemented in a first
phase, but it could be observed that in some cases the value of the shear crack stress was
very low upon reopen of the crack, implying that the new softening diagram could have an
abnormal high ultimate crack shear strain because of the condition of preserving the
mode II fracture energy. Therefore, a new approach is adopted and the corresponding
assumptions are commented in Table 4.5 and illustrated in Figure 4.23. This approach
takes into account the shear crack status before the closure of the crack, being the diagram

updated in some cases, and maintained in others.

Figure 4.23 represents the different starting points in the crack shear softening diagram
when the mode I crack status changes from Closed to Reopening. The value of ;" is the
current crack shear stress at crack reopen, and y;" is the corresponding calculated crack
shear strain. The symbol y;”, represents the crack shear strain before the closure of the

crack. If the crack shear stress, z;", is negative the starting points are located on the

negative branch of the crack shear softening diagram (see Figure 4.14). In accordance with
Figure 4.23, Table 4.5 represents the conditions for the update of the shear crack status

when a crack reopens.
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Figure 4.23 — Different starting points in the crack shear softening diagram when the mode I crack status

changes from Closed to Reopening.
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Table 4.5 — Update of shear crack status when a crack reopens
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Conditions } shear crack p .
before crack Point when crack streneth crack shear strain
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4.3.3 Numerical simulations

To validate the implemented softening diagram of the shear crack component three
numerical simulations are performed. The first one is dedicated to the simulation of a
mixed-mode test (Arrea and Ingraffea 1982), while the second deals with the simulation of
a reinforced concrete T cross section beam that has failed in shear (Dias and Barros 2010).
The last example is dedicated to the numerical simulation of a reinforced concrete beam

strengthened in shear with embedded through-section bars (Dalfré et al. 2011).

4.3.3.1 Mixed-mode test

In this section the experimental test from Arrea and Ingraffea (1982) is numerically
simulated. This test is a benchmark for the validation of models taking into account the
flexural and shear failure modes, being this phenomenon usually designated mixed-mode
failure. Many researchers simulated this test numerically, being the results available
elsewhere (Rots et al. 1985, de Borst 1986, Rots and de Borst 1987, Rots 1988, Ozbolt and
Reinhardt 2000, Jirdsek and Zimmermann 2001, Most and Bucher 2006).

Some material parameters used in the numerical simulations coincide with those used by
Rots and de Borst 1987. The geometry, mesh, support and load conditions of the tested
four point beam are illustrated in Figure 4.24. The beam is modeled with 8-noded plane
stress finite elements. The elements outside the refined zone are assumed to exhibit a
linear-elastic behavior. The multi-fixed smeared crack model is adopted for the elements of
the refined zone thus taking into account the nonlinear behavior due to crack initiation and
propagation. The Gauss-Legendre integration scheme with 3x3 IP is used in all the

elements.

Three numerical simulations are performed, varying in the treatment of the crack shear
component. The mode I fracture behavior is simulated with a bi-linear softening diagram,
adapted from the trilinear diagram presented in chapter 3. The parameters defining this
diagram are listed in Table 4.6. One of the numerical simulations considers a constant
shear retention factor to obtain the mode II stiffness modulus, while the others use the

softening diagram of Figure 4.14 to determine the crack shear modulus. The difference
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between these last numerical simulations resides on the value used for the mode II fracture

energy. The parameters defining these diagrams are presented in Table 4.6.
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Figure 4.24 — Geometry, mesh, load and support conditions of the tested four point beam (all dimensions are

in mm) [based on Rots and de Borst 1987].

Table 4.6 - Model properties used in the four point beam simulations.

Poisson’s ratio

v=0.18

Initial Young’s modulus

E. =24800.0 N/mm?

Compressive strength

f. =48.0 N/mm”

Trilinear tension softening
diagram

f,, =2.8N/mm’ ; G} =0.075N/mm;
£=0.15; ¢,=03; £ =04; a,=0.2

Shear crack softening diagram

£=02; 77 =0.5N/mm’;
G}' =0.075 N/mm or G}[ =0.01 N/mm

Parameter defining the mode I

each IP

fracture energy available to the p, =2
new crack

Shear retention factor 0.2
Crack bandwidth 20.3 mm
Threshold angle a, =60°
Maximum number of cracks in )
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The numerical simulations are performed using the Newton-Raphson method, controlled
by the relative displacement between two specific variables (see section 2.4.4). The
controlling variables consist on a pair of vertical displacements, located at each tip of the
notch. This type of control is named Crack Mouth Sliding Displacement or CMSD. With

this procedure an eventual snap-back can be captured (de Borst 1986, Ventura-Gouveia et
al. 2006).

Figure 4.25 shows the relation between the load at point B and the CMSD. The
experimental pattern was obtained by Rots and de Borst 1987. It is observed that the three
numerical simulations have similar behavior up to the peak load, and afterwards different
paths are followed. With the constant shear factor the residual stress is close to the peak
stress and practically no softening is predicted. With the introduction of the shear crack
softening diagram a softening behavior is observed and a good agreement with the
experimental results can be obtained, especially with the simulation that considers the
mode II fracture energy equal to 0.075 N/mm. The abrupt load decay, from 47.7 kN to
9 kN, in the simulation with mode II fracture energy equal to 0.01 N/mm can be justified

by the deformed mesh observed before and after this occurrence, as represented in Figure
4.26.

Experimental results
—— shear retention - § = 0.2

. n_
160 —0— Softening - Gf =0.075N/mm
- —— Softening - GfH =0.010N/mm
140
é 120 i
2 100
R 3
2 80
=] L
T 60
S L
~
40
20

0 1 1
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
CMSD [mm]

Figure 4.25 — Load at point B — crack mouth sliding displacement (CMSD) relationship.
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(a) (b)

Figure 4.26 — Numerical simulation with softening crack shear diagram considering Gf’ =0.01 N/mm :

deformed mesh (a) before and (b) after the abrupt load decay observed in Figure 4.25. The dashed line

represents the undeformed mesh.

The crack pattern observed immediately before and immediately after the abrupt load

decay is shown in Figure 4.27.
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Figure 4.27 — Numerical simulation with softening crack shear diagram considering G;’ =0.01 N/mm : crack

pattern (a) before and (b) after the abrupt load decay observed in Figure 4.25. In dark quadrilateral, crack

fully open, and the others in opening or closing process.

From the analysis of the two deformed meshes and respective crack pattern, it can be stated
that the model is capable to reproduce numerically the decrease of the crack shear stress
transfer during the crack opening process, and is able to evaluate the residual load carrying
capacity. This residual load capacity is in most cases due to the aggregate interlock

occurring at the crack.

In Figure 4.28 the load at point B is plotted against the crack mouth opening displacement

(CMOD). Conclusions identical to the aforementioned ones can be extracted in terms of
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using a softening diagram or the shear retention factor to simulate the degradation of the

shear stress transfer during the crack opening process. An interesting phenomenon,

captured numerically for the curve with G;j =0.01 N/mm, is the snap-back of the CMOD

at the sudden load decay. The explanation for this behavior can be found by examining the
deformed meshes in Figure 4.26. Due to the rotation of the left side of the beam about the
support point, the CMOD decreases at this instant and then progressively reopens. This

reopening process in a residual phase is numerically reproduced and shown in Figure 4.28.

—2~— shear retention - § = 0.2
—O— Softening - G/{I =0.075N/mm

160 —D—Soﬁening-q;’:o.mowmm
140 -
120 [
100 |-

80

Load at point B [kN]

-0.05 0.00 0.05 0.10 0.15 0.20 0.25
CMOD [mm]

Figure 4.28 — Load at point B — crack mouth opening displacement (CMOD) relationship.

As observed by de Borst (1986) and Rots and de Borst (1987), a snap-back occurs after the
peak load and is only achieved when the CMSD control is used in the nonlinear analysis.
This snap-back is more pronounced when a crack softening diagram is used (see Figure
4.29). An interesting snap-back is observed after the abrupt load decay that occurs when

the softening G, =0.01 N/mm curve is used.
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Figure 4.29 — Load - displacement at point B relationship.

4.3.3.2 T cross section reinforced concrete beam failing in shear

An experimental program was carried out by Dias and Barros (2010) with reinforced
concrete (RC) T cross section beams in the scope of a research project for the assessment
of the effectiveness of the near surface mounted (NSM) technique by using carbon fiber
reinforced polymer (CFRP) laminates for the shear strengthening of RC T beams. Several
RC T beams with different percentage of NSM CFRP laminates were tested. The

geometry, support and loading conditions of the RC T reference beams are represented in

Figure 4.30.
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— 3 lzvnyers of U strips ofvwe_t lé}f-up‘ CFERP 150" 2032+1016
160 sheet with the fibers direction at 0 - "
— ' — 22 22
100 Li=900 L,=1350 100

(lateral concrete cover =22 mm)
Figure 4.30 — Reinforced concrete T reference beam: geometry, support, steel reinforcement scheme and

loading conditions [dimensions in mm] (Dias and Barros 2010).
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The RC tested beam named 2S-R (see Figure 4.31) is numerically simulated, which

corresponds to the control T beam of the series with two steel stirrups in the L. span, i.e.,

without NSM CFRP laminates. To prevent concrete spalling near the most loaded support,
a confinement system based on the use of wet layup CFRP strips of sheets of U

configuration is applied as represented in Figure 4.30.

i f ||
| |
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900 1350
—— bbb e e
100 3x300 18x75 100

Figure 4.31 — 2S-R reinforced concrete T cross section beam [dimensions in mm] (Dias and Barros 2010).

For the finite element analysis, the beam is considered as a plane stress problem.
Therefore, the beam is modeled with a mesh of 4-noded serendipity plane stress finite
elements (see Figure 4.32). A Gauss-Legendre integration scheme with 2x2 IP is used in
all concrete elements and CFRP strips of sheet elements. The steel bars are modeled with
2-noded perfectly bonded embedded cables (one degree-of-freedom per node). The
Newton-Raphson method with displacement control at a specific variable is used in the

nonlinear analysis (see section 2.4.3 of chapter 2).

steel stirrups

100

300

L N NN
NN N AR
100 900 1350 100

Figure 4.32 — Finite element mesh [dimensions in mm)].
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For modeling the behavior of the steel bars, the stress-strain relationship available in the
FEMIX computer code is used (Sena-Cruz 2004). A linear elastic behavior is adopted for
modeling CFRP strips of sheets.

The values of the parameters of the constitutive model used in the numerical simulations

are indicated in Table 4.7, Table 4.8 and Table 4.9. Using the average compressive

strength, f,, determined experimentally, the concrete tensile strength, f, and the mode I

fracture energy, GJ{ , were initially obtained from equations proposed by CEB-FIP (1993),

and then were slightly adjusted in order to fit with high accuracy the load at crack
initiation. The values for characterizing the softening diagram of Figure 4.14 were obtained
by back-fitting analysis in order to approximate as much as possible the experimental
curve in the post-cracking phase. It can be observed that the mode II fracture energy value

is similar to the value assigned to the mode I fracture energy.

Table 4.7 - Properties of CFRP strips of sheets.

C Sheet
240
Ju (MPa) 2863
E;(GPa) 218
& (%0) 133
tr(mm) 0.176

Table 4.8 - Steel properties.

=16 mm
¢s=6 mm | ¢ps=12 mm $223§ m
£,y (%0) 3.0 2.8 3.0
o, (MPa) 515 420 570
£ (%0) 25 25 25
6+ (MPa) 542 453 740
Exu (%0) 50 50 50
6., (MPa) 594 591 850
p 1 1 1
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Table 4.9 - Model properties used for the T beam simulation.

Poisson’s ratio v=0.15
Initial Young’s modulus E. =33271.0 N/mm’
Compressive strength £, =39.7 N/mm’

f.,=2.2N/mm’; G} =0.086 N/mm ;

Trilinear tension softening diagram
£ =0.005; ,=04; £ =02; ,=03

Shear crack softening diagram £=0.5; ¢ =1.0N/mm’; G} =0.08 N/mm

Parameter defining the mode I fracture

energy available to the new crack P =3

Shear retention factor 0.5

Crack bandwidth Square root of the area of the IP
Threshold angle a, =30°

Maximum number of cracks per each IP | 2

Two numerical simulations are performed that differ in the treatment of the crack shear

component. One uses the concept of shear retention factor with a constant value (£ =0.5)

and the other uses the shear crack softening diagram of Figure 4.14.

Figure 4.33 represents the experimental and numerical relationships between the load and
the deflection at the loaded section for the tested 2S-R beam. It can be observed that the
use of the concept of the shear retention factor conducts to an overestimation of the load
carrying capacity. The curve derived from this numerical analysis starts diverging
significantly from the experimental one for deflections larger than 1.5 mm. In the analysis
where a shear crack softening diagram was used, a quite accurate simulation was obtained
up to a load level that is 91.6 % of the ultimate load registered experimentally. In this case
the numerical simulation was interrupted because convergence was never possible to attain
due to the formation of a shear failure crack, as shown in Figure 4.34. This figure
represents the crack patterns at a deflection of about 4.9 mm for both numerical
simulations. The use of the shear crack softening diagram reproduces very well the shear

failure observed at the end of the experimental test and represented Figure 4.35.
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Figure 4.33 — Load-deflection at the loaded section for the T beam.
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Figure 4.34 — Crack pattern of the 2S-R beam by using a: (a) shear retention factor; and (b) a shear crack
softening diagram (in pink color: crack completely open (&," > &, ); in red color: crack in the opening

process; in cyan color: crack in the reopening process; in green color: crack in the closing process; in blue

color: closed crack).

Figure 4.35 — Crack pattern at the end of the tested 2S-R beam (Dias and Barros 2010).
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4.3.3.3 Reinforced concrete beam strengthened in shear with embedded through-section
bars

In this section a beam strengthened in shear using the embedded through-section (ETS)
technique is numerically simulated. The experimental program was carried out by Dalfré et
al. (2011) and several beams were tested (see Figure 4.36) with the scope of assessing the
performance of ETS technique in the shear strengthening as an alternative to the NSM
shear strengthening based on the use of CFRP laminates. The ETS technique consists in
the insertion of steel bars into previous drilled holes through the cross section of the RC

beam to strengthen.

1
i .\‘q‘\

N 2@12mm A500NR

£ 7 2@25mm A500NR

300
261,5

o
™
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A
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\
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00/ 900 1350 00

2450

Figure 4.36 — Reinforced concrete beam: geometry, support, steel reinforcement scheme and loading

conditions [dimensions in mm] (Dalfré et al. 2011).

Figure 4.37 represents the geometry, support and load conditions of the S225.90/E225.90
beam (Dalfré et al. 2011), containing in the shear span stirrups at 90° (3¢6 mm of 2 arms,

225 mm spacing) and ETS strengthening bars at 90° (4¢10 mm, 225 mm spacing).

1125 225__225_ 2251125 F

|150]

Figure 4.37 — Reinforced concrete ETS strengthening beam: geometry, support, steel reinforcement scheme

and loading conditions [dimensions in mm] (Dalfré et al. 2011).

The finite element mesh used for the simulations is represented in Figure 4.38. The beam is
modeled with a mesh of 8-noded serendipity plane stress finite elements. A
Gauss-Legendre integration scheme with 3x3 IP is used in all the concrete elements. The

steel bars and the ETS strengthening bars are modeled with 3-noded perfectly bonded
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embedded cables (one degree-of-freedom per node) and a Gauss-Legendre integration

scheme with 3 IP is used.

F
ETS strengthening i steel stirrups
S
S
N
Ll N N
A > N
100 900 1350 100

Figure 4.38 — Finite element mesh [dimensions in mm)].

For modeling the behavior of the steel bars, the stress-strain relationship available in the
FEMIX computer code is used (Sena-Cruz 2004). Two relationships are used in the
numerical simulations and the values are presented in Table 4.10, since the strains were not
measured in the experimental tests after the yield initiation of the steel bars. Therefore, for
the strain and its corresponding stress that define the end of the second branch of the
stress-strain diagram of the steel bars two pairs of values were considered, leading to the

diagrams designated by A and B.

The values of the parameters of the constitutive model for the concrete elements used in

the numerical simulations are indicated in Table 4.11. Using the average compressive

strength, f,, determined experimentally, the concrete tensile strength, f,,, and the mode I

fracture energy, G; , were initially obtained from equations proposed by CEB-FIP (1993),

and then were adjusted in order to fit with high accuracy the load at crack initiation. The
values for characterizing the softening diagram of Figure 4.14 were obtained by
back-fitting analysis in order to approximate as much as possible the experimental curve in

the post-cracking phase.
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Table 4.10 - Steel properties.
0s=6 mm =10 mm $¢s=12 mm =25 mm
A B A B A B A B
8f)y 2.75 2.75 2.66 2.66 2.35 2.35 2.27 2.27
(%0)
Osy 559.14 | 559.14 | 541.6 | 541.6 | 484.68 | 484.68 | 507.68 | 507.68
(MPa)
?f)/i')o) 20.00 | 25.00 | 20.00 | 25.00 | 20.00 | 25.00 | 20.00 | 25.00
Osh 708.14 | 559.14 | 643 541.6 | 655.00 | 484.68 | 743.00 | 507.68
(MPa)
?f)/zo) 50.00 | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 | 50.00
zliu/[Pa) 708.93 | 708.93 | 643.23 | 643.23 | 655.53 | 655.53 | 743.41 | 743.41
p 1 1 1 1 1 1 1 1

Table 4.11 - Model properties used for the ETS strengthening beam simulation.

Poisson’s ratio

v=0.15

Initial Young’s modulus

E. =31100.0 N/mm?

Compressive strength

£, =30.78 N/mm?

Trilinear tension softening diagram
(concrete elements near the bottom
longitudinal steel bars)

f,,=2.0N/mm’ ; G; =0.06 N/mm;
£=001; @, =05; &=0.5; a,=02

Trilinear tension softening diagram
(other concrete elements)

f., =1.8N/mm’; G} =0.05N/mm;
£=001; a,=04; £=02; a,=02

Shear crack softening diagram (concrete
elements near the bottom longitudinal
steel bars)

£=02; 77 =1.38N/mm’ ; G} =0.5N/mm

Shear crack softening diagram (other
concrete elements)

p=02; 77 =138N/mm’ ; G} =0.3N/mm

Parameter defining the mode I fracture
energy available to the new crack

py=1

Shear retention factor

0.2

Crack bandwidth Square root of the area of the IP
Threshold angle a, =30°
Maximum number of cracks per each IP | 2
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Tree numerical simulations are performed, varying in the treatment of the crack shear
component and in the modeling of the behavior of the steel bars and the ETS strengthening

bars. One uses the concept of shear retention factor with a constant value (£ =0.2) and the

other two uses the shear crack softening diagram of Figure 4.14, differing only in the
stress-strain relationship used for the simulation of the steel and the ETS strengthening

bars (see Table 4.10).

Figure 4.39 represents the experimental and numerical relationships between the load and
the deflection at the loaded section for the tested S225.90/E225.90 beam. In comparison to
the experimental curve the use of the concept of the shear retention factor conducts to a
more stiff response and the load carrying capacity is attained for a smaller deflection. The
curve derived from this numerical analysis starts diverging from the experimental one for
deflections larger than 3.5 mm. The analyses performed using the shear crack softening
diagram improves significantly the numerical responses. A better accurate simulation is
obtained using the properties B (see Table 4.10) for the steel bars and the ETS
strengthening bars but the load carrying capacity is underestimated. Adopting the
properties A (see Table 4.10) the ultimate load is better predicted with a response that is a
little bit more stiff than the behavior recorded experimentally. In these numerical
simulations the analyses were interrupted because convergence was never possible to attain
due to the formation of shear failure cracks, as shown in Figure 4.40. This figure
represents, for each numerical simulation, the crack patterns at maximum attained load.
The use of the shear crack softening diagram improves significantly the shear failure

observed at the end of the experimental test and schematically represented Figure 4.41.
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Figure 4.39 — Load-deflection at the loaded section for the ETS strengthening beam.
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Figure 4.40 — Crack pattern of the S225.90/E225.90 beam by using: (a) shear retention factor; (b) shear crack

softening diagram and steel diagram A; and (c) shear crack softening diagram and steel diagram B (in pink

color: crack completely open (& > & ); in red color: crack in the opening process; in cyan color: crack in

the reopening process; in green color: crack in the closing process; in blue color: closed crack).

Figure 4.41 — Crack pattern at the end of the tested S225.90/E225.90 beam (Dalfr¢ et al. 2011).
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44 SUMMARY AND CONCLUSIONS

To accurately simulate the deformational behavior of the shear and flexural/shear failure
modes, two alternative approaches are proposed for the treatment of the crack shear
component. The former is the implementation of a total crack shear stress-shear strain
approach to simulate the degradation of the shear stress transfer with the crack opening
evolution, and the latter is based on the use of a constitutive softening relation between the

crack shear stress and the crack shear strain component.

Each of these strategies is described and their capabilities are assessed by performing

several numerical simulations. The results obtained are presented and discussed.

In conclusion, it can be said that the implementation of these new tools in the multi-fixed
smeared crack model improves its capabilities to predict with higher accuracy the behavior

of structures failing in shear or in flexural/shear.






Chapter 5

Multi-fixed smeared 3D crack model to
simulate the behavior of concrete

structures

5.1 INTRODUCTION

The type of model to be selected for the analysis of a certain structure depends on the
specificities of this structure. Sometimes some simplifications can be adopted without
compromise the relevance of the conclusions that can be extracted from the analysis, such
is the case of assuming a structure like a bi-dimensional body. However, in some cases,
due to complex loading and/or geometry conditions these simplifications are not
appropriate, and to simulate the complex failure modes that can be formed in this type of

structures three-dimensional (3D) approaches must be used.

In the present chapter a multi-fixed smeared 3D crack model, under the nonlinear FEM
framework, is proposed to simulate the behavior of concrete structures. This model is
suitable to be used with 3D solid elements available in the FEMIX computer code

(Azevedo et al. 2003, Sena-Cruz et al. 2007).
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The 3D model is described below and its performance is appraised by simulating a
punching test with lightweight panels of steel fiber reinforced self-compacting concrete

(SFRSCC).

5.2 NUMERICAL MODEL

5.2.1 Introduction

In the last decades the development of sophisticated 3D models to simulate the complex
nonlinear behavior of concrete structures has been significant, and the applicability of
these models to real structures is becoming possible due to the continuous progress in

high-performance computing hardware (Barzegar and Maddipudi 1997a, 1997b).

In the present section the multi-fixed smeared 2D crack model, previously implemented in
the FEMIX computer code by Sena-Cruz (2004), is generalized to a multi-fixed smeared
3D crack model, implemented with solid finite elements (Ventura-Gouveia et al. 2008).
The fracture mode I is simulated with one of the tensile-softening stress-strain diagrams
presented in section 3.3.2.2 of chapter 3. The characterization of the shear fracture modes
is much more complex, since the shear stress transfer between the crack surfaces depends
on several parameters, such as concrete lateral confinement, crack opening, roughness of
the crack surfaces, concrete strength class, number of cracks and its relative orientation,
etc. For its simulation, the classical shear crack retention factor concept can be used,
associated with an incremental or total approach for the shear crack components, whose
formulation is detailed in section 4.2 of chapter 4. Alternatively, the softening crack shear
stress-strain diagram described in section 4.3 of the previous chapter can also be used in

the simulation of the shear stress transfer between the crack surfaces.

5.2.2 Formulation

5.2.2.1 Crack strain and crack stress
As mentioned before, in a material nonlinear analysis the constitutive matrix depends on

the stress or strain levels at a given stage of the loading process. To obtain a solution, the
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external load is applied incrementally and an iterative technique is used to solve the
resulting system of nonlinear equations (Zienkiewicz and Taylor 2000b, Ventura-Gouveia
2000, Ventura-Gouveia et al. 2006). The relationship between incremental strain and

incremental stress is in this case given by

Ac = D A (5.1)

where Ao represents the stress increment, A¢ is the strain increment and D is the tangent

constitutive matrix.

The incremental strain associated with the cracked material is, in smeared crack models,
decomposed into an incremental strain vector of the crack, A¢” , and an incremental strain

vector of the uncracked concrete between the cracks, A¢” (de Borst and Nauta 1985, Rots

et al. 1985, de Borst 1986, Rots 1988, Barros 1995). This incremental strain decomposition
is useful for the inclusion of other phenomena, such as temperature, creep or shrinkage (de
Borst and Nauta 1985, Hofstetter and Mang 1995, van Zijl et al. 2001). The inclusion of

these time-dependent phenomena is treated in chapter 6.
Ag=Ae” +Ag” (5.2)

For the three-dimensional case the incremental local crack strain vector, Ag; , is defined
by
cr cr cr cr T
AsT=|Asl Ay Ay ] (5.3)

n

and, in the global coordinate system, by

cr cr cr cr cr cr cr T
Ag =[Agl Aeg, Aegy Ayy Ayy A?ﬁz} (5.4
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Equation (5.5) represents the relationship between Ag;” and Ag”
cr cr T cr
AsT=|T" | Ag (5.5)
where T is the transformation matrix (see Figure 5.2) defined by

2 2 2
all a12 a13 2(112(113 2allal3 2’allal2
cr
Z = allaZI a12a22 a13a23 al2a23 + al3a22 a11a23 + a13a21 a11a22 + a12a21 (56)

alla3l al2a32 a13a33 al3a32 + al2a33 a13a3l + alla33 a12a31 + a11a32

The a,,, a,, and a;; components are the cosine directors of the unit vector of the axis
normal to the crack plane, n; a,,, a,, and a,; are the cosine directors of the unit vector of
the ¢, axis; finally, a,,, a;, and a,; are the cosine directors of the unit vectors of the z,

axis. The n, t, ¢, axes form the local crack coordinate system.

In matrix form the components of ¢ are defined by

a4y 4 cos(n,x;) cos(n,x,) cos(n,x;)
a=|a, a, a,|=|cos(t,x;) cos(t,x,) cos(t,x;) (5.7)
a, a, a; cos(t,,x;) cos(t,,x,) cos(t,,x;)

The T matrix transforms the stress components from the global coordinate system to the

local crack coordinate system and its terms are extracted from the matrix that transforms

the stress tensor between coordinate systems (Azevedo 1996, Silva 2006). It can be

T
demonstrated that [Z ”] transforms the strain components from the local crack

coordinate system to the global coordinate system (Azevedo 1985).
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According to the fracture mechanics principles, three different types of fracture modes can
be considered. The crack opening mode (fracture mode I), the shearing mode (fracture
mode II - in-plane shear), and the tearing mode (fracture mode III - out-of-plane shear). A
cracked body can be loaded in one of these modes or in a combination of the three modes

(Wang 1996).

Figure 5.1 — Basic fracture modes: (a) opening mode (tensile), (b) shearing mode (in-plane shear) and (c)

tearing mode (out-of-plane shear) [Wang 1996].
For the case of 3D solids, the distinction between mode II and mode III can be dropped

(Hofstetter and Mang 1995). For this reason, in the present model mode II and mode III are

designated as sliding modes in 7, and 7, directions, respectively.
The incremental local crack stress vector, Ao |, can be defined by
cr cr cr cr T
Ag{=[Acy AT Az (5.8)

where Ao, is the mode I incremental crack normal stress, Az,” is the sliding mode
incremental crack shear stress acting in #, direction and Az, is the sliding mode

incremental crack shear stress acting in 7, direction.
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Figure 5.2 represents the crack stress components in the local coordinate system of the

crack and the corresponding displacements: the opening displacement, w, the sliding

displacement in #, direction, s,, and the sliding displacement in #, direction, s, .

Figure 5.2 — Crack stress components, displacements and local coordinate system of the crack.

In the global coordinate system the incremental stress components are
T
Ac=|Ac, Ao, Ao, Ar, Az, At,] (5.9)
The relationship between Ag and Ao | is

Ac=T"Ac (5.10)

5.2.2.2 Constitutive law of the concrete

A linear elastic behavior is assumed for the concrete between cracks, being the relation

between A¢” and Ao given by
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Ac=D A" (5.11)
with
_(l—v) 1% 1% 0 i
1% (l—v) 1% 0
1% 1% (l—v) 0
o _ E 0 0 0o 1= 0
() (1-2v) 2 (5-12)
0 0 0 o =
2
0 0 0 0 0o =%
2

being £ the Young’s modulus and v the Poisson’s ratio of the undamaged concrete.

5.2.2.3 Constitutive law of the crack

At the crack zone (damaged concrete), the relationship between Ag; and Ag, is given by

Aci=D"Ae (5.13)
where
D" 0 0
D =| 0 D:’ 0 (5.14)
0 0 Df;

is the crack constitutive matrix.
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In equation (5.14), D,", D;" and D;" represent, respectively, the fracture mode [ stiffness
modulus, the sliding stiffness modulus in the 7, direction and the sliding stiffness modulus

in the 7, direction, and their values depend on the law assumed to simulate the crack

behavior.

In the present approach the direct shear-normal coupling is ignored, thus justifying the
diagonality of the crack constitutive matrix. Its effect may be indirectly obtained by
allowing non-orthogonal cracks to form and defining the sliding fracture modes as a

function of the crack normal strain (Rots 1988).

The fracture mode I modulus, D¢

n 2

is defined by one of the tensile-softening diagrams

described in section 3.3.2.2 of chapter 3.

The sliding fracture mode modulus, D:" or D;; , can be obtained with,
cr cr ﬂ
l)t1 = th ZJGC (515)

where G, is the concrete elastic shear modulus and £ is the shear retention factor, defined
by a constant value or by equation (3.32) in section 3.3.2.2 of chapter 3. Alternatively, to
model the crack shear stress transfer in 7, and 7, directions, and to improve the accuracy of
the simulations of structures failing in shear, D;" or D;" can be obtained with one of the

shear crack softening diagrams described in section 4.3 of chapter 4. In this case, each

component follows an independent crack softening diagram.

5.2.2.4 Constitutive law of the cracked concrete
Taking into account equation (5.2) and equation (5.5), equation (5.11) can be written as

follows
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Ao =D (Ag—[z”]T Ag” ) (5.16)

Multiplying this equation by the transformation matrix 7 and taking into account

equation (5.10), equation (5.16) becomes
cr co cr T cr cr co
Ac+I7 D" [T ] Ae? =T D"As (5.17)
and substituting Ao ;" using equation (5.13)
cr cr co cr r cr cr co
DAe +T17 D[ T | Az =T DAz (5.18)

or
, o ar\Tt
A§ ?l‘: (QCV +ZC}’QCO [zbl } ) ZchCOAé (5. 19)

Equation (5.19) establishes a relationship between the incremental local crack strain vector
and the incremental strain vector in the global coordinate system. Including equation

(5.16), the following constitutive law for the cracked concrete can be obtained
, oTer T er  er rcoFomer TN er
Ag: (260 _QCU [zci } (Q(J + erQLU [ZLI } ) T(,r DCUjAg (5'20)

or
Ac=D"As (5.21)

being
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o = oo 1] ( o117 )1 " D (5.22)

the constitutive matrix of the cracked concrete.

Although the preceding equations are obtained assuming only one crack per integration

point (IP), the model can be applied to the case of n, cracks being formed at each IP. For

this purpose, the crack constitutive matrix, D”, and the transformation matrix, T,

include the information that corresponds to these n,, cracks

Dy 0 0
o lo b . o0
D" =| - 7 = (5.23)
0 0 .. D
and
T
=1y 17 . T (5.24)

In equations (5.23) and (5.24), D" and T; correspond to the crack constitutive matrix

and to the crack transformation matrix of the i crack.

5.2.2.5 Model implementation

A simple Rankine criterion is used to detect crack initiation. When the maximum principal
tensile stress reaches the concrete tensile strength at an IP of a finite element, the material
contained in its influence volume changes from uncracked to cracked state. The crack
plane is considered to be normal to the direction of the maximum principal stress. The

crack normal tensile stress follows the tensile-softening diagram characterized by the
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fracture mode I modulus, D;". For the crack shear components two hypothesis are

available: each crack shear stress follows a shear softening diagram characterized by the

sliding fracture modes D;” and D;" , which can be obtained from one of the diagrams

represented in section 4.3 of chapter 4; or the shear stresses and the sliding fracture modes

are determined by means of the shear retention factor concept, which is based on equation

(5.15).

As a consequence of the rotation of the axes of the principal stresses during the subsequent
load increments, a new smeared crack pattern can be initiated. Two conditions must be
satisfied for the new crack initiation:
e the maximum principal tensile stress reaches the concrete tensile strength;
e the angle between the direction vector of the maximum principal tensile stress and
the direction vector of the existing cracks is greater than a predefined angle, named

threshold angle, «,, .

Values between 30° and 60° are recommended for the threshold angle (de Borst and Nauta
1985, de Borst 1986). To maintain the consistency of the crack initiation process, when the
second condition is not satisfied, the tensile strength must be updated. This value can be
significantly different from the initial concrete tensile strength, especially for large values

of «, (Rots 1988).

The formation of additional cracks in an previously cracked concrete can contribute to the
modification of the crack status of these existing cracks. The previously developed
multi-fixed 2D smeared crack model takes into account these crack status modifications. In
the present 3D model a similar approach is used for the opening mode I (Sena-Cruz 2004),
and for both sliding modes when the crack shear softening diagram is selected (see section
4.3 of chapter 4). An eventual coupling between the normal and shear modes is not

considered in the 3D model. Therefore, a crack can, for example, unload in mode I, soften

in 7, sliding mode, and reload in 7, sliding mode. For this reason, the model treats

separately the normal crack status, the shear crack status in 7 direction, and the shear crack
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status in 7, direction. For the case of the sliding modes the shear crack statuses are

described in section 4.3.2 of chapter 4.

As a consequence of the material nonlinear behavior, the stress must be updated in order to
satisfy the laws of the material response. This stress update is performed with the

following equation

oc=0 . +Ac (5.25)
where the subscript prev means the stress at a previous state of the IP.
Multiplying equation (5.25) by the transformation matrix 7 results

I"0=T"(g ,.+Ac) (5.26)

and taking into account the incremental relation from equation (5.10), established in terms

of total stresses, equation (5.26) results in

=0/, +Ac] =T"(c ., +Ac) (5.27)

= prev

Combining equation (5.20) with this equation yields, after some arrangements,

(5.28)

and taking into account equation (5.19) the following equation is obtained
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o a ) cr r cr
—T“D“Ag+T" D" [z ] Ae” =0 (5.29)

Since Ao’ is a function of Ag] (see equation (5.13)), equation (5.29) can be written in

the following form

—Z”QCOAS'F(DU +Tchco |:Zu :| )Agzr _ Q (530)

The Newton-Raphson method is used to solve equation (5.30), where the vector of

unknowns is the local incremental crack strain vector, Ag .

The first derivative of equation (5.30) in order to the incremental local crack strain vector
is required in the ¢ iteration of this method. Depending on the strategy assumed for the
crack shear components, i.e., the use of the concept of shear retention factor or the use of a
crack shear softening diagram, this derivative is defined by equation (5.31) or equation

(5.37), respectively.

When the concept of shear retention factor is used to obtain the sliding fracture modulus,

D" or D, the derivative of f (Agjr) is

4

of (Ag) .
y(ee) - )=Q"’+Q +17 D [17] (5:31)
OAg,
where
D 0 0 |
~Ccr O Ecr cee 0
p =] * = = (5.32)

~cr

([
o
>

= —n,
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being
0 0 0
D = ap;f Ayl 0 0 (5.33)
' loAer T
oD 0 0
OAe” |

0 0 0
D D e 0 0 5.34
= | oas” £ . -39
D e 0 0
OAe! 2 .

if a total approach is used for the crack shear components (see section 4.2 of chapter 4).

When equation (3.32) is adopted to define the shear retention factor used in equation

(5.15), the derivative of the i sliding fracture modulus D" inorderto Ag, is

2

oD (1-4)" G.p, ((1—A)p') G.p,
aA er - cr pl B ] pl 2 (5.35)
& el (-A-0-4") s (- a)(1-(1-1)")
being
£+ A&
= Erpe PAE (5.36)
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When a constant shear retention factor is used, the matrix D” becomes a null matrix.

If a crack shear softening diagram is used to obtain the sliding fracture modulus, D;" or

Dy, the derivative of f (Ag‘f) is

o (Ae7)
OAg]

=D"+T" D" [T” }T (5.37)

When the convergence of the Newton-Raphson method cannot be achieved, the fixed-point

iteration method is used to attempt the solution of the system (5.30).

The solution of equation (5.30) is the incremental local strain vector of the cracks, Ag, .

The crack strain vector in the global coordinate system is calculated using equation (5.5)

and the crack strain is updated with

cr cr

=& +As” (5.38)

< prev

From equation (5.13) the incremental local crack stress vector is obtained and the local

crack stress vector is updated with
0/ =0 e tAC) (5.39)

From equation (5.16) the incremental stress is calculated and the stress is updated using

equation (5.25).

To verify the consistency of the solution a verification is made, using equation (5.10), in

terms of total stresses with
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c/=T"c (5.40)

The improvements made in the stress update and in the critical crack status change,
explained in section 3.5 of chapter 3 for the 2D multi-fixed smeared crack model, are also

implemented in the 3D version of this model.

The evaluation of the internal forces requires the solution of (5.30), and the calculation of
the stiffness matrix of an element depends on the constitutive matrix of the cracked
concrete (5.22). For both these purposes the inversion of the matrix defined by (5.41) is

required.
T
Q :DCF—‘FZCF DCO [TCV} (5‘41)

When D is a null matrix, i.e., when the cracks are in Fully Open status or for the case of
using a crack shear softening diagram, the shear crack statuses are in Free-sliding, resulting
in a null stiffness for the sliding fractures modes, eventual problems might arise in the

inversion of Q'. To circumvent these difficulties the following residual values are

assigned to the diagonal of D (see equation (5.14))

Dy =10"f, ; D =10"G, (5.42)

5.3 MODEL APPRAISAL

The performance of the proposed constitutive model is assessed by simulating the behavior
observed in a punching test of a lightweight SFRSCC panel. The test layout and the test
setup are represented in Figure 3.27 of chapter 3. The finite element model, the load and
the support conditions used in the numerical simulation of the punching test are shown in

Figure 5.3.
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Only one quarter of the panel is used in the simulation due to double symmetry.
Serendipity 20 node solid elements with 2x2x3 Gauss-Legendre integration scheme are
used (three integration points in the through-thickness direction). Three solid elements are
used through the thickness of 110 mm, while in the lightweight zone (shaded elements in
Figure 5.3) only one solid element is used through the thickness. The dashed line

represents the support of the panel.

The values of the parameters of the constitutive model used in the simulation of the
punching test are listed in Table 5.1. The results of two numerical simulations are
described below. In the first one, the shear stress transfer in both sliding modes is
simulated according to equation (5.15) with the shear retention factor defined by equation

(3.32) assuming p, =2. In the second one, the crack shear stress vs. crack shear strain

diagram represented in Figure 4.14 (see section 4.3.1 of chapter 4) is used to model both
shear sliding modes. In both simulations the values of the properties associated with the
fracture mode I are obtained with the inverse analysis described in section 3.7.1 of
chapter 3. The force-deflection relationship registered experimentally and those obtained

from both numerical simulations are presented in Figure 5.4.

xz,uz
(u,=0) Point load =----;
7L
g
= £
E (e}
g =&
> "
S [
5 I § 8
e g
T £ 2
Supports (u1,=0, = =
1 Supports (u,=0) = =
]
> —_—
(uy) % A

300 mm

Figure 5.3 — Geometry, mesh, load and support conditions used in the numerical simulation of the punching

test.
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Figure 5.4 — Relationship between the force and the deflection at the center of the test panel.

Table 5.1 - Values of the parameters of the constitutive model used in the numerical simulation of the

punching test.
Poisson’s ratio v=0.15
Initial Young’s modulus E_=31000.0 N/mm?
Compressive strength f.=52.0 N/mm?’
Trilinear tension softening f,=35N /mm2 : G; —43N/mm;

diagram of SFRSCC (see Figure
3.6 of section 3.3.2.2 of chapter 3) | &1 =0:009; &, =0.5; & =0.15; @, =0.59

Parameter defining the mode I
fracture energy available to the p,=2
new crack

Softening crack shear stress-strain '
diagram (see Figure 4.14 of 7, =20 N/mm2 ;G,,=5.0 N/mm; £=0.5
section 4.3.1 of chapter 4)

Shear retention factor Exponential ( p, =2)
Crack bandwidth Cube root of the volume of the integration point
Threshold angle a, =30°

Figure 5.4 shows that, in the experimental test, for a deflection of about 1.2 mm at the
central point, the panel load carrying capacity is almost retained up to a deflection of about
3 mm. Afterwards an abrupt load decay occurs due to the formation of a shear failure

surface, typical of a punching rupture. However, using the concept of shear retention
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factor, the model predicts an increase of the load carrying capacity with the increase of the

panel deflection. According to this approach, the shear stresses in 7 and 7, sliding
directions (7;",7, ) increase with the increase of the corresponding shear strains (7", 7, ).

Only after the exhaustion of the model fracture energy (& >¢! , see Figure 3.6 of

nu

section 3.3.2.2), both crack shear stress components become constant (the incremental

values are null, Az;" =0, Az,” =0). However, for this type of problem, where the crack

shear constitutive components have a fundamental influence on the behavior the structure,
mainly after a certain deflection, the formulation of these components should allow the
shear stress components to decrease with the increase of the crack opening, which requires
the use of a shear softening diagram, similar to that represented in Figure 4.14 of section
4.3.1. In fact, the second simulation, which is based on this approach, captured the plateau
registered experimentally (see Figure 5.4), since the parameters of this diagram are
evaluated by back-fitting analysis in order to reproduce this phase of the panel response.
However, the abrupt load decay observed in the experimental test, at a deflection of about
3 mm, is not captured by this second approach, since the numerical simulation predicts a

continuous, but smooth, degradation of the panel load carrying capacity. It could be

verified that a decrease of G, (e.g G, =4.0N/mmor G, =2.0N/mm) causes a

decrease on the panel load carrying capacity, mainly in its structural softening phase, but

the abrupt load decay is still not captured as shown in Figure 5.5.

80 T
—— Experimental
70 A —— Softening shear stress-strain diagram - Gf,s = 5.0N/mm
60 -+ Softening shear stress-strain diagram - Gf,s = 4.0N/mm
----- Softening shear stress-strain diagram - Gf,s = 2.0N/mm
= 50 4
Z
j=h
3 40 A
3
304 /4 T
20 A
10 A
0 T T T T T T T )
0 1 2 3 4 5 6 7 8

Deflection [mm]
Figure 5.5 — Influence of G, , on the numerical relationship between the force and the deflection at the

center of the test panel.
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54 SUMMARY AND CONCLUSIONS

In the present chapter a multi-fixed smeared 3D crack model is proposed. The developed
model is based on the finite element method and is implemented in the FEMIX computer
code. In an attempt to simulate the shear strain gradient that occurs in punching tests, a
shear softening diagram is proposed in order to make both crack shear stress components
dependent on the corresponding crack shear strains. The crack shear stress transfer can also
be simulated using the concept of shear retention factor, which can be defined as a constant
value or as a function of the crack normal strain. In this case the shear retention factor
assumes a unitary value at crack initiation and a null value when the mode I fracture

energy is exhausted.

The performance of the model is appraised by using the results obtained in a punching test
with a lightweight panel prototype of steel fiber reinforced self-compacting concrete. Two
numerical simulations are performed and discussed: one using the concept of shear
retention factor and the other using a softening diagram to model both crack shear
components. It is observed that the use of a softening diagram for the crack shear

components improves the numerical simulation of the tested panel.
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Thermo-mechanical model

6.1 INTRODUCTION

In this chapter all relevant aspects related to the heat transfer and its implementation in the
FEMIX computer code are described. The heat transfer problem is presented, and a
numerical model is developed to simulate the heat transfer in structures built with materials
whose mechanical behavior can be considered to be linear or nonlinear. The heat
development due to the hydration process during the concrete hardening phase and its
inclusion in the heat transfer model is also treated. The performance and the accuracy of

the developed numerical model are assessed using results available in the literature.

The formulations of the time-dependent deformations due to shrinkage, creep and
temperature variation are also presented, and the multi-fixed smeared 3D crack model
proposed to simulate the behavior of concrete structures, described in chapter 5, is adapted

to include these time-dependent effects.

6.2 THERMAL PROBLEM

6.2.1 Introduction
Heat transfer can be defined as the energy transferred between material bodies due to a
temperature difference (Holman 1986, Lewis et al. 2004, Incropera et al. 2006). The heat

flows from hot to cold mediums until an equilibrium state is reached (Silveira 1993), being
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the process of heat transfer divided in three modes: conduction, convection and radiation.
A briefly description of each mode, including its governing equations, is presented in this
section. More details can be found elsewhere (Holman 1986, Silveira 1993, Lewis et al.

2004, Incropera et al. 2006, Lienhard IV and Lienhard V 2005, Azenha 2009).

Conduction heat transfer

From a simple point of view, this is the heat transfer that occurs inside a solid. The
conduction heat transfer can occur in a steady-state regime, when the temperature field in a
solid does not change with time or in a transient regime if the temperature field changes

with respect to time.

The heat conduction rate equation is defined by the Fourier’s law. For the case of one

dimensional conduction this equation has the following form

gl =" =k (6.1)

where ¢! is the heat flux in x direction, A is the area perpendicular to the direction of

heat transfer, k is the material thermal conductivity and d7T/dx is the temperature

gradient. The minus sign signifies that the heat flows in the direction of the decreasing

temperature.

Convection heat transfer
Convection is a process of heat transfer that occurs between a body surface and a fluid in

movement when the temperatures differ between the two domains.

The heat convection rate equation is defined by the Newton’s law of cooling,
q.=h(T-T,) (6.2)

where ¢ is the convective heat flux, &, is the convection heat transfer coefficient, 7 is

the temperature at the body surface and 7, is the fluid temperature.
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Radiation heat transfer
Radiation is the mode of heat transfer that occurs when no contact exists between the body
that emits heat and the body that receives it (this kind of heat transfer can occur in vacuum

conditions).

The maximum flux emitted by radiation from a black body is defined by the

Stefan-Boltzmann law equation,
q,=oT" (6.3)

where ¢, is the emitted heat flux, o is the Stefan-Boltzmann constant, defined as

0 =5.67x10°"Wm~ K™, and T is the surface temperature.

Introducing in equation (6.3) the concept of emissivity, &, to take into account that, in

reality, the bodies emit less energy than black bodies, this equation is transformed into
q. =eoT" (6.4)
where 0 < e <1.

The net rate radiant exchange, for the case of a heat transfer surface at temperature 7

completely enclosed by a much larger surface maintained at temperature 7, , is obtained

with (Holman 1986)
9/ =0 (T -1} (6.5)
This equation can be rewritten as

q/=h(T-T,) (6.6)
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where A, is the radiation heat transfer coefficient that is defined by
h=&0(T+T)(T7 +17) 6.7)

Equation (6.6) is now analogous to the heat convection rate equation (6.2), which can be

useful when convection and radiation occur in the same body surface.

6.2.2 Heat conduction equation

6.2.2.1 General remarks
In this section the heat conduction equation for the case of three-dimensional (3D) heat
conduction analysis is directly derived by applying the conservation of energy principle to

an infinitesimal control volume of a 3D body as represented in Figure 6.1.

Figure 6.1 — Infinitesimal control volume of a 3D body.
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The energy balance for the general case, represented in Figure 6.1, where the temperature
may be changing with time and internal heat sources may be present, can be assured by

(Incropera et al. 2006, Holman 1986)
E,+E =E,+E, (6:8)
being,

E, the rate of energy conducted in the infinitesimal control volume, defined by

L, =4, +9,+4. (6.9)
Eg in equation (6.8) is the rate of thermal energy generation, given by
E, = Qdxdydz (6.10)

where O is the internal heat generation rate per unit volume of the infinitesimal control

volume,

E_ in equation (6.8) is the rate of the energy stored within the infinitesimal control

st

volume, expressed as
. oT
E,= pcgdxdydz (6.11)

where p is the mass per unit volume and ¢ is the specific heat of the material. The pc

quantity represents the volumetric heat capacity and measures the capacity of a material to

store thermal energy.
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Finally, £, in equation (6.8) is the rate of energy conducted out the infinitesimal control

ut

volume, defined by

Eout = qx+afx + qy+dy + qz+dz (6 12)

By considering the first two terms of the Taylor series expansion, each term on the

right-hand side of the previous equation becomes

oq
=g +—=2dx 6.13a
qurdx qx &x ( )
oq
Qerdy = qy +Eydy (6'13b)
%)
Gy =, + 2 d (6.13¢)
oz

Substituting equations (6.9) to (6.12) into equation (6.8), and considering equation (6.13),
yields

: oT oq oq oq
dxdydz = pc— dxdydz +—2 dx +—2 dy +—2= d: 6.14
Qdxdydz pcat lydz o ayy 2 “ (6.14)

From equation (6.1), it can be deducted that

oT oT oT
q, =—k.dydz ot 4= kdxdz o q. =~k dxdz > (6.15)

Substituting (6.15) into (6.14) and making some arrangements, leads to the general

three-dimensional heat conduction equation in Cartesian coordinates, as follows
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o( or\ of, or) o, o\ - _or
ok = ek = e k== |+ 0= pc=— 6.16
6x(xéxj ay(yayj ﬁz(zézJ Q=pcy, (6.16)

For the case of isotropic materials, the thermal conductivity is the same in all directions,

ie, k =k =k =k.

6.2.2.2 Initial and boundary conditions
To obtain the temperature distribution in a body, the heat conduction equation must be
solved considering appropriated boundary conditions, and, for the case of time dependent

temperature phenomena, the initial conditions must also be known.

The Dirichlet condition, or boundary condition of first order, is

T=T on S, (6.17)

where T is the prescribed temperature in the boundary, and S, is the boundary surface

where the temperature is imposed.
The Neumann conditions, or boundary conditions of second order, are the following
¢ Constant heat flux in the boundary:

y or _
q :—ka=q on S, (6.18)

where g is the heat flux imposed on the boundary, S, is the boundary surface, and n is

the direction vector normal to the boundary surface, defined by its direction cosines.

Therefore, equation (6.18) can be written as
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" oT oT oT _
q =—(kx§nx+ky5ny+sznZJ=q on S, (6.19)

where 7, n, and n, are the direction cosines of the normal to the S, boundary surface.

¢ Insulated or adiabatic boundary:

oT oT oT
q"=—[kxanx+ky5ny+kzgnzj=0 on S, (6.20)

The convection condition on the boundary surface is

or oT oT
"=—\k,—n +k —n +k —n, |=h(T-T S. 6.21
q [ X ax X y a)} y z aZ Z} C( w) on c ( )

being 4, the convection heat transfer coefficient and (T —7;0) the temperature difference

between the surface and the fluid (e.g. the environment temperature).

The radiation heat transfer can be taken into account by substituting the convection heat

transfer coefficient by an appropriate convection-radiation heat transfer coefficient, 4,

(Silveira 1993, Azenha 2009).

For the case of a transient analysis the initial conditions must be known a priori. Thus, for

a specific time #, the temperatures, 7', of the entire 3D body must be supplied. This
condition can be defined by

T-T, (6.22)

being T

init

the initial temperature imposed to the 3D body at time ¢, .
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6.2.3 Finite element method applied to heat transfer
By applying the method of weighted residuals to the heat conduction equation (6.16)

jV wrdV =0 (6.23)

where the residual function is defined by

0 aT 8 6T 8 8T : oT

and w is the weight function W(x, y,x) , yields

I mk ), a[kya_rj g[kza_TﬂdV
Vol ox ox ) Oy oy ) Oz oz

+IVdeV—IV wpcaa—de =0

(6.25)

By performing an integration by parts of the first term of equation (6.25) using the

Green-Gauss theorem (Ottosen and Petersson 1992), results in

sl 2505 2l )

jaw O vy O,y O\ ay
o ox oy "oy 0z "oz

j k—n ka—Tn+ka—Tn das
Yoy YT d

(6.26)

iz

Introducing the boundary conditions described in section 6.2.2.2 in the second integral of

(6.26) yields
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_[w kxgnx+k 6—Tn +kza—TnZ ds

= J.s, w(—qT)dST + J.Sq w(—@) ds, + ISF w[—hc (T—Tw )] ds,

In this equation g, is the unknown heat flux on the boundary where the temperature is
prescribed, g is the imposed boundary heat flux (when ¢ =0 an insulated or adiabatic

boundary is assumed), and hc(T —TOO) is the boundary convection heat flux (by

substituting A, with A

cr

convection-radiation heat transfer can be taken into account).
By considering (6.26) and (6.27), equation (6.25) becomes

[ %ﬁlﬂk a—T+@kza—T av+[ whrTds, +| wpe L ay
Vlox “ex oy Toy oz oz s, v ot

(6.28)
= J.V wQodV —IST w(q,)ds; —Lq w(@)dSq + J‘Sr whT dS,
The first integral of (6.28) can be written as
[ (vw) DVTar (6.29)
V
where
k. 0 0
D=0 k, O (6.30)
0 0 &k

The temperatures can be approximated using shape functions as follows

T=T(x,y,z,t)= Y N,(x,»,2)T(t) (6.31)
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where n is the number of nodes of the element, N, is the shape function of element node i
and 7, is the temperature of element node i. In a transient analysis this temperature field is

a function of time.

In matrix form equation (6.31) can be written as

T=NT* (6.32)
being

N=[N, N, .. N,] (6.33)
and

r=[r , .. 1] (6.34)

By using the Galerkin method, the weight functions, w, are chosen to coincide with the
functions that define the unknown variables (temperatures). In the present case these
functions are the shape functions, N . Thus, equation (6.28) can be written for a specific

finite element, considering (6.32) and (6.29), as

jV(vy)T DVNTdV + jsc N"h NTdS, + j N pc@dl/ 635
_ IV N'Qdv - L, N (g, )dS, - Lq N'(g)ds, + jsc N'hT.dS.

or
(K:+Ke,, )T+ KT = F* (6.36)

where K is the element conduction matrix defined by
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K:=[ (VN) DVNaV =[ B'DBdV

being
(0N, oN, oN, |
ox ox  ox
B ON, ©ON, ON,
Tl o oy
ON, ON, ON,
| Oz oz oz |

K¢ is the element convection matrix

K, =, h N NS,

and K is the element transient matrix
K; =, peN" Nav

The vector F¢ can be divided into
F'=F,+F,

where F; is defined by

Fi=F)+F\+F'

being F eQ the vector corresponding to the element internal heat generation,

(6.37)

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)



Thermo-mechanical model 195

e T ~
Fy= IVN Odv (6.43)
F ; is the vector corresponding to the boundary where the heat flux is imposed,
e T (—
F: =—Lqﬁ (7)ds, (6.44)

and F: is the vector containing the values corresponding to the convection (or

convection-radiation) boundary

e T
Fi=[ N'hT.ds, (6.45)

In equation (6.41) F ZT is the vector corresponding to the heat flux where the temperature

is prescribed,
e T
F, ==], N (g;)ds, (6.46)

By considering a domain discretized into several finite elements, equation (6.36) is written

in a global form as

(Kc +Kconv)z+gtz:E (647)

In this equation the matrices and vectors take into account the contribution of each finite

element of the domain.
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6.2.4 Steady-state linear analysis
In this section the implementation of the heat conduction problem in the FEMIX computer
code, for the case of a steady-state linear analysis, is presented. The performance and the

accuracy of this implementation are appraised by performing a numerical simulation.

In a steady-state linear analysis equation (6.47) becomes

(K.+K,,,)T=F (6.48)

By taking into account (6.41), and considering K =K _ +K . , results in

KT=F,+F, (6.49)

For its solution equation (6.49) is written as

K K T F 0
|:_FF _FPj||:_F:| :|:_L,F:|+ A4 (6.50)
KPF KPP ZP EL,P E‘]r P

where the subscript F (free) corresponds to the nodes of the domain where the
temperature is not known, and the subscript P (prescribed) corresponds to the nodes of the

domain where the temperature is prescribed.

In a first phase the temperatures are obtained by solving the following system of equations,

using the Gauss elimination method
Keplp=F, ;—KpTp (6.51)

and in a second phase, with the obtained temperatures, 7., the heat flux where the

temperature is prescribed is calculated with
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Fq,,P =KpTp+KppTp—F, (6.52)

6.2.4.1 Numerical example
The performance of the model is appraised using an example from Lewis et al. (2004), as

shown in Figure 6.2.

z 500 °C
~
[
Y
y :
: 1.0m
X ]
100 °C , 100 °C
—_— | o
R T AV
e : \ {7 Insulated
100 °C 1.0m
N
» X
1.0 m

Figure 6.2 — Steady-state example (adapted from Lewis et al. 2004).

For the numerical analysis the domain is descritized with serendipity 8 node solid elements
with a 3x3x3 Gauss-Legendre integration scheme. The thermal conductivity of the

material, k, is constant and is equal to 10 Wm'°C™!.

Figure 6.3 represents the mesh and temperature field after the steady-state analysis. The
temperature in the center of the cube (0.5, 0.5, 0.5) is 200.37°C. Similar results were
obtained by Lewis et al. (2004).
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Figure 6.3 — Finite element mesh and temperature field.

6.2.5 Transient linear analysis

6.2.5.1 Time-discretization

Figure 6.4 represents the temperature variation with time for a one dimensional problem.

In the incremental time step, At, a linear variation of the temperature is assumed. Thus, the

derivative of temperature is approximated with

o0 T,
"ot At
T
r.,. temperature
s ‘
AT n+60
T

L oAt :

1 1 —
n tn+19 tn+1 t
At

Figure 6.4 — Time-discretization for one dimensional problem.

(6.53)
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Considering a multi-dimensional problem, the temperature at the time ¢, is calculated

with
r,,-T, +0At[%j or,. +(1-0)T, (6.54)

and its derivative with (see Figure 6.4)

ZIHH _Zn Znﬂ _Zn
_ _ (6.55)

7Y At

Writing equation (6.47) for the time ¢ ,, results in

(K +Kc0nv)Tn+<9 +KtTn+¢9 Fn+9 (656)

and by substituting (6.54) and (6.55) yields

(K.+K

—conv

T T
)| 0T, +(1-0)T, |+K,| == |=F,, 6.57
I: n+l1 ] ( Al j —n+60 ( )

Considering for vector F,,, the same type of approximation that is adopted for the

temperature, equation (6.57) can be written as

(K. +K.,,,)[ 0L, +(1-0)T ]+5,(I"+1A—tj [6F,.,+(1-0)F, ] (6.58)

or
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[ K, +6M (K, +K,,)]T,.

6.59
=[K,-(1-0)A(K, +K (659

)|T,+At|6F,., +(1-6)F, ]

conv

By adopting different values for € several time-stepping schemes can be obtained (Vila
Real 1988, Lewis et al. 1996, Fonseca 1998, Lewis et al. 2004), and equation (6.59) can

take the following formats:

Forward-Euler (9 = O)

KT _[K ~At(K, +K

2= n+l

K.n)|T,+AF, (6.60)
Backward-Euler («9 = 1)

(K, +M(K, +K,,) T, =K, T, +AF,, (6.61)

Crank-Nicolson (6’ = %j
1 1 1
K, +— 5 At (K, +K ) | T =| K, —EAt(K +K.0) |T, +5At(EM +F,)  (6.62)
Galerkin [49 = %)

{K +§At([< +Kmv)}T [K —%At(]( +Kconv)}zn+At(§FnH+;F j (6.63)

If &+#0 the time-stepping schemes are called implicit, and if =0 the time-stepping
scheme is called explicit. It is demonstrated in Lewis et al. (1996) that for 1/2<6 <1 the
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solution is unconditionally stable, and when 0 <8 <1/2 the solution is conditionally stable
and the time step must be limited, such is the case of the Forward-Euler scheme. It is also
concluded that the Galerkin time-stepping scheme leads to less oscillatory errors than the

Crank-Nicolson time-stepping scheme, although this last one provides a higher accuracy

(Zienkiewicz 2000a).

6.2.5.2 Computational strategies
The implementation of the heat conduction problem in the FEMIX computer code for the

case of the transient linear analysis is presented in this section.

Considering the domain discretized into several finite elements and writing (6.59) in order
to group the nodes where the temperature is unknown, subscript F' (free), and in nodes

where the temperature is prescribed, subscript P (prescribed), results in

En+IZn+l = En+l (664)
being
E _ KI,FF + eAt (KC,FF + Kwnv,FF ) Kt,FP + eAt (KC,FP + Kconv,FP) (6 65)
n+l T .
Kt,PF + gAt (KC,PF + Kconv,PF ) Kt,PP + QAI (KC,PP + Kconv,PP)
Tn+l F
T = (6.66)
: |:Zn+l,P:|

F
Kt,PF - (1 - 9) At (KC,PF + Kconv,PF ) Kt,PP - (1 - 9) At (KC,PP +K )

Z_n+l T
== conv,PP

= {K[,FF - (1 - 9) At (KC,FF + Kconv,FF ) KI,FP - (1 - 9) At (KC,FP + Kconv,FP )]

o T,y 4 AOF, . r+ At(l - ‘9) Eror (6.67)
T AtOF . p+A(1-0)F,, »

n,P

0
J{At&F p+AL(1- Q)Eq,,n,p}

—qr.n+l,
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 are obtained by solving the following system

n+l

For the current time step, temperatures 7

of equations using the Gauss elimination method
(6.68)

En+l,FF Zn+l,F = En+l,F

where E, ., s the free effective thermal transient matrix defined by
(6.69)

EnH,FF = K:,FF +6A! (KC,FF + Kconv,FF )

 1s the free load vector for the current time step defined by

and the E il

EnH,F = [Kt,FF - (1 - ‘9) At (KC,FF + K{:onv,FF ):| Zn,F
+KI,FP (Zn,P - ZnH,P ) + (KC,FP + Kconv,FP ) [_ (1 - 0) Atln,P - eAthH,P:I (6.70)
+ [AIGELJH—I,F + At (1 - Q)EL,n,F }
For 6 # 0 the heat flux where the temperature is prescribed is calculated with
1 1 1-6
=—qr.n+L,P = K[,PF (@IWA,F _@Zn Fj + (EC,PF + Kcanv,PF ) |:Zn+l,F +u2n,F:|
1 1
+K, pp (@Znﬂf _%Zn,PJ
(1 _9) (6.71)
+ (KL‘,PP + Kwnv,PP ) Zn+l,P + 0 Zn,P
1-6 1-6
+ |:_£L,11+1,P _(fo)EL,n P:| + { %_qr,n,P}
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6.2.5.3 Numerical examples

To validate the implemented transient heat conduction model two numerical simulations
have been performed, being the corresponding results presented below. The first
simulation is a transient analysis based on the problem shown in Figure 6.2. The same
element mesh and material properties are used. The initial temperature is set to 0°C and a
Crank-Nicolson scheme is used. The evolution of temperature with time at the center point
(0.5, 0.5, 0.5) is plotted in Figure 6.5. It is verified that the temperature increases rapidly
until a steady-state is reached. The temperature field at different times is represented in

Figure 6.6, in the yz plane (see Figure 6.2).

250 A

200 A

150 A

100 ~

Temperature [°C]

50 4

0 T T T T T T T T T 1
0 0.2 0.4 0.6 0.8 1
Time [s]

Figure 6.5 — Temperature vs. time at point (0.5, 0.5, 0.5).

The second example for model appraisal is a bi-dimensional transient analysis proposed by
Zhou and Vecchio (2005). In the present case a three-dimensional representation of the
domain is performed, being represented in Figure 6.7. The domain is discretized with
8-noded hexahedral elements, and a 2x2x2 Gauss-Legendre integration scheme is used.
The conductivity of the material is constant and equal to 52 Jm's'K™', the specific heat is
460.0 Jkg'K™', and the density is 7850 kg/m’. The initial temperature is set to 0°C and a
Crank-Nicolson scheme is used. The temperature field at different instants is represented in

Figure 6.8.
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L |
t=0.001s t=0.01s
b d
t=0.025s t=0.05s
[ ]
| ]
n
||
t=0.1s t=1.0s

Figure 6.6 — Finite element mesh and temperature field for different instants of the transient analysis.
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Figure 6.7 — Transient analysis — domain and temperature distribution.

Figure 6.9 represents the evolution of temperature through the depth of the cross section at
the center line of the cube. It is verified that as time evolves the curves gradually tend to
the steady-state response. Similar results were obtained by Zhou and Vecchio (2005) for
the bi-dimensional analysis of the problem, and a comparison for different instants of the
transient analysis is represented in Figure 6.10. The differences between the two types of
analyses decrease with time, but even for the first instants the discrepancy is quite
acceptable taking into account that the analyses have been performed assuming a 2D and a

3D discretization of the body.



206 Chapter 6

t=50s t =200s

t =500s t=1000s

t =5000s t =50000s

Figure 6.8 — Finite element mesh of the domain shown in Figure 6.7 and temperature field for different

instants of the transient analysis.
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Figure 6.9 — Temperature variation through the depth of the cross section at the center line.
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Figure 6.10 — Temperature variation through the depth of the cross section at the center line — comparison

with the data from Zhou and Vecchio (2005).
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6.2.6 Transient nonlinear analysis

In the presence of early age heat development, the heat generation rate of cement based
materials can be obtained with the mathematical formulation proposed by Reinhardt et al.
(1982) and based on the Arrhenius type relation, being defined by equation (6.72)
(Azenha 2009).

E

_ a

Q:f(aT)Are R(273.154T) (6,72)

In this equation Q is the heat generation rate to be introduced in equation (6.43), f ((ZT) is

the normalized heat generation rate directly obtained through experiments (de Borst and

van den Boogaard 1984, Azenha 2009), 4, is a rate constant, £, (Jmol™) is the apparent

activation energy that depends on the type of cement, R is the universal gas constant
(8.314 Jmol'K™), and T is the temperature in°C. In this case the second member of
equation (6.64) depends on the temperature and, for that reason, an iterative process is
required at each time step to solve the nonlinear system of equations. The

Newton-Raphson method is used for this iterative process.

For the current time step n+1, the equation of the unbalanced heat fluxes can be defined

by

E(T ) = Enﬂ _EnHZnH (673)

= n+l

being F . and E ., defined by equation (6.67) and equation (6.65), respectively. For the

n+l

current time step n+1, it is intended that the vector i’(T ) is null, i.e.,

= n+l

Y¥(T,.)=0 (6.74)
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Equation (6.74) can be solved by applying the Newton-Raphson method. Considering the

first two terms of the Taylor series expansion, equation (6.74) can be approximated as
o)
q ~ q-1 L q
W(T )= (10 )+ (—M j ST}, =0 (6.75)

where the subscript ¢ is the iteration counter. In equation (6.75)

ovY"  (o(E-£T))" .,
{15 e

n+l

is the Jacobian matrix. For simplification, the term 0F ., / or qH is dropped in the present
formulation, being the Jacobian matrix equal to the effective tangential matrix, £, of the

g —1 iteration of the current time step, n+ 1. Substituting (6.76) into (6.75) yields
q-1 q _ q-1
(E;) 0T, =¥(T5)) (6.77)

An iterative procedure is executed up to the solution of equation (6.74), and in each

iteration the vector of the temperatures is updated as follows

T, =T "+6T!, =T, +AT., (6.78)
with
ATZH Z5Tn+l - TZ+1 +§TZ+1 (679)

being 7', =T, and AT, =0 at the beginning of the iterative process.
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The normalized heat generation rate f (OlT) is obtained directly from experiments, and is a

function of the degree of heat development «,. This parameter describes the relative

amount of heat generation due to the cement hydration (Ferreira et al. 2008, Azenha 2009)

o(1)
r=—— 6.80
“ Qtotal ( )

where Q(t) is the accumulated heat generated until a certain instant ¢, and Q,,, is the

final accumulated heat of the cement (or binder) hydration. An initial value for the degree

of heat development «;,, is necessary to numerically activate the nonlinear transient

analysis due to early age heat development.

6.2.6.1 Numerical examples

An experimental program has been executed by Azenha (2009) with a concrete cube of
40 cm edge length. The cube was monitored with temperature sensors placed at several
points within the cube. A thermography camera has also been used to obtain the
temperature field (thermography pictures) during the hardening of concrete. Figure 6.11
represents schematically the geometry and the boundary conditions of the cube. Only one
face is in contact with the environment, while in the others a wooden formwork separates

the concrete from the environment.

The value of the heat transfer coefficient assigned to the face that is in contact with the
environment is 10.0 Wm™?K™", and for the other faces an equivalent heat transfer

coefficient, heq , 1s used to account for the wooden formwork. The value is obtained with

the electrical analogy (Holman 1986, Incropera et al. 2006, Azenha 2004)

1 o«
h, = {7+Z;} (6.81)



Thermo-mechanical model 211

being L and k, the thickness and the thermal conductivity, respectively, of the i” layer of

the material located between the concrete and the environment. In the present case, the
wooden formwork has a thickness of 1.85 cm and a conductivity of 0.2 Wm'K™', and a
value of 5.2 Wm™K™' for h,, is obtained. The wooden formwork of the lateral faces is
removed 8.6 h after casting, and the corresponding faces of the concrete cube are made in
contact with the environment, being a value of 10.0 Wm™K" assigned to the heat transfer

coefficient.

am

e | 4
To=200c A
| ’ 40.0 cm

. y

e [] Wooden formwork
. Beg=5.2 Wni’K!

] Concrete
h=10.0 Wm K"
T,,=26 °C

40.0 cm

7L

40.0 cm

Figure 6.11 — Geometry and the boundary conditions.

In the numerical analysis the domain is discretized with 8-noded hexahedral elements with
a 2x2x2 Gauss-Legendre integration scheme. The material conductivity, &, is constant and
equal to 2.6 Wm™'K™", the volumetric heat capacity, oc, is 2400.0 kJm~ K™ and the initial
temperature is set to 26 °C. The ambient temperature is 20 °C and a Backward-Euler time

integration scheme is used with an incremental time step of 864s.

The values that characterize the heat generation rate defined by equation (6.72) are

dependent on the type of cement used in the experiment. A type I 52.5R cement content of
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430 kg/ m’ has been used (Azenha 2009), with 4, =1.2053E+09x430, E, =47.51kJ/mol
and Q,,, =383.13x430kJ/m’ . The normalized heat generation rate f (aT) used in the

analysis is represented in Figure 6.12, and a value of 0.05 is considered for o, .

o, f(ar)

0.00 0.000

L0 - 0.05 0.626
0.10 0.883

0.15 0.988

0.8 0.20 0.997
0.25 0.995

0.30 0.946

= 0.6 1 0.35 0.832
) 0.40 0.683
041 0.45 0.544
‘ 0.50 0.435
0.55 0.347

02 1 0.60 0.273
0.65 0.218

0.70 0.173

0.0 - . - . - . - . - . 0.75 0.123
0.0 0.2 0.4 0.6 0.8 1.0 0.80 0.072

o 0.85 0.035

0.90 0.018

0.95 0.009

1.00 0.000

Figure 6.12 — Normalized heat generation rate.

As mentioned before, the cube is monitored by temperature sensors placed at several
points. Azenha (2009) has compared the experimental results with numerical simulations
and a good agreement was achieved. To assess the predictive performance of the
developed thermal transient nonlinear model, the temperature due to heat generation during
the first 24 h is compared with the numerical simulations of Azenha (2009) at two points
(see Figure 6.13). One point (TP21) is located at the center of the top surface of the cube
(0.2, 0.2, 0.4) and the other (TP9) is located at the center of the lateral surface (0.2, 0.4,
0.2). From Figure 6.13 it can be concluded that the present model matches perfectly the
numerical simulations performed by Azenha (2009) at the predefined points. This figure
also shows that, due to the presence of the lateral wooden formwork, a greater temperature
gradient due to the heat generation has occurred at the point located on the face that
contacts directly with the environment. When the lateral formwork is removed (8.6h after
casting) an inflection point is observed in the TP9 ThermalModel curve, and its
temperature curve tends to match the results of the TP21 ThermalModel. Both curves are

almost coincident after a period of 12.0h.
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Figure 6.13 — Temperature evolution at two points of the cube during the first day.

Figure 6.14 represents the temperature field at two different times of the transient analysis.
One is the temperature field at the first time step (¢=0.24h) and the other is the temperature
field at the last time step (r=24h). Some conclusions can be drawn by observing these
temperature fields. At t=0.24h, only the top face of the cube is in direct contact with the
environment, and it can be observed that the temperature gradient is smaller compared with
the gradient of the faces that contact the wooden formwork. The observation of the
temperature field at time r=24h leads to the conclusion that the lateral faces tend to exhibit
a temperature distribution that is similar to the one observed on the top surface. However,
the bottom face has a significantly different temperature field, with a greater temperature

gradient. This is justified by the presence of the wooden formwork on this face during the

whole test.

Another example for assessing the predictive performance of the implemented model is a
concrete wall that is cast on a hardened concrete foundation. The analysis of this structure
assuming plane strain conditions was analyzed by Lura and Breugel (2001). In the present
work a three-dimensional representation of the domain is performed, assuming for the wall
a length of 8 m, as shown in Figure 6.15. The domain is discretized with 20-noded

hexahedral finite elements (see Figure 6.17), and a 3x3x3 Gauss-Legendre integration
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scheme is used. The conductivity of the material is constant and equal to 2.6 Wm™'K™', the
volumetric heat capacity, oc, is 2400.0 kJm~ K™ and the initial temperature is set to 20 °C.
The ambient temperature is also 20 °C and a Backward-Euler time integration scheme is

used with an incremental time step of 1800s, being the total time of the analysis 120 h.

S T X L LR RN A8 GO )
T T WA W W L T

Figure 6.14 — Finite element mesh of the body represented in Figure 6.11, and temperature field for the first

and last time step of the transient analysis.
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Figure 6.15 represents schematically the geometry and the boundary conditions of the wall
and the foundation. The top face of the wall is in contact with the environment, while a
wooden formwork separates the others concrete surfaces from the environment until a
curing period of 72h. After this time the wooden formwork is removed. An equivalent heat

transfer coefficient, A

eq ?

is used to account for the wooden formwork, which is obtained

with the electrical analogy by using equation (6.81).

0.4 m

] Wooden formwork
hoy=3.1 Wni’K"

3.0m Center | ® |
|| Hardened concrete

h=50 Wm K

&l Fresh concrete
h=50Wm K’

3.0m T,,=20°C

Figure 6.15 — Geometry and the boundary conditions.

As stated before, the values that characterize the heat generation rate defined by equation

(6.72) are dependent on the type of cement used in the experiment. By the analysis of the
type of cement used in Lura and Breugel (2001), cement content (400kg/ m’) and
activation energy (45.7 kJ/mol), the following data was derived, taking for this purpose

information available in (Azenha 2009): a type I 52.5R cement with 4, =7.400E+09 x 400,

E,=46.18kJ/mol and Q,,, =386.3x400 kJ/ m’ . The normalized heat generation rate
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f ((ZT) used in the analysis is represented in Figure 6.16, and a value of 0.05 is considered

for oy 4, -
o, f(ar)
0.00 0.00
10 - 0.05 0.62
0.10 0.88
0.15 0.99
0.8 1 0.20 1.00
0.25 1.00
0.30 0.95
= 0.6 1 0.35 0.85
g 0.40 0.70
0.45 0.56
0.4 0.50 0.45
0.55 0.36
02 1 0.60 0.28
0.65 0.23
0.70 0.18
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0.0 0.2 0.4 0.6 0.8 1.0 0.80 0.08
ar 0.85 0.04
0.90 0.02
0.95 0.01
1.00 0.00

Figure 6.16 — Normalized heat generation rate.

Only one quarter of the wall-foundation system is used in the analysis, due to double
symmetry of the problem. The temperature field for different time steps of the transient
analysis is represented in Figure 6.17. It can be observed that the temperature is higher in
the interior of the wall and tends, with time, of attaining the ambient temperature. Due to
the high convection heat transfer in the external surfaces, the temperature field decreases
from the core of the wall to these lateral surfaces, being the lowest temperature registered
in the corners between the top and the front-lateral surface. This is more pronounced after a

time of 72h, when the wooden formwork is removed.

Figure 6.18 represents the temperature evolution at three points of front edge of the wall
(see Figure 6.15). It can be observed that the highest temperature development is in the
center point and the lowest is at the bottom point in contact with the foundation. At a time
of 72 h a smooth inflection point is observed in the curves due the removal of the wooden
formwork. Similar results were obtained by Lura and Breugel (2001) and are presented in
Figure 6.19. The main difference is the time corresponding to the peak temperature. By the
observation of the adiabatic curve of hydration and heat release presented in Lura and

Breugel (2001), the heat release up to 8h is abnormally very low.
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Figure 6.17 — Finite element mesh of the body represented in Figure 6.15, and temperature field for different

time steps of the transient analysis.
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Figure 6.18 — Temperature evolution at three points of edge of the wall.
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Figure 6.19 — Temperature evolution at three points of edge of the wall (Lura and van Breugel 2001).
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6.3 TIME-DEPENDENT DEFORMATIONS

Using the concept of strain decomposition, the total strain at time ¢, &(¢), of a concrete

member uniaxially loaded at time #, with constant stress o(f,) can be expressed by

(Pévoas 1991, CEB-FIP 1993, Hofstetter and Mang 1995, Henriques 1998)

e(t)=e"(t,)+e (1)+& (1) +&" (1) (6.82)

where &"(¢,) is the initial strain at loading, &°(¢) is the creep strain at time ¢ >7,, &"(¢)

is the shrinkage strain and &' () is the thermal strain.

The strains &” (¢,) and &°(r) are caused by applied stresses, being thus called mechanical

strains, while the other two components ¢°(¢) and & () are independent from the stress

field (Bazant 1988).
The thermal strain &" (t) can be obtained from the temperature field at a certain instant,

e.g., using the results of the thermal model described in section 6.2 and performing the

following calculation

e' (t)=aAT (6.83)

being « the coefficient of thermal expansion and AT the temperature variation.

The procedures required to evaluate the shrinkage, &°(¢), and creep, &°(¢), strains are

described in the following sections, which are based on the approaches proposed by the

Eurocode 2 (EC2 2004), and by Bazant and Baweja 2000 (B3 model).
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6.3.1 Shrinkage

6.3.1.1 Eurocode 2

The total shrinkage can be calculated with

e (t)=¢,(t)+e,(t.1,) (6.84)

where ¢, (t) is the autogenous shrinkage strain at time ¢ defined by equation (6.92), and

&, (t,t) is the drying shrinkage strain at time ¢, which can be determined with the

following equation

eq(t1)= B (.1, k6.0, (6.85)
where
t—t
By (t.1,)= =) (6.86)

(1—1,)+0,04\/h;

and k, is a coefficient that depends on the notional size, /4,, and takes the values according

to Table 6.1.

Table 6.1 — Values for £, .

h, [mm] k,
100 1.0
200 0.85
300 0.75

>500 0.70

In equation (6.85) ¢, , is the notional drying shrinkage coefficient defined by
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.00 =0.85 {(220 +110a, )exp(—oxds2 %ﬂ 10° B, (6.87)

where a,, and o, are coefficients that depend on the type of cement

3 for cement Class S
a,, =14  for cement Class N (6.88)
6  for cement Class R

0.13  for cement Class S
a,,=+0.12  for cement Class N (6.89)
0.11 for cement Class R

and S, is the coefficient that introduces the effect of the relative humidity on drying

RHY
B = _1'5{1_(WJ } (6.90)

being RH the ambient relative humidity (%).

In the above equations, 7 is the age of concrete in days when the phenomenon is evaluated,

t, is the age of concrete in days at the beginning of the drying shrinkage, and in equation

(6.86) h, is the notional size of the cross section, in mm, defined by

hy == (6.91)

where A is the concrete cross sectional area, in mm?, and u is the perimeter of the part of

the cross section which is exposed to drying, in mm.
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In equation (6.87) f, is the mean compressive strength of concrete at the age of 28 days

in MPa.

The autogenous shrinkage strain, ¢, (), is defined by

£ (1) = B (1) €0 () (6.92)

where £, () is a function defined by

B, (t)=1-exp(-0.2t"*) (6.93)
and
£.,(0)=-2.5(f, —10)x10° (6.94)

where f, is the characteristic compressive strength of concrete at the age of 28 days in

Ci

MPa. Its value can be estimated with

Ju =T =8 (6.95)

6.3.1.2 Model B3

According to this model the total shrinkage strain is calculated with
e (t)=¢,(t)+e,(1.1,) (6.96)

where &, (t) is the autogenous shrinkage strain obtained with equation (6.110), and

&, (1,1,) is the drying shrinkage strain defined by
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e, (t,8)=—€,.k,S(¢) (6.97)
where S(7) represents the time-dependence
t—t,
S(t) = tanh : (6.98)
z-sh
k, introduces the humidity dependence
-7 for h<0.98
k,=4-0.2 for h=1.0(swelling in water) (6.99)
linear interpolation  for 0.98<h<1.0
and ¢, considers the time-dependence of ultimate shrinkage
E(607) 6100
Egpy =y —
sho S0 E(fY + Tsh) ( . )
being
t
E(t)=E,, | ——— 6.101
(£)= Ex [4+O.851j (6.101

where E,, is the given by

E, =4734,/f..

(6.102)
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In the above equations, ¢, ¢, and f, have the meaning already presented in the previous

section, and % is the ambient relative humidity, expressed as a decimal number in the

range 0 <A <1. In equations (6.98) and (6.100) 7, is the shrinkage half-time in days given
by

z, =k (kD) (6.103)

N

where £, is a factor defined by

k, =8.5¢,°% f1/4 (6.104)

The parameter k, is the cross section shape factor, calculated according to

1.00 for an infinite slab

1.15 for an infinite cylinder

k., =41.25 for an infinite square prism (6.105)
1.30 for a sphere

1.55 for a cube

and D represents the effective cross section thickness, obtained with

p==" (6.106)

being /S the volume to surface ratio in cm.

In equation (6.100) &, is calculated with
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£, =0, [1.9x107 0™ £, +270 ] x10°° (6.107)

500

where o is the water content of the concrete mix, in kg/m™. The parameters @, and c, are

defined by

1.00 for type I cement
a, =40.85 for type Il cement (6.108)
1.10 for type IIl cement

and

0.75 for steam-curing

1.20 for sealed or normal curing in air with initial

a, = 6.109
2 protection against drying ( )

1.00 for curing in water or at 100% relative humidity
The autogenous shrinkage strain, ¢, (), is defined by
&, (1)=¢6,,(099-nh,,)S,(t) (6.110)

being £, the final self-desiccation humidity, that can be assumed to be about 80% (Bazant

and Baweja 2000), ¢, the final autogenous shrinkage strain and

t — tset

S, (¢) = tanh (6.111)

T

a

In this equation ¢, is the time of final set of cement in days, and 7, is the half-time of

autogenous shrinkage, depending on the rate of hardening of the type of concrete.
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According to Bazant and Baweja (2000) the material parameters of equations (6.110) and
(6.111) may be calibrated by performing shrinkage measurements in sealed specimens

(autogenous shrinkage) and drying specimens (total shrinkage).

6.3.2 Creep

6.3.2.1 Eurocode 2

The creep strain at time ¢, &° (t) , for a constant stress, o, , applied at a concrete age f, is

given by

& (t)z(p(t,to)% (6.112)

c

where E_ is the tangent modulus of concrete, that can be considered equal to 1.05E ,

being £, the secant modulus of elasticity of concrete at an age of 28 days. In Equation

(6.112) the creep coefficient ¢(z,7,) is defined by

o(1,1,)=p,B.(1.1,) (6.113)

where @, is the notional creep coefficient determined from equation (6.114); S, (t,to) is

the coefficient that describes the time dependent evolution of creep after loading, defined

by equation (6.116), being ¢ the age, in days, when the creep is evaluated, and ¢, the age

of concrete at loading in days.

P = PenB(S.) B(1,) (6.114)

where
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1= RH/100
oo =141 \//_ for fun<35 MPa (6.115)
1= RH/100
(ﬂm{l 01\/_ } a, for fom> 35 MPa (6.115b)
16.8
f,,,)=T (6.115¢)
1
ﬂ(fo)=—0 ) (6.115d)
. 0

being RH the relative humidity of the ambient environment, in %, #, is defined by
equation (6.91) and f, is the mean compressive strength of concrete at the age of 28 days

in MPa. The term f3,(¢,%,) in equation (6.113) is determined with

(l‘ l‘) 0.3
B.(t.1))=| —— (6.116)
By +t—t,
being
=1.5/14(0.012RH)"* |h +250 <1500 for fum<35MPa 6.117a
o 0 ( )
=1.5/1+(0.012RH)" | h +250c, <1500, for fon> 35 MPa 6.117b
H 0 3 3 ( )

The coefficients «,, «, and «; in equations (6.115) and (6.117) depend on the mean

compressive strength of concrete, and are defined by

a, :{3—5} | a, :{3—5} | a, :{3—5} | (6.118)
/;‘ﬂ’l /;‘ﬂ‘l ﬂm
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The effects of temperature during the curing phase and type of cement on the creep

coefficient of concrete may be taken into account by modifying the value of the parameter

that considers the age at loading ¢,

ty=ty;| —————5z+1| 20.5days (6.119)

where o is a parameter that depends on the type of cement

—1 for cement Class S
a =30 for cement Class N (6.120)
1 for cement Class R

and ¢, is the age of concrete at loading, in days, adjusted according to the following

equation

_[ 4000

n T (AL .65]
=Y e T Ay (6.121)

being T (Atl.) the temperature in °C during the time period Af;, in days.

When the compressive stress of concrete at age f, exceeds the value 0.45f,(z,) the

nonlinearity of creep may be taken into account by considering

0, (t.1,) = o (1.1, ) exp| 1.5(k, —0.45) | (6.122)
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where (pnl(t,to) is the nonlinear notional creep coefficient and replaces (o(t,to) and

k,=0,/f,(t), which is the stress-strength ratio, being f,(¢,) the characteristic

compressive strength of concrete at time of loading.

6.3.2.2 Model B3

The compliance function J (t,to) or creep function, represents the strain (elastic plus

creep) at time £, caused by a unit constant stress applied at age 7, , and is given by
J(t.ty)=q,+C, (1,1))+ C, (t.1,.1,) (6.123)
where g, is the instantaneous strain due to unit stress

~0.6x10°

(6.124)
E28

q,

being FE,, obtained from equation (6.102). The parameter C, (t, to) is the compliance

function for basic creep, i.e., creep at constant moisture content and no moisture movement

through the material (Bazant and Baweja 2000), obtained with

Co(t:1,) = 4:0(1t0) + 4 [ 1+(1=1,)' | +g,Tn [ti] (6.125)

0

where
g, =185.4¢" £0% ¢, =029(w/c) ¢, ; q,=203(afe)"’ (6.126)

and
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o) | r(zo)
_ 0, (1) 6.127
0(1,4,)=0,(1,) IJ{Z(ZJO)] (6.127)
in which
r(t,)=1.7(1)" +8 (6.128a)
Z(t:t) = (1) " [ 1+ (1=1,)" | (6.128b)
0, (1) =] 0.086(1,)" +1.21(s,)" | (6.128¢)

In equation (6.123) C, (t, to,ts) is the additional compliance function due to drying given

by
C, (t.tyot,) =, [exp{—SH(t)} - exp{—SH(t(;)}T/2 (6.129)

where ¢, is the time at which drying and loading first act simultaneously, ¢, = max(to,ts ) ,

and
H(t)zl—(l—h)S(t) (6.130)

being S (t) given by equation (6.98). The meaning of the parameter / is described in

section 6.3.1.2, and _ is the age of concrete in days when drying begins.
The value of ¢, in equation (6.129) is given by

q:=7.57x10° f | ¢
5 cm

shoo

[ (6.131)
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where ¢, 1s obtained with equation (6.100).

In the above equations n=1.0, m=0.5, ¢ is the cement content, (w/c) the water to

cement ratio, (a/c) is the aggregate to cement ratio and f, is the mean compressive

strength of concrete at the age of 28 days in MPa.

According to (Bazant and Baweja 2000) the creep coefficient should be calculated from

the compliance function as follows
o(t.t,)=E(1,)J (t,2,)—1 (6.132)

where E (to) is the modulus of elasticity at loading age ,, being obtained with equation

(6.101).

6.4 CONCRETE MATURITY

The concrete mechanical properties increases significantly with time and consequently
these changes must be taken into account. The maturity of concrete is a consequence of the
hydration process of the cement paste and its evolution is strongly affected by temperature,

curing conditions and type of cement (Henriques 1998).

The recommendations of Eurocode 2 (EC2 2004) to simulate the evolution of the

compressive strength, tensile strength and modulus of elasticity are the following

Lo (£)=B..(2) 1., (6.133a)
S ()=[B. ()] Lo (6.133b)

E,()=[8.()]"E., (6.133¢)
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where f

'ms Jom and E_ - are the mean compressive strength, the mean value of the tensile
strength, and the secant modulus of elasticity of concrete at an age of 28 days. In equation

(6.133b) « is a parameter whose value depends on the considered age ¢

for t <28 days

1
o= 6.134
% for t > 28 day ( )

In equation (6.133) B _(¢) is determined from

B..(1)=exp {S{l—(?]l/z:l} (6.135)

being

0.38  for cement Class S
§=40.25  for cement Class N (6.136)
0.20  for cement Class R

To define the tensile diagrams described in section 3.3.2.2 of chapter 3, the mode I fracture
energy must be supplied. An experimental program is necessary to obtain data to propose
an equation that defines the evolution of the fracture energy with time. Since this
experimental work is out of the scope of this thesis, a relation is proposed by using the

coefficient of equation (6.135), which depends on the age of the concrete, ¢

G (1)=[B.(1)]" G} (6.137)
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where G} is the mode I fracture energy of concrete at an age of 28 days, and ¢, is a value

that defines the evolution of S, (¢#) While no more reliable information is available, the

values indicated in equation (6.134) will be used in the present work.

If the mean temperature differs from the reference temperature, 20 °C, the concept of
equivalent age is commonly used. This concept can be defined as the age at which the
hydration at the reference temperature has reached the same stage (Bosnjak 2000, Azenha

2009), and can be determined by

, _@[ 1 1
‘. :J'e R\ 273.15+7(1) 273.15+T,,, dr (6.138)
0

or in an incremental form

E, 1 1

n _?[273.15+T(At,.) 273.15+T,,, X At (6.139)

L, =) ¢

being £, (Jmol™) the apparent activation energy that depends on the type of cement, R the
ideal gas constant (8.314 Jmol'K™), T, the reference temperature (20 °C) and T (Ati) the

temperature in °C during the time period Az, in days.

Equation (6.139) is very similar to equation (6.121) proposed by EC 2 (2004) for the age
adjustment. Making some calculations, the equation of EC 2 (2004) assumes an apparent
activation energy of about 33256 Jmol™ for a reference temperature of 20 °C. These two
approaches are available to the equivalent age calculation. The equivalent age is introduced

in the above equations for the evaluation of the mechanical properties of concrete.
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6.5 UPDATE OF THE MULTI-FIXED SMEARED 3D CRACK MODEL TO
TAKE INTO ACCOUNT THE TIME DEPENDENT EFFECTS

In chapter 5 a multi-fixed smeared 3D crack model, under the nonlinear FEM framework,
is proposed to simulate the behavior of concrete structures. In this section this model is

adapted to include the time dependent effects.

In this smeared crack model the strain components of the cracked material is the addition

of the strain components in the smeared cracks, &, with the strain components in the

uncracked concrete between cracks, &

g=g"+¢&" (6.140)

Taking into account the time dependent effects described in section 6.3, the strain vector of
the uncracked concrete is decomposed in order to include these effects. So, equation (6.82)

is adapted and results in

e(t)=e"(t,)+e (1) +e' 1)+ (1)+&" (1) (6.141)

. ; T . . .
where &, £°, £ and, & are the elastic, creep, shrinkage and thermal strain vectors, and

& is the crack strain vector. A nonlinear transient analysis must be performed, since the

total strain is time dependent, being its components evaluated during the time.

If the maximum compressive stress is less than 0.4 of the compressive strength of the
concrete, the mechanical strain for a uniaxial loaded concrete specimen can be obtained

with

g"(t)=¢(t,)+e (1)=J(t.t,)o(t,) (6.142)
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where J (t,to) is the compliance function or creep function, representing the strain, elastic

plus creep, at time ¢ caused by a unit constant uniaxial stress acting since time f,. Since

the elastic strain is defined by

~N
(=3
N—"

e (t,)= (6.143)

where E_(t,) is the modulus of elasticity at the time 7, the compliance function can be

given by

J(tt0) = )+C(t,f0) (6.144)

& (t):C(t,to)a(to):(J(t,to)—m}j(to) (6.145)

or introducing the creep coefficient ¢(t,7,)=E(z,)C(1,¢,), the creep strain can be

determined from

& ()= o (1) 2L0) (6.146)

gm(f):[E(lto) +C(t,t0)j0'(t0) (6.147)
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Assuming that the strain caused by a generic stress history O'(t) can be determined by the

decomposition of the stress history into small increments dO'(t') applied at times ¢

(Bazant 1988), the mechanical strain is

t

[7(t.t)do(t)

0

e" (1)

By performing

equation (6.148) can be rewritten as

t

[(t.0)o ()

0

&" (1)

or, for a three-dimensional stress state,

[s(er)ce (r)ar

0

e"(t)

where C = E (Q”” )_1 , being D defined by equation (5.12) of chapter 5.

(6.148)

(6.149)

(6.150)

(6.151)

For an incremental time step A¢, the incremental mechanical strain vector is obtained with

Ag"(t,)=¢£"(t,,)-£"(2,)

(6.152)
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being &"(7,,) and &£"(¢,) the mechanical strain vector at the time f,, and f,,

respectively.

Using equation (6.151) in (6.152) the mechanical strain increment vector is given by

A" (1,)= [ I (t,1') Co ( jdf+TﬂmQHJjgg@qdf-onﬁjgg@jdf (6.153)

0

or

t"l

Ag’”(tn):.[[J(t,m,t')—J(t,t')]ga dt+j t,,1")CS () dt' (6.154)

0

Multiplying this equation by the matrix C™', and taking into account thatC ' =

equation (6.154) becomes
D.,As" :I bst') = (8,1') |0 (1 d”f ') (t)dt (6.155)

where D=E"'D”.

Considering that in the incremental time step, Af, a linear variation of the stress is

assumed, its derivative is approximated by

o 0a(t) alt.)-alt,) Aa(t,)
o(f)=— s e (6.156)

n+l n

Substituting this relation in the second integral of equation (6.155) and making some

arrangements, results in
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A
DA" (t,) = [T (o) =T (1.2') |0 (£') dt
Ag(tn): °1 — (6.157)
- [I(t,01)ar
This equation can be written as (de Borst and van den Boogaard 1984)
Ac(t,)=E(t)D, A" (1,)+5(1,) (6.158)
where
N g 6.159
EJJ(tM,t)dt (6.159)
and
& (t,)==E () [[ (t,0rt) = (1,1") |0’ (6.160)

0

with ¢, <t <t (using a generalized midpoint rule)

To overcome the inconvenient of storing the entire load history, the use of Dirichlet series

is commonly used, so the approximation of the compliance function is made by a series of

real exponentials (Bazant and Wu 1973, Bazant 1988)

T,
L')=——+) = —e ™
(1) ZE.)

(6.161)
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where 7, are constants designated by retardation times, E# are coefficients only

depending on ¢' that have the dimensions of an elastic moduli, and E (t') is the
instantaneous elastic modulus. The process for the determination of the retardations times,
T, and the coefficients Z_?,, can be found elsewhere (Bazant and Wu 1973, Bazant 1988,

Povoas 1991). Dirichlet series expansion of the compliance function, as presented in

equation (6.161), can be interpreted as a Kelvin chain of N units (Bazant and Wu 1973).

The incremental mechanical strain vector, Ag" , can be related to the other components of

equation (6.141), rewritten in an incremental form for the a time step At

Ae"(t,)=Ac(t,)-Ag (t,)-Ag (t,)-Ae" (¢,) (6.162)

—_— — n

Introducing this equation in equation (6.158) results in
Ac(1,)=E()D] Ac(,)- A" (1,)- A" (1,) - A" (1,)]+5(,) (6.163)

Considering equations (5.5), (5.10) and (5.13) of chapter 5, written for the time ¢, , results

in

Ao {(t,)=T"Ac(t,) (6.164a)
Ag” (1,)=] 17 ]T Ag/ (t,) (6.164b)
Ao {(t,)=D"As{(1,) (6.164c)

Introducing equation (6.163) in the second member of equation (6.164a), results in
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Ac(t,)=T" (E(t*)Q(Ag (t,)-A&"(1,)+Ag" (1,)+Ae” (¢, )) + 5(z,,)) (6.165)

Introducing equations (6.164b) and (6.164c) in equation (6.165), and making some

arrangements, yields

-1
ae7(t,)=(0+ 1 B[] )

(6.166)
(TG As(1,)-a8'(1)-2¢' 1,)] 750,
By including equation (6.166) in (6.164b), it can be obtained
T ., 7\~
Aécr(tn):[zcr} |:(QCF+ZCIE(t )Q[Zsr] ) %
(6.167)

(T B¢ ID[as(r,)-ae'(1)-¢ ()] +1750,) |

and then introducing equation (6.167) in equation (6.163) and making some operations, the

incremental stress vector is obtained with

ro(s,)- ([—E(f*)Q[Z”}T (ch +ZCVEU*)Q[Z”]T )—1 Zchx ( :
6.168

(E(t*)Q(Ag(tn )-Ag"(1,)-Ag (¢, )) + 5(%))

Equation (6.168) replaces equation (5.20) in the multi-fixed 3D crack model presented in
chapter 5.

The incremental shrinkage strain is obtained by one of the models described in section 6.3,
and the incremental thermal strain is determined from the temperature field, e.g., using the
results of the thermal model described in section 6.2. For the three-dimensional case, these

vectors are defined by
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g (1,)=[Ae A& Aet 0 0 0] (6.169)
T T T T r
Ag'(t,)=[A" A" AsT 0 0 0] (6.170)
and are obtained with
A (1)=& (t,u) =" (1,) + A (1,)=¢ (t,1)-¢"(1,) (6.171)

6.5.1 Numerical example
The performance of the model is appraised by performing a thermo-mechanical analysis of
a prefabricated reinforced concrete bridge beam with a U-shaped cross section (Ferreira

et al. 2008), as represented schematically in Figure 6.20.
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! 200 !

Figure 6.20 — Geometry of the prefabricated reinforced concrete bridge beam with a U-shaped cross section.

In the precast industry different heat curing regimes (Ferreira et al. 2008) are frequently
used to provide an early age strength development capable of anticipating the process of
demolding as much as possible. In the present numerical simulation, the beam is subjected
to one of these heat curing regimes, and its consequence in the strength development and

an eventual crack formation is assessed. In the analysis carried out, a beam segment of
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10.0 m length is considered since Ferreira et al. (2008) has verified that lengths greater
than 10.0 m have no influence on the results. Due to double symmetry of the problem, only
one quarter of the beam is modeled in the thermal and mechanical analysis (see Figure
6.22). The ordinary rebars and the prestressing cables are not taking into account since
Azenha (2009) has verified their marginal influence on the thermal analysis. For the
mechanical analysis the reinforcement has also a reduced influence up to the hardened
phase of concrete. However, if cracking occurs the influence of the reinforcement in the
cracking process can be significant, but the computing time required for the inclusion of
the rebars on the simulation has supported the decision to postpone this study for a future

publication.

The values that characterize the heat generation rate defined by equation (6.72) are
dependent on the type of cement used in the concrete of the beam. The following data was

used to characterize the C50/60 self-compacting concrete (Ferreira et al. 2008): cement

type [ 52.5R (332kg/m3) with 4, =1.2053E+09x332, E, =47.51kJ/mol and

Q,. =383.13x332kJ/m*. The normalized heat generation rate f ((ZT) used in the

analysis is similar to that represented in Figure 6.12, and a value of 0.05 is considered for

aT Jnit *

The domain is discretized with 20-noded hexahedral finite elements (see Figure 6.22), and
a 3x3x3 Gauss-Legendre integration scheme is used. The conductivity of the material is

constant and equal to 2.6 Wm™'K™', the volumetric heat capacity, pc, is 2400.0 kJm K

and the initial temperature is set to 25 °C. The ambient temperature is defined by the heat
curing regime imposed to the beam, and has the following development (see Figure 6.21):
30 °C during 1h, followed by an increase of 10 °C/h until a temperature of 80 °C is reached,
then this temperature is maintained during 3h, followed by a decrease of 10 °C/h until the
temperature of 20 °C is attained. An equivalent heat transfer coefficient of 12.0 WmK™ is
assigned to all exposed faces of the beam. A Backward-Euler time integration scheme is

used with an incremental time step of 3600s, being the total time of the analysis 72 h.

Figure 6.21 represents the temperature evolution at two points located in the cross section

of the beam coinciding with the longitudinal symmetry plane, one at the top flange,
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P, (0.0, 0.0, 210.0), and the other at the interior of the bottom flange, P, (0.0, 166.0, 18.0)
(see Figure 6.20 and Figure 6.22). The temperature curing regime is also represented and it
can be observed that the temperature at P; and P, points rapidly increases in the first
12 hours, and then decreases up to reach the ambient temperature. Temperature
development in these points has similar shape format, but point P; located at the top flange
presented a higher temperature decrease rate than point P, located at the interior of the
bottom flange. Similar results were obtained by Ferreira et al. (2008), and the main
difference between these two studies was registered in the peak temperature observed at
about 12 hours after casting. A justification can reside on eventual small differences on the
location of the points and on the boundary conditions adopted in both analyses, since this

information is not clearly indicated in the reference Ferreira et al. (2008).

The temperature field for different time steps of the transient analysis is represented in
Figure 6.22. It can be observed that due to the high convection heat transfer in the external
surfaces, the temperature field decreases from the center of the U-shape beam walls to the

external surfaces, and tends, with time, for the ambient temperature of 20 °C.
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Figure 6.21 — Heat curing regime and temperature evolution at two points of the symmetry plane of the beam.
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Figure 6.22 — Finite element mesh of the structure represented in Figure 6.20

different time steps of the transient analysis.
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The temperature field from the thermal transient analysis was used in the mechanical
transient model described in the previous section, in order to predict the corresponding
stress field. The evolution of the material properties, such as compressive strength, tensile
strength and modulus of elasticity, was simulated by using equation (6.133). The

equivalent age concept (z,, ) obtained by equation (6.139) was used in equation (6.133), by
substituting the time ¢ by ¢, . The support conditions consist in prescribed displacements

in z direction in all points of the bottom flange of the beam in order to simulate the vertical
support provided by the formwork, and prescribed displacements to take into account the
double symmetry of the beam. The material properties used in the numerical simulations
are presented in Table 6.2. The values of the compressive strength, tensile strength and
modulus of elasticity correspond to an age of 28 days for a C50/60 concrete strength class,
and the value of the fracture energy for the same age is obtained according to CEB-FIP
(1993). The value of the parameters that characterize the tensile softening diagram was
also obtained according to CEB-FIP (1993) recommendations. The same finite element
mesh and Gauss-Legendre integration scheme used in the thermal analysis is adopted in

the mechanical transient analysis.

Table 6.2 - Values of the parameters of the constitutive model used in the mechanical numerical simulations.

Poisson’s ratio

v=0.2

Thermal coefficient

a=1.0x10"/°C

Young’s modulus

E, =37.0GPa

Compressive strength

f., =58.0 MPa

Tension softening diagram

fim =41MPa; G} =198.53x10° MN/m;
& =0.061; &, =0.15; & =0.4432; @, =0.09

Parameter defining the mode I
fracture energy available to the
new crack

p,=0

Shear retention factor

Exponential (p, =2)

Crack bandwidth

Cubic root of the volume of the integration point

Threshold angle

a, =30°

__cr cr
a,=o,,/0

nl>

__cr cr _cr cr _
a, = O-n,3 /O-n,l ’ él - gn,Z /gn,u ’ 52 -

&,/ &,, (see Figure 3.6)
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Three numerical analysis were performed, one considering the concrete with elastic
behavior, a second one using the crack constitutive model, and the last one using the crack
constitutive model and taking into account the autogenous shrinkage. For the evaluation of
the autogenous shrinkage the Eurocode 2 model (EC2 2004) was considered. The concrete

maturity was present in all numerical simulations.

Figure 6.23 and Figure 6.24 present the evolution of the normal stress in the x direction and
the tensile strength development for points P, and P,, respectively. From the analysis of the
curves of Figure 6.23 it can be stated that until an age of about 13 h after casting, the stress
development is similar in all the numerical simulations. An initial compression until an age
of 9 h is observed, which is directly associated with the high imposed external heat curing
that has conducted to an expansion of the concrete developing compression stresses in
point P;, located near the surface. A quite different behavior is observed after an age of
13 h for the analysis that assumes an elastic behavior for the concrete and for the analysis
that simulates crack formation and propagation. The analysis assuming elastic behavior
does not take into account that at this age the tensile stress is greater than the tensile
strength and conducts to an unrealistic evolution of the stress field. Using the proposed
updated 3D multi-fixed smeared crack model the real stress development at this point is
captured. It is verified that at the moment of the interception of the stress development
curve and the tensile strength curve, the concrete cracks and the stress starts decreasing
immediately. It is also observed that the autogenous shrinkage has marginal effect on the

stress evolution at this point.

== Elastic
—— Crack model
= = = Crack model and shrinkage

Normal strsess in x direction [MPa]

Time [h]

Figure 6.23 — Evolution of the normal stress in x direction and the tensile strength at point P;.
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From the analysis of the curves of Figure 6.24, which correspond to the stress evolution of
the normal stress in x direction and the tensile strength development at point P, it can be
concluded that all the simulations provide similar results. Only when the autogenous
shrinkage is taken into account the numerical response has a small difference after an age
of 18 h after casting. Up 9h point P, is subjected to tensile stresses, and then to
compressive stresses as observed in Figure 6.24. However, the tensile stress is always

smaller than the tensile strength development, so concrete does not crack.

3 - ye -~ Elastic

// Crack model
2 1 7 - - —Crack model and shrinkage
1A ," ----- Tensile strength

Normal strsess in x direction [MPa]

Time [h]

Figure 6.24 — Evolution of the normal stress in x direction and the tensile strength at point P,.

The crack pattern for different times of the transient mechanical analysis using the crack
constitutive model is represented in Figure 6.25. It is observed that for an age of 14 h,
several cracks are formed, mainly in the exterior of the top flange and in the interception of
the horizontal and lateral cross section walls near to the free end of the beam. In
consequence of temperature decreasing, these cracks tend to close, as represented in the
Figure 6.25 for an age of 24 h. However, for later stages the cracks reopen (see Figure 6.25
for =72 h), which indicate that for the heat curing regime imposed to the beam, visible

cracks can be formed, compromising the durability of the structure during its service life.
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Figure 6.25 — Crack pattern for different time steps of the transient analysis: (a) opening crack status; (b)

closing crack status; (c) reopen crack status.

6.6 SUMMARY AND CONCLUSIONS

In the present chapter a thermal model with general purposes was described in detail, and
all the relevant aspects for its implementation in the FEMIX computer code were
discussed, in order to enable steady-state thermal analyses, transient linear thermal
analyses or nonlinear thermal analyses. The heat development due to the hydration process
during the concrete hardening phase was coupled to the thermal model, resulting in a

model capable of simulating the behavior of a concrete structure since its early age. The
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model was appraised using examples from the literature and a good agreement is observed.
The formulations for the time-dependent deformations, such as shrinkage, creep and
temperature were also described and they were coupled with the multi-fixed smeared 3D
crack model. An example was studied to evidence the potentialities of this multiphysics

approach.






Chapter 7

Conclusions

7.1 GENERAL CONCLUSIONS

The present work describes the development and the implementation of numerical tools for
the simulation of the behavior of structures built with cement based materials. These tools
have been implemented in the FEMIX computer code, which is based on the finite element

method.

To simulate the behavior of concrete laminar structures failing in bending and shear, a
model based on the Reissner-Mindlin theory in the context of layered shells has been
developed with special emphasis on the treatment of the shear behavior. The model is
based on a multi-directional fixed smeared crack concept. Crack propagation through the
thickness of a slab or shell can be simulated by considering the nonlinear behavior of each
of its layers. Fracture mode I is modeled with a crack stress vs. crack strain softening or
stiffening diagram. To simulate the out-of-plane shear strain gradient that occurs in
punching regions, a softening diagram is proposed to model, after crack initiation, the
corresponding shear components. To simulate slabs on grade with an eventual loss of
contact between the slab and the ground, linear and nonlinear support conditions, unilateral
or not, have been implemented. In order to increase the robustness of the numerical
simulations, the internal algorithms associated with the stress update and the critical crack

status changes have been improved with respect to the previous version of the code.
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To improve the performance of the numerical model in terms of predicting the behavior of
concrete structures where shear and flexural/shear failure modes are critical, two
alternative strategies are proposed for the treatment of the crack shear component. One is
supported on a total crack shear stress-shear strain approach to simulate the degradation of
the shear stress transfer with the crack opening evolution, and the other is based on a
constitutive softening relation between the crack shear stress and crack shear strain

components.

To predict the behavior of structures discretized with solid finite elements, a multi-fixed
smeared 3D crack model is proposed. Softening diagrams are available in this model not
only to model the fracture mode I, but also the two fracture sliding modes. With this
strategy, the simulation of concrete structures governed by shear and punching failures

modes can be improved.

A thermal model with general purposes has been implemented in the code, in order to be
possible to perform steady-state thermal analysis, transient linear thermal analysis or
nonlinear thermal analysis. The heat development due to the hydration process during the
concrete hardening phase was coupled to the thermal model, resulting a model capable of

simulating the behavior of concrete structures since its early ages.

A transient analysis algorithm was coupled to the developed multi-fixed smeared 3D crack
model in order to allow the simulation of time-dependent effects in cement based

materials, such as shrinkage, creep and temperature.

The predictive performance of these numerical tools was appraised by comparison with the
results of numerical simulations available in the literature, and with the results obtained
from experimental programs carried out with specimens made with steel fiber reinforced
self-compacting concrete, SFRSCC, (Barros et al. 2005a) or in the context of assessing the
effectiveness of Carbon Fibre Reinforced Polymer (CFRP) composite materials for the
flexural and shear strengthening of reinforced concrete beams (Barros et al. 2011). It is
verified that the proposed techniques are crucial to assure accurate numerical simulations,

namely the use of the out-of-plane shear softening diagrams to simulate the behavior of
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laminar structures failing in punching, as well as the adoption of shear-sliding softening
diagrams in the multi-fixed smeared 3D crack model applied to structures discretized with
solid finite elements. The solution procedures implemented in the scope of the present
work for the nonlinear finite element analysis of structures are also essential to increase the

robustness of the numerical simulations.

7.2  RECOMMENDATIONS FOR FUTURE RESEARCH

The pre-established objectives for the present work were successfully attained. In fact, a
crack constitutive model for laminar structures was successfully implemented, the
numerical instabilities associated with the internal algorithms of the stress updated have
been overcome, and the accuracy of the numerical simulations was improved by the
introduction in the computer code of new solution procedures for nonlinear finite element
analysis. A multi-fixed smeared 3D crack model for the simulation of complex structures
was implemented, and the time-dependent effects were also taken into account, enabling
the transient analysis of cement based structures. However, some aspects deserve extra
improvements in order to increase the accuracy, applicability and robustness of the

developed models.

The coupling between the softening diagrams in order to simulate the interaction between

crack opening and crack sliding should be investigated.

The behavior of concrete between cracks in the developed multi-fixed smeared 3D crack
model was assumed to be linear-clastic. It is known, however, that the concrete behavior in
compression is nonlinear and exhibits some irreversible deformations. Thus, a model based
on the plasticity theory should be introduced in the developed 3D model resulting in an
elasto-plastic multi-fixed smeared 3D crack model to simulate the behavior of concrete

structures.

The transient nonlinear thermal model should be complemented, in order to allow the code

to perform thermo-mechanical analyses of structures under fire.



254 Chapter 7

The moisture transfer phenomenon should be coupled to the thermal and mechanical
model, in order to add to the code the capability of performing thermo-hygro-mechanical

analyses for concrete structures.
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The deduction of equation (2.20), which permits the determination of O47, is exposed

below.

The incremental displacement vector at the iteration g of combination n is given by

a
Adl =Y 8a,=Aa!" +5a (A.1)

i=1

being Angl the incremental displacement vector of the previous iteration, g —1, and da’

the iterative displacement vector defined by equation (2.15), here rewritten for

convenience
sal =oal +51'5a; (A2)

Substituting (A.2) into (A.1) yields

9 . _
Ad! = Zé‘g; =Aa"" +6a’ =Aa"" +5a + o154’ : (A.3)

i=l1

The product of [Aa,‘f T Aa’ is developed taking into account equation (A.3), resulting
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| Ag }T Ad, = Ag,|Aa,

- (gl +sa) "+ 5253, ")

(Aal" +sa) "+ 52053, )
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-1 -1 —q-1 -1 =q-1 -1
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+orsa) | orsal
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Equation (2.19) can be rewritten as

(27) =(a +&ar) =(a") + 2247500 + (307) (A.5)
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Considering now equation (2.12b), the inclusion of equation (A.4) and equation (A.5) leads

to
[oal"| s (onr) {2[5@3‘? (Agt" +5a" )}w ;
+[AQZ’1 + 5@3’1]T (AQZ’I +5a’” ) + (A.6)
w0t (2) +220 520+ (51°) |[AF] AF-az =0

or

(55“ 5—" L+ [AF] AF)(OW)

[—_|

2| 6@ | (aay+say")+ 2622 [AF] AE} oA+ (A7)

+[aa oz | (gl +oal )+ b (A1) [AF] AF AL =0
Equation (A.7) can be written in the following form

a,(81") +a,507 +a,=0 (A.8)
being

=[s3"| 6z + 5 [AE] AF
a,=2[6a," | (Aay" +6a)" )+ 2624 [AET AF (A.9)

=[aal" +sai" | (aal" +5al" )+ 07 (4 ) [AE] AF - AL
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The expressions defining the diagrams to simulate the fracture mode I crack propagation

described in section 3.3.2.2 are exposed in this appendix. For a better explanation of these

expressions, Figure 3.6 and Figure 3.7 are represented again.

B.1 Tensile-Softening trilinear stress-strain diagram

Figure B.1 — Trilinear stress-strain diagram to simulate the fracture mode I crack propagation.
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The definition of the tensile-softening trilinear crack stress-strain diagram is made by the

expressions (B.1)
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and &, obtained by equation (3.27).
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B.2 Tensile-softening exponential stress-strain diagram

o’

cr

0,14

D[ cr
1
cr
Oumax| ™" / ‘ G,
cr \\
DI‘,SL’L’ lb
/ "= —
cr cr
gn, max (C;ﬂc ; (C;”

Figure B.2 — Exponential stress-strain diagram to simulate the fracture mode I crack propagation.

The definition of the tensile-softening exponential (Cornelissen et al. 1986) crack

stress-strain diagram is made by the expressions (B.4)

cr cr

3
& & &
cr n n n 3 cr cr
o1+ (Cl or } exp(—cz o J— o (1 +¢ )exp(—cz) O0<eg <g,

n,u n,u

being c¢; = 3.0 and ¢,=6.93 for normalweight concrete.

cr cr
do_}’l ( 877 )
d cr

n

Performing and take into account that o, = f,

J

modulus is defined by

(B.4)

the crack mode I stiffness
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2
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(B.5)

were &, is obtained by equation (3.29).

In both tensile-softening diagrams a secant approach is used when unloading or reloading
occur during the crack propagation. In this case the crack mode I stiffness modulus is

calculated using this relation

cr

o
cr —_ n,max
Dl,sec - o (B6)
gn,max
were o, and & are the maximum crack normal stress and the maximum crack

normal strain stored in the softening branch before the unloading occur (see Figure B.1 and

Figure B.2).
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In this appendix the first derivative of the function f defined by equation (4.20) in order

to the incremental crack strain vector Ag; is presented.

Equation (4.18) can be rewritten as follows

* - - T
f(Agjr) =c Zprev'i' AQ’ ;r_zcr gprev _ ZCI QCOA§+ZCI Qco |:Zcr:| A£7 (C 1)
Considering
X O_cr ) DcrAgcr ' A
o C,r rev Cr"’p';v ; Ag 7: Icr fr:| ) Z” o rev :|: 1 :| (Cza)
" |:D11 yt,prev}g |:D11 A}/t Vi g AZ
and
B r |C, C
Tcr DCUAE — 1 : Tcr Dcu Tcr — 11 12 C2b
o - |:B2:| o |:_ j| |:C21 C22 ( )

equation (C.1) can be written as

Fi G;rprev D ICVA‘C“;T Al Bl Cll C12 Ag;r
= cr , cr + cr cr - - T cr (C3)
FVZ D[] }/t,prev ) D[] A7[ ¢ A2 BZ C21 C22 A%

The first derivative of (C.1) is necessary for the iteration g of the Newton-Raphson

method. Taking into account equation (C.3), the evaluation of the first derivative of (C.1)

becomes
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Substituting equation (C.5) in equation (C.4), results
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Knowing that

o DCV O
D =" (C.8)
0 D

and taking into account the second equation of (C.2b), equation (C.7) can be written in a

matrix form as follows

of |Agy o
oer) - ):ch+ 5" +17 D [17] (C.9)
OAg,
where
0 0
D=l oDy . (C.10)
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