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Agents in the Market Place 

Abstract 

This dissertation documents our exploratory research aimed at investigating the utilization of 

intelligent agents in the development of automated financial trading strategies. In order to 

demonstrate this potential use for agent technology, we propose a hybrid cognitive architecture 

meant for the creation of autonomous agents capable of trading different types of financial 

instruments. This architecture was used to implement 10 currency trading agents and 25 stock 

trading agents. Their overall performance, evaluated according to the cumulative return and the 

maximum drawdown metrics, was found to be acceptable in a reasonably long simulation period. In 

order to improve this performance, we defined negotiation protocols that allowed the integration of 

the 35 trading agents in a multi-agent system, which proved to be better suited for withstanding 

sudden market events, due to the diversification of the investments. This system obtained very 

promising results, and remains open to many obvious improvements. Our findings lead us to 

conclude that there is indeed a place for intelligent agents in the financial industry; in particular, 

they hold the potential to be employed in the establishment of investment companies where 

software agents make all the trading decisions, with human intervention being relegated to simple 

administrative tasks. 
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Agentes no Mercado 

Resumo 

Esta dissertação documenta um estudo exploratório destinado a investigar a utilização de agentes 

inteligentes no desenvolvimento de estratégias de investimento financeiro automatizadas. Para 

demonstrar este uso potencial para tecnologia de agentes, foi proposta uma arquitectura cognitiva 

híbrida destinada à criação de agentes autónomos capazes de negociar diferentes tipos de 

instrumentos financeiros. Esta arquitectura foi utilizada para implementar 10 agentes que 

negoceiam pares cambiais, e 25 agentes que negoceiam acções. A performance global destes 

agentes, avaliada de acordo com as métricas de retorno acumulado e drawdown máximo, foi 

considerada aceitável ao longo de um período de simulação relativamente longo. Para melhorar esta 

performance, foram definidos protocolos de negociação que permitiram a integração dos 35 agentes 

num sistema multi-agente, que demonstrou estar melhor preparado para enfrentar alterações 

súbitas nos mercados, devido à diversificação dos investimentos. Este sistema obteve resultados 

muito promissores, e pode ainda ser sujeito a diversos melhoramentos. Os nossos resultados 

indiciam que os agentes inteligentes podem ocupar um lugar de relevo na indústria financeira; em 

particular, aparentam ter potencial suficiente para serem aplicados na criação de fundos de 

investimento onde todas as decisões de negociação são efectuadas por agentes de software, sendo a 

intervenção humana relegada para tarefas administrativas básicas. 

Palavras-chave: Agentes Inteligentes, Sistemas Multi-Agente, Mineração de Dados, Negociação 

Financeira. 
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Chapter 1 

1Introduction 

Trading in financial markets is undergoing a radical transformation, one in which algorithmic 

methods are becoming increasingly more important. This transformation is the result of the 

“technological arms race” (Hasanhodzic et al., 2009) being carried out by numerous quantitative 

trading firms, in their never ending quest for an edge over competitors. Algorithmic trading, a form 

of financial trading in which computer programs are put in charge of opening and closing trades 

without human intervention, is quickly becoming the norm in many markets. In their search for 

better algorithms, several investment companies have been experimenting with Artificial Intelligence 

(AI) methods, and some are now advertising their complete reliance on AI-based trading strategies. 

However, except for a few buzzwords, little is known about the actual implementation of these 

strategies, or the trading results that may be expected from them. Thus, it is currently very hard to 

tell if there is any substance to all the hype surrounding the application of artificial intelligence in 

financial trading. The work that will be described in this thesis intends to shed some light on this 

issue: we will be presenting an innovative way to utilize artificial intelligence techniques in the 

development of automated trading strategies, and will evaluate these strategies for safety and 

profitability. More specifically, we will describe and test a method for creating intelligent agents 

that can trade financial instruments autonomously. These agents are meant to be the software 
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equivalent of human traders – they are the next logical step forward in the aforementioned “arms 

race”. Since this is an interdisciplinary study, relating to the fields of financial trading, agency and 

artificial intelligence, we will begin with a brief introduction to these fields, and present some 

fundamental concepts that are needed to fully understand the work that will be discussed later. 

1.1 Basic Concepts in Financial Trading 

In the world of finance, a trade is defined as a transaction involving a financial instrument, usually 

with the expectation of a positive return. With the exception of arbitrage and hedged trades, most 

of these transactions have considerable risk associated. That is to say, financial trading is an 

inherently dangerous activity. With the advent of online brokers, it is now easier than ever for retail 

traders to engage in the speculative trading of many different types of financial instruments, among 

which stocks, commodities, bonds and currency pairs. Each type is traded in a specific market with 

unique operating characteristics. In the stock market, for example, traders can buy or sell stocks of 

publicly traded companies. If the price of a stock is expected to increase, the trader buys the stock, 

hoping to sell it for a higher price at a later time. This action, commonly referred to as “going 

long”, is the best known form of trading. If the stock is sold at a higher price, the trader makes 

money; if it is sold at a lower price, the trader loses money. Traders can also profit from falling 

prices, by short selling stocks whose prices are expected to decline. This is known as “going short”, 

and is accomplished by borrowing the stock from a third party, and selling it in the market. If the 

price of the stock drops, the trader will buy back the stock at the lower price, return it to the lender, 

and make a profit in the process. However, if the stock buyback – known as short covering – occurs 

at a higher price, the trader will lose money. 

When buying a company’s stock, the worst-case scenario for a long trader is the company 

going bankrupt, and the stock price going to zero. A regular cash account can be used for this type 

of trading, which requires the trader to pay the full amount when the stock is bought. If the price 
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drops to zero, the trader “only” loses the money invested in the stock. On the other hand, when 

shorting a stock, there is no limit to the potential loss, because there is no upper bound for the 

stock’s price. For this reason, short selling requires a margin account; when trading on margin, the 

broker lends funds to the trader, and the cash and securities in the account are utilized as collateral 

for the loan. The trader will be borrowing funds whenever the total amount invested surpasses the 

collateral; when this happens, the trader is said to be using leverage, which implies that both the 

investment gains and the losses will be magnified. The maximum leverage allowed varies from 

broker to broker; if, for example, the broker permits a maximum leverage of 4:1, that means the 

trader is allowed to invest up to 4 times the collateral available. Leveraged trades may result in a 

loss bigger than the collateral, so the trader runs the risk of losing all the money in the account, and 

still owing money to the broker. In order to protect themselves, brokers require traders to keep 

enough collateral at all times. If this requirement is not met, the trader will be warned to either 

close some of the trades, or to deposit more money in the account. This warning is known as a 

margin call. If the trader is unable or unwilling to rectify the situation, the broker will forcefully 

close the trades. But even with this prevention mechanism in place, a trader may still experience 

losses that surpass the capital in the trading account; for instance, suppose the trader has $1,000, 

and decides to buy a company’s stock using 4:1 leverage, i.e., a $4,000 investment. Now imagine 

this company declares bankruptcy right after the market closes. The stock’s opening price in the 

next trading day will surely be close to zero, which means the trader will get an automatic margin 

call as soon as the market opens; thus, the trader will lose the $1,000 collateral in the account, and 

will owe up to $3,000 to the broker. Conversely, if things go the trader’s way, leverage will be 

extremely beneficial. Imagine that, instead of going bankrupt, the company announced that it was 

about to be bought out by another company, and that this announcement made the price of the 

stock double overnight. If the trader was not using leverage, the return obtained would have been 

“only” 100%. But since 4:1 leverage was used, the return on the investment will be 4 times greater, 
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or 400%. This example goes to show that leverage is a double-edged sword: it can greatly increase 

profits, but may also lead to disastrous results. 

The concepts presented so far apply not only to the stock market, but also to other financial 

markets, like the foreign exchange (or Forex) market. The Forex market is the place where currency 

exchange rates are set, through the trading of currency pairs. As of late, it has been gaining 

increasingly more attention from retail traders. Unlike the stock market, the Forex market is not 

centralized, i.e., there is no central exchange to trade currencies. Only recently have retail traders 

been able to participate in this market directly, with the advent of electronic communication 

networks, or ECNs. An ECN gathers bid and ask prices from several liquidity providers, and 

allows traders to make their own bid and ask offers. Since currency pairs are traded in many 

different venues, there is no unique exchange rate for each pair; nevertheless, the prices quoted by 

different liquidity providers are usually very similar, because the market is efficient enough to 

eliminate these arbitrage opportunities. Another unique characteristic of the Forex market is its 

long trading hours: currencies can be traded nonstop during work days. A speculative investment in 

a currency pair is frequently based on the relative economic performances of the corresponding 

countries or unions. The pair’s price represents the amount that is needed of the second currency 

(the quote currency) to buy one unit of the first currency (the base currency). If the trader predicts 

the base currency will become more valuable compared to the quote, it goes long the pair; in 

practical terms, this means the trader will buy the base currency and short sell the quote currency. 

If, on the other hand, the base currency is expected to become less valuable, the trader short sells 

the pair, which implies short selling the base and buying the quote. Take the USD/JPY pair, for 

example. This pair’s price corresponds to the price of one United States dollar ($), the base 

currency, expressed in Japanese yen (¥), the quote currency. A price of 95.43 for this pair means 

that we need ¥95.43 to buy $1. If the dollar is expected to become more valuable compared to the 

yen, the trader should buy the pair, which would originate a long dollar exposure and a short yen 
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exposure. If the expectation is for the yen to become more valuable, the trader should short sell the 

pair, which would result in a short dollar exposure and a long yen exposure. The movements in 

currency prices are usually measured in pips. A pip is the smallest possible change in the price of a 

currency pair; considering only the most frequently traded pairs, a pip corresponds to a price 

movement of 0.01 for those in which the Japanese yen is the quote currency, and a movement of 

0.0001 for all the others. 

Regardless of the market and the instrument being negotiated, traders always interact with the 

market using orders, of which there are many different types. The most commonly used are the 

market orders and the limit orders: a market order is a request to buy or sell a financial instrument 

at the current market price, while a limit order is a request to buy or sell the instrument at a specific 

price. Take-profit and stop-loss orders, believed to be an important part of successful trading 

strategies, are usually implemented using limit orders. A take-profit order is used to automatically 

close a trade if it reaches a predefined profit target, while a stop-loss order is used to close a trade if 

it reaches a specified maximum loss, to prevent that loss from widening. 

The decision to send a buy or a sell order to any given market is traditionally based on one (or 

a combination) of three types of analysis: fundamental, technical or quantitative. Fundamental 

analysis entails studying the financial health of the entity underlying the financial instrument, as 

well as that of its competitors, in order to determine if the instrument is undervalued or overvalued. 

Technical analysis, usually applied to shorter time frames, consists in using the instrument’s 

historical prices to forecast its price in the future; this is usually accomplished with the 

identification of support and resistance levels in the instrument’s price chart, or by using price-

based indicators such as the relative strength index (RSI), the Williams %R, moving averages, the 

moving average convergence/divergence (MACD), among many others. Finally, quantitative 

analysis implies using mathematical and statistical models to make financial predictions; this is the 

most complex type of analysis, and the most relevant to our work. There are numerous studies 
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demonstrating how quantitative analysis can be performed using artificial intelligence techniques. 

In particular, several researchers have shown that data mining may be useful for carrying out this 

task, and some investment companies advertise their use of data mining models as part of their 

trading strategies. We will be taking this into consideration, once we start researching the design of 

autonomous trading agents. 

No matter what type of analysis is employed to decide when to buy or short sell a financial 

instrument, the end result is always a speculative forecast for the instrument’s price in the future. 

Despite the huge investment industry surrounding financial markets, this idea that instrument 

prices are predictable is far from consensual. Fama (1970) postulated in his famous efficient market 

hypothesis that, at any given point in time, an instrument’s price always fully reflects all the 

information available. He distinguished between three different forms of market efficiency: the 

weak form of the efficient market hypothesis states that historical prices are of no use in predicting 

the instrument’s price in the future; the semi-strong form makes the same claim, but adds that all 

publicly available information is also reflected in the instrument’s price at all times, and therefore 

cannot be utilized to predict future prices; the strong form of the efficient market hypothesis is even 

more restrictive, stating that neither historical prices, nor publicly available or insider information 

allow for superior risk-adjusted returns. We can infer from Fama’s hypothesis that forecasting an 

instrument’s price direction should be an impossible task. As he puts it, there is no such thing as an 

undervalued or an overvalued asset, because an asset’s market price always fully reflects all known 

information, including the traders’ expectations regarding its performance in the future. Besides 

Fama’s, there are several other hypotheses stating that financial prices cannot be predicted. The 

random walk hypothesis, popularized by Malkiel (1985) in his famous book “A Random Walk 

Down Wall Street”, postulates that stock prices follow a random walk model, i.e., they evolve 

gradually as a sequence of random changes; this means that trying to predict stock prices is a silly 

endeavour, no matter how sophisticated the forecasting method. To prove his point, Malkiel 
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conducted a very telling experiment. First, he used a random walk to generate a price chart for a 

stock: starting with a price of $50, he evolved the price by continuously adding or subtracting a 

random quantity from the previous price. The corresponding chart was shown to a technical 

analyst; unaware of how the prices were generated, the analyst promptly detected an upward trend 

in the stock’s price, and suggested that the stock should be bought. Not only did this prove that the 

expert could not tell the difference between a random walk chart and a real price chart, it also 

demonstrated that, just because a technical analyst is able to find familiar patterns in a chart, that 

does not mean that those patterns have any sort of predictive power. The martingale hypothesis, 

advocated by Samuelson (1965), is another popular hypothesis that attempts to model the 

behaviour of stock prices. It is less restrictive than the random walk hypothesis: it also postulates 

that forecasting based on historical prices is ineffective, but adds that the best forecast for an 

instrument’s future price is its current price. All in all, the same conclusion: there is no point in 

trying to forecast financial prices. 

It would be easy to use anecdotal evidence to dismiss claims that the markets cannot be 

predicted. Several famous investors, like Warren Buffett and Jim Rogers, have been successful for 

decades. This means that, more often than not, they have been capable of making profitable 

financial forecasts, something that should not be possible if asset prices were completely random. 

However, it is possible that these success stories could be due to chance alone. Buffett (1984) puts 

it best in his analogy entitled “The Superinvestors of Graham-and-Doddsville”. This story revolves 

around a coin flipping competition with 225 million participants, each betting one dollar. They are 

divided into groups of two, and in each group the person that correctly calls a coin flip gets the 

other person’s dollar, and the loser leaves the competition. In the following day, the remaining 

competitors bet all their winnings in another round of coin flipping. After just 20 days, there will 

be a group of 215 people that were able to successfully call 20 coin flips in a row; these people will 

have turned their initial “investment” of $1 into a little over $1 million. If they were picking stocks 
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instead of predicting coin flips, they would surely be praised for their amazing trading skills. 

However, as Buffett points out, we would get a similar group of “experts” if the competition was 

started with 225 million orangutans. The major implication of this analogy is that there is always 

the possibility that a trader’s success is due to luck, rather than talent. Given the large number of 

entities participating in the markets, it is inevitable that a few statistical outliers will achieve 

consistent profitability just because they are lucky. This is not the point that Buffett intended to 

make with his story; he goes on to state that, even if some traders could owe their success to luck, 

most elite traders share the philosophy of value investing, which is based on fundamental analysis. 

He extrapolated from this empirical observation that that characteristic is what made them 

successful, i.e., their profitability is not due to chance, but rather to their ability to find stocks 

whose market prices are too low, compared to their intrinsic value. Unfortunately, there is no way 

to know if this correlation does in fact imply causation. Regardless, Buffett’s position that financial 

markets are not entirely efficient is taken as fact by the great majority of the players in the trillion 

dollar industry that has grown around financial markets. This position might be biased, though, 

because if the financial industry were to accept that there is no way to “beat the market”, i.e., to 

consistently obtain a return higher than that of a stock index fund with a simple buy-and-hold 

strategy, there would be no reason for hedge funds, brokers or even financial news networks to 

exist. 

Given the numerous hypotheses stating that financial markets are completely random, it is 

possible that our attempt to develop a speculative, agent-based trading strategy might be considered 

a fool’s errand by some. While it is undeniable that there is a lot of unpredictability and noise in 

financial price series, we do believe that the markets are not always efficient. As the stock market 

crash and the commodity bubble of 2008 have shown, financial markets can be far from rational at 

times, which negates the efficient market hypothesis (Fox, 2009). Many economists agree; Shiller 

(1992), for example, completely dismantled the efficient market hypothesis, and went as far as 
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calling arguments in favour of this hypothesis “one of the most remarkable errors in the history of 

economic thought”. From a trader’s perspective, irrationality and inefficiencies in financial markets 

translate into profit opportunities. Our aim will be to research the development of intelligent 

agents able to exploit these opportunities. 

1.2 Artificial Intelligence and Agency Terminology 

Artificial intelligence is a very broad academic discipline, encompassing research topics like pattern 

recognition, search and optimization algorithms, planning, learning and reasoning techniques, 

among others. It is difficult to define the boundaries of this field, because it involves numerous 

unrelated methods and algorithms, such as: 

• the A* search algorithm (Hart et al., 1968), frequently used in pathfinding, i.e., 

determining the shortest route between two points; 

• the expert system (Feigenbaum et al., 1971), a system composed of a set of condition-

action rules (the knowledge base) defined by domain experts, which can reason and 

answer questions by chaining those rules; 

• the k-nearest neighbour classifier (Aha et al., 1991), a lazy classification algorithm that 

will classify a test instance according to the classes of the training instances that are 

closest to it in the feature space; 

• the AC-3 (Mackworth, 1977), an algorithm that solves constraint satisfaction problems, 

i.e., it finds solutions that satisfy a given set of restrictions; 

• the hidden Markov model (Baum & Petrie, 1966), a temporal probabilistic model 

consisting of a finite set of states (each associated with a probability distribution) and a 

set of probabilities governing the transitions between these states; it has been extensively 

employed in speech, handwriting and face recognition; 
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• the minimax algorithm with alpha-beta pruning (Russel & Norvig, 2002), an algorithm 

that traverses search trees to find the next optimal move in a multiplayer game; 

• the Graphplan (Blum & Furst, 1997), an algorithm for solving planning problems that 

outputs sequences of operations that will lead to the desired goal state; 

• the genetic algorithm (Fraser & Burnell, 1970), an optimization algorithm that evolves 

candidate solutions (by mutating and combining the best) according to a fitness 

function. 

These 8 examples are just a very small sample of the myriad of techniques that constitute the 

field of artificial intelligence. They showcase just how far-reaching the field has become, with 

researchers addressing many different types of problems, using completely different methods. 

Defining what makes a machine “intelligent” is a controversial subject in artificial intelligence. 

Consider the case of chatterbots (Weizenbaum, 1966; Mauldin, 1994), i.e., bots that communicate 

with human users through text messages, used mostly on the Internet for advertising (and 

sometimes spamming) purposes. Contrary to what was expected several decades ago, their 

conversational skills are still very rudimentary; that is due to their algorithms being extremely naïve, 

something for which they have been harshly criticised in the academic world. When engaging a 

human in a conversation, chatterbots mostly resort to tricks – text pattern matching, intentional 

typos, rude language – to attempt to mimic human behaviour, and deceive the human user into 

thinking they can understand the conversation. If they succeed, should we consider them 

intelligent? Searle (1980) says we should not, and describes a scenario – the Chinese room 

experiment – that exposes the difference between that “fake intelligence” and “real intelligence”. He 

pictures being in a closed room, and receiving Chinese messages from people on the outside; by 

using a basic set of tricks and rules (which equate to a computer program), he should be able to 

fabricate sensible replies to some of those messages, leading the people he is communicating with 

to believe that he speaks Chinese, when in fact he does not. Clearly, there is a difference between 



Chapter 1: Introduction 11 

 

 

understanding Chinese and simulating the ability to understand Chinese. Searle concluded the 

latter is not true intelligent behaviour, because there is no thought process behind it. This 

reasoning is the main argument against the Turing test (Turing, 1950), and contributed to its 

decline as a possible metric for machine intelligence – according to the proponents of this test, a 

machine could prove it was intelligent by chatting with human users, and fooling them into 

believing they were having a conversation with another human. The best chatterbots are still far 

from passing the Turing test; because of their naïve strategies, the majority of the AI community 

sees them as gimmicky and detrimental to the field. Nevertheless, we appreciate Turing’s position 

on the matter: if we focus solely on the way the machines act, the distinction between real and 

simulated intelligence becomes irrelevant; people want to see machines that act intelligently, 

regardless of how they do it. 

By Searle’s definition, to be truly intelligent, a chatterbot would need to be capable of 

processing and understanding natural language. This, however, is an AI-complete problem. Solving 

it would imply creating machine intelligence as it is portrayed in science fiction, i.e., artificial 

intelligence that matches or exceeds general human intelligence (strong AI). Even though some 

tiny advances have been described in a few on-going experiments (Markram, 2006), researchers are 

still far from reaching that objective. For all we know, it might even turn out to be unreachable – 

there is no way to tell if the biological process behind human intelligence can be replicated with a 

digital machine (Dreyfus, 1979; Searle, 2004). But there are optimists in the field. Kurzweil (2006) 

is one of several futurists who believe that machines showcasing strong AI are just a few decades 

away. His enthusiasm reminds us of the unbridled optimism of the 1960’s, when many predicted 

machines would soon be able to do anything a human being could do (Simon, 1965; Minsky, 

1967). Kurzweil’s forecast seems destined to fail the same way, considering the current state of the 

art, and also the numerous geopolitical and economic challenges that humanity might face in the 

coming future (a factor that is often disregarded in these far-reaching predictions). If we look at the 
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current state of the field, we can verify that the most advanced artificial intelligence techniques do 

not even come close to addressing the complexity that characterises general intelligence, something 

that biologists themselves have yet to grasp. Nevertheless, even if these techniques are not yet 

powerful enough to be utilized in the implementation of artificial general intelligence, they do 

allow for the creation of intelligent machines that outperform human experts at specific tasks. 

IBM’s chess-playing computer Deep Blue1 proved this point, when it defeated world champion 

Garry Kasparov in 1997. Nowadays, the application of artificial intelligence to perform concrete 

tasks is so pervasive that it often goes unnoticed. This is known as the “AI effect”: as soon as a 

machine is able to do something that was previously thought to require some sort of intelligence, 

that ability starts being taken for granted by its users, which will no longer consider it true 

intelligent behaviour. Voice recognition in cell phones, face detection in digital cameras, email 

spam filtering, query matching in web search engines, medical diagnostic systems, fraud detection 

systems, cruise control in vehicles, these are just a few of the countless ways in which AI has 

become an important part of our everyday lives. 

One field where the use of artificial intelligence has been gaining momentum is financial 

engineering. S&P’s Neural Fair Value 25 portfolio2, for example, is a well-known practical 

application of AI; it lists the 25 stocks with the biggest price appreciation potential, picked weekly 

from a universe of over 3,000 stocks using artificial neural networks. Also, in the algorithms’ “arms 

race”, it has been reported that many hedge funds are now utilizing data mining and other AI 

methods to perform quantitative analysis (Davidson, 1997; Duhigg, 2006; Patterson, 2010; 

Yamazaki & Ozasa, 2011), although little is known about their proprietary setups. We should 

point out that, just because a hedge fund says its strategies are AI-based, that does not necessarily 

mean that it can select portfolios better than “a blindfolded monkey throwing darts at a newspaper’s 

                                                      
1 Information on IBM’s Deep Blue is available at http://www.research.ibm.com/deepblue/. 
2 The Neural Fair Value 25 portfolio is published at http://outlook.standardandpoors.com. 

http://www.research.ibm.com/deepblue/
http://outlook.standardandpoors.com/
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financial pages” (Malkiel, 1985). Despite all the hype and fascination that surrounds artificial 

intelligence in traditional media, it obviously does not confer machines any supernatural powers, so 

it is important to remain sceptical when it comes to the outrageous claims of some financial services 

providers. Our research will attempt to shed some light on this matter – we want to determine 

exactly what may be expected from intelligent machines when inserted in financial markets. In 

addition to machine intelligence, we will also be focusing on machine autonomy. That is to say, the 

focus of our research will be the deployment of intelligent agents in the financial industry. Even 

though the field of agency is relatively new, it has already become an important branch of computer 

science; it has connections to several areas of research, among which economics, game theory, 

distributed systems, and even psychology. It is also intrinsically connected to the field of artificial 

intelligence, so much so that intelligent agents are mentioned in some tentative definitions of AI. 

Russel and Norvig (2002), for example, define artificial intelligence as: 

“… the study of agents that receive percepts from the environment and perform actions.” (p. vii) 

Defining intelligent agent is a bit harder, because there is no consensus regarding the characteristics 

that these agents should exhibit. We believe Wooldridge’s (2002) definition is as good as any; it 

puts the emphasis on what we consider to be the two most distinguishing traits that intelligent 

agents should possess: 

“An agent is a computer system that is situated in some environment, and that is capable of autonomous 

action in this environment in order to meet its design objectives.” (p. 15) 

In other words, an agent is an entity that acts autonomously and that exhibits goal-oriented 

behaviour. Notice this definition also fits entities that would not normally be associated with 

intelligence. For instance, web crawlers are able to index entire websites automatically, but that 

does not make them intelligent; likewise, a thermostat is capable of controlling the temperature of a 

system, but the systematic strategy it employs to achieve that goal cannot be considered intelligent 
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behaviour. The way we see it, the distinction between these and truly intelligent agents should be 

made based on the complexity of the task being performed. In order to make this distinction less 

subjective, other qualities have often been attributed to intelligent agents, including the ability to 

learn in real-time (Franklin & Graesser, 1996), and being proactive and capable of social 

interaction (Wooldridge & Jennings, 1995), i.e., capable of communicating with other agents and 

entities. 

Regarding the implementation of intelligent agents, several agent architectures have been 

suggested throughout the years. According to Maes (1991), an agent architecture is: 

“A particular methodology for building agents. It specifies how … the agent can be decomposed into the 

construction of a set of component modules and how these modules should be made to interact. The total set 

of modules and their interactions has to provide an answer to the question of how the sensor data and the 

current internal state of the agent determine the actions … and future internal state of the agent.” (p. 115)  

Classic agent architectures are based on symbolic AI, meaning the agents’ knowledge about 

the world is represented explicitly with facts and rules. Using this knowledge, the agents decide 

when and how to act through logical reasoning, i.e., via theorem proving. Several classic 

architectures follow the BDI software model of agency; in this model, the agents’ behaviour is 

regulated by explicit symbolic representations of their “mental attitudes”: beliefs (what they think 

they know about the world), desires (their objectives) and intentions (the decisions they are 

committed to take). PRS (Georgeff & Lansky, 1987) and IRMA (Bratman et al., 1988) are 

examples of this type of architecture. IRMA agents, like many other symbolic AI-based classic 

agents, are planners: knowing the potential effect of each of their actions to the environment, they 

select the course of action (i.e., the plan) that is expected to take them closer to the objective. 

SOAR (Laird et al., 1987) and ACT-R (Anderson, 1996) are other examples of symbolic agent 

architectures in which the agents’ behaviour is governed by explicit production rules. Several agent 

programming languages have been proposed for developing this type of agent, whose reasoning 
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relies on pattern matching and symbolic processing. These include, among others, the concurrent 

MetateM language (Fisher, 1994), with which the agents are programmed using temporal logic, 

the Golog (Levesque et al., 1997) and GOAL (Hindriks, 2001) languages, which are based on 

Prolog, and the 3APL language (Hindriks et al., 1999), used for implementing agents with beliefs, 

desires (declarative goals) and intentions (procedural plans). 

The classic approach of looking at intelligent agents as simple theorem provers or expert 

systems presents a few serious limitations, among which the difficulty in translating the real world 

into a symbolic representation that is comprehensive enough, and having the agents process that 

representation and reason in time for their decisions to be useful (Wooldridge & Jennings, 1995). 

The idea that intelligence can be deconstructed into explicit representations of knowledge is also 

arguable. Brooks (1990) postulated a different type of intelligent behaviour, based on reactions 

rather than logical reasoning. He argued that a system can act intelligently without a symbolic 

representation of knowledge, and postulated that systems can only demonstrate intelligence when 

grounded in the physical world. He proposed a method for building intelligent agents named 

subsumption architecture; unlike the classic approach, where the combination of interconnected 

reasoning modules commands the agent’s conduct, the subsumption architecture consists of a 

layered hierarchy of simple independent behaviour-generating modules which compete to dictate 

the agent’s actions. Once the agent is placed in the physical world, its intelligent behaviour emerges 

from the competition between these modules. Brooks co-founded the iRobot company, maker of 

intelligent robots like the famous Roomba vacuum cleaner3; this cleaning robot does not keep any 

information about the room it is vacuuming; instead, it reacts to the environment as it moves, 

changing its behaviour whenever an obstacle is hit. From a practical stance, this may be considered 

intelligent conduct, which validates Brook’s belief that the intelligence of an agent should be 

judged according to its actions, regardless of the reasoning underlying those actions. When 

                                                      
3 Info on iRobot Corporation’s Roomba is available at http://www.irobot.com. 

http://www.irobot.com/
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comparing the symbolic approach, more rooted in theory, with his bottom-up agent building 

strategy, Brooks maintained that the practical usefulness of the agents is what ultimately mattered: 

“A further part of our strategy then, is to build systems that can be deployed in the real world. At least if our 

strategy does not convince the arm chair philosophers, our engineering approach will have radically changed 

the world we live in.” (p. 13) 

Obviously, Brooks’ reactive approach and the classic deliberative approach are not mutually 

exclusive. In fact, they seem to complement each other nicely. Ferguson’s TouringMachines (1992) 

is an example of a hybrid agent architecture that attempts to combine the two philosophies. 

Brooks’ contribution to the field of agency deserves special credit, because he was able to come 

up with a practical application for his research. In the middle of the 1990s, many researchers 

thought intelligent agents represented a paradigm change, and believed their utilization in 

commercial and industrial settings would soon become widespread. Personal digital assistants 

(Maes, 1994), for example, were expected to take over the Internet. However, more than a decade 

later, this revolution has yet to occur, mainly because too much time was spent coming up with 

theoretical solutions for abstract problems that bear little resemblance to real world problems, and 

little was spent addressing the practical issues surrounding the deployment of useful agent-based 

production systems. Hendler (2007) describes the current state of things very succinctly: 

“While there’s clearly still an active research community in agents, I see no evidence for the imminent 

widespread use of this technology such as we were promising a decade ago … The bulk of the papers I can 

find published since then are filled with all kinds of wonderful theory but not much on deployed 

applications … I ask again: Where are all the agents?” (p. 3) 

Still, there are a few real life applications of agent technology worth mentioning. For instance, the 

sales numbers of the aforementioned Roomba vacuum cleaner are in the millions. The technology’s 

enormous potential is also showcased in the newest generations of humanoid robots; Honda’s 
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ASIMO 4  can act autonomously with concrete goals, applying several artificial intelligence 

techniques to, among other things, recognize moving objects and faces, distinguish sounds, move 

in circular patterns, go up and down stairs, and run at up to 6 km/h. In regard to software 

intelligent agents, there are also some very impressive applications. IBM’s Watson5, for example, 

has been creating a lot of stir lately; with its enormous knowledge base, and its ability to 

“understand” natural language, this agent was able to beat the best human participants in the 

television quiz show Jeopardy! (Baker, 2011). Another amazing commercial application of agent 

technology is the MASSIVE 3D animation software6, originally developed by Stephen Regelous. 

MASSIVE, short for Multiple Agent Simulation System In Virtual Environment, is a software 

package that simulates crowd-related visual effects. It can create millions of individual agents, each 

with the ability to act autonomously, according to a loosely defined set of parameters. MASSIVE 

has been used to produce special effects for several TV ads and shows, as well as blockbuster movies 

like “The Lord of the Rings” and “300”. Each agent created by MASSIVE is, from a practical 

point of view, another actor at the orders of the movie director. 

The MASSIVE software showcases the potential of multi-agent systems, i.e., distributed 

systems in which multiple autonomous intelligent agents interact. Peer-to-peer communication in 

a multi-agent system is accomplished with an agent communication language, which specifies the 

syntax of the messages that may be exchanged. The first such language to gain relevance was the 

KQML (Finin et al., 1994), now made obsolete by the FIPA-ACL (FIPA, 2002), the 

communication language born out of the efforts of the Foundation for Intelligent Physical Agents. 

As for the implementation of the multi-agent systems, there are currently numerous commercial 

and open source software packages available. Some of these packages will not only take care of the 

                                                      
4 Honda’s ASIMO humanoid robot is shown at http://world.honda.com/ASIMO. 
5 IBM’s Watson program is described at http://www-03.ibm.com/innovation/us/watson/. 
6 The MASSIVE software by Massive Software is available at http://www.massivesoftware.com. 

http://world.honda.com/ASIMO
http://www-03.ibm.com/innovation/us/watson/
http://www.massivesoftware.com/
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agents’ communication and interactions, but also facilitate the development of the intelligent 

agents. IBM’s ABLE (Bigus et al., 2002), for instance, is a Java open source modelling toolkit that 

expedites the implementation of multi-agent systems composed of hybrid intelligent agents, whose 

behaviour is dictated by rule-based reasoning and machine learning. Other Java packages include 

the JADE (Bellifemine et al., 1999), a FIPA-compliant software framework for multi-agent 

systems, and Cougaar (Helsinger et al., 2004), a research project of the U.S. Department of 

Defense. 

The way agents interact in a multi-agent system will vary according to their objectives. Agents 

might need to compete with each other to pursue their individual goals, or they might need to 

cooperate with one another, to optimize the performance of the system as a whole. For each 

scenario, there needs to be a specific protocol regulating the interactions between them – this is 

known as the negotiation protocol, and defines the “rules of encounter” between agents 

(Rosenschein & Zlotkin, 1994). For each negotiation protocol, there is usually an optimum 

negotiation strategy that the agents should use. Take the English auction of a good or service, 

which is an example of a competitive scenario. The negotiation protocol in this system is as follows: 

each agent can bid more than once; when bidding, an agent must offer more than the current 

highest bid; if no agent is willing to raise the bid, the good is allocated to the agent that made the 

last bid, and the auction ends. The best negotiation strategy that an agent could follow in this 

scenario is to continuously increase the bidding price using small increments, until the bid reaches 

the price that it believes the good is worth, at which point it should stop bidding (Wooldridge, 

2002). For an example of a negotiation protocol in a cooperative scenario, we can look at the 

monotonic concession protocol. It is meant for the negotiation between two agents, and defines the 

following rules of interaction: the negotiation is done in rounds; in each round, both agents 

propose a deal; agreement is reached when one of the agents determines that the deal it was offered 

is at least as good as its own proposal, according to its utility metric; when this happens, the deal is 
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accepted and the negotiation ends. The best course of action for agents in this scenario is to 

initially propose their most preferred deal, and then proceed to make concessions based on how 

much they are willing to risk conflict (Rosenschein & Zlotkin, 1994). This strategy will ensure that 

they achieve Nash equilibrium (Nash, 1950). Nash equilibrium is a solution concept from game 

theory that defines a situation in which none of the players has anything to gain by changing its 

strategy unilaterally. It is common to find game theory concepts in multi-agent systems’ research, 

because these systems describe the classic case study for game theorists: a social setting where the 

success of each entity/agent is affected by the choices of others. 

We have now presented the most important concepts in the field of agency. With a little 

imagination, we can easily draw a parallel between intelligent agents, and some of the entities that 

populate the world of finance. Specifically, we can imagine the agents playing the part of financial 

traders, grouped together in multi-agent systems that act as autonomous hedge funds. These agents 

would interact (with a specific agent communication language) and attempt to agree on the trading 

decisions (with a negotiation protocol), so as to work towards the greater good of the multi-agent 

system. This idea will be the theme of our research. 

1.3 Objectives of the Research 

It is our belief that multi-agent systems are well suited for financial trading. Assuming the ability to 

trade profitably is a real skill, and not just the result of luck, there are several characteristics that 

could give software intelligent agents an advantage over their human counterparts. For example, 

unlike human traders, the agents can trade 24 hours a day; this feature is particularly important if 

the target market is the foreign exchange, because this market is continuously open 5 days a week. 

Also, the agents should be able to make trading decisions much faster than humans, and will not be 

influenced by fear or greed (unless these emotions somehow emerge from their implementation); 

this should help them outperform human traders whenever the market enters volatile and stressful 
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periods, because their judgement will not be clouded by those emotions. Finally, software agents 

should be much easier to manage and control, because their loyalty, honesty and obedience are 

never an issue. This is an important advantage. Many financial institutions have experienced 

massive losses due to the destructive actions of a single rogue trader. The most famous example is 

probably the bankruptcy of Barings Bank, which resulted from unauthorized trades by one of its 

traders, Nick Leeson (Leeson & Whitley, 1996). The fact that intelligent agents are always 

“honest”, work faster, and do not require compensation or vacation time, suggests that they could 

become an important part of the financial industry. 

There is no clear-cut way to create these trading agents. Every solution will require a bit of 

guesswork, and will reflect the researchers’ own views on what successful trading is, and what it 

entails. Our method will be based on a mixture of artificial intelligence technics, with which we will 

design a custom-made architecture meant for the development of intelligent agents capable of 

negotiating any type of financial instrument; we will also propose negotiation protocols for 

regulating their interactions in multi-agent systems. To ensure that our solution is practical, and 

may be employed in real life, we will use it to develop trading agents that will be tested with real 

life data, in lifelike conditions. When analysing their suitability for the task at hand, we will 

consider not only their trading results, but also their ability to exhibit intelligent behaviour, i.e., 

their ability to adapt to market changes, to stop trading under adverse conditions, and to limit the 

risk as much as possible. 

The main objective of our research has now been defined: we will try to demonstrate that 

intelligent agents are a good substitute for human traders. But what exactly is the point of this type 

of study? Ultimately, we are talking about financial speculation, an activity that many would frown 

upon. Speculators are often depicted as gamblers and leeches on society (Angel & McCabe, 2009), 

so speculation is probably not the most righteous topic for scientific research. Granted, this is not 

the noblest of activities, but one may argue that speculators do play an important role in financial 
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markets by providing liquidity (Volpe & Dickson, 2004), without which the markets would 

collapse or grind to a halt (Brunnermeier, 2009). Whether we like it or not, financial speculation is 

at the core of a very important services industry, one that will keep affecting us all in the foreseeable 

future. Putting these ethical concerns aside, we believe that this industry should have a significant 

interest in intelligent agents that can trade successfully. Notice this concept of “successful trading” 

is subjective – it depends on how much risk one is willing to accept for a given expected return. We 

will be proposing our own definition of what makes a trader successful; if our intelligent agents are 

able to satisfy the requirements of that definition, they should be capable of trading safely and 

profitably in the long run; by doing so, they will empirically prove that agent technology can be 

usefully deployed in financial settings – this would be an important contribution to a field that, 

with regard to practical applications, has often been criticized for over-promising and under-

delivering. 

Before proceeding with our research, it is important to stress that the feat we are trying to 

achieve is far from trivial. Financial markets are usually associated with “easy money” by the general 

public, mostly because of the way the media reports on these markets – they have this casino 

mentality of praising the (few) winners and ignoring the many losers. Yet, the idea that profitable 

financial trading is easy could not be further from the truth. Take the Barclay Hedge Fund Index7, 

which tracks the average net return of several thousand hedge funds. These entities are supposedly 

the most sophisticated participants in financial markets: they are mostly unregulated, and have 

broad flexibility in the type of positions they can hold, and the type of financial instruments they 

may invest in. They trade other people’s money, with the fund manager usually collecting an annual 

management fee and a performance fee; a common fee schedule is the “2 and 20”, meaning an 

annual management fee of 2% of the fund’s net asset value, and a performance fee of 20% of the 

profits. Being this expensive, and given all the flexibility they have, one would expect these financial 

                                                      
7 The Index is available at http://www.barclayhedge.com/research/indices/ghs/Hedge_Fund_Index.html. 

http://www.barclayhedge.com/research/indices/ghs/Hedge_Fund_Index.html
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institutions to be able to achieve above average returns with relatively low risk. The average annual 

return for the several thousand hedge funds tracked by the Barclay Index is shown in Figure 1; also 

plotted in this chart is the average annual yield of the 10-Year U.S. Treasuries (government debt of 

the United States of America), considered by many to be a riskless investment, and the annual 

return of the S&P 500 Index (including dividends), which is a capitalization-weighted index of the 

prices of 500 large-cap stocks traded in the NYSE and the NASDAQ stock markets. We can see 

in this figure that the hedge funds had an average net return of -21.6% in 2008; this statistic alone 

should scare the most risk-averse investors from putting their money in these institutions. But let 

us disregarded the risk, and concentrate solely on the profit. Maybe the hedge funds’ return justifies 

all the risk they incur. According to the Hedge Fund Index, the average annual return of the hedge 

funds in the last decade (from 2000 till 2009) was 8.3%. This is an acceptable profit, considering 

the average annual yield of the “risk-free” investment (the 10-Year U.S. Treasuries) throughout the 

same period was 4.5%, and the average annual return of the S&P 500 Index was just 1.2%. Similar 

comparisons are often publicized in financial media, leading viewers to believe that hedge funds are 

mostly profitable, and will easily achieve above average returns. The problem with this reasoning is

 
Figure 1. Net annual return of the Barclay Hedge Fund Index, the 10-Year U.S. Treasuries and the S&P 500 

Index. 
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that the values in the Barclay Index are artificially inflated. Like all other hedge fund tracking 

indices, the Barclay Index suffers from severe survivorship bias, because hedge funds that drop out 

of the index usually do not report their final losses. Since 2005, more than 20% of the hedge funds 

(by assets) stopped reporting to Barclay Hedge, either because they were liquidated, or because 

their managers decided to stop disclosing the returns. That percentage spiked to 38% in 2008, a 

year that was clearly bad for most hedge funds, due to the increased volatility in financial markets 

caused by the subprime mortgage crisis. The losses that led these hedge funds to stop reporting 

their returns were rarely disclosed, meaning they were never reflected on the value of the hedge 

fund tracking indices. TrimTabs, an independent research firm, published a study in 2009 showing 

the real impact of this type of bias in the Barclay Index. As is, the index indicates that the hedge 

funds’ average return from January 2005 to June 2009 was 25.4%. According to the TrimTabs 

research, if we assume a reasonable 30% loss rate for the funds that stopped reporting during that 

period, the average return drops to -3.4%. Another study by Horst and Verbeek (2007) suggests 

that different types of bias could be inflating the average returns in hedge fund databases by as 

much as 8% per year. In addition to this, we should point out that the hedge fund industry is not 

exactly known for its honesty. Some funds are outright Ponzi schemes (Officer, 2009), or engage in 

fraudulent activities like front running or insider trading (McCool, 2010). Others overstate their 

returns (Bollen & Pool, 2009). Finally, there are those that, either purposely or naïvely, pursue 

trading strategies with Taleb distributions (Kay, 2008; Wolf, 2008). These strategies are best 

described with the analogy of “picking up pennies in front of a steamroller”: basically, the fund 

managers are making trades that have a high probability of producing small gains, and a low 

probability of producing very large losses; until an outlier event occurs, the managers obtain steady 

returns with the appearance of very low risk, which helps them raise more investment capital from 

outside sources, which in turn translates into bigger commissions and fees; however, when the tail 

event inevitably happens, their strategies are “steamrolled”, and the funds experience massive losses. 
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More often than not, these hedge funds will vanish into thin air, hiding the losses from all but the 

fund investors, who end up losing most of their money, while the managers get to keep the fees 

collected up to that point. This all goes to show that, despite what one might think when looking 

at hedge fund tracking indices and listening to mainstream financial media, it is doubtful that the 

average hedge fund can offer above average returns in the long run (Dichev & Yu, 2010). As we see 

it, the fact that the (allegedly) most professional financial players have trouble returning a decent 

profit in a consistent manner proves that successful trading is an extremely difficult endeavour. 

Hence, our intent to develop a method for implementing intelligent agents that can accomplish 

this feat is, undoubtedly, a complicated proposition. On the plus side, since this is such a difficult 

task, there should be plenty of interest in one such method, if the agents are able to achieve 

acceptable results consistently. This interest is just one of the reasons why we believe our research 

will be valuable; we also expect to contribute to the advancement of artificial intelligence and agent 

technology, by designing a new framework that is completely based on the extensive body of works 

available in both fields, and then applying it in one of the most competitive industries in the world. 

1.4 Overview of the Thesis 

The research reported in this thesis is interdisciplinary, and revolves around two main topics: 

artificial intelligence (particularly data mining and agent technology) and financial trading. In 

Chapter 2, we will be looking at the current state of the art regarding the application of artificial 

intelligence techniques in the trading of financial instruments. We will show that, while there are 

many studies describing the use of data mining models to perform financial time series prediction, 

there is not much literature available on using intelligent agents as autonomous traders. That is the 

void that our research intends to fill. 

In Chapter 3, we will describe a novel hybrid cognitive architecture for implementing 

intelligent agents with the ability to trade different types of financial instrument. Trading agents 
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based on this architecture are expected to be capable of maximizing the profit, while simultaneously 

attempting to minimize the risk. The construction of the architecture will be explained step-by-

step, with all design decisions being subject to critical analysis. 

Chapter 4 will start with a brief description of all the data mining models and attributes that 

we intend to use in the implementation of the trading agents. This will be followed by the 

description of 10 currency trading agents, developed according to the proposed architecture. These 

agents will be tested with out-of-sample data in lifelike conditions, and will later be integrated in a 

multi-agent system, for which we will create an agent communication language and a negotiation 

protocol. This system will be tested with the same out-of-sample data, simulating trades for a 

period of around 2.3 years. 

In Chapter 5, we will analyse the architecture’s suitability for trading another type of financial 

instrument: we will utilize it to implement 25 stock trading agents. These agents will be put to the 

test, individually and as part of a diversified investment strategy, by simulating trades with 3.3 

years’ worth of test data. Additionally, we will describe a system that allows the forward-testing of 

the agents: it publishes their trading decisions every day in a public website, making it possible to 

study their behaviour as time goes by; this means that the analysis of the agents’ performances is 

not limited to the results presented in this thesis – their current trading activity is available online, 

and can be followed in real-time. 

Chapter 6 shows the results of some experiments we did using index data. We implemented 

several new agents, and had them trade for extended periods of time and with bigger time frames, 

in order to examine their behaviour over the long run. In the last part of this chapter, we describe 

the use of two different resource allocation strategies (leveraging and compounding) to improve the 

performances of these agents. 

In Chapter 7, we present the culmination of our work: the implementation of a sizable multi-

agent trading system that integrates all the currency and stock trading agents that were developed. 
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With this system, we intend to demonstrate a specific potential application for agent technology in 

the investment industry: the creation of AI-based hedge funds where human intervention is kept to 

a minimum. We will list the reasons why these systems could become an important part of the 

industry, and will try to obtain some meaningful simulated trading results, to get an idea of what 

sort of performance may be expected from them. 

Finally, in Chapter 8, we will do one last analysis of the agents’ results, and draw our 

conclusions regarding their usefulness. We will also suggest further improvements that could be 

made to their implementation, and propose future research to be done on this topic. 
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Chapter 2 

2Artificial Intelligence in Financial Trading 

Quantitative analysts, or quants, are responsible for coming up with complex mathematical and 

statistical models, and using them for several investment-related tasks, among which risk 

management, derivatives pricing and financial trading. The technological boom of the last decades 

has made quants’ job much easier – it is now simpler than ever to process and model large amounts 

of financial data with powerful computers. A study by the Aite Group (2008) estimates that as 

much as 12% of all assets under management in the world were driven by quantitative analysis in 

2007, a figure that was expected to increase to 14% in 2010. In addition to being applied in the 

development of quantitative investment models, computers are increasingly being put in charge of 

making the trading decisions themselves. That is to say, they decide all the details of the trades 

(timing, quantity, entry and exit prices, etc.), and automatically send the orders to the markets, thus 

completely doing away with human traders. This strategy is known as algorithmic trading. In the 

past few years, it has completely revolutionized the investment landscape, to the point where 

computers are now the most influential players in some markets. For example, the Tabb Group 

(2009) estimates that high frequency trading is now accounting for more than 60% of all equity 

share volume in U.S. stock markets; high frequency trading is a special type of algorithmic trading, 

characterised by the buying and short selling of huge amounts of shares, with a very short time 
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frame (milliseconds), and often associated with questionable strategies (Arnuk & Saluzzi, 2009). It 

is fair to say that, as time goes by, quantitative and algorithmic methods will become even more 

dominant in financial markets. Artificial intelligence could turn out to be an important catalyst in 

this process, given that some AI techniques are perfectly suited for performing quantitative analysis. 

Data mining models, for instance, can easily find hidden patterns in large amounts of financial 

data, and these patterns can in turn be utilized to create algorithmic trading strategies. Several 

quants and AI researchers have already begun investigating this subject. However, artificial 

intelligence has also been receiving a lot of attention from dubious sources: many so called AI-

based trading bots and strategies are being sold online with the promise of unrealistic returns, as 

the sellers try to capitalize on the public’s misconceptions about artificial intelligence. While there 

is no question that data mining models can find patterns in financial data much faster (and better) 

than human traders ever could, that does not mean that creating profitable trading strategies with 

these models will be easy, if at all possible. Data mining will only be useful if there are any 

predictive patterns in the financial data to begin with, something that the efficient market 

hypothesis completely rejects. But even if the models find relevant patterns, that still does not mean 

that we will be able to use them to trade profitably, because financial trading entails considerable 

costs. Thus, it is important to separate the myth from reality: artificial intelligence is not the be all 

and end all of financial trading. Nonetheless, it does serve its purpose, as many studies have already 

proven. Looking at the literature that is currently available, we divide these studies in three 

categories, based on the complexity of the task being researched. The simplest studies are those 

that describe the use of a single data mining model to make financial predictions; from a practical 

point of view, these are simple tools meant to aid human traders in their decision process. The 

second type is slightly more complex; instead of a single model, an ensemble of data mining models 

or a hybrid system are tasked with doing the forecasts. Finally, there are a few studies that describe 
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AI-based trading systems intended to replace human traders altogether; these are the most relevant 

to our work. We will examine several of these studies in the sections that follow. 

2.1 Financial Prediction with Standalone Data Mining Models 

One of the simplest ways to develop a trading strategy for a particular stock is to model its price 

time series. If the model captures the essence of the underlying data generating process, it will be 

able to output accurate predictions regarding the stock’s future price, and we can utilize these 

predictions to open trades. The autoregressive moving average (ARMA) model, developed by Box 

and Jenkins (1976), is a classical statistical tool that has been employed for many decades in the 

modelling of time series; it is called autoregressive because it uses past values of the series, also 

known as lagged values, to predict future values. Another time-tested statistical model is the 

autoregressive integrated moving average (ARIMA), an adaptation of the ARMA model for non-

stationary time series (i.e., series whose statistical properties vary with time); this model includes an 

initial step that differences the data, to make it stationary. Given the widespread use of these two 

models, they are frequently utilized as a benchmark to evaluate the performance of more complex 

nonlinear data mining models. Wu and Lu (1993), for example, implemented a stock market 

forecasting system using artificial neural networks, and compared its performance with that of an 

ARIMA model. The objective of their system was to predict, on a daily basis, if the value of the 

S&P 500 Index was going to increase, decrease or remain unchanged. They tested the system, and 

concluded it performed better than the ARIMA model, when the market was stable. However, 

their results do not support the claim that artificial neural networks can outperform ARIMA 

models: the system’s accuracy was 23%, while the ARIMA’s was 42%. This is a rather ancient 

article, so it is possible that the lack of computational power at the time might have hindered the 

researchers’ objective (the training of artificial neural networks is quite demanding). A more recent 

study by Kamruzzaman and Sarker (2003) shows more encouraging results. They compared the 
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performance of an ARIMA model with that of several artificial neural networks, trained with 

different algorithms: backpropagation, scaled conjugate gradient and backpropagation with 

Bayesian regularization. Their goal was to predict the weekly exchange rate of several currency 

pairs; the inputs to the neural networks were the exchange rate in the previous week, and moving 

averages of prior weekly exchange rates; the performance was measured using the normalized mean 

square error (NMSE), the mean absolute error (MAE) and the accuracy predicting the direction of 

the price (DS). Their experiments showed that all the neural networks could outperform the 

ARIMA model, regardless of the metric. However, the results they got seem too good to be true: 

the neural networks predicted the direction of the price with close to 80% accuracy in their tests. 

Exchange rates cannot be that predictable, as that would imply that the Forex market is extremely 

inefficient – and we are certain it is not. A closer look at the researchers’ testing method reveals 

what made that unbelievable accuracy possible: several neural networks of each type were trained, 

but only the best ones were discussed in the study. Since the models were chosen based on how 

well they performed with the test data, we can conclude that the results are biased – more than 

likely, the artificial neural networks would not be able to exhibit the same level of accuracy with 

new unseen data. Avoiding this type of bias is extremely important when creating a trading strategy 

with a data mining model, because it will cause disastrous losses in real life. 

There are many other articles on the subject of using artificial neural networks to model 

financial data. Saad et al. (1998) used time delay, recurrent and probabilistic neural networks to 

predict if the price of 10 stocks was going to increase at least 2% in the subsequent 22 work days; 

inputs to the neural networks were all based on the stocks’ daily closing prices. Their results showed 

that the three types of neural networks outperformed a Fisher linear classifier, by finding more 

profit opportunities and avoiding more false positives. Accuracy-wise, the results were quite 

impressive; for Apple’s stock, for example, the accuracy of the three neural networks was greater 

than 90%. But once again, we find some flaws in the experiments that originated these results. First 
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of all, the datasets used for testing were relatively small, varying from 100 to 200 instances, and the 

total number of profit opportunities predicted by the neural networks was also too small; because of 

this, it is impossible to extrapolate how well these models would behave if we employed them to 

trade over a long period of time (especially in periods of high volatility). Secondly, they tested 

several neural networks with different parameters, but only reported the results of the best ones; as 

previously mentioned, this procedure taints the results – the extraordinary accuracy they got is 

probably bounded to the specific set of test instances with which the models were evaluated, and 

for which their settings were optimized. Also, in regard to the usefulness of these models in 

practice, the study’s results are inconclusive: they provided the accuracy, but there is no indication 

of how much profit one would get with the accurate predictions, compared to the losses suffered 

with the bad forecasts. In real life trading, high accuracy does not necessarily translate into big 

profits, because a single inaccurate prediction can yield a large loss that wipes out the profit of 

several successful trades. Nevertheless, the researchers concluded that it is possible to predict short 

term trends using artificial neural networks trained with historical closing prices. Most applied AI 

studies on this subject show similar empirical evidence against the efficient market hypothesis. 

However, it is important to ensure that the evidence does not arise from biased results, or from 

their incorrect interpretation; this is tricky at times, because performance analysis is not always 

straightforward. We encountered this issue in a study by Zhang et al. (2002). They used granular 

and backpropagation neural networks to predict the prices of six different stocks; the inputs to each 

network were the open, high and low prices for each stock on a given day, and the output (the 

prediction) was the closing price the following day. After testing, they concluded that the granular 

neural networks performed better and faster than the backpropagation neural networks. However, 

because they utilized the average error to measure the performance of the models, not much can be 

said about their utility for predicting future prices. For example, the average error predicting the 

price of the Dow Chemical stock was $1.39 with the granular neural network, and $3.38 with the 
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backpropagation network. Since they did not provide the variance of the price, we cannot tell if this 

is a good or a bad performance – if the average change in the test period was $10, we could say that 

the models worked well; but if was just $1, their predictions would be worthless. As Swingler 

(1996) points out in an article that lists common pitfalls in financial prediction, the mean squared 

error (MSE) and the average error metrics are only helpful if accompanied with volatility 

information. 

Tenti (1996) compared data mining models based on the returns that could be obtained with 

their predictions, which makes the results much easier to interpret. As we see it, the return is one of 

the best metrics for this type of research. He used three recurrent neural networks to predict price 

changes of currency futures, and implemented two trading strategies with them; the inputs to the 

networks included lagged returns and technical indicators such as the average directional movement 

index (ADX), the trend movement index (TMI) and the rate of change (ROC). After taking into 

account the trading costs, all the recurrent neural networks achieved positive returns in the trading 

simulation. With one of the strategies, the networks’ yearly unleveraged returns were 3.9%, 8.6% 

and 27.7%. This supports our a priori expectation that the financial markets are not completely 

efficient, and that some small inefficiencies may be exploited for a profit. While not very 

impressive, Tenti’s unleveraged returns are in line with what we believe to be feasible with an AI-

based trading strategy, considering the difficulties associated with successful financial trading. 

So far, we have only looked at articles describing the use of artificial neural networks in 

financial forecasting; going by the volume of publications, these nonlinear models seem to be the 

most preferred tool for mining financial data. Nevertheless, there are a few studies reporting results 

obtained with other types of models. Kim (2003) used support vector machines to forecast the 

direction of the daily price of the KOSPI stock index; the inputs to the models consisted of 12 

technical analysis indicators, among which the momentum, the Williams %R and the commodity 

channel index (CCI). Several support vector machines were trained, using different parameters; the 
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best model achieved an accuracy of 57.83% forecasting the test data. For comparison purposes, 

several backpropagation neural networks and nearest-neighbour models were also trained. The best 

neural network had an accuracy of 54.73%, while the best nearest-neighbour model had an accuracy 

of 51.98%. This precision is not very good, especially taking into account that it refers to the best 

models that were trained. But realistically speaking, this is exactly what we should expect, because 

the noise and the randomness in financial data make it extremely difficult to predict. A study by 

Tay and Cao (2001) also showed that support vector machines can, at times, perform better than 

backpropagation neural networks; while forecasting the value of five different futures contracts, the 

support vector machines got, on average, better results than the neural networks, according to 

several metrics; for instance, predicting the direction of the price, the support vector machines 

achieved a mean accuracy of 47.7%, versus 45.0% for the neural networks. Chen et al. (2006) 

reached a similar conclusion: based on five different metrics, their research revealed that support 

vector machines could outperform backpropagation neural networks in the prediction of the value 

of six Asian indices; the average accuracy forecasting the indices’ direction was 57.2% with the 

support vector machines, and 56.7% with the neural networks. 

Andriyashin et al. (2008) tested decision trees to select stock portfolios; they used classification 

and regression tree models (CART), trained with attributes from fundamental analysis (earnings 

per share, sales, dividends, etc.) and from technical analysis (moving averages, momentum, rate of 

change, etc.), to classify German stocks. The classification reflected the weekly position to take: 

long, short or neutral. Using the suggestions from the trees, they were able to get a promising 

annualized return of 19.99% after expenses in the out-of-sample period. However, each tree 

classified less than 100 instances, and the overall return curve seemed somewhat correlated with the 

direction of the market, so it is hard to tell how these classifiers would fare going forward. 

In a comparison study featuring models of different types, Zemke’s (1999) demonstrated that 

a nearest-neighbour model could outperform a backpropagation neural network and a naïve Bayes 
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classifier in the weekly prediction of the direction of the WIG stock index. After tuning the 

models’ parameters (which might have tainted the results) the best accuracy achieved with the 

nearest-neighbour model was 64%, while the best accuracy with the neural network was 63%, and 

54% with the naïve Bayes classifier. Rodríguez et al. (1999) confirmed the usefulness of nearest-

neighbour models in financial forecasting: predicting one-day-ahead exchange rates for several 

currencies, these models achieved an average accuracy of 59.6% forecasting the direction of the rate, 

versus 56.7% with an ARIMA model. We should note that, while these articles might provide 

some insight regarding which models are better suited for financial forecasting, all comparisons 

must be taken with a grain of salt – the results will always depend on how much time was spent 

fine-tuning the parameters of each model, and selecting its training attributes. 

Genetic algorithms, traditionally applied in optimization problems, have also been utilized in 

financial forecasting. The most straightforward way to do this is to make the algorithm optimize a 

rule-based trading strategy, as described by Mahfound and Mani (1996). Starting with a random 

population of simple trading rules, these researchers used the genetic algorithm to evolve the 

population, until they got an optimized set of rules. These rules indicated if a stock should be 

bought, sold or if no action should be taken, with a time frame of 12 weeks. In cross-validation, 

they got an accuracy of 87.8% predicting the direction of the stock’s price in relation to a given 

index; with a backpropagation neural network, the precision was 83.4%. The main problem with 

this study is that the experiment is not reproducible, because the attributes that were used to create 

the trading rules were not specified, and neither was the fitness function with which they were 

evolved. It is likely that this information was kept private due to the authors’ affiliation with a 

capital management company. For obvious reasons, AI research done at investment companies is 

usually considered a trade secret, so it is possible that a lot of valuable research on this topic will 

never see the light of day. Regardless, there is currently no lack of open information on the subject, 

with numerous publications and books focusing on the theme (Kovalerchuk & Vityaev, 2000). 
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After going through much of this literature, it is our opinion that there is a general consensus in 

favour of the usefulness of data mining models for performing financial forecasting – most articles 

report positive results, and in doing so provide empirical evidence against the efficient market 

hypothesis. However, this consensus could be due to the fact that positive results make for better 

publications, and there is a bias against negative studies (Dickersin, 1990), or because researchers 

are less likely to submit negative or inconclusive results – the well-known file drawer effect 

(Rosenthal, 1979); also, the (deceiving) positive results reported in some studies can be directly 

attributed to poor data mining technic. In spite of this, we agree that data mining should be 

well-suited for the task of modelling financial data; the fact that several investment companies are 

currently using data mining models as part of their trading strategies is, in itself, a good 

endorsement of the models’ utility in the field of finance. 

2.2 Forecasting with Ensembles and Hybrid Systems 

The articles referenced in the previous section demonstrated, to a certain degree, that simple data 

mining models might be able to output profitable financial predictions. It is conceivable that more 

complex AI-based forecasting systems can yield even better results. Abraham et al. (2003) reached 

that conclusion in a study that showed that a hybrid intelligent system could outperform standalone 

models. They compared the performance of a neuro-fuzzy system with that of an artificial neural 

network trained with the Levenberg-Marquardt algorithm, a difference boosting neural network 

and a support vector machine. These models performed a regression on the open, maximum and 

closing values of the NASDAQ 100 and the NIFTY stock indices, and were subsequently utilized 

to get one-day-ahead predictions for the values of these indices in out-of-sample data. The 

performance metrics considered were the root mean squared error (RMSE), the maximum absolute 

percentage error (MAP) and the mean absolute percentage error (MAPE). Their results indicate 

that the indices’ value on any given day offer some insight into their closing value the following 
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day. For either of them, none of the models had a RMSE over 0.03 or a MAPE above 10%; based 

on the MAPE metric, which measures, percentage-wise, how close the predictions were to the 

expected values, the neuro-fuzzy system outperformed all the models when predicting the NIFTY 

Index, and was a very close second to the support vector machine when doing so for the NASDAQ 

100 Index. From what we can tell, the index data was not differenced prior to training the models. 

This might have improved the results – differencing financial time series is an important pre-

processing step, because it makes the series stationary, and consequently removes stochastic trends 

(Franses, 1998). Non-stationary data does not exhibit a tendency for mean reversion; its statistical 

properties (like the mean and the standard deviation) vary with time, ergo it is more difficult to 

predict, and often impossible to model. A study by Qi and Zhang (2008) demonstrates the 

importance of differencing the data prior to training the artificial neural networks; using data 

generated by six different processes, they tested the models with the original and the differenced 

data, and verified that the latter considerably decreased the networks’ RMSE and MAE. Even 

without differencing, the results obtained by Abraham et al. were relatively good, and do seem to 

reinforce the idea that a more complex system will outperform standalone models. In another 

study, Abraham (2005) compared a neuro-fuzzy system, a neural network trained with the scaled 

conjugate gradient algorithm, a CART decision tree, a multivariate adaptive regression splines 

model (MARS) and a hybrid CART-MARS model. This time around, the models were used to 

predict the exchange rate of five currency pairs, with a time frame of one month. The predictions 

were made using time windowing, i.e., the most recent monthly exchange rates were utilized as 

inputs to the models, which tried to predict the exchange rate in the following month. The final 

results included the RMSE of the models’ predictions, and charts where those predictions were 

plotted together with the desired values. This type of comparison chart is common in financial 

forecasting studies; however, this is not a good way to report the results, because these charts can be 

quite deceiving – even if they show that the forecasted values are very close to the desired values, 
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the forecasts might still be useless. Swingler (1996) demonstrated this pitfall with the following 

example: if we create a model that always predicts that the next value in the series will be the same 

as the current value (an optimum strategy according to the martingale hypothesis), and juxtapose its 

predictions with the series being predicted, the forecasted values will seem very accurate to the 

naked eye; yet, if we examine the chart closely, we will see that the predicted values are lagged, 

which means they are worthless in practice. Consider the example presented in Figure 2; although 

it looks like the predictions accurately track the expected values, we would not be able to use these 

predictions to trade profitably, because they are always one step behind. This goes to show just how 

important it is to pick good performance metrics, and to analyse the results thoroughly, when 

researching this topic. The RMSE values in Abraham’s study allow for a much better comparison 

between the models; they show that the two hybrid systems outperformed all the standalone 

models, when tested with four of the five currency pairs. Once again, the more complex solutions 

yielded the best results. Another interesting hybrid approach to the financial prediction problem is 

described by Yu et al. (2005a); their system combined an expert system with an artificial neural 

network trained with the backpropagation algorithm; the neural network was responsible for 

predicting future exchange rates, while the expert system was responsible for combining those

 
Figure 2. Misleading results: predicting that the next value will be the same as the current value. 
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predictions with expert knowledge to make trading suggestions. Their simulated trading results 

indicate a return of between 13% and 15% per year after commissions, depending on the currency 

pair. On their own, the returns of the neural network and the expert system were considerably 

lower, which confirms that the hybrid solution was better than the simpler systems. Sadly, their 

experiment is not reproducible, because the inputs to the neural network and the rules in the expert 

system were not provided. 

Some researchers addressed the financial prediction problem with more “creative” strategies. 

Sehgal and Song (2007) developed a classifier-based system that performed text mining on user 

postings in message boards, and then used this information to do daily predictions regarding the 

direction of the price of several stocks. This is a strange approach – anyone who has ever visited one 

of these boards is well aware that most posters are biased, due to their own stock positions, and that 

the vast majority of the posts do not contain any useful information. Nonetheless, the researchers 

claimed they found a relationship between what they called the “web sentiment”, and the daily 

price of several individual stocks; according to their results, if the text mining mechanism 

responsible for measuring the sentiment was coupled with a decision tree, price direction 

predictions could be made with very high accuracy (above 80% for Apple’s stock, for example). 

These results are a bit implausible, not only because of the study’s premise, but also because they 

imply that the stock market is extremely inefficient. Since no information was provided regarding 

how the tests were done, no further analysis of the results is possible; one thing is certain: it would 

be virtually impossible for their system to maintain that level of accuracy in the long run. 

Mittermayer’s (2004) strategy to apply text mining in stock price prediction was more sensible. He 

created a system called NewsCATS, which forecasted the movement of a company’s stock price 

based on press releases posted online: as soon as a press release was published, the system used a 

support vector machine to categorize it as either “good news”, “bad news” or “no movers”; the 

“good news” were those expected to cause an average price increase of at least 1% during the 60 
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minutes after the release, and a minimum increase of 3% at any point during that period; the “bad 

news” were those expected to cause a price drop of at least 3% during the next 60 minutes, and an 

average decline of at least 1%. By implementing a trading strategy that bought the stock when 

“good news” were released, and shorted the stock when “bad news” were posted, he achieved an 

average profit per trade of up to 0.21%. While this is a good performance, it is not very realistic: it 

does not take into account the trading commissions, or the slippage costs that are often associated 

with short term news trading systems (due to the higher volatility). Also, the profit was calculated 

using an optimized take-profit target that was chosen after the trades were simulated; this 

optimized target worked well for the simulated trades, but there is no guarantee that it would also 

work well with future trades – thus, the results are biased, because information that was only 

available after the trading simulation had ended was utilized to optimize the investment strategy. 

To his credit, Mittermayer also reported the return that would be obtained without the take-profit 

orders; this was considerably lower, at just 0.11% per trade, which might not be sufficient to 

compensate for the trading costs. Nevertheless, his research demonstrates that it may be possible to 

create a profitable trading system with text mining, by continuously monitoring and classifying 

press releases. Unlike Sehgal and Song’s idea, this strategy actually makes intuitive sense. 

Instead of mining text, Li and Tsang’s (1999) resorted to the more traditional approach of 

using historical prices to derive financial forecasts – the technical analysts’ way. Their strategy was 

to utilize a genetic algorithm to evolve decision trees. The initial population consisted of a set of 

random decision trees tasked with predicting if the Dow Jones Industrial Average Index was going 

to increase at least 2.2% in the next 21 trading days; the training attributes were simple technical 

indicators, like moving averages. The genetic algorithm was used to obtain better trees, by 

optimizing their precision; after repeating the experiment 10 times, the average accuracy of the best 

decision trees in the final populations was 54.78%. Several standalone C4.5 decision trees were also 

trained, using different parameters; they underperformed the genetic decision trees, with an average 



40 Chapter 2: Artificial Intelligence in Financial Trading 

 

 

accuracy of 53.40%. Choudhry and Garg (2008) also employed a genetic algorithm as part of a 

hybrid system. However, in their experiment, the objective of the algorithm was to optimize the set 

of training attributes for a support vector machine, which was going to output one-day-ahead price 

direction predictions for several stocks; the list of potential attributes was very large, and included, 

among other things, several technical indicators, and the prices of correlated stocks. The average 

accuracy of the hybrid system, using test data for three stocks, was 60.5%; this was considerably 

better than the 56.8% accuracy of a support vector machine that was trained with all the attributes. 

This difference is not surprising, because support vector machines are sensitive to the presence of 

irrelevant attributes in the training data; so, it makes sense that picking the best set of training 

attributes with the genetic algorithm will improve their performance. This attribute selection 

mechanism would not be necessary, if we were dealing with a data mining model capable of doing 

its own selection during training (like the C4.5 decision tree). A similar study by Yu et al. (2005b) 

describes the exact same hybrid mechanism, consisting of a genetic algorithm for attribute 

selection, and a support vector machine for forecasting. They used it to make one-day-ahead 

predictions for the direction of the S&P 500 Index; with the equivalent to one year of out-of-

sample data, their hybrid system achieved an accuracy of 84.6%; this compares with an accuracy of 

56.1% for an ARIMA model, 69.8% for a backpropagation artificial neural network, and 78.7% for 

a standalone support vector machine. While we are a bit sceptical about these accuracy numbers, 

their results at least confirm that a hybrid solution can outperform simpler mechanisms, and 

reinforce the importance of proper attribute selection in data mining. Kwon and Moon (2004) also 

utilized a genetic algorithm, only this time with the intent of creating an ensemble of recurrent 

neural networks. Starting with a population of random networks, the genetic algorithm was used to 

optimize the weights of their synapses, and an ensemble with the best recurrent neural networks 

was created from a subset of the final population. This ensemble was tested with data for various 

stocks, for which it had to predict the one-day-ahead price direction. The results obtained led the 
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authors to conclude that their system could produce better results than the buy-and-hold 

investment strategy. 

Grosan and Abraham (2006) applied genetic programming to the modelling of financial data; 

this evolutionary method is similar to genetic algorithms, only it is meant for evolving computer 

programs. Their system consisted of an ensemble of genetic programming models; the objective of 

the programs optimized by these models was to do daily predictions for the values of the 

NASDAQ 100 and the NIFTY indices. An artificial neural network and a neuro-fuzzy system 

were also evaluated, for comparison purposes, using several metrics. According to the MAPE, the 

hybrid model and the ensemble performed better than the standalone neural network: with the 

NASDAQ 100 Index data, the neuro-fuzzy system got the best result (a MAPE of 7.6%); with the 

NIFTY Index data, the best performing was the ensemble (a MAPE of 2.8%); when used 

separately, the genetic programming models underperformed the ensemble. So, once again, the 

more complex systems got the best performances. Chou et al. (1996) also tested an ensemble. They 

created a decision support system consisting of a combination of rule-based artificial neural 

networks, and used it to trade the Taiwan Stock Exchange Weighted Price Index; inputs to the 

neural networks included not only historical values, but also technical analysis indicators, such as 

moving averages and the RSI. Their system attempted to predict the index’s short and long term 

trends, and these predictions were utilized to open trades; in their experiment, the system did not 

open many trades, but still got incredible results: an average annual return of 44% in 4 years’ worth 

of test data. Regrettably, this experiment is not reproducible, because the authors did not provide 

any information regarding the settings of the system; thus, we cannot be certain that these results 

were not tainted by the excessive “tweaking” of the settings. 

The articles mentioned in this section described two possible strategies for implementing 

financial forecasting mechanisms: using a hybrid system (i.e., a combination of different artificial 

intelligence techniques) or using an ensemble (i.e., a set of data mining models whose predictions 
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are aggregated into a single forecast). Overall, the articles’ results demonstrated that these 

mechanisms will generally make better financial predictors than standalone data mining models. 

This is an important conclusion, which we will take into consideration when we start developing 

our own financial prediction system. 

2.3 Trading with Autonomous Agents 

So far, we have analysed several data mining models and systems that could be used to help human 

traders reach trading decisions. The main goal of our work is to take the next logical step forward, 

and research intelligent agents that can actually replace these traders. In order to supersede its 

human counterpart, an intelligent trading agent will need to be capable of trading autonomously; as 

we see it, this implies meeting the following requirements: 

• It should be able to decide when to buy or short sell a given financial instrument, and 

when to close the trades; 

• it should be capable of performing money and risk management; 

• it should be able to keep learning over time, even as it trades; 

• it should be capable of adapting to changes in market conditions; in particular, it should 

be “intelligent” enough to stop trading when the market becomes less predictable, and to 

resume trading when conditions improve. 

Unfortunately, there are no comprehensive studies focusing on the development of this type of 

agent. Most literature about trading agents does not actually refer to agents that negotiate financial 

instruments, but rather to agents that participate in auctions. Many articles on this topic have come 

out of two popular trading agent competitions, the TAC Classic (Wellman et al., 2001) and the 

TAC SCM (Sadeh et al., 2003). An agent in the TAC Classic acts as a travel agency, competing 

with other agents in simultaneous auctions to assemble travel packages for eight costumers with 

specific requirements. TAC SCM, on the other hand, is a supply chain management competition, 
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in which each agent acts as a PC manufacturer and competes with other agents for components 

and customer orders. The goals and strategies employed by these trading agents are completely 

different from those of a financial trader, so the literature available on these competitions does not 

relate to our research. Another interesting topic that does not directly apply is that of agent-based 

computational finance, for which there are also many studies available (Tsang & Jaramillo, 2004; 

LeBaron, 2006); these studies focus on artificial financial markets (i.e., virtual markets composed of 

only the software agents being tested), rather than real financial markets; their aim is to model the 

way the trading agents reach equilibrium in the fabricated market (Palmer et al., 1999; Chen & 

Yeh, 2001). The final objective here is to understand the behaviour of the markets, as it emerges 

from the interactions between agents, in order to explain certain features that financial time series 

usually exhibit, such as conditional heteroskedasticity (i.e., clustered volatility, or the tendency for 

outlier observations to emerge in clusters), large kurtosis (i.e., fat tails, or the tendency for outlier 

returns to occur more often than expected), mean reversion (i.e., regression towards the mean after 

extreme moves), and the cycles of bubbles and crashes (Hommes, 2006). Studies on this topic 

might eventually prove useful for testing the impact of new economic policies or rules in virtual 

markets, prior to their introduction in real markets (Buchanan, 2009; Farmer & Foley, 2009). This 

objective is clearly different from what we are trying to achieve: in our research, we will not be 

modelling financial markets, but rather the behaviour of the traders participating in them; also, our 

focus will be on the real financial markets, because we want to create agents that are useful in 

practice. Although rarer, there are a few studies stating similar goals. Schulenburg and Ross (2000), 

for example, described the implementation of trading agents as learning classifier systems, or LCSs 

(Booker et al., 1989); in a LCS, a population of weighted classification rules is evolved using a 

genetic algorithm. The most interesting thing about this study is that it addresses the issue that, 

since the agents will be inserted in a perpetually changing noisy environment, they need to be able 

to keep learning as time goes by, so that they can adapt to new market conditions. The learning is 
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performed by the genetic algorithm, which allows the population of trading rules to be 

continuously improved by crossover (combining the best rules) and mutation (slightly changing 

existing rules). After testing the agents, the researchers reported that their profit was slightly better 

than that of the buy-and-hold strategy. Since the test period was relatively short, we cannot predict 

how well these agents would fare going forward; the fact that they were configured to trade only on 

the long side (i.e., no short trading was allowed) is a disadvantage, because in the real markets the 

prices may keep falling for extended periods of time. In another study, Lee (2004) suggested using 

the iJADE multipurpose framework to create an intelligent stock trading agent that made price 

predictions using a recurrent radial basis function network; the results of this study are presented in 

a format (RMSE and average percentage error) that does not allow us to draw any conclusions 

regarding the agent’s potential for real life trading; also, the study does not address the agent’s need 

to adjust to different market conditions, because its architecture does not allow it to learn. 

Luo et al. (2002) proposed a multi-agent system to be used as an aid for human traders; each 

agent in this system is responsible for a specific task (technical analysis, fundamental analysis, risk 

management, etc.). Lee et al. (2007) followed a similar approach; they presented a multi-agent 

system consisting of 4 different agents: the buy signal agent, the sell signal agent, the buy order 

agent and the sell order agent; it is unclear why these functionalities had to be assigned to different 

agents. These multi-agent systems, intended as simple suggestion mechanisms, are out of the scope 

of our work, because our focus is on truly autonomous agents. Castro and Sichman (2009) 

described some agents that fit this description, in an article where they also proposed an open 

source financial market simulation tool; however, their emphasis was on the simulation tool, not 

the trading agents, which ended up being extremely naïve. It may be argued that these agents, as 

well as some of the other agents that were previously described, are not true intelligent agents. The 

same can be said of most of the agents that participated in the Penn-Lehman Automated Trading 

Project (Kearns & Ortiz, 2003) competitions. These entities are just simple trading bots that open 
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and close trades automatically, but cannot learn new patterns, or adjust to changes in the 

environment. They partially meet our autonomy requirements, in that they are capable of deciding 

when to enter and exit the markets. But ultimately, these bots are nothing more than hard-coded 

automated trading strategies of variable complexity. While they can open and close trades on their 

own, they are not really autonomous, because they need to be closely monitored at all times – since 

the bots cannot adapt to the market as time progresses, one of two things will happen when their 

strategies becomes outdated: either they are manually stopped and retrained with new data, or they 

will continue to trade until they go bankrupt. Unlike these simple trading mechanisms, we intend 

to develop agents that completely fulfil all the autonomy requirements that were previously listed, 

so that they may be left to trade without human supervision for an indefinite period of time. 

It is fair to assume that the most interesting studies on this topic are being done by financial 

companies that engage in algorithmic trading; understandably, these studies will never be made 

public. Furthermore, even the returns of their automated systems are somewhat private, so it is 

hard to quantify what one can reasonably expect from them in the long run. This lack of clarity is 

what motivates our work: an in-depth study on the design and performance of intelligent trading 

agents and agent-based investment systems. While pursuing this work, we will try to avoid all the 

problems and pitfalls that were detected in some of the articles referenced in this chapter; that is to 

say, we will make sure that the following conditions are fulfilled: 

• the experiments must be reproducible, i.e., all the implementation details must be 

provided (that is one of the main principles of the scientific method); 

• the test data used for evaluating the agents needs to be comprehensive enough, i.e., it 

must encompass a large period of time, and must include periods of extreme volatility; 

this requirement is particularly important because quantitative strategies tend to fail 

during these periods (Khandani & Lo, 2007); also, the test data should include periods 
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when the instruments’ prices are trending upward and periods when they are trending 

downward, to ensure the agents can operate properly in both situations; 

• biased results must be avoided at all cost; this implies keeping the training data 

completely separated from the test data, never using test data results for optimization 

purposes, and always reporting the results of all the tests made (i.e., the worst performing 

agents must not be discarded, to avoid survivorship bias); ideally, a forward-testing 

mechanism should be provided to complement the backtesting results, in order to 

eliminate doubts that these could be biased; 

• the performance metrics utilized in the evaluation of the agents must suit the problem at 

hand, i.e., the emphasis should be put on metrics deemed important by financial traders 

(such as the return and the maximum drawdown), in lieu of metrics like the accuracy or 

the RMSE. 

We believe these requirements are all of vital importance, and should serve as a guideline for any 

new study on this subject. 

Since this type of research has obvious practical ramifications, it makes sense to aim it towards 

the objectives of those who might eventually put it to use. For this reason, we will be implementing 

the agents according to what we consider to be the necessities and goals of the financial 

community. These goals will be presented in the next chapter, along with our proposal for a new 

agent architecture, which is intended for the development of trading agents that pursue those 

objectives. 
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Chapter 3 

3A Hybrid Cognitive Architecture for Intelligent Trading 
Agents 

As stated by Jennings and Wooldridge (1998), one situation in which it is reasonable to apply agent 

technology is when an intelligent agent is an appropriate metaphor for a given functionality. We 

believe there is a clear-cut example of one such metaphor in the world of finance. Consider the 

inner workings of a hedge fund, i.e., a loosely regulated private investment firm that trades other 

people’s money for a fee, and is allowed to buy and short sell a wide range of financial instruments. 

The typical hedge fund employs several traders, each being responsible for negotiating a specific set 

of financial instruments to try to get the best return possible. These traders likely cooperate with 

each other, in order to maximize the profit of the hedge fund as a whole. Clearly, a multi-agent 

system is a natural metaphor for this type of organization, with the intelligent trading agents 

playing the part of the human traders. We should note that, with this metaphor, we are not 

implying that being a successful financial trader is in any way correlated to being intelligent. In fact, 

we intend to demonstrate in this chapter that profitable trading can be achieved by chance alone. 

Profitability aside, the software trading agents in our hedge fund scenario may be considered 

intelligent in the sense that they act rationally, i.e., they exhibit autonomous goal-oriented 

behaviour. 
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We mentioned previously that well-programmed intelligent trading agents should offer 

significant advantages over human traders, among which being much cheaper (no salary or annual 

bonus), being able to trade 24 hours a day (no breaks or vacation time), being emotionless and 

easier to manage (no rogue traders), and being able to trade much faster – if a trading strategy is 

based solely on number crunching, and the intelligent agents have access to powerful hardware and 

fast network connectivity, they will always outperform their human counterparts. In view of all 

these advantages, we think this subject is worthy of a thorough exploratory study. Our research will 

begin with the design of a novel agent architecture, which will be used as the basis for the financial 

trading agents. Numerous generic architectures have already been proposed in AI literature, several 

of which were described in Section 1.2. However, none of them targets the financial field 

specifically. Cognitive architectures are, for the most part, more concerned with general human-

like behaviour than with particular competencies, i.e., they attempt to address cognition as a whole 

rather than the cognitive behaviour associated with specific tasks. Take the SOAR architecture 

(Laird et al., 1987), for example. Using it in the development of trading agents would require that 

all trading knowledge, as well as the actual skill behind successful trading, could be expressed as 

rules and facts. In the highly competitive and ever changing environment that characterises 

financial markets, we hardly believe that is possible. The same problem would arise if we tried to 

adapt other symbolic cognitive architectures – such as the PRS (Georgeff & Lansky, 1987), the 

ACT-R (Anderson, 1996) or the 4CAPS (Just & Varma, 2007) – to the development of trading 

agents with any chance of being successful in the long term. PRS-based BDI agents would be 

particularly inadequate for this task, because they lack the ability to learn, and their planning 

algorithm is not well suited for an environment where conditions might change dramatically at any 

second. Because of these limitations, a symbolic cognitive architecture is likely not the best option 

for what we are trying to accomplish. On the other hand, a hybrid cognitive architecture (i.e., one 

that combines the symbolic and connectionist stances) might be exactly what we are looking for. 
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Unfortunately, the ones currently available, like the LIDA (Friedlander & Franklin, 2008), the 

CHREST (Gobet et al., 2001), the DUAL (Nestor & Kokinov, 2004) or the CLARION (Sun et 

al., 2001), are meant for more general tasks, and do not fit our objectives very well. Besides 

cognitive architectures, there are also a few behaviour-based architectures that we could consider 

using, such as Brooks’ subsumption architecture (1990) or the GRL (Horswill, 2000). They are 

better suited for creating agents that execute concrete tasks, because they were devised with robotic 

agents in mind. However, they are best applied in the development of agents that are mostly 

reactive. Since we want our trading agents to be more proactive than reactive, this type of 

architecture is also not what we are after. Duch et al. (2008) published a comprehensive study 

summarizing the inner workings of the various agent architectures that were referenced so far, as 

well as several others. Going through their list, we can verify that many of these architectures were 

inspired by neurological and psychological studies, and attempt to emulate the way the human 

brain works (although in a very crude manner); hence, they aim to solve the problems of artificial 

consciousness and general intelligence. This is far different from what we are trying to do – we are 

not looking to determine how successful human traders think (arguably, an unattainable goal in the 

foreseeable future), we just want to devise agents that mimic their actions. Like Brooks, we put the 

emphasis on functionality, and we aspire to fit the theory to the domain, not “force” it. Creating 

our own agent architecture, rather than using one of the many readily available, gives us the 

flexibility to fully customize it for the intended task. By having the architecture address the many 

specificities and quirks that characterise financial trading, we are hopeful the agents’ “intelligence” 

will end up emerging from their actions. In this chapter, we will be describing this new hybrid 

cognitive architecture, which is meant specifically for the development of autonomous agents that 

trade financial instruments. This architecture is composed of three modules: 

• the prediction module, responsible for forecasting the direction of the price of a financial 

instrument; 
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• the empirical knowledge module, responsible for deciding how much to invest in each 

trade; 

• the domain knowledge module, responsible for incorporating expert knowledge into the 

trading decisions, such as the timing for closing open trades. 

The contribution of each module to the trading performance will be demonstrated with the 

step-by-step implementation of two intelligent agents. One will be used to trade the USD/JPY 

currency pair with a time frame of 6 hours, while the other will be day trading the ADBE stock. In 

the last section of this chapter, we will be presenting a multipurpose software shell that implements 

the proposed architecture, and allows the rapid development of intelligent agents that can trade any 

type of financial instrument. 

3.1 Goals of Intelligent Trading Agents 

In order to trade a financial instrument without supervision, a software agent will need to be able to 

make several decisions on its own. More concretely, it will have to be capable of answering 

questions like: 

• When should a financial instrument be bought or short sold? 

• How much should be invested in each trade? 

• When should an open trade be closed? 

The way the agent answers these questions will depend on what it is trying to accomplish. Since 

our objective is to create agents that mimic the activity of typical hedge fund traders, their goal 

should be to try to obtain the maximum profit possible, while simultaneously minimizing the risk. 

We can measure how well an agent achieves this objective with two metrics: the return on 

investment and the maximum drawdown. The return on investment is the percentage ratio 

between the agent’s profit and the investment capital it started with. The maximum drawdown, on 

the other hand, measures the historical maximum peak-to-valley decline in its equity, i.e., the 
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maximum accumulated loss the agent experienced while trading. Figure 3 shows the values for 

these two metrics, considering a scenario in which a trader bought $100,000 of ADBE stock in 

February of 2006, and held it for 3.3 years. According to the equity curve in this figure, the 

$100,000 initial investment would turn into around $64,000 in the end, which corresponds to a 

return of -36.0%. The maximum accumulated loss occurred between November of 2007 and March 

of 2009; at the start of this period, the trader’s account balance was around $118,500, and at the 

end it was $39,500, so the maximum drawdown is 66.7%. This metric is important because it 

measures how risky the trader’s strategy was in the past. The large maximum drawdown in this 

example proves that the buy-and-hold strategy is extremely unsafe at times: had the trader 

purchased the stock in November of 2007, the buy-and-hold strategy would have yielded a massive 

loss of 66.7% after just one and a half years. Even worse, if the purchase was made using leverage, 

this loss would have originated a margin call, wiping out the trader’s account. This scenario 

demonstrates why the maximum drawdown is an important metric for the risk associated with a 

trading strategy. That is, of course, assuming that the measure of how dangerous a strategy was in 

the past can offer some insight on how it might perform in the future. This is a dangerous 

assumption, because there is no guarantee that a larger accumulated loss will not occur later on. 

 

Figure 3. Return and maximum drawdown metrics of a buy-and-hold strategy using the ADBE stock. 
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Likewise, a strategy’s return in the past is just a rough estimate of how much profit it might yield in 

the future, not a certainty. Investment companies are legally obliged to acknowledge the 

unreliability of these two metrics by including a disclaimer in their performance reports stating that 

“past performance is not a guarantee of future returns”. Nevertheless, the only way to evaluate the 

success and potential of these entities is to look at their historical trading track records, so the 

return and maximum drawdown metrics are unavoidable. Instead of measuring the agents’ 

performance directly with these two gauges, we will be using two related metrics. The first is the 

ratio between the total return and the maximum drawdown, which we named “RMD ratio”: 

𝑅𝑀𝑚 𝑟𝑚𝑡𝑚𝑜 =
𝑅𝑟𝑡𝑢𝑟𝑑 𝑆𝑚𝑑𝑑𝑟 𝐼𝑑𝑑𝑟𝑝𝑡𝑚𝑜𝑑

𝑀𝑚𝑚𝑚𝑚𝑢𝑚 𝑚𝑟𝑚𝑤𝑜𝑜𝑤𝑑 𝑆𝑚𝑑𝑑𝑟 𝐼𝑑𝑑𝑟𝑝𝑡𝑚𝑜𝑑
 

This is a pain-to-gain ratio similar to the Calmar (Young, 1991) and the MAR ratios, which are 

frequently used by retail investors to compare the performances of different investment funds. This 

ratio allows us to measure the risk-adjusted performance of a trading strategy (in the past). The 

higher the RMD ratio, the bigger the strategy’s return was compared to its maximum drawdown; 

strategies with higher RMD ratios are theoretically better suited for trading with leverage because, 

assuming they will maintain the same level of performance going forward, increasing the leverage 

will increase the return much more than it will increase future drawdowns. The other metric we 

will use in our study is the return per trade, which is calculated by dividing the total return on 

investment by the total number of trades. A high return per trade is extremely important, because 

there are significant costs associated with real life trading. These costs include, among other things, 

commissions, spreads and slippage. If the return obtained in each trade is not big enough to at least 

make up for its cost, the trader will end up losing money. It is not uncommon for strategies that 

seem very profitable on paper to fail miserably, once these costs are taken into consideration. 

In addition to the return and the maximum drawdown, financial players often use metrics like 

the Sharpe (Sharpe, 1966) and the Sortino ratios (Sortino & Price, 1994) to compare investment 
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performances. These metrics imply the existence of a risk-free investment (usually U.S. Treasuries), 

and measure the return of an investment strategy in comparison with that risk-free return. This is 

reasonable, because there is no point in engaging in risky investments when a similar return is 

achievable without incurring any risk. The reason why we decided not to utilize these ratios in our 

research is that we do not believe there is such a thing as a risk-free investment. Even if some 

government debt seems extremely safe right now, there is no telling how things might change in 

the future – history has shown that, every now and then, a black swan event (Taleb, 2007) will 

sneak up on investors and completely discredit the investment dogmas du jour, so today’s riskless 

trade might be tomorrow’s investment nightmare. Also, in our opinion, those ratios obfuscate the 

results. The absolute return and the maximum drawdown are clearer: they are easier to interpret, 

and make it simpler to decide if the profit of an investment strategy in the past was worth it, 

considering its risk. 

Now that we have made our case as to how the trading agents should be evaluated, we can 

define their goals accordingly: they should attempt to maximize the RMD ratio of their trading 

strategy (meaning, they should try to obtain the best return possible while keeping the drawdowns 

relatively low), and also maximize the return per trade (so that their profit is not completely wasted 

on commissions). In the next sections we will present an agent architecture that was created with 

these objectives in mind. 

3.2 Predicting the Direction of the Price Using Data Mining 

Just like the human entities they attempt to mimic, software trading agents must decide when to 

buy or short sell a financial instrument. Numerous studies have indicated that data mining models 

may be used for this purpose, several of which were mentioned in Chapter 2. We will be following 

a similar strategy, by incorporating a model-based prediction mechanism in the agents’ 
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architecture. Obviously, this mechanism can be implemented using a multitude of strategies 

(Barbosa & Belo, 2009a). The simplest approach is to train a data mining model to predict the 

direction of the price of the financial instrument that we want to trade; the model’s predictions can 

then be utilized to decide if the instrument should be bought or sold short. In order to demonstrate 

this procedure, we trained seven different models using historical data relative to the USD/JPY 

exchange rate. Details on the training attributes and parameters will be discussed in later chapters, 

along with the reasoning behind each configuration setting; for now, we will be focusing solely on 

the models’ performance. The USD/JPY raw data was segmented into instances, each 

corresponding to a period of 6 hours. Five of the models were trained to classify the instances, in 

order to predict the direction of the price of the currency pair in subsequent 6-hour periods. These 

predictions corresponded to one of two classes: “the price of the USD/JPY pair will increase in the 

next 6 hours” (class UP) or “the price of the USD/JPY pair will decrease in the next 6 hours” (class 

DOWN). The other two data mining models were trained for regression with the same data; 

instead of predicting the direction of the price, they forecasted the pair’s price change (in 

percentage) in the next 6-hour periods, and these numeric forecasts were converted into one of the 

classes: if the model predicted a negative price change, its class prediction was DOWN, otherwise it 

was UP. Each of the seven data mining models was utilized to implement a simple trading bot, 

according to the architecture shown in Figure 4. Notice we are using the term “trading bot” instead 

of “intelligent trading agent”, because the entities implemented with this architecture cannot be 

considered intelligent. While they can act autonomously, they are nothing but simple hardcoded 

programs that lack the ability to adapt to changes in market conditions. Their behaviour is also not 

guided by the objectives that were defined for our intelligent agents: to maximize the return while 

attempting to minimize the risk. The pseudocode describing the implementation of this 

architecture is listed in Algorithm 1, and the corresponding UML sequence diagram is displayed in 

Figure 5. 
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The data mining models were trained using the Weka API8 (Witten & Frank, 2005), each 

with a specific set of attributes. The training instances were extracted from historical data 

corresponding to the period between May of 2003 and December of 2006, for a total of around 

                                                      
8 The Weka API is available at http://www.cs.waikato.ac.nz/ml/weka/. 

 
Figure 4. Trading bot architecture. 

Algorithm TradingBot 
Inputs: 

ticker  // instrument to trade 
amount // amount to invest in each trade 
model  // data mining model that will do the predictions 

 
BEGIN 

Repeat 
confirmation ← wait_for_end(period)  // wait for current trading period to end 
confirmation ← close_trade(tradeID)  // close open trade 
periodData ← get_financial_data(ticker,period) // get instrument’s financial data for the period 
confirmation ← add_to_data(ticker,periodData) // add period data to the database 
historicalData ← get_data(ticker)   // get the instrument’s historical financial data from the database 
instance ← create_instance(historicalData,model) // create instance for the period using the raw financial data 
class ← classify_instance(instance,model)  // predict price direction in new period by classifying the instance 
If class = UP Then 

tradeID ← buy_instrument(ticker,amount)  // buy if class predicted is UP 
Else 

tradeID ← short_instrument(ticker,amount) // short sell if class predicted is DOWN 
EndIf 

EndRepeat 
END 

Algorithm 1. Trading bot pseudocode. 

http://www.cs.waikato.ac.nz/ml/weka/
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4,000 instances; the 50 instances that make up the first 2.5 weeks of January of 2007 were used to 

test the models; the subsequent 2,510 instances (up to the middle of May of 2009) were reserved 

for out-of-sample performance evaluation. These time periods are delimited in Figure 6, which 

shows the USD/JPY exchange rate since 1975. There are two things worth noting in this figure: 

first, it is clear that the prices in the training data are considerably less volatile than in other periods 

in the past; second, the price changes in the out-of-sample data look quite different from those in 

the training data, and that may hurt the models’ accuracy. 

 

 

Figure 5. Trading bot UML sequence diagram. 
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Once the implementation of the seven bots was completed, each of them made predictions 

and simulated trades for the 2,510 out-of-sample instances. As previously mentioned, each instance 

corresponds to a 6-hour period, thus our trading simulation implies that the bots would be opening 

a new trade every 6 hours, starting on Sunday at 18:00 GMT till Saturday at 00:00 GMT. For each 

instance, if the bot’s data mining model predicted a price increase, a long trade was simulated; if it 

predicted a price decrease, a short trade was simulated. If the forecast was accurate, the absolute 

value of the USD/JPY percentage price change in the corresponding period was added to the bot’s 

return, otherwise it was subtracted. Notice that this method of calculating the profit implies that 

the bots were using a fixed trade size throughout the simulation. Figure 7 shows the cumulative 

returns that the five bots that used classification models obtained in the out-of-sample period; the 

cumulative returns of the two bots that used regression models are shown in Figure 8; the final 

statistics are summarized in Table 1. We must note that these are gross returns, i.e., they do not 

account for the trading costs. 

When analysing the bots’ performance, we were surprised to see that all of them were 

profitable at the end of the simulation period, a remarkable feat even if we consider that this profit 

is not net of expenses. Still, their trading results were nothing special. Several bots experienced

 

Figure 6. Historical USD/JPY prices. 
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large drawdowns, which took them several months to recover from. The worst offenders in this 

regard were the ones with the K*, the C4.5 decision tree and the Naïve Bayes classification models. 

The charts reveal that it took them a long time to reclaim historical peaks in their cumulative 

return curves – in real life, it is doubtful we would have the patience to wait that long for them to 

recover their losses. This fault needs to be emphasised. Human traders would find it very hard to 

keep their jobs if they kept losing money for an extended period of time. This is, after all, an 

activity where instant gratification is the most important factor. Having worked in the industry, we

 
Figure 7. Gross cumulative returns of the USD/JPY trading bots with standalone classification models. 

 

Figure 8. Gross cumulative returns of the USD/JPY trading bots with standalone regression models. 
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can confirm that it is common practice for trading companies to hire numerous junior trades, with 

the intent of firing the ones that cannot produce results in the first few months. Our trading bots 

must face the same scrutiny, so we must analyse not only their final returns, but also their path to 

getting them. By these standards, looking at the charts in Figures 7 and 8, we believe that only the 

bots with the logistic tree, the RIPPER rule learner and the support vector machine achieved a 

good enough performance: their cumulative return curves trend upward very steadily, with prior 

highs being overcome relatively fast. 

Based on the statistics in Table 1, we can conclude that none of the seven bots was capable of 

predicting the short term direction of the USD/JPY exchange rate with acceptable precision. This 

low accuracy was somewhat expectable. Exchange rates are extremely “noisy” and difficult to 

forecast, especially at shorter time frames like the bots’ 6-hour periods. Furthermore, we saw in 

Figure 6 that the training data did not look similar to the test data, which could explain why the 

models had trouble applying the patterns discovered in the training phase to the new data. 

Fortunately, low accuracy is not necessarily a big problem, because successful trading is measured in 

terms of profitability, not accuracy. Higher precision does not always translate into bigger profits, 

as the bots’ results show: the least accurate bot (which used a naïve Bayes classifier) was almost 

Table 1. Simulation results of the USD/JPY trading bots (excluding trading costs). 

Model Ret (%) Max DD (%) RMD Ratio Ret/Trade (%) Acc (%) Trades 

K* (classification) 11.6 14.8 0.79 0.0046 52.4 2,510 

C4.5 Decision Tree 35.1 13.6 2.58 0.0140 53.2 2,510 

RIPPER Rule Learner 45.0 11.0 4.08 0.0179 52.9 2,510 

Naïve Bayes 29.7 17.1 1.74 0.0118 52.1 2,510 

Logistic Model Tree 63.7 10.0 6.37 0.0254 54.3 2,510 

K* (regression) 42.8 18.7 2.29 0.0170 52.9 2,510 

Support Vector Machine 56.0 12.6 4.43 0.0223 53.4 2,510 
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three times more profitable than the least profitable bot (which used a K* classifier). Similarly, the 

bot that used the RIPPER model was simultaneously more profitable and less accurate than the bot 

with the C4.5 decision tree. 

By most measures, the worst performing bot in the group was the one predicting the direction 

of the USD/JPY exchange rate with a K* classifier. Its insignificant return per trade of 0.0046% 

means that, once the trading costs are taken into account, this bot’s profit will more than likely turn 

into a considerable loss. The bot that used the logistic model tree, on the other hand, achieved 

impressive results. It was not only the most profitable and most accurate of all, but also the one 

with the lowest maximum drawdown. Its RMD ratio at the end of the simulation period was 6.37; 

this signifies that, if we configured it to employ leverage and repeated the experiment, the increase 

in its final return would be 6.37 times bigger than the increase in its maximum drawdown. On the 

flip side, this bot’s return per trade was just 0.0254%, which should barely make up for the trading 

costs. 

On balance, the bots’ results indicate that a prediction mechanism based on a single data 

mining model is not good enough to be utilized in the implementation of intelligent trading 

agents, because picking a good model is only easy in hindsight. Moreover, even if we are lucky 

enough to pick a model that allows the bot to trade profitably for an extended period of time, that 

in no way guarantees that catastrophic losses will not occur later on. In fact, it is almost certain that 

the model’s performance will eventually degrade. If we look at Figure 6, we can clearly see that the 

USD/JPY exchange rate has historically shown many patterns that are not visible in the training 

data; in particular, this data does not contain a crash in the pair’s price like those that occurred in 

the '70s and the '80s. Since the training data is the only source of information that the model 

possesses, it will only recognize patterns found within it. Hence, if history were to repeat itself, and 

another crash occurred in the USD/JPY price, the model would more than likely not be able to 

recognize that pattern. In addition to missing these past patterns, the described “train once, use 
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forever” prediction method also implies that the bot will not be able to learn new patterns that 

might occur in the future, no matter how many times they happen. This is yet another reason why 

its performance might worsen as time goes by. One way to overcome this problem would be to 

periodically retrain the data mining model with new data, as it becomes available. While this would 

enable the bot to keep learning over time, it could lead to a new problem. Many data mining 

models are naturally unstable, i.e., their learning algorithms may generate completely different 

models from relatively similar training sets. That is the case of C4.5 decision trees (Quinlan, 1993), 

for example. If we retrain one of these trees with more data, the resulting decision tree could be 

completely different from the original, potentially degrading the performance of the prediction 

mechanism. In this situation, the bot will keep opening trades based on the predictions of the 

inaccurate model, and eventually it will get a margin call. That is the biggest problem with using a 

single model for making forecasts: if the market dynamics change and the model’s accuracy 

declines, the bot has no means to adapt to these changes, and will continue trading until it goes 

bankrupt. An implicit requirement for an intelligent trading agent is that it must at least try to 

survive extreme changes in market conditions, like those caused by black swan events. For this 

reason, the trading bots’ prediction mechanism was deemed inadequate – we had to look for a more 

“intelligent” solution, one that would make the agents more resilient to those rare events. 

A research-proven alternative to making predictions with a single data mining model is to use 

an ensemble of models. Several empirical studies, such as those by Sollich and Krogh (1996) or 

Opitz and Maclin (1999), have demonstrated that a committee of classifiers can often outperform 

the predictive ability of a single classifier. Bagging, boosting and stacking are among the most well-

established ensemble techniques. Bagging (Breiman, 1996) is the simplest of the three; it consists 

of an ensemble of models of the same type that are trained using different training sets, with the 

models’ predictions being aggregated by majority voting; this technique is especially useful when 

the training algorithm of the models is unstable. Boosting (Schapire, 1990) is more complex; it 
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iteratively creates new models that are more accurate at predicting the instances that were 

misclassified by previously trained models, by reweighting the data after each model is trained: 

instances that were misclassified gain weight, while instances that were classified correctly lose 

weight; by changing these weights, the next model to be trained will give more importance to the 

most problematic instances. The resulting ensemble performs classification by weighted voting, 

with the weight of each vote being proportional to the accuracy of each model. This method is 

most commonly used with weak learners, i.e., simple and relatively inaccurate models like decision 

stumps; boosting can frequently turn these weak learners into a single strong learner (the 

ensemble). Stacking (Wolpert, 1992) differs from both bagging and boosting in that it combines 

models of different types; the votes of the models in the ensemble are aggregated by a meta-learner, 

i.e., a data mining model that learns how best to combine the predictions of these models. Besides 

bagging, boosting and stacking, many other ensemble techniques have been proposed in data 

mining literature. Since none of them was custom-made for financial prediction, we decided to 

come up with our own ensemble creation strategy. We did it step-by-step, starting with a simple 

ensemble composed of the seven models that were previously tested. This ensemble was integrated 

into an architecture component named “prediction module”, which is responsible for feeding the 

instances to the models, and for aggregating their predictions into a single forecast. A simple 

USD/JPY trading agent was built around this module, in compliance with the architecture 

presented in Figure 9. As depicted in this figure, the agent receives information updates about the 

financial instrument from the trading environment, and uses that information to periodically 

compile new test instances; then, it classifies those instances with the ensemble – which, in 

practical terms, is equivalent to making predictions regarding the direction of the price – and uses 

these predictions to open new trades. Our first implementation of the prediction module 

aggregated the models’ predictions by simple majority voting. Let 𝑝𝑀
𝑡+1 represent the set of class 
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predictions of the 𝑀 models in the ensemble for trading period 𝑡 + 1, or 𝑝𝑀
𝑡+1 = (𝑝1

𝑡+1, … , 𝑝𝑚
𝑡+1); 

the ensemble prediction for period 𝑡 + 1 is given by: 

𝐸𝑑𝑟𝑃𝑟𝑟𝑜𝑚𝑑𝑡𝑚𝑜𝑑(𝑝𝑀
𝑡+1) = �

𝑈𝑃  𝑚𝑚  |𝑈| > |𝑚|       

𝑚𝑂𝑊𝑁  𝑚𝑚  |𝑈| < |𝑚|
 

(1) 

𝑤ℎ𝑟𝑟𝑟 𝑈 =  �𝑚 ∈ ℕ∗: 𝑝𝑖
𝑡+1 = 𝑈𝑃�  𝑚𝑑𝑜  𝑚 =  {𝑚 ∈ ℕ∗: 𝑝𝑖

𝑡+1 = 𝑚𝑂𝑊𝑁}.  

This aggregate function implies that the predictions of the models have the same weight, therefore 

the ensemble class prediction for each trading period is simply the class with the biggest number of 

votes. Using this function, we made the USD/JPY agent simulate trades for the 2,510 out-of-

sample instances. Its cumulative return throughout the simulation period is shown in Figure 10, 

compared with the returns of the best and the worst trading bots that were tested previously. At the 

end of this period, the agent had a RMD ratio of 2.23, and a 0.0131% return per trade. If we 

compare these results with those of the simpler trading bots, we can conclude that the agent’s 

performance was average. This is more or less what we expected – the ensemble did not perform as 

well as its best model, nor as bad as its worst, because it averaged the individual performances of 

the models (to a certain extent). We believe this is an improvement: in the long run, the ensemble-

 

Figure 9. Trading agent architecture based on the prediction module. 
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based prediction mechanism should be more robust than the single model mechanisms, because 

even if some of its models become out-of-sync with the market, their poor accuracy may still be 

mitigated by the contributions of the other models. The simpler bots do not possess this 

redundancy, because they base their trading decisions on the forecasts of a single data mining 

model, which can become unreliable at any time. 

The ensemble used in the previous trading simulation is composed of models of entirely 

different types, among which decision trees, lazy classifiers and regression models. Being this 

different, it is possible that some will be more accurate predictors when the instrument’s price is 

trending upward, while others might perform better when it is trending downward. Consider the 

data in Table 2. This table breaks down the accuracy and return per trade of the seven trading bots 

that were tested before, according to the type of trade executed (long trades correspond to UP 

predictions, while short trades correspond to DOWN predictions). The RIPPER rule learner, for 

example, was able to predict price drops with 60.8% accuracy, but could only predict price increases 

with 51.6% accuracy. The K* regression model, on the other hand, was less accurate predicting the 

drops (52.8%), and more accurate predicting price increases (53.0%). Suppose the RIPPER 

classification model predicts a price decrease for a given trading period, while the K* regression

 
Figure 10. Gross cumulative return of the USD/JPY trading agent using an ensemble of models with equal weights. 
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model predicts a price increase; in this scenario, it would make sense to accept the RIPPER’s 

forecast, because in the past this model was more capable of predicting price declines than the K* 

was of predicting price gains; however, if the opposite happened, it would be better to go with the 

forecast of the K*. Building a prediction mechanism that capitalizes on these accuracy differences 

might improve the profitability of the agents. In order to test this assumption, we modified the 

implementation of the prediction module: it still used an ensemble with the exact same models, but 

each model’s vote now had its own specific weight, and these weights were updated periodically 

over time. We started by making the weights proportional to the models’ accuracy. Let 𝑝𝑁
𝑚 

represent the sequence of class predictions from trading period 𝑡 − 𝑁 + 1 till period 𝑡 for model 𝑚, 

or 𝑝𝑁
𝑚 = (𝑝𝑡−𝑁+1

𝑚 , … , 𝑝𝑡
𝑚), and 𝑟𝑁

𝑚 = (𝑟𝑡−𝑁+1
𝑚 , … , 𝑟𝑡

𝑚) represent the returns that would have been 

obtained if those predictions were utilized to open trades. The long and short accuracy factors, to 

be used as model 𝑚’s vote weights in period 𝑡 + 1, are: 

𝐿𝑜𝑑𝑔𝐴𝐹(𝑝𝑁
𝑚, 𝑟𝑁

𝑚) =  
|𝑈′|
|𝑈| − 0.5, (2) 

𝑆ℎ𝑜𝑟𝑡𝐴𝐹(𝑝𝑁
𝑚, 𝑟𝑁

𝑚) =  
|𝑚′|
|𝑚| − 0.5, (3) 

Table 2. Accuracy and return per trade of the USD/JPY trading bots (excluding trading costs). 

Model Acc (%) 
Long 

Acc (%) 
Short 

Acc (%) 
Ret/Trade 

(%) 
Long 

Ret/Trade (%) 
Short 

Ret/Trade (%) 

K* (classification) 52.4 52.0 53.0 0.0046 -0.0016 0.0152 

C4.5 Decision Tree 53.2 52.0 57.1 0.0140 0.0048 0.0440 

RIPPER Rule Learner 52.9 51.6 60.8 0.0179 0.0066 0.0844 

Naïve Bayes 52.1 51.8 52.5 0.0118 0.0044 0.0226 

Logistic Model Tree 54.3 53.7 55.2 0.0254 0.0160 0.0388 

K* (regression) 52.9 53.0 52.8 0.0170 0.0101 0.0245 

Supp. Vector Machine 53.4 53.3 53.5 0.0223 0.0146 0.0313 
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𝑤ℎ𝑟𝑟𝑟 𝑈 =  {𝑚 ∈ ℕ∗:  𝑝𝑖
𝑚 = 𝑈𝑃},  𝑈′ =  {𝑚 ∈ 𝑈:  𝑟𝑖

𝑚 > 0},
𝑚𝑑𝑜  𝑚 =  {𝑚 ∈ ℕ∗:  𝑝𝑖

𝑚 = 𝑚𝑂𝑊𝑁},  𝑚′ =  {𝑚 ∈ 𝑚:  𝑟𝑖
𝑚 > 0}.  

The prediction module calculates these values for each model whenever a trading period ends, and 

another is about to begin. Once all the models have made their predictions for the new period, the 

module computes the ensemble prediction by weighted voting. Notice this strategy is somewhat 

similar to Barbosa and Torgo’s (2006), only they used just one type of weight, which was based on 

the F-measure (Rijsbergen, 1979). Let 𝑝𝑀
𝑡+1 represent the set of class predictions of the 𝑀 models 

in the ensemble for trading period 𝑡 + 1, or 𝑝𝑀
𝑡+1 = (𝑝1

𝑡+1, … , 𝑝𝑚
𝑡+1), 𝑜𝑀

𝑡 = (𝑜1
𝑡 , … , 𝑜𝑚

𝑡 ) represent the 

long accuracy factors of the 𝑀 models (calculated at the end of period 𝑡 with Equation 2 using the 

last 𝑁 trades), and 𝑟𝑀
𝑡 = (𝑟1

𝑡 , … , 𝑟𝑚
𝑡 ) represent the short accuracy factors (calculated the same way, 

but with Equation 3). The ensemble forecast of the prediction module for period 𝑡 + 1 will be: 

𝐸𝑑𝑟𝑃𝑟𝑟𝑜𝑚𝑑𝑡𝑚𝑜𝑑(𝑝𝑀
𝑡+1, 𝑜𝑀

𝑡 , 𝑟𝑀
𝑡 ) =

⎩
⎪⎪
⎨

⎪⎪
⎧𝑈𝑃  𝑚𝑚  � 𝑜𝑖

𝑡
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 (4) 

where U =  �i ∈ ℕ∗: pi
t+1 = UP ∧ li

t > 0�  and  D =  {i ∈ ℕ∗: pi
t+1 = DOWN ∧ si

t > 0}. 

According to this aggregate function, the weight of a model’s vote will either be its long accuracy 

factor, if it predicts a price increase, or its short accuracy factor, if it predicts a price decrease. If the 

sum of vote weights of the models predicting the price will go up is greater than the sum of vote 

weights of the models predicting it will go down, then the ensemble prediction is class UP; if the 

reverse happens, the ensemble predicts a price decrease; if the sums are exactly the same, the 

ensemble does not return a prediction. Notice that only the models with a positive vote weight are 

considered in the calculation of the ensemble forecast. This means that, if all the models were very 

inaccurate when forecasting the last 𝑁 trades, the prediction module will not output a prediction 

for the next trading period (because all the weights will be negative). 
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This method of calculating the weights and aggregating the votes is best explained with an 

example. Imagine that a data mining model made six UP and four DOWN predictions in the last 

ten trading periods; four of the UP forecasts were accurate, i.e., the model’s classification for the 

instances was class UP, and the price increased in the corresponding periods (therefore, if these 

individual forecasts were used to open trades, four UP predictions would have originated positive 

returns, while two would have ended with losses). Now imagine that, of the four DOWN 

predictions, only one was accurate. In this scenario, the model’s long accuracy factor at that instant 

would be 0.17 ( 4
6

− 0.5), while its short accuracy factor would be -0.25 ( 1
4

− 0.5); we subtract 0.5 

from the proportion of accurate predictions because the minimum accuracy we accept is 50% 

(which even a simple coin-flipping mechanism should be able to achieve). If this model makes an 

UP prediction for the next trading period, the weight of its vote will be 0.17; if, on the other hand, 

it predicts class DOWN, its vote weight will be -0.25 – since this weight is negative, it will be 

filtered out by the aggregate function and excluded from the calculation, which in practical terms 

means that the model will be ignored. The rationale behind this strategy to compute the ensemble 

prediction is that it allows the agent to ignore the forecasts of models that were inaccurate in the 

recent past; also, it makes the agent “smart” enough to stop trading when all the models become 

inaccurate, until their precision improves. 

We configured the USD/JPY trading agent to use this new implementation of the prediction 

module, set 𝑁 to 50 (so that the weights were based on the models’ performance under the most 

recent market conditions), and repeated the trading simulation. Its accumulated return throughout 

the out-of-sample period is shown in Figure 11, in comparison with the return of the simpler agent 

that used an ensemble with equal weights. The new agent obtained a RMD ratio of 2.31, slightly 

better than the ratio of the simpler version; its 0.0122% return per trade, on the other hand, was 

not as good. The biggest difference between the two was in the number of trades simulated. Even 

though the out-of-sample period consists of 2,510 instances, the new agent only performed 2,327 
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trades. This implies that it temporarily stopped trading during the simulation, because all of its data 

mining models were exhibiting poor accuracy in the recent past; that is to say, all the models’ votes 

had negative weights, so the prediction module stopped outputting predictions. All things 

considered, we must conclude that, for this particular agent, using dynamic accuracy-based weights 

in the prediction module was not a significant improvement over using equal weights. 

As we mentioned before, from a trader’s perspective, profit is much more important than 

accuracy. Therefore, it is probably best to base the models’ vote weights on their past profitability, 

rather than their accuracy. We can see in Table 2 that the average return per trade obtained with 

each standalone data mining model varied substantially according to the type of predictions made: 

some were more profitable with UP classifications (i.e., long trades), while others did better with 

DOWN classifications (short trades). The most profitable at predicting price increases was the 

logistic model tree, while the RIPPER rule learner was the best at shorting the currency pair. We 

can also verify that UP classifications by the K* classifier were correct 52.0% of the times, but the 

corresponding trades were unprofitable on average; hence, the trading agent should disregard this 

model whenever it does that classification. In order to allow the agent to focus on this type of

 
Figure 11. Gross cumulative return of the USD/JPY trading agent using an ensemble of models with dynamic 

accuracy-based weights. 
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information, rather than the models’ accuracy, we introduced a new change to the prediction 

module. It acted exactly the same way as in the previous implementation, but the models’ vote 

weights were now based on their individual profitability. Consider once again that 𝑝𝑁
𝑚 represents 

the sequence of class predictions from trading period 𝑡 − 𝑁 + 1 till period 𝑡 for model 𝑚, and 𝑟𝑁
𝑚 

represents the returns that would have been obtained if we opened trades according to those 

predictions. The long and short profit factors, to be used as model 𝑚’s vote weights in period 𝑡 + 1, 

are given by: 

𝐿𝑜𝑑𝑔𝑃𝐹(𝑝𝑁
𝑚, 𝑟𝑁

𝑚) =  
∑ 𝑟𝑖

𝑚
𝑖∈𝑈′

∑ �𝑟𝑖
𝑚�𝑖∈𝑈′′

− 1, (5) 

𝑆ℎ𝑜𝑟𝑡𝑃𝐹(𝑝𝑁
𝑚, 𝑟𝑁

𝑚) =  
∑ 𝑟𝑖

𝑚
𝑖∈𝐷′

∑ �𝑟𝑖
𝑚�𝑖∈𝐷′′

− 1, (6) 

𝑤ℎ𝑟𝑟𝑟 𝑈′ =  {𝑚 ∈ ℕ∗:  𝑝𝑖
𝑚 = 𝑈𝑃 ∧ 𝑟𝑖

𝑚 > 0},  𝑈′′ =  {𝑚 ∈ ℕ∗:  𝑝𝑖
𝑚 = 𝑈𝑃 ∧ 𝑟𝑖

𝑚 < 0},
𝑚𝑑𝑜 𝑚′ =  {𝑚 ∈ ℕ∗:  𝑝𝑖

𝑚 = 𝑚𝑂𝑊𝑁 ∧ 𝑟𝑖
𝑚 > 0},  𝑚′′ =  {𝑚 ∈ ℕ∗:  𝑝𝑖

𝑚 = 𝑚𝑂𝑊𝑁 ∧ 𝑟𝑖
𝑚 < 0}. 

These values are calculated by the prediction module before each trade. When a model predicts a 

price increase, the weight of its vote is its long profit factor; when it predicts a price decrease, the 

weight of its vote is its short profit factor. The long profit factor is basically the ratio between the 

return the model would have obtained with its accurate UP predictions, and the return it would 

have lost with its inaccurate UP predictions, in the last 𝑁 periods. The short profit factor is similar, 

only for the DOWN classifications in the recent past. 

Let us go back to our previous scenario, where a fictitious model made four UP and one 

DOWN accurate predictions, versus two UP and three DOWN inaccurate classifications, in the last 

ten periods. Imagine that, if these forecasts were utilized to open trades, the returns obtained would 

be: 3.5% with the four accurate long trades, -4.5% with the two failed long trades, 4.75% with the 

accurate short trade, and -2.75% with the three bad short trades. This scenario implies that, even 

though the model was more precise at forecasting price increases than price decreases, the overall 

return of the long trades was negative, while the total return of the short trades was positive. The 
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model’s long profit factor, at this particular point in time, would be -0.22 ( 3.5
|−4.5| − 1), while the 

short profit factor would be 0.73 ( 4.75
|−2.75| − 1). Notice these weights reflect how much positive 

return the model would yield, for each unit of negative return produced; we use the ratio to 

decrease the range of the weights, and subtract 1 to create a greater differentiation between them 

(otherwise they would likely be very similar). If the model in our example predicts class UP for 

period 𝑡 + 1, its vote will be assigned a negative weight, and will therefore be ignored by the 

prediction module; a DOWN prediction, on the other hand, will be assigned a positive weight of 

0.73. This strategy makes sense in that we are putting the emphasis on the models’ ability to 

generate profit, rather than their ability to predict the direction of the price – even if the models are 

very accurate, the prediction module will not output any predictions (thus preventing the agent 

from trading) if that accuracy did not translated into actual profit in the last 𝑁 trades. 

We devised a new prediction module to test this profit-based weighting strategy. The function 

that aggregates the models’ predictions remains the same (Equation 4), only 𝑜𝑀
𝑡  and 𝑟𝑀

𝑡  now 

represent the long and short profit factors of the 𝑀 models in period 𝑡, instead of their accuracy 

factors. With the 𝑁 parameter set to 50, the new version of the USD/JPY trading agent achieved in 

the simulation period the cumulative return shown in Figure 12. For comparison purposes, the 

returns obtained with the other module implementations are also displayed in this figure. The chart 

reveals that, for this specific financial instrument and time frame, profit-based vote weights were a 

better option than accuracy-based weights. The new agent achieved a RMD ratio of 3.50 and a 

return per trade of 0.0227%, both metrics demonstrating a significant improvement over the 

previous implementations of the prediction module. The agent only simulated 2,339 trades (out of 

2,510 possible), which means that it temporarily stopped trading during the simulation, because all 

the models were making unprofitable predictions in the recent past. 

So far, we have seen how a trading agent’s performance varies when its prediction mechanism 

is altered from a single data mining model to an ensemble of models with equal or dynamic vote
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weights (based on accuracy or profit). These models remained static throughout the course of the 

simulations, unable to learn new patterns while the trades were being performed. As we previously 

explained, it is extremely unlikely that the financial data used for training the models will ever 

contain all the information they need to keep making accurate predictions indefinitely. After each 

forecast, and as soon as the corresponding trade is simulated, there is always a new instance 

available that could be utilized to train the models. Periodically retraining them with these new 

instances might improve their accuracy over time; however, since some learning algorithms may be 

unstable, it is important to check if the retrained models perform as well as they did before 

retraining. We implemented a new version of the prediction module to test this retraining strategy. 

Before each prediction, this module splits all the available instances into two datasets: the test set, 

with the most recent 𝑁 instances, and the training set, with all the rest. Using these two sets of 

data, the following sequence of steps is applied to each model in the ensemble: 

• The model is retrained using the training set. 

• The retrained model is utilized to make class predictions for all the test instances, and 

trades are simulated accordingly; using the results of this simulation, the overall accuracy 

factor of the retrained model is calculated with the following equation: 

 
Figure 12. Gross cumulative return of the USD/JPY trading agent using an ensemble of models with dynamic profit-

based weights. 
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𝑂𝑣𝑟𝑟𝑚𝑜𝑜𝐴𝐹(𝑟𝑁
𝑚) =  

|𝑇′|
𝑁

− 0.5, (7) 

𝑤ℎ𝑟𝑟𝑟 𝑇′ =  {𝑚 ∈ ℕ∗:  𝑟𝑖
𝑚 > 0}.  

Notice that 𝑟𝑁
𝑚 has the same meaning as in previous equations, i.e., it is the sequence of 

simulated returns corresponding to model 𝑚’s last 𝑁 predictions. 

• If the overall accuracy factor of the retrained model is greater than or equal to the overall 

accuracy factor of the model before retraining, then the retrained model replaces it in the 

ensemble. Otherwise, the retrained model is discarded, and the original is kept. 

This algorithm ensures that the agent will keep learning as time goes by, because its data mining 

models will be periodically retrained with a bigger training set. Figure 13 illustrates this concept of 

a growing training set, coupled with a test set that moves like a sliding window containing only the 

most recent data. By using the accuracy in the last 𝑁 trades (the test set) to decide if a model 

should be replaced with a retrained version of itself, the prediction module guarantees that, at any 

given point in time, the ensemble contains models that are performing as best as they can in the 

most recent market conditions. This method might also confer some trend-following capabilities to 

the agent, because the models are chosen according to test data that reflects the most recent price 

trend. This strategy is similar to that of Harries and Horn (1995), only they always replaced the 

original model with the retrained model, and the training data was part of the sliding window. 

 

 
Figure 13. Split between the training and the test data at a specific point in the simulation. 
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We will explain our retraining mechanism with a simple example. Consider that a trading 

period has just ended, and the corresponding new instance has been added to the set of available 

data. Parameter 𝑁 is set to 100, hence the data is split into a test set with the last 100 instances, 

and a training set with all the rest. Notice the new instance becomes a test instance, while the 

oldest test instance becomes a training instance. Using model 𝑚’s predictions for the test data, 

Equation 7 is utilized to calculate its overall accuracy factor; suppose the calculated value is 0.05, 

meaning the model’s accuracy for the last 100 periods was 55%. Next, a new model 𝑚′ is trained 

with the training set, using the exact same algorithm, parameters and attributes that were originally 

used to create model 𝑚. This new model makes predictions for the same test instances, and its 

overall accuracy factor is calculated the same way with Equation 7. Now, if its accuracy factor is 

greater than or equal to that of model 𝑚 (i.e., if it is at least 0.05), then 𝑚′ becomes a part of the 

ensemble, and 𝑚 is remove from it; otherwise, 𝑚′ is discarded. Once this strategy has been applied 

to all the models in the ensemble, the prediction module is ready to output its forecast for the next 

trading period. This procedure entails that the models in the ensemble will be periodically replaced 

with more accurate versions of themselves, except when retrained models are put in the ensemble 

because they “overfit” the test data (which is counterproductive). To minimize the chances of this 

happening, the decision to replace the models could be based on cross-validation, rather than a 

single test set. However, this would be too computer-intensive (and consequently, the prediction 

mechanism would be too slow to be useful in practice); also, it would not give the agent the trend-

following ability we are hoping to achieve – by selecting the models using just one test set with the 

most recent data, the ensemble will contain the models that performed best in the most recent past, 

which could prove useful in trending markets. 

We implemented an agent using this new version of the prediction module. To be consistent 

with previous tests, 𝑁 was set to 50. The agent’s performance throughout the simulation period is 

shown in Figure 14, compared with the return of the agent with the simpler prediction module 
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(which did not retrain the models). We specified equal vote weights in this simulation, i.e., the 

ensemble prediction was decided by simple majority voting (Equation 1). Much to our surprise, the 

results we got with the new agent were considerably worse than those of the simpler agent: it 

achieved a RMD ratio of 1.48, and a return per trade of just 0.0112%. Not impressive, by any 

standard. 

Once again, we attempted to improve the agent’s performance by making its prediction 

module focus on profit, rather than accuracy. Instead of using the overall accuracy factor to decide 

when a retrained model should become a part of the ensemble, we made it use the overall profit 

factor, for which we defined the following equation: 

𝑂𝑣𝑟𝑟𝑚𝑜𝑜𝑃𝐹(𝑟𝑁
𝑚) =  

∑ 𝑟𝑖
𝑚

𝑖∈𝑇′

∑ �𝑟𝑖
𝑚�𝑖∈𝑇′′

− 1, (8) 

𝑤ℎ𝑟𝑟𝑟 𝑇′ =  {𝑚 ∈ ℕ∗:  𝑟𝑖
𝑚 > 0} 𝑚𝑑𝑜 𝑇′′ =  {𝑚 ∈ ℕ∗:  𝑟𝑖

𝑚 < 0}.  

This new version of the prediction module ensures that a retrained model 𝑚′ will only replace the 

original model 𝑚 in the ensemble if it is determined that 𝑚′ would have been at least as profitable 

as 𝑚 in the most recent 𝑁 trades. The agent’s cumulative return throughout the simulation period, 

 
Figure 14. Gross cumulative return of the USD/JPY trading agent using an ensemble with periodical retraining and 

replacement of models based on accuracy. 
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using this new strategy, is displayed in Figure 15. Also shown are the returns obtained with the 

other two versions of the prediction module (no retraining, and retraining with replacement based 

on accuracy). We can see in the chart that the new agent was more profitable than the alternatives. 

It achieved a RMD ratio of 1.61 and a return per trade of 0.0142%, which is slightly better than 

the performance of the accuracy-based solution. Still, this improvement is not big enough to justify 

the computational overhead of periodically retraining the models. 

Up to this point, we have experimented with two different strategies for improving the 

performance of a trading agent. First, we tried to create an agent that could adapt to different 

markets conditions, by assigning dynamic vote weights to the data mining models in its prediction 

module. Next, we tried to create an agent that would keep learning over time, by retraining the 

models in its ensemble before each prediction. Clearly, the next logical step is to create an agent 

with both capabilities. To accomplish this, a new prediction module was implemented. We made it 

use dynamic vote weights based on the long and short accuracy factors (Equations 2 and 3), and 

retrain and replace models based on the overall accuracy factor (Equation 7); the aggregation of the 

models’ votes was done with Equation 4. With this new module, the agent obtained the cumulative

 
Figure 15. Gross cumulative return of the USD/JPY trading agent using an ensemble with periodical retraining and 

replacement of models based on profit. 
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return displayed in Figure 16; plotted in comparison is the return of the simpler agent, which used 

equal vote weights and did not retrain the models. Overall, the new strategy yielded promising 

results: the agent had a RMD ratio of 4.70 and a return per trade of 0.0183%, both measures 

demonstrating a significant improvement over the less complex agent. We expected to get even 

better results by focusing on the profit, instead of the accuracy. To accomplish this, we created yet 

another prediction module. This time around, it utilized dynamic vote weights based on the 

models’ long and short profit factors (Equations 5 and 6), and retrained and replaced models 

according to their overall profit factor (Equation 8); vote aggregation was also done with Equation 

4. The return of the new agent is presented in Figure 17, in comparison with the returns obtained 

with previous implementations of the prediction module; we can clearly verify that it performed 

much better than any of the other solutions. 

Table 3 summarizes the simulation results for all the different prediction module 

implementations that were tested. Without a doubt, this last profit-based strategy was the one that 

showed the greatest potential. Its RMD ratio was 5.35, and its return per trade was 0.0260%, a 

performance that soundly beat all the other solutions. This led us to believe that this forecasting

 
Figure 16. Gross cumulative return of the USD/JPY trading agent using an ensemble with retraining and dynamic 

vote weights based on accuracy. 
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mechanism might be good enough to be used as a building block in the architecture of intelligent 

trading agents. Still, more empirical evidence was needed to support this decision. 

In order to determine if similar success could be achieved with a different financial instrument, 

we repeated all the experiments with an agent that was configured to day trade the ADBE stock. 

Eleven data mining models were trained, using historical data for the period between August of 

1986 and October of 2005, which corresponds to about 4,850 instances; the 50 instances that 

 
Figure 17. Gross cumulative return of the USD/JPY trading agent using an ensemble with retraining and dynamic 

vote weights based on profit. 

Table 3. Simulation results of the USD/JPY trading agent using different prediction module implementations 

(excluding trading costs). 

Prediction Module Ret (%) Max DD (%) RMD Ratio Ret/Trade (%) Acc (%) Trades 

Equal weights 32.9 14.8 2.23 0.0131 53.4 2,510 

Dynamic weights (AF) 28.4 12.3 2.31 0.0122 52.6 2,327 

Dynamic weights (PF) 53.1 15.2 3.50 0.0227 53.0 2,339 

Retrain (AF) 28.0 18.9 1.48 0.0112 53.1 2,510 

Retrain (PF) 35.5 22.1 1.61 0.0142 53.6 2,510 

Retrain & Dynamic weights (AF) 43.1 9.2 4.70 0.0183 52.5 2,362 

Retrain & Dynamic weights (PF) 61.8 11.5 5.35 0.0260 52.2 2,375 
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comprise the period from November of 2005 till the second week of January of 2006 were used for 

testing; the subsequent data, up to the second week of May of 2009, was reserved for the trading 

simulations (a total of 828 out-of-sample instances). The price of the stock throughout these 

periods is presented in Figure 18. 

Following the same strategy as before, each of the eleven data mining models was utilized to 

implement a simple trading bot, based on the architecture shown in Figure 4. The models were 

trained to make daily predictions regarding the direction of the price of the ADBE stock; more 

specifically, they tried to predict if the difference between the stock’s closing and opening prices in 

the following day was going to be positive or negative. For each out-of-sample instance, if the 

model predicted a positive change, i.e., a price increase from the market’s opening to the close, the 

bot simulated buying at the open and selling at the close. If the prediction was for a price decrease 

throughout the day, the bot simulated going short at the open and covering at the close. Just like in 

previous tests, we specified a fixed trade size in these simulations. The cumulative returns of the 

eleven bots in the out-of-sample period are displayed in Figures 19 through 21, and summarized in 

Table 4. Our results reveal that only three bots (with the models Naïve Bayes, K* and least median 

squared regression) were profitable at the end of the simulation period. Some of them (fuzzy lattice

 
Figure 18. Historical ADBE stock prices. 
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reasoning, classification and regression tree, pace regression) experienced massive losses. This is 

troubling, especially if we consider that the returns shown do not even reflect the trading costs 

(which, going by the number of trades, would make the losses much worse). One thing stands out 

the most when we look at the charts: all the returns experienced a significant increase in volatility 

after September of 2008. This was the month when investment bank Lehman Brothers filed for 

bankruptcy, because of the subprime mortgage crisis; many other financial institutions followed suit 

shortly thereafter. This event completely changed the dynamics of the stock market, with global 

indices suffering crashes of historic proportions. The ADBE stock price was dragged down with 

the rest of the market, as we can see in Figure 18. Consequently, several trading bots experienced 

massive losses. This corroborates our belief that a prediction mechanism that is based on a 

standalone data mining model cannot be used to trade autonomously, because sooner or later it will 

be affected by one of these catastrophic events. Even if the model is able to output profitable 

predictions for several years in a row, it may end up losing all its investment capital when a black 

swan event occurs – this is exactly what happened to the trading bot with the pace regression 

model: it did ok for well over two years, but was overwhelmed by the volatility when the subprime 

crisis hit the markets, and ended up losing almost half of its capital. The bot with the K*

 
Figure 19. Gross cumulative return of the ADBE trading bots with standalone classification models. 
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classification model, on the other hand, did quite well in the same situation. But that does not 

mean it would be a good idea to let it trade real funds: first of all, it is impossible to know if the K* 

model will continue to be profitable going forward; also, the bot’s track record is not flawless – 

looking at the cumulative return curve in Figure 19, we verify that its return peaked in the 

beginning of 2007, after which it took it almost two years to overcome that high-water mark. 

Losing money for two years in a row is a very big drawback; if this happened in real life, we would 

certainly be questioning the bot’s competence after a while, and might end up getting rid of it 

before it had the chance to recover the losses. Most other bots exhibit the same problem (extended

 

Figure 20. Gross cumulative return of the ADBE trading bots with other standalone classification models. 

 

Figure 21. Gross cumulative return of the ADBE trading bots with standalone regression models. 
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periods of time where the cumulative return moves downward or sideways), which would be nerve-

racking to experience in real-time, in addition to representing a substantial opportunity cost. All 

things considered, we must conclude that none of the bots demonstrated much trading talent. 

The fact that the out-of-sample instances were extracted from a period with extreme volatility 

spikes makes them the perfect dataset for testing a trading agent’s ability to adapt to changes in 

market dynamics. In order to do so, we used the architecture shown in Figure 9 to create an agent 

to trade the ADBE stock. At the centre of its prediction module was an ensemble composed of the 

eleven data mining models that were utilized by the trading bots. Just like before, we experimented 

with various prediction module implementations. The results obtained with the different solutions 

in the out-of-sample period are displayed in Figures 22 to 25, and summarized in Table 5. 

Figure 22 reveals that, while the performance of the simplest ensemble with the eleven models 

was marginally better than that of its worst model, it was still embarrassingly bad: the agent lost 

Table 4. Simulation results of the ADBE trading bots (excluding trading costs). 

Model 
Return 

(%) 
Max DD 

(%) 
RMD 
Ratio 

Ret/Trade 
(%) 

Accuracy 
(%) 

Trades 

Naïve Bayes 98.9 40.2 2.46 0.1195 50.8 828 

Least Median Squared Linear Regression 23.8 53.5 0.44 0.0287 48.1 828 

Pace Regression -49.4 85.0 -0.58 -0.0597 48.4 828 

K* 145.2 34.9 4.17 0.1754 51.8 828 

Fuzzy Lattice Reasoning -151.2 170.2 -0.89 -0.1826 46.3 828 

Logistic Model Tree -29.9 98.6 -0.30 -0.0361 45.8 828 

M5 Model Tree -32.8 96.3 -0.34 -0.0396 50.2 828 

Classification and Regression Tree -128.6 161.5 -0.80 -0.1553 48.1 828 

Conjunctive Rule -31.4 67.4 -0.47 -0.0379 49.3 828 

Non-Nested Generalised Exemplars -42.7 76.7 -0.56 -0.0516 50.2 828 

Ripple-Down Rule Learner -38.4 105.5 -0.36 -0.0463 51.1 828 
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93.2% of the capital, and that is without even considering the trading costs. We were expecting 

this, to some extent, because the vast majority of the models in the ensemble were not very good on 

their own. 

In Figure 23 we can see that using accuracy or profit-based vote weights in the ensemble 

considerably improved the agent’s return, compared to aggregating the votes by simple majority 

voting; in these experiments, the profit-based solution yielded the best performance. This 

represents more empirical evidence in favour of our method of aggregating votes using dynamic

 
Figure 22. Gross cumulative return of the ADBE trading agent using an ensemble of models with equal weights. 

 
Figure 23. Gross cumulative return of the ADBE trading agent using an ensemble of models with accuracy or profit-

based dynamic vote weights. 
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weights. Similarly, Figure 24 shows that both the accuracy and the profit-based model replacement 

techniques improved the performance of the agent, compared to not doing the retraining; this time 

around, the accuracy-based solution performed best. Overall, the results of our tests support our 

conviction that dynamic vote weights and model retraining can increase the skill level of the trading 

agent, by making it more resilient to market swings. 

Figure 25 indicates that the agent performs even better with a prediction module that 

implements both techniques simultaneously, but only if the models’ replacement and vote weights 

are based on their short term profitability. These results are similar to the ones we got with the 

USD/JPY trading agent. For both agents, the final profit-based solution – that enables them to 

keep learning over time (by retraining the models) and to adapt to changes in market dynamics (by 

updating the models’ vote weights) – is the one that yielded the best performance. For this reason, 

we decided to use this particular version of the prediction module as a building block in our trading 

agent architecture. This module will allow the intelligent agents to decide when to buy or short sell 

a financial instrument, thus taking care of one of the basic autonomy requirements that were 

previously established for these agents. 

 

 
Figure 24. Gross cumulative return of the ADBE trading agent using an ensemble with accuracy or profit-based 

periodical retraining and replacement of models. 
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The pseudocode detailing the implementation of the USD/JPY and the ADBE trading agents 

(which were based on the architecture in Figure 9) is listed in Algorithm 2 and depicted in the 

UML sequence diagram in Figure 26. The inner workings of the prediction module that was 

picked for future use (i.e., the one with profit-based dynamic weights and model retraining) is 

described in Algorithm 3, and the corresponding diagram is shown in Figure 27. We need to 

emphasize that, according to this algorithm, the decision to replace a model in the ensemble with a 

 
Figure 25. Gross cumulative return of the ADBE trading agent using an ensemble of models with accuracy or profit-

based dynamic vote weights and retraining. 

Table 5. Simulation results of the ADBE trading agent using different prediction module implementations 

(excluding trading costs). 

Prediction Module Ret (%) Max DD (%) RMD Ratio Ret/Trade (%) Acc (%) Trades 

Equal weights -93.2 137.8 -0.68 -0.1125 48.1 828 

Dynamic weights (AF) 32.1 48.5 0.66 0.0388 50.9 827 

Dynamic weights (PF) 49.2 48.5 1.02 0.0595 49.6 828 

Retrain (AF) 67.6 55.4 1.22 0.0817 52.4 828 

Retrain (PF) 47.7 53.7 0.89 0.0576 53.1 828 

Retrain & Dynamic weights (AF) 35.6 74.9 0.48 0.0429 48.8 828 

Retrain & Dynamic weights (PF) 72.4 60.9 1.19 0.0874 51.0 828 
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new version of itself (trained with more data) is based on the simulated profitability achieved with 

the test data. This signifies that the module is selecting the models by looking at how well they 

perform with the test instances. This is not a good data mining strategy. Just because a model made 

profitable forecasts for a small set of test data, that does not mean it will be able to do so for new, 

unseen data. Put another way, a model that cannot generalize well from the training data might 

make profitable predictions for a few test instances due to chance alone. Therefore, some subpar 

models that “overfit” the test data might end up in the agent’s ensemble. But this problem is 

mitigated by the way the prediction module works: first of all, if a model is indeed a bad predictor, 

the prediction module will progressively decrease the weight of its vote in the forecasts of the 

ensemble (it may even set it to zero, so that the model’s predictions are completely ignored); 

Algorithm TradingAgent_v1 
Inputs: 

ticker  // instrument to trade 
amount // amount to invest in each trade 
ensemble // ensemble of data mining model that will do the predictions 
N  // test set size 

 
BEGIN 

tradeOpen ← FALSE 
Repeat 

confirmation ← wait_for_end(period)  // wait for the current trading period to end 
If tradeOpen = TRUE Then   // if the prediction module made a forecast for that period: 

confirmation ← close_trade(tradeID)  //     close open trade 
tradeOpen ← FALSE 

EndIf 
periodData ← get_financial_data(ticker,period) // get instrument’s financial data for the period 
confirmation ← add_to_data(ticker,periodData) // add period data to the database 
 
// --- PREDICTION MODULE --- // 
class ← predict_next_class(ticker,ensemble,N) // predict instrument’s price direction for next period (Algorithm 3) 
 
If class = UP Then 

tradeID ← buy_instrument(ticker,amount)  // buy if prediction module outputs class UP 
tradeOpen ← TRUE 

ElseIf class = DOWN Then 
tradeID ← short_instrument(ticker,amount) // short sell if prediction module outputs class DOWN 
tradeOpen ← TRUE 

EndIf 
EndRepeat 

END 

Algorithm 2. Pseudocode for a trading agent based on the prediction module. 



86 Chapter 3: A Hybrid Cognitive Architecture for Intelligent Trading Agents 

 

 

secondly, the module will continuously try to replace an unprofitable model with a more profitable 

retrained version of itself, and hence it should not be stuck with bad models forever. This flaw in 

the module’s algorithm actually demonstrates its greatest strengths: 

• it can ignore the predictions of inaccurate models; 

• it can replace bad predictors in the ensemble as time goes by; 

• it can stop making forecasts temporarily, if all the models suddenly become unprofitable 

predictors. 

Obviously, the module’s ability to spot bad models is not instantaneous; only after several 

inaccurate forecasts will it be capable of determining that a given data mining model is out-of-sync 

with the market. Still, even if there is some lag, bad models do end up being ignored or replaced 

sooner or later, and this process is key to the agent’s autonomy. 

 

 

Figure 26. UML sequence diagram for a trading agent based on the prediction module. 
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Algorithm PredictionModule_PredictNextClass 
Inputs: 

ticker  // instrument to trade 
ensemble // ensemble of data mining models that will perform the classification 
N  // test set size 

Outputs: 
class  // class prediction for the next period 

 
BEGIN 

historicalData ← get_data(ticker)    // get instrument’s historical data from database 
totalUP,totalDOWN ← 0 
ForEach model In ensemble    // for each model: 

allInstances ← convert_to_instances(historicalData,model) //    convert data into instances for the model 
instance ← get_last(allInstances)    //    get last instance (which has no class value) 
confirmation ← remove_last(allInstances)   //    remove last instance from the list  
testSet, trainingSet ← split(allInstances,N)   //    split instances into test set and training set 
predictions,returns ← simulate_trades(model,testSet)  //    simulate trades for the test set 
overallPF,longPF,shortPF ← profit_factors(predictions,returns) //    calculate profit factors (Equations 5, 6 and 8) 
model* ← retrain(model,trainingSet)   //    retrain model using the training set 
predictions,returns ← simulate_trades(model*,testSet)  //    simulate trades using the new model 
overallPF*,longPF*,shortPF* ← profit_factors(predictions,returns) //    calculate profit factors (Equations 5, 6 and 8) 
If overallPF* ≥ overallPF Then    //    if the new model was more profitable: 

ensemble ← remove_from_ensemble(model)  //       remove original model from the ensemble 
ensemble ← insert_in_ensemble(model*)   //       insert new model in the ensemble 
class ← classify_instance(instance,model*)  //       predict price direction for next period 
If class = UP Then     //       if class predicted is UP: 

totalUP ← totalUP + max(longPF*,0)   //          use the longPF* as the vote weight 
Else      //       else: 

totalDOWN ← totalDOWN + max(shortPF*,0)  //          use the shortPF* as the vote weight 
EndIf 

Else      //    else if the original was more profitable: 
class ← classify_instance(instance,model)  //       predict price direction for next period 
If class = UP Then     //       if class predicted is UP: 

totalUP ← totalUP + max(longPF,0)   //          use the longPF as the vote weight 
Else      //       else: 

totalDOWN ← totalDOWN + max(shortPF,0)  //          use the shortPF as the vote weight 
EndIf 

EndIf 
EndForEach      // Ensemble forecast calculation (Equation 4): 
If totalUP > totalDOWN Then    // if sum of UP vote weights is greater: 

class ← UP      //    ensemble forecast is class UP   
ElseIf totalUP < totalDOWN Then    // else if sum of DOWN weights is greater: 

class ← DOWN     //    ensemble forecast is class DOWN 
Else       // else: 

class ← NONE     //    ensemble does not make a forecast 
EndIf 
RETURN class      // output the prediction 

END 

Algorithm 3. Pseudocode for the prediction module’s classification task. 
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Figure 27. UML sequence diagram for the prediction module’s classification task. 
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3.3 Choosing the Trade Size Using Empirical Knowledge 

The prediction module enables the trading agents to automatically decide when to buy or short sell 

a financial instrument. In order to lower the trading risk, the agents must also be able to decide 

how much to invest in each trade. More specifically, they should be prepared to use smaller trade 

sizes when the perceived risk is higher, and to avoid trading when the expected return is negative. 

The agents that were implemented in the previous section (in consonance with the architecture in 

Figure 9) completely lacked this skill; they used the same investment amount for all the trades, 

which is a rather simplistic money management strategy. In an attempt to make the agents a bit 

more talented, we set out to create a new module that would enable them to select an appropriate 

size for each transaction. The solution we came up with lets them pick one of three sizes before 

opening a trade: if the trade is expected to be profitable, a standard, user-defined amount is used; if 

there are doubts regarding the potential profit of the trade, its size is set to half that amount; 

finally, if the trade is expected to be unprofitable, the size is set to zero, which in practical terms 

means that the agent will not open that trade. This mechanism was named “empirical knowledge 

module”, because it uses information from the agent’s past trading experience to decide the size of 

future trades. The module’s implementation was accomplished with a case-based reasoning system; 

in this system, each case corresponds to a trade simulated in a previous period, and contains the 

following information: 

• the price direction forecasted by the prediction module; 

• the price direction predicted by each model in the prediction module’s ensemble; 

• the return that would have been obtained if the forecast of the prediction module was 

utilized to open a trade in that period. 

This mechanism tries to capitalize on the higher profitability associated with certain combinations 

of the models’ predictions. We noticed this correlation when we broke down the trading results of 
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the agents described in the previous section; after analysing the trades they did, it became clear that 

those trades that were carried out when all the models made the same prediction, i.e., all predicted 

a price increase or all predicted a price decrease, were usually more profitable than those that were 

done when the predictions were mixed. Consider the case of the USD/JPY trading agent. Its 

ensemble has seven models; each of them classifies an instance as either belonging to class UP or 

class DOWN, so there are 128 possible combinations for their predictions (27). We grouped these 

different combinations according to the number of UP forecasts, and calculated the accuracy and 

the average return per trade that the agent obtained with the corresponding trades. The results of 

this analysis can be seen in Figure 28. The chart in this figure confirms that the agent’s accuracy 

was bigger when the models in the ensemble made similar predictions. More importantly, the 

profit also increased when most of the models made the same classification. In order to make these 

results even clearer, we grouped the different forecast combinations into two sets, one containing 

the combinations representing near or total agreement between the models (i.e., all or all but one 

made the same classification), and the other containing combinations representing greater 

disagreement between them (i.e., the classification of at least two models differed from all the

 
Figure 28. Accuracy and average return per trade of the USD/JPY trading agent for different combinations of models’ 

predictions (excluding trading costs). 
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others). The statistics of the corresponding trades are synthesized in Table 6; undoubtedly, there is 

a relationship between the consensus in the models’ predictions, and the accuracy and the return of 

the trades: when all or almost all of the models were in agreement, the classification accuracy of the 

ensemble was 55.0%; conversely, when the predictions were mixed, that accuracy dropped to 

47.8%; the return per trade was also much bigger when the models’ classifications were the same 

(0.0421% versus 0.0009%). 

The return and accuracy breakdown for the ADBE trading agent, displayed in Figure 29 and 

Table 7, show even greater differences. Since this agent’s ensemble contains 11 models, the total 

number of possible combinations is 2,048 (211). Figure 29 reveals that, during the simulation, there 

was never a trade for which at least 10 models outputted a DOWN classification. Nevertheless, we 

can still verify that the more homogeneous the predictions, the greater the accuracy and the average 

return per trade. The results in Table 7 reflect the grouping of the different prediction 

combinations in two bins: the first represents agreement between the models (at least 9 made the 

same prediction), and the other represents disagreement between them. On the relatively few times 

the models agreed, the classification accuracy was 67.2%; that is much higher than the average

Table 6. Accuracy and average return per trade of the USD/JPY trading agent according to the consensus in the 

models’ predictions (excluding trading costs). 

Prediction Combinations Return/Trade (%) Accuracy (%) Total Trades 

All UP 
6 UP, 1 DOWN 
1 UP, 6 DOWN 
All DOWN 

0.0421 55.0 1,447 

2 UP, 5 DOWN 
3 UP, 4 DOWN 
4 UP, 3 DOWN 
5 UP, 2 DOWN 

0.0009 47.8 928 

All Combinations 0.0260 52.2 2,375 
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accuracy for all combinations (51.0%), and than the 49.6% accuracy when the models disagreed. 

The average return per trade shows similar discrepancies: 0.3356% when there was agreement, 

versus just 0.0874% for all combinations, or 0.0666% when there was disagreement. 

 

 
Figure 29. Accuracy and average return per trade of the ADBE trading agent for different combinations of models’ 

predictions (excluding trading costs). 

Table 7. Accuracy and average return per trade of the ADBE trading agent according to the consensus in the models’ 

predictions (excluding trading costs). 

Prediction Combinations Return/Trade (%) Accuracy (%) Total Trades 

All UP 
10 UP, 1 DOWN 
9 UP, 2 DOWN 
2 UP, 9 DOWN 
1 UP, 10 DOWN 
All DOWN 

0.3356 67.2 64 

3 UP, 8 DOWN 
4 UP, 7 DOWN 
5 UP, 6 DOWN 
6 UP, 5 DOWN 
7 UP, 4 DOWN 
8 UP, 3 DOWN 

0.0666 49.6 764 

All Combinations 0.0874 51.0 828 
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Given these empirical results, it is fair to say that the agents might be able to evaluate the 

profit potential of future trades by looking at the predictions of their models. Thus, they could use 

this information to decide how much to invest in each trade: if the models make the same 

prediction, the trade size should be bigger, and if the predictions are mixed, it should be smaller (or 

even zero). The empirical knowledge module allows them to do just that. We combined this 

module with the prediction module, and created a new agent architecture, shown in Figure 30. The 

pseudocode for implementing this architecture is listed in Algorithm 4, and can be visualised in the 

sequence diagram in Figure 31. This architecture adds a few new steps to the decision process of 

the trading agent. Before a trade is opened, the prediction module forwards the details of its 

forecast to the empirical knowledge module; the case-based reasoning system will then retrieve 

from its database all the cases with the same ensemble prediction and the same combination of 

models’ forecasts; the overall profit factor of the retrieved cases is calculated with Equation 8, and 

the resulting value is utilized to decide how much to invest in the trade: 

 

 

Figure 30. Trading agent architecture based on the prediction and the empirical knowledge modules. 
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• if the profit factor is less than or equal to a predefined threshold, the trade size is set to 

zero, and the agent does not trade; 

• if it is greater than or equal to another predetermined threshold, the agent invests the 

standard amount; 

• if it is between the two thresholds, the agent invests half the standard amount. 

 

Algorithm TradingAgent_v2 
Inputs: 

ticker  // instrument to trade 
sAmount // standard amount to invest in each trade 
ensemble // ensemble of data mining model that will do the predictions 
N  // test set size 
minCases // minimum similar cases needed to calculate the profit factor 
minPF  // minimum profit factor to open trade 
highPF // profit factor threshold to invest the full standard amount 

 
BEGIN 

tradeOpen ← FALSE 
Repeat 

confirmation ← wait_for_end(period)  // wait for current trading period to end 
If tradeOpen = TRUE Then   // if a trade was opened in that period: 

confirmation ← close_trade(tradeID)  //     close the trade 
tradeOpen ← FALSE 

EndIf 
periodData ← get_financial_data(ticker,period)       // get financial data for the period 
confirmation ← add_to_data(ticker,periodData)        // add period data to the database 
simReturn ← simulate_trade(prevClassPred,periodData)       // simulate trade with previous prediction 
confirmation ← add_to_cases(ticker,prevClassPred,prevModelPred,simReturn)   // add new case to the CBR database 
 
// --- PREDICTION MODULE --- // 
class,modelPredictions ← predict_next_class(ticker,ensemble,N)                  // Algorithm 3 
 
// --- EMPIRICAL KNOWLEDGE MODULE --- // 
amount ← trade_size(ticker,class,modelPredictions,sAmount,minCases,minPF,highPF) // suggest trade size (Algorithm 5) 
 
If class = UP And amount > 0 Then 

tradeID ← buy_instrument(ticker,amount)  // buy if prediction module outputs class UP and empirical 
tradeOpen ← TRUE   // knowledge module outputs trade size greater than 0 

ElseIf class = DOWN And amount > 0 Then 
tradeID ← short_instrument(ticker,amount) // short sell if prediction module outputs class DOWN and 
tradeOpen ← TRUE   // empirical knowledge module outputs trade size greater than 0 

EndIf 
prevClassPred ← class 
prevModelPred ← modelPredictions 

EndRepeat 
END 

Algorithm 4. Pseudocode for a trading agent based on the prediction and the empirical knowledge modules. 
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Note that by following these steps, the agent will find any correlation that might exist between the 

models’ predictions and the profitability of the trades; hence, it is able to ignore the worst models, 

and to give more importance to the best models, when deciding the trade size. A more detailed 

description of this decision process is shown in Algorithm 5, and in Figure 32. 

We used the new architecture to implement two agents, one to trade the USD/JPY currency 

pair and the other to trade the ADBE stock. Their cumulative returns during the simulation period 

are presented in Figures 33 and 34, in comparison with those of the simpler agents that were tested 

in the previous section; the only difference between these agents is that, while the simpler agents 

always invest the same amount, the new agents use the empirical knowledge modules to select the

 
Figure 31. UML sequence diagram for a trading agent based on the prediction and the empirical knowledge modules. 
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best amount before opening each trade. Therefore, by comparing their results, we can determine 

how the new module affects the trading performance. 

Looking at Figure 33, we verify that adding the empirical knowledge module to the 

architecture of the USD/JPY trading agent actually decreased its final return. At first glance, this 

does not seem to be an improvement. However, the smaller return had to be expected. The goal of 

the empirical knowledge module is to lower the risk, by making the agent skip some trades and put 

less money on the line when certain conditions are met; this means that the agent takes fewer 

chances, so it is not surprising that its return is going to be lower, compared to using a fixed trade 

size – lower risk generally entails lower potential profits. This is not really a problem, because our

Algorithm EmpiricalKnowledgeModule_TradeSize 
Inputs: 

ticker   // instrument to trade 
class   // ensemble prediction for the next trading period 
modelPredictions  // individual predictions of the models in the ensemble 
sAmount  // standard amount to invest in each trade 
minCases  // minimum similar cases needed to calculate profit factor 
minPF   // minimum profit factor to open trade 
highPF  // profit factor threshold to invest the full standard amount 

Outputs: 
amount  // amount to invest in the trade 

 
BEGIN 

totalCases ← 0 
While totalCases < minCases Do   // while not enough similar cases have been found: 

cases ← retrieve_cases(ticker,class,modelPredictions)  //    retrieve cases with same ensemble and model predictions 
totalCases ← size(cases)   //    count cases 
modelPredictions ← remove_last(modelPredictions) //    relax restrictions by ignoring the prediction of the last model 

EndWhile 
returns ← get_returns(cases)   // get simulated returns of the similar cases 
overallPF ← profit_factor(returns)   // calculate overall profit factor of the similar cases (Equation 8) 
If overallPF ≥ highPF Then    // if the profit factor is greater than or equal to highPF: 

amount ← sAmount    //    suggested trade size is the standard amount 
ElseIf overallPF ≤ minPF Then   // else if the profit factor is less than or equal to minPF: 

amount ← 0     //    suggested trade size is 0 (do not trade) 
Else      // else if the profit factor is between minPF and highPF: 

amount ← sAmount / 2    //    suggested trade size is half the standard amount 
EndIf 
RETURN amount     // output the suggested investment amount 

END 

Algorithm 5. Pseudocode for the empirical knowledge module’s trade size decision task. 
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primary goal is not to develop the most profitable intelligent agents, but rather the agents that can 

attain the best risk-adjusted return. Proper risk management is one of the few things that 

distinguishes professional financial trading from ordinary gambling, so we need to make sure that 

the agent’s strategy is as safe as possible – even if that safety comes at the cost of a lower return. If 

we focus on the risk metrics, the superiority of the new version of the USD/JPY trading agent 

becomes obvious: its RMD ratio was 5.66, which is better than the 5.35 ratio of the simpler agent. 

This improvement was possible due to its smaller maximum drawdown, which decreased to 6.3% 

from 11.5%. These results confirm that the empirical knowledge module worked as expected: it 

improved the agent’s performance, by making its trading strategy less risky. The lower risk is visible 

in Figure 33; the chart shows very clearly that the cumulative return of the new agent is less volatile 

than that of the less complex agent. Another factor supporting the usefulness of the empirical

 

Figure 32. UML sequence diagram for the empirical knowledge module’s trade size decision task. 
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knowledge module was the substantial decrease in the number of trades opened, from 2,375 to just 

1,688. This difference implies that, over the course of the simulation, the agent skipped many 

trades due to its empirical knowledge module predicting they were going to be unprofitable. Still, 

not all were good news: the return per trade of the new agent dropped to 0.0210% from 0.0260%, 

which signifies that the decrease in the number of trades was not big enough to compensate for the 

smaller return. 

The empirical knowledge module’s ability to lower the risk is more obvious in the results of 

the ADBE trading agent. We see in Figure 34 that the return curve of the agent that combined the 

prediction module with the empirical knowledge module is much smoother than that of the agent 

that only used the prediction module. The simulation statistics confirm the lower risk: the RMD 

ratio of the more complex agent increased to 2.56 from 1.19, while the return per trade increased to 

0.1816% from 0.0874%. The smaller number of trades, 434 instead of 828, was another point in 

favour of the utility of the empirical knowledge module. 

On balance, the results of both agents confirm that the empirical knowledge module can 

decrease the volatility of the cumulative returns, and in doing so makes their trading strategies less

 
Figure 33. Gross cumulative return of the USD/JPY trading agent based on the combination between the prediction 

and the empirical knowledge modules. 
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risky. Moreover, this module brings the agents one step closer to being completely autonomous, by 

letting them decide for themselves how much to invest in each trade. This leads us to conclude that 

it could become an important part of the trading agent architecture. 

 

3.4 Integrating Domain Knowledge into the Trading Decisions 

Both the prediction and the empirical knowledge modules were devised in a way that allows the 

agents to learn from their empirical trading experiences. But there is always some knowledge that 

they will not be able to pick up from practice. We created the “domain knowledge module” to 

overcome this problem. As its name implies, this module’s main responsibility is to perfect the 

trading decisions with domain-specific knowledge. It consists of a rule-based expert system, in 

which expert human traders insert rules to steer the agents’ actions; these rules may pertain to many 

different aspects of trading – for instance, they can define low liquidity periods when the agents 

should not trade, or they can compel the agents to close trades if a given profit or loss is reached. 

These rules will have a very significant impact on the agent’s performance. For example, a take-

profit rule, i.e., one that forces the agent to close a trade when it reaches a specific profit, can turn 

 
Figure 34. Gross cumulative return of the ADBE trading agent based on the combination between the prediction and 

the empirical knowledge modules. 
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trades that would otherwise be unprofitable into successful trades. Whenever a take-profit rule is 

specified, a trade will be profitable as long as, during the prediction’s target period, the price moves 

in the forecasted direction at least up to the predefined take-profit level; if the price later reverses 

course, the agent will not be affected, because it will have already closed the trade to lock in the 

profit. Thus, even if the agent opens a trade based on an inaccurate prediction, it will still be 

successful in those circumstances. Obviously, the downside of the take-profit rule is that it caps the 

maximum profit that the agent can get in each trade. A stop-loss rule, on the other hand, has the 

opposite effect. This rule will close an open trade when the price moves in the “wrong” direction, 

and the loss reaches a specific amount. Consequently, even if the agent makes an accurate 

prediction, it will still lose money if the price hits the stop-loss first, and later starts moving in the 

desired direction. Nevertheless, a stop-loss rule is useful in that it limits how much money the 

agent stands to lose in each trade, thus preventing it from ever experiencing catastrophic losses. 

In order to test the domain knowledge module’s contribution to the performance of the 

trading agents, we designed a new agent architecture, depicted in Figure 35; the pseudocode 

describing the implementation of this architecture is listed in Algorithm 6, and the corresponding 

UML sequence diagram is presented in Figure 36. According to this new design, the domain 

knowledge module is responsible for making the final trading decisions, based on the price 

direction forecasts (made by the prediction module) and the expert-defined rules. This decision 

process is detailed in Algorithm 7 and in Figure 37; there is not much to it: the agent asserts facts 

to the rule engine reflecting updated information about the trading period and the financial 

instrument, and the rule engine does all the work, by forward chaining the expert rules and 

outputting the details of the trade to open (among which the price targets to close it). In our 

implementation, the domain knowledge module was put together with the Drools rule engine9. 

                                                      
9 The JBoss Drools rule engine is available at http://jboss.org/drools/. 

http://jboss.org/drools/
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Just like we did before, we used the new architecture to implement two agents, one to trade 

the USD/JPY currency pair and the other to trade the ADBE stock. Their performances over the 

course of the simulation period are shown in Figures 38 and 39, compared with the performances 

of the simpler agents that relied solely on the prediction modules (architecture in Figure 9). We 

should point out that, since the empirical knowledge module was not a part of either design, all the 

agents employed a fixed trade size throughout the simulation. The first thing we noticed when 

looking at the results of this experiment was that the cumulative returns of the two new agents were 

much less erratic than those of the simpler agents. This difference suggests that the domain 

knowledge module has indeed made them more talented. While the return of the more complex 

USD/JPY trading agent was smaller than that of the simpler version, its RMD ratio increased from 

5.35 to 5.78, and its return per trade improved from 0.0260% to 0.0438%. The much better return 

per trade was due in part to the lower number of trades, which dropped from 2,375 to 1,205 (less 

 
Figure 35. Trading agent architecture based on the prediction and the domain knowledge modules. 
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than half of the 2,510 out-of-sample instances). The new ADBE trading agent achieved similar 

performance gains; its RMD ratio increased from 1.19 to 1.99, while its return per trade increased 

from 0.0874% to 0.0952%. The number of trades dropped from 828 to 817. Clearly, adding the 

domain knowledge module to the agents’ architecture significantly improved their trading 

strategies. The rules underlying this improvement will be discussed in Chapters 4 and 5. For now, 

we can conclude that providing expert domain knowledge to the agents will make them more 

skilled at avoiding unnecessary risks. 

 

Algorithm TradingAgent_v3 
Inputs: 

ticker  // instrument to trade 
amount // amount to invest in each trade 
ensemble // ensemble of data mining model that will do the predictions 
N  // test set size 
rules  // expert trading rules 

 
BEGIN 

confirmation ← insert_in_engine(ticker,rules)  // add rules to the expert system 
tradeOpen ← FALSE 
Repeat 

confirmation ← wait_for_end(period)  // wait for the current trading period to end 
If tradeOpen = TRUE Then   // if a trade was opened and has not been closed yet: 

confirmation ← close_trade(tradeID)  //     close the trade 
tradeOpen ← FALSE 

EndIf 
periodData ← get_financial_data(ticker,period) // get instrument’s financial data for the period 
confirmation ← add_to_data(ticker,periodData) // add period data to the database 
 
// --- PREDICTION MODULE --- // 
class ← predict_next_class(ticker,ensemble,N) // Algorithm 3 
 
// --- DOMAIN KNOWLEDGE MODULE --- // 
class,tp,sl ← make_decision(ticker,class,periodData)     // make final decision according to the expert rules (Algorithm 7) 
 
If class = UP Then 

tradeID ← buy_instrument(ticker,amount,tp,sl)   // if final decision is UP, buy and send take-profit and stop-loss orders 
tradeOpen ← TRUE 

ElseIf class = DOWN Then 
tradeID ← short_instrument(ticker,amount,tp,sl) // if it is DOWN, short sell and send take-profit and stop-loss orders 
tradeOpen ← TRUE 

EndIf 
EndRepeat 

END 

Algorithm 6. Pseudocode for a trading agent based on the prediction and the domain knowledge modules. 
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Figure 36. UML sequence diagram for a trading agent based on the prediction and the domain knowledge modules. 
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Algorithm DomainKnowledgeModule_MakeDecision 
Inputs: 

ticker   // instrument to trade 
class   // ensemble prediction for the next trading period 
periodData  // most recent instrument financial data 

Outputs: 
class   // ensemble prediction for the next trading period 
tp,sl   // orders to close the trade before the period ends if the return reaches certain levels 

 
BEGIN 

confirmation ← assert(ticker,class,periodData)  // assert facts into the rule engine 
class,tp,sl ← fire_all_rules(ticker)   // chain the rules in the engine 
RETURN class,tp,sl    // output the final trading decision 

END 

Algorithm 7. Pseudocode for the domain knowledge module’s trading decision task. 

 
Figure 37. UML sequence diagram for the domain knowledge module’s trading decision task. 
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3.5 The Trading Agent Architecture 

In the previous sections, we described three building blocks that could be employed in the 

development of autonomous trading agents. The first block, the prediction module, is an essential 

part of the architecture, because it is responsible for making the price direction forecasts that enable 

the agents to decide when to buy or short sell a financial instrument. We combined this module 

 
Figure 38. Gross cumulative return of the USD/JPY trading agent based on the combination between the prediction 

and the domain knowledge modules. 

 
Figure 39. Gross cumulative return of the ADBE trading agent based on the combination between the prediction and 

the domain knowledge modules. 
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with each of the other two building blocks (the empirical and the domain knowledge modules), and 

tested them separately. The results we got demonstrated that, considering the metrics that we 

deemed most important (the RMD ratio and the return per trade), both modules improved the 

trading strategy of our agents. We expected agents that could apply both empirical knowledge and 

expert knowledge in their investment decisions to perform even better. Thus, we combined the 

three building blocks, and created what constitutes our final proposal for a trading agent 

architecture. This architecture, shown in Figure 40, is meant to be utilized as the basis for the rapid 

development of intelligent agents that can trade different types of financial instruments (Barbosa & 

Belo, 2008a). 

 

 
Figure 40. Intelligent trading agent architecture. 
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Our intelligent trading agent architecture defines the modules’ responsibilities as follows: 

• the prediction module is responsible for forecasting the direction of the instrument’s 

price; the forecasts are interpreted as suggestions on whether to buy or short sell the 

financial instrument; 

• the empirical knowledge module suggests how much to invest in each trade; 

• the domain knowledge module makes the final decisions and opens the trades, in 

accordance with the suggestions of the other modules and its own expert rules. 

The pseudocode that implements this architecture is listed in Algorithm 8; the object interactions 

are represented in the UML sequence diagram in Figure 41. 

Once again, the proposed architecture was used to build two trading agents, one for the 

USD/JPY currency pair and the other for the ADBE stock. Their cumulative returns in the 

simulation period are presented in Figures 42 and 43, in comparison with the returns obtained with 

simpler agent implementations. The results achieved by all the different module combinations that 

were tested throughout this chapter are summarized in Tables 8 and 9. 

Figure 42 shows that, compared to the simpler versions, the USD/JPY intelligent trading 

agent did not yield as much profit. This is not a problem, because our main concern is capital 

preservation, not return maximization. In that respect, the intelligent agent outperformed all other 

implementations, with a RMD ratio of 8.57. Without accounting for trading expenses, its success 

rate was 56.0%, i.e., 56.0% of the simulated trades were profitable. Its accuracy predicting the 

direction of the price, on the other hand, was just 53.8%. This disparity was due to the existence of 

a take-profit rule in the agent’s domain knowledge module, that allowed it to secure a profit in 

trades for which it made the wrong predictions. Out of 2,510 out-of-sample instances, the 

intelligent agent did only 1,146 trades. Since the accuracy and the success rate increased as we 

added more modules to the architecture, we can conclude that these modules enabled the agent to 
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avoid several unprofitable trades. Also, we can confirm that each individual module made a positive 

contribution to its trading ability, and allowed it to be a bit more successful in the end. 

 

Algorithm TradingAgent_final 
Inputs: 

ticker  // instrument to trade 
sAmount // standard amount to invest in each trade 
ensemble // ensemble of data mining model that will do the predictions 
N  // test set size 
minCases // minimum similar cases needed to calculate the profit factor 
minPF  // minimum profit factor to open trade 
highPF // profit factor threshold to invest the full standard amount 
rules  // expert trading rules 

 
BEGIN 

confirmation ← insert_in_engine(ticker,rules)  // add rules to the expert system 
tradeOpen ← FALSE 
Repeat 

confirmation ← wait_for_end(period)  // wait for current trading period to end 
If tradeOpen = TRUE Then   // if a trade was opened and has not been closed yet: 

confirmation ← close_trade(tradeID)  //     close the trade 
tradeOpen ← FALSE 

EndIf 
periodData ← get_financial_data(ticker,period)       // get financial data for the period 
confirmation ← add_to_data(ticker,periodData)        // add period data to the database 
simReturn ← simulate_trade(prevClassPred,periodData)                       // simulate trade with previous prediction 
confirmation ← add_to_cases(ticker,prevClassPred,prevModelPred,simReturn)   // add new case to the CBR database 
 
// --- PREDICTION MODULE --- // 
class,modelPredictions ← predict_next_class(ticker,ensemble,N)      // Algorithm 3 
 
// --- EMPIRICAL KNOWLEDGE MODULE --- // 
amount ← trade_size(ticker,class,modelPredictions,sAmount,minCases,minPF,highPF)  // Algorithm 5 
 
// --- DOMAIN KNOWLEDGE MODULE --- // 
class,amount,tp,sl ← make_decision(ticker,class,amount,periodData)      // Algorithm 7 
 
If class = UP And amount > 0 Then 

tradeID ← buy_instrument(ticker,amount,tp,sl) // buy according to the domain knowledge module’s decision 
tradeOpen ← TRUE 

ElseIf class = DOWN And amount > 0 Then 
tradeID ← short_instrument(ticker,amount,tp,sl) // short sell according to the domain knowledge module’s decision 
tradeOpen ← TRUE    

EndIf 
prevClassPred ← class 
prevModelPred ← modelPredictions 

EndRepeat 
END 

Algorithm 8. Pseudocode for the intelligent trading agent. 



Chapter 3: A Hybrid Cognitive Architecture for Intelligent Trading Agents 109 

 

 

 

Figure 41. UML sequence diagram for the intelligent trading agent. 

 

Figure 42. Gross cumulative return of the USD/JPY trading agent based on different architectures. 
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The intelligent ADBE trading agent also achieved an interesting performance. Its RMD ratio 

in the simulation period was 3.20, and the return per trade was 0.1756%; according to these 

metrics, it did better than the simpler versions, which again confirms the usefulness of each 

individual module. This intelligent agent opened just 427 trades, out of 828 possible. While its 

accuracy predicting the daily direction of the stock’s price was just 51.5%, it was still able to close 

55.0% of the trades with profit. This implies that, even if the behaviour of the price of the financial 

instrument is extremely hard to predict, the intelligent agent might still be capable of trading 

profitably – this is an important conclusion, because all our experiments so far have shown that the 

direction of the price is extremely hard to forecast. 

All things considered, we can conclude that both agents performed acceptably in our tests. 

However, it is possible that this accomplishment was just a fluke, i.e., their success could be due to 

a simple streak of good luck, which would eventually disappear if they continued trading after the 

simulation period. There is no way to know for sure if that was really the case, but one can calculate 

the probability of that happening. In order to do so, we created a “dumb” USD/JPY trading bot 

that made random decisions on when to buy or short sell the currency pair. The bot was based on 

the architecture in Figure 4, only we replaced the data mining model with a “coin-flipping” 

mechanism that made random predictions for the direction of the USD/JPY exchange rate. We

Table 8. Simulation results of the USD/JPY trading agent using different architectures (excluding trading costs). 

Module combination 
Return 

(%) 
Max DD 

(%) 
RMD 
Ratio 

Ret/Trade 
(%) 

Accuracy 
(%) 

Success 
(%) 

Trades 

Prediction Module 61.8 11.5 5.35 0.0260 52.2 52.2 2,375 

Prediction & Empirical 
Knowledge Modules 

35.4 6.3 5.66 0.0210 53.4 53.4 1,688 

Prediction & Domain 
Knowledge Modules 

52.8 9.1 5.78 0.0438 52.4 54.7 1,205 

Intelligent Agent 32.7 3.8 8.57 0.0285 53.8 56.0 1,146 
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used the bot to perform 100 trading simulations, each run consisting of the 2,510 out-of-sample 

instances that were utilized to evaluate the agents. The histograms in Figure 44 synthesize the bot’s 

performance in these 100 runs. We were expecting the bot’s lack of skill to be reflected in its overall 

performance, and this was clearly the case: the average return for the 100 runs was very close to 0%, 

and the average accuracy was around 50%. Disregarding the trading costs (which would have had a 

significant negative impact on the return) this is the type of performance that one should expect 

from a trading strategy that relies on luck. The bot’s best simulation run ended with a return of 

14.5% and a RMD ratio of 3.63, which compares poorly with the intelligent agent’s 32.7% return 

 
Figure 43. Gross cumulative return of the ADBE trading agent based on different architectures. 

Table 9. Simulation results of the ADBE trading agent using different architectures (excluding trading costs). 

Module combination 
Return 

(%) 
Max DD 

(%) 
RMD 
Ratio 

Ret/Trade 
(%) 

Accuracy 
(%) 

Success 
(%) 

Trades 

Prediction Module 72.4 60.9 1.19 0.0874 51.0 51.0 828 

Prediction & Empirical 
Knowledge Modules 

78.8 30.8 2.56 0.1816 51.6 51.6 434 

Prediction & Domain 
Knowledge Modules 

77.8 39.1 1.99 0.0952 51.0 53.7 817 

Intelligent Agent 75.0 23.4 3.20 0.1756 51.5 55.0 427 
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and 8.57 RMD ratio. Thus, it is unlikely that the agent achieved that kind of performance just 

because it was lucky. Nevertheless, even if none of the bot’s simulation runs ended with a RMD 

ratio over 3.6, it is certainly possible that that could occur if we kept repeating the tests. We will 

use Bayesian statistics to calculate the credible intervals delimiting the probability of that 

happening. We start with the assumption that there is no prior information regarding the 

probability of a bot achieving a RMD ratio greater than 3.6, i.e., if we keep repeating the 

simulation, the proportion of runs that will finish with a RMD ratio over 3.6 may be anywhere 

between 0 and 1. Hence, the prior distribution for this proportion is uniform. Next, we combine 

this prior distribution with a binomial distribution summarizing the results of our 100 runs’ sample, 

which yields a beta distribution. Using this posterior distribution, we can calculate credible intervals 

for the proportion of runs in the population that might finish with a RMD ratio over 3.6. Based on 

this procedure, we can say with 95% confidence that the probability that a sequence of random 

predictions throughout the simulation period will result in a RMD ratio over 3.6 is between 

0.00025 and 0.03587. This proves that, while possible, it is not very probable that a “dumb” trading 

bot would ever perform as well as our intelligent agent did. Moreover, we can extrapolate from

 
Figure 44. Results of 100 trading simulations with a USD/JPY trading bot that makes random buy and short sell 

decisions (excluding trading costs). 
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these credible intervals that it is very unlikely that the USD/JPY trading agent could owe its success 

to a series of lucky trades. 

Following the same strategy, we implemented an ADBE trading bot and tested it in 100 

simulation runs; the results of these tests are summarized in Figure 45. The average return in this 

experiment was 5.8%. This might lead some to believe that, if we were to trade the ADBE stock 

randomly, we would make a profit more often than not. This cannot be true, or else the majority of 

traders would be able to trade profitably without much effort. The pitfall here is easy to identify: if 

we subtract the trading expenses, that average positive return turns into a big loss; so, in real life, 

the bot would be losing money most of the times. Compared with the agent’s 75.0% return and 

3.20 RMD ratio, the mean results of the bot were very bad. However, the best run easily surpassed 

the intelligent agent’s performance, with a profit of 181.1% and a ratio of 5.13. While some outliers 

were to be expected, we still found it mind-boggling that a trading strategy that relied on chance 

alone could be so successful. This goes to show that, given the many thousands of traders and 

hedge funds that are currently trying to beat the markets, it is statistically likely that some will end 

up as huge winners, without their performance conflicting with the efficient market hypothesis. 

 
Figure 45. Results of 100 trading simulations with an ADBE trading bot that makes random buy and short sell 

decisions (excluding trading costs). 
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Obviously, the same reasoning must be applied to our intelligent agents. No matter what, we can 

never be completely certain that a trader’s success is due to skill, and not luck. 

As before, we employed Bayesian statistics to calculate the probability of a bot surpassing the 

RMD ratio of the ADBE trading agent. Out of the 100 simulation runs, three finished with a 

RMD ratio higher than the agent’s. Taking this sample into account, we can say with 95% 

confidence that, if the simulation is repeated, the probability that the bot will achieve a RMD ratio 

greater than 3.20 is between 0.01089 and 0.08436. Likewise, since only one run in the sample 

finished with a return per trade higher than the agent’s, the probability that the random investment 

strategy will outperform the agent is between 0.00241 and 0.05393 for that metric. Neither is very 

likely, which suggests that the intelligent agent is indeed talented. Nevertheless, we must 

acknowledge that chance could have played a role in its past success; because of this uncertainty, it 

would be dangerous to let an agent trade real money based on its historical track record (the maxim 

“past performance is not a guarantee of future returns” should not be taken lightly). 

So far, we have shown that it is statistically improbable that the USD/JPY and the ADBE 

trading agents could owe their reasonable success in the simulation period to sheer luck. However, 

this success could still have been just the product of specific market conditions in the test period. If 

both instruments experienced very low volatility, or their prices continuously trended upward or 

downward throughout the simulation, it is possible that the agents performed well simply because 

of those conditions. In other words, the agents’ profitability might be correlated with the 

instruments’ price direction, or with the lack of any major negative or positive price spikes in the 

test data. In either case, if we allowed them to trade real funds and the conditions changed, the 

results would be disastrous. In order to determine if the two agents were capable of trading 

profitably regardless of the direction of the price, we plotted their cumulative returns together with 

the historical prices of the corresponding financial instrument. This is shown in Figures 46 and 47. 

The USD/JPY price movement in the simulation period is best described as a 2.3 year long bear 
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market, with several bear market rallies in-between. Table 10 shows that the USD/JPY trading 

agent made most of its profit from short trades; this makes sense, since the price was trending 

downward most of the time. But the agent also profited from long trades, which indicates its 

success is not connected to the direction of the price. While some extreme changes in the trend did 

indeed have a negative impact on its return, the agent was more or less capable of adapting to said 

changes after some time. As we mentioned before, the negative effect caused by sudden changes in 

the trend is inevitable, due to there being a delay between the instant the changes occur, and the 

time they are reflected in the prediction mechanism. The agent might anticipate some of these 

changes, if it finds the right patterns in the historical data; however, outlier occurrences are almost 

always completely random and impossible to predict, so the best we can expect is that the agent can 

react to them, not predict them. 

The movement of the ADBE stock price in the 3.3 year long simulation period is harder to 

describe. It seems somewhat range-bound, with major crashes and rallies occurring from time to 

time. The ADBE trading agent was able to profit in both situations; for example, it did well 

between August of 2006 and November of 2007, when the stock price was trending upward, and 

also performed well after September of 2008, when the price tanked. Most of its profit was

 
Figure 46. Gross cumulative return of the USD/JPY trading agent versus the USD/JPY price change. 
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obtained with short trades, probably because the biggest percentage price changes occurred when 

the price was falling. All things considered, it does not look like this agent’s success is biased 

towards a particular price direction. On the flip side, it experienced several significant losses due to 

sudden increases in the volatility of the price, and it took it almost a year to recover from its biggest 

drawdown. 

From what we have seen so far, either the USD/JPY and the ADBE trading agents were 

extremely lucky, or they were actually capable of taking advantage of patterns discovered by their 

data mining mechanisms. If there were no useful patterns in the training data, we would expect 

them to perform much worse. To test this assumption, we created a random price series for a 

fictitious financial instrument; a starting price of $100 was gradually altered by adding random 

uniformly distributed percentage changes (with a small bias towards positive changes, otherwise the 

 

Figure 47. Gross cumulative return of the ADBE trading agent versus the ADBE price change. 

Table 10. Return of the USD/JPY and ADBE trading agents according to the type of trades (excluding trading 

costs). 

Agent 
Long Trades 
Return (%) 

Short Trades 
Return (%) 

Total 
Return (%) 

USD/JPY 6.5 26.2 32.7 

ADBE 19.1 55.9 75.0 
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price would quickly trend towards zero); the price was altered 6,000 times, each corresponding to a 

trading period. The resulting price series is displayed in Figure 48. Notice this experiment is similar 

to Malkiel’s (1985), in which he had an expert technical analyst find patterns in a random price 

series. Since the changes are random, we are certain that there are no patterns in the historical data 

that can predict future prices. Any trader that tries to forecast the price will probably fail miserably; 

if successful, we can be sure it was due to luck, not talent. We implemented two new agents to 

trade this fictitious instrument: agent RAND1, with 7 models in its data mining ensemble, and 

agent RAND2, with 11 models. They were created using the same method that was utilized with 

the USD/JPY and the ADBE intelligent agents (which will be described in detail in the next 

chapter). The first 3,000 periods in the price series were used to train the agents, and the rest was 

saved for the trading simulations; their cumulative returns in these simulations are shown in Figure 

49 and Table 11. The results show that both agents were unable to trade successfully, which simply 

means that they were not lucky enough; as expected, their accuracy forecasting the random prices 

was around 50%. This experiment demonstrates very clearly that the architecture we are proposing 

does not confer the trading agents any “supernatural” powers. They will only perform well if there 

is useful information in the historical data that is fed to their data mining models. Hence, we can

 

Figure 48. Random price series of a fictitious financial instrument. 
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conclude that what will ultimately make the difference between a competent and an incompetent 

trading agent is the choice of training attributes and models in its ensemble. 

After comparing the results of the USD/JPY and the ADBE intelligent agents with those of 

the agents that predicted the random data, we believe it is fair to say that the former do possess 

some trading talent. Still, just because they did ok in the past, we cannot be 100% certain that they 

will always be successful in the future. Because of this, we had to come up with an investment 

strategy that could accommodate for the possibility that an agent might hit a rough patch later on, 

or that it might turn out to be completely incompetent (which will occur if its previous success was 

based on luck, and that luck finally runs out). This strategy will be described in Chapter 4; besides 

providing some resilience to temporary periods of unsuccessful trading by any given agent, it will 

also serve the purpose of mitigating the impact of volatility spikes and drawdowns in the trading 

results. 

 

 

Figure 49. Gross cumulative returns of the RAND1 and RAND2 agents that traded the fictitious instrument. 

Table 11. Simulation results of the RAND1 and RAND2 agents that traded the fictitious instrument (excluding 

trading costs). 

Agent Ret (%) Max DD (%) RMD Ratio Ret/Trade (%) Acc (%) Succ (%) Trades 

RAND1 -40.5 83.9 -0.48 -0.0265 49.6 52.1 1,529 

RAND2 -19.2 50.3 -0.38 -0.0142 50.4 52.5 1,350 
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3.6 Streamlining the Implementation of Trading Agents 

Both the USD/JPY and the ADBE intelligent trading agents achieved promising simulation 

results, and in doing so demonstrated the potential of the agent architecture depicted in Figure 40. 

In order to facilitate the development of new agents, to trade other financial instruments with 

different time frames, we implemented this architecture as a software “shell”. This software was 

named “iQuant”, short for intelligent quantitative analyst; a screenshot is shown in Figure 50. The 

iQuant software makes it easy to create an intelligent agent to trade any type of financial 

instrument (stocks, currencies, options, etc.). Specifically, the implementation of a new agent is 

accomplished by: 

• specifying the classes of the data mining models that will compose the ensemble in its 

prediction module, along with their training parameters and attributes; 

• specifying the number of test instances to be used in the calculation of the profit factors 

of these models; 

• setting the two parameters in the empirical knowledge module that determine when the 

size of a trade should be halved or set to zero; 

• specifying the rules in its domain knowledge module. 

The only thing that is necessary to implement a trading agent with the iQuant software is 

historical price data for the instrument it will trade. The agent’s trading time frame will depend on 

the periodicity of that data, and the way it is transformed into training instances. 

This software was created using the Java programming language. It utilizes the Weka API 

(Witten & Frank, 2005) to train and test the data mining models in parallel. The rules in the 

domain knowledge module are handled by the Drools engine. Interaction with the markets is 

achieved with the proprietary API of a broker, which allows the agents to send buy, sell, short sell 

and cover orders automatically. The agents can also be set to perform predictions without
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submitting trades to the market, meaning they can function as autonomous traders, or as tools to 

aid other traders. When working autonomously, there are still some situations in which these 

agents might require human intervention. For example, they cannot be expected to recover from a 

permanent network disconnection, or from a broker-specific problem. To accommodate for these 

potential problems, the iQuant software enables the agents to place phone calls: if a critical error 

occurs, they are able to request assistance by calling the system administrator’s cell phone. 

In the long run, we expect the agents developed with the iQuant software to demonstrate the 

same qualities shown by the USD/JPY and the ADBE trading agents. More concretely, 

considering the agent architecture in which the software is based, we expect the new agents to: 

• Keep learning new patterns as time goes by, as a result of the periodic retraining of the 

models in the ensembles. This process is essential to the agents’ autonomy, because it lets 

them update their prediction mechanisms without requiring external assistance. 

• Capitalize on the fact that some models are more profitable under certain market 

conditions than others. This is accomplished with the continuous reweighting of the 

models’ votes, according to their returns: those that have displayed more profitability in 

 

Figure 50. Screenshot of the iQuant software running the EUR/USD trading agent. 
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the recent past will see their vote increase in weight, while those that have been less 

profitable will lose weight. Since the vote of each model can have two different weights 

(depending on whether it predicts a price increase or a price decrease), the reweighting 

mechanism should also enable the agents to take advantage of the fact that some models 

are better at predicting long trades, while others are better at predicting short trades. 

This should permit them to adapt to changes in market conditions, as long as some of 

the models can still perform well under the new conditions. 

• Stay out of the market when necessary. This is one of the most important qualities that 

the agents built with our architecture exhibit: the ability to temporarily stop trading, 

when that is perceived to be the best option. Trading may be stopped by any of the 

modules in the architecture: the prediction module will do so whenever all the models in 

the ensemble demonstrate negative profitability in the recent past, because all their votes 

will have negative weights; the empirical knowledge module will set a trade’s size to zero, 

and therefore stop it from being made, whenever the cases in its database show that 

similar trades in the past were unprofitable; finally, the domain knowledge module can 

restrict the trading activity to certain periods of time or to specific price ranges, among 

many other conditions that the human experts might define. 

• Focus on profit optimization, rather than accuracy optimization. While it is true that the 

learning algorithms used for retraining the data mining models will optimize their 

accuracy, the architecture’s goal as a whole is to optimize the return: the decision to put 

retrained models in the ensemble is based entirely on their recent past profitability, as are 

the models’ vote weights; the trade size decisions by the empirical knowledge module are 

also based on the past profitability of similar cases. 

While it is likely that iQuant’s generic solution for implementing intelligent trading agents 

will not work well with all financial instruments and time frames, it at least opens the door to the 
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development of bigger and better systems made up of multiple agents. In these systems, the 

individual results of each agent are irrelevant – all that matters is the system’s performance as a 

whole, hence a few incompetent agents will not be very problematic. The implementation of this 

type of system will be the subject of Chapters 4 and 5. 
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Chapter 4 

4Intelligent Agents as Autonomous Forex Traders 

In the previous chapter we described the step-by-step implementation of two intelligent agents, 

which traded the USD/JPY currency pair and the ADBE stock. Several details were missing from 

that description. For instance, we did not state which parameters and attributes were used to train 

the models in the ensembles; the method with which these models and attributes were selected was 

also not provided. This information will be presented in this chapter. We will start by briefly 

describing the algorithms behind numerous data mining models that one can utilize to create the 

prediction mechanisms of the trading agents, as well as the set of attributes that were defined for 

their training. Next, we will detail our strategy for selecting the models that compose each agent’s 

prediction module. At that point, we will have clarified the way the agents perform the financial 

data mining. Then, we will describe how the iQuant software was used, in conjunction with our 

model selection strategy, to implement ten Forex trading agents, each of which was configured to 

trade one of the currency pairs listed in Table 12. These ten agents will simulate trades for the same 

out-of-sample data that was utilized to test the USD/JPY trading agent (corresponding to a period 

of about 2.3 years) and their results will be discussed later in the chapter. Since there is not 

guarantee that these agents will be able to trade successfully going forward, we will attempt to 

diminish the risk associated with their individual strategies by devising a safer diversified
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investment strategy that employs them all simultaneously. Lastly, we will describe the integration 

of the ten agents in a multi-agent system, with the objective of improving the performance of the 

diversified strategy. 

4.1 Data Mining Algorithms 

Data mining is the name given to the process of extracting hidden patterns from large amounts of 

data (Fayyad et al., 1996). In order to train a predictive data mining model, the raw data must first 

be converted into a set of instances; an instance is a vector containing the values of a group of 

attributes or features (the independent variables) in conjunction with the value of its class (the 

dependent variable). During the training phase, the data mining algorithms analyse the instances, 

and try to identify combinations of attribute values that can accurately predict the nominal label (in 

classification problems) or the numeric value (in regression problems) of the class, a process that is 

Table 12. Description of the currency pairs traded by the Forex agents. 

Pair Description 

CHF/JPY Price of 1 Swiss franc in Japanese yen. 

EUR/CHF Price of 1 Euro in Swiss francs. 

EUR/GBP Price of 1 Euro in British pounds. 

EUR/JPY Price of 1 Euro in Japanese Yen. 

EUR/USD Price of 1 Euro in U.S. dollars. 

GBP/CHF Price of 1 British pound in Swiss francs. 

GBP/JPY Price of 1 British pound in Japanese yen. 

GBP/USD Price of 1 British pound in U.S. dollars. 

USD/CHF Price of 1 U.S. dollar in Swiss francs. 

USD/JPY Price of 1 U.S. dollar in Japanese yen. 
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known as supervised learning. After training, the resulting models can be utilized to forecast the 

class value of out-of-sample instances, i.e., instances that were not part of the training set. 

Prediction models come in many flavours – decision trees, rule learners, artificial neural 

networks, etc. Each type is characterised by two distinguishing algorithms: the training algorithm, 

which defines the way the model attempts to find patterns in the training instances (i.e., the way it 

learns), and the classification algorithm, which determines how those patterns are used to predict 

the class value of new instances. The trading agent architecture proposed in the previous chapter 

relies on ensembles of models of different types to make financial forecasts. Before creating these 

ensembles, we believe it is important to understand how the different models learn and generalize 

from the training data. Therefore, we will describe very briefly the algorithms underlying all the 

models that we intend to utilize later on. Please note that the extent of each description will reflect 

not only the importance and complexity of the model, but also the clarity of the information 

available on it. For the more obscure algorithms, only a small description will be provided. 

4.1.1 Instance-Based Models 

Instance-based classifiers are data mining models that classify out-of-sample instances by finding 

the training instances that are similar to them, checking their class values, and then outputting the 

most frequent class. They are lazy models, because all they do during the training phase is store the 

instances for later use; generalization from these instances is delayed until the model is faced with 

an out-of-sample instance to classify. 

Arguably the most well-known instance-based classifier is the k-nearest neighbour model 

(Aha et al., 1991), which treats the instances as points in the feature space (an abstract n-

dimensional space where instances with n attributes are represented as points, and where the 

coordinates of an instance are its attribute values). To classify a new instance, the k-nearest 

neighbour model puts it in the feature space, and locates the k nearest training instances; given the 
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classes of these instances, the class prediction for the new instance is decided by simple majority 

voting. Several functions can be employed to calculate the distance between two instances in the 

feature space. Euclidean distance is a common choice; for instances x and y with n attributes, this 

distance is equal to: 

��𝑚1
(𝑥) − 𝑚1

(𝑦)�
2

+ �𝑚2
(𝑥) − 𝑚2

(𝑦)�
2

+ ⋯ + �𝑚𝑛
(𝑥) − 𝑚𝑛

(𝑦)�
2

 

where 𝑚𝑛
(𝑥) and 𝑚𝑛

(𝑦) represent the values of the 𝑑th attribute of instances 𝑚 and 𝑦, respectively. Since 

the square root operation is redundant for the purpose of finding the closest instances, it is not 

computed during classification. Note that if we used this formula directly, without pre-processing 

the data, the numeric attributes with the largest scales of measurement would make the biggest 

contributions to the distance, meaning they would be much more important to the classification 

than any other attributes. To avoid this pitfall, it is common practice to normalize all the values 

before calculating the Euclidean distance, so that they always lie between 0 and 1. This is 

accomplished by calculating the normalized value 𝑚𝑖 for each numeric attribute, which can be done 

for example with the formula: 

𝑚𝑖 =
𝑣𝑖 − 𝑚𝑚𝑑(𝑣)

𝑚𝑚𝑚(𝑣) − 𝑚𝑚𝑑(𝑣) 

where 𝑣𝑖 is the actual value of attribute 𝑚, and 𝑚𝑚𝑚(𝑣) and 𝑚𝑚𝑑(𝑣) are the maximum and the 

minimum values for this attribute in the training set. Besides numeric attributes, k-nearest 

neighbour models also support nominal attributes: a distance of 1 is plugged into the equation 

when the instances have different labels for the attribute, otherwise 0 is used. Missing values are 

handled similarly, by assuming a distance of 1 for attributes whose value is missing in at least one of 

the instances. In addition to classification, these models can also be applied in regression problems: 

instead of returning the most frequent class label among the k nearest neighbours, they return the 

average or the median class value of the neighbours (among other alternatives). 

Searching for the closest neighbours of a test instance implies calculating the distance between 

that instance and all the training instances. This will be prohibitively slow when the training set is 
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very large. In order to overcome this problem, one could employ a nearest neighbour search 

algorithm to partition the feature space (Bentley, 1980; Friedman et al., 1977). This algorithm 

creates a data structure, like a ball tree or a kd-tree, that speeds up the classification task because 

the model will only need to calculate the distances to the training instances located in partitions 

close to the test instance. The classifier can also be made faster by eliminating redundant instances 

from the training set, a strategy for which several algorithms have been proposed (Aha, 1992; 

Wilson & Martinez, 2000). 

When configuring a k-nearest neighbour model, it is very important to pick an appropriate 

value for parameter k, as this will have a big impact on its accuracy. For example, consider the two-

dimensional feature space represented in Figure 51. We placed 11 training instances in this space, 

according to their values for attributes a1 and a2; of these, 6 belong to class WHITE, while 5 belong 

to class BLACK. Suppose we are given an out-of-sample instance to classify (the grey dot in the 

figure). If we use a nearest neighbour model with k set to 3, this instance will be classified as 

belonging to class BLACK, because out of its three closest neighbours, two belong to that class; 

however, if we set k to 5, the instance will be classified as belonging to class WHITE. So, even 

though the two models were trained with the exact same training instances, they will output a 

different classification for the same out-of-sample instance. This example demonstrates why it is so

 
Figure 51. Classification of an out-of-sample instance using two k-nearest neighbour classifiers, with k=3 and k=5. 



128 Chapter 4: Intelligent Agents as Autonomous Forex Traders 

 

 

important to understand the models’ training parameters. In practice, larger values of k should be 

utilized when the training data is noisy, but this could result in less distinct boundaries between the 

classes. One way to select a good value for k is to perform cross-validation; this technique implies 

repeatedly partitioning the training data into two datasets, using one to train the model and the 

other to test it (Kohavi, 1995a). After performing cross-validation with different k settings, the one 

that yields the best average accuracy is picked for the actual model that will classify the out-of-

sample instances. 

Besides Euclidean distance, there are other less trivial strategies to determine the similarity 

between two instances. The K* data mining model (Cleary & Trigg, 1995) uses an entropy-based 

distance function motivated by information theory. This function defines the distance between two 

instances as the complexity of transforming one instance into the other, using a sequence of 

predefined elementary operations. 

As part of our research, we came up with our own instance-based model. We named it 

similarity classifier10 (Barbosa & Belo, 2009b). Since this is a lazy classifier, the construction of the 

model (i.e., the learning) is accomplished by simply storing the training instances in an easy to 

access data structure. Given a new instance of an unknown class, its classification is accomplished 

by finding all the training instances that are similar to it, and counting the number of times each 

class occurs in that set. The most frequent class is chosen as the model’s class prediction for the 

new instance. 

Our classifier’s strategy to decide if two instances are similar is best explained with an example. 

Imagine a classification problem where each instance is composed of 10 nominal attributes. If these 

attributes are equally important in determining the class of the instances, we could define that two 

instances are similar if, for example, at least 5 of their attributes have the same value. Thus, to 

classify a new instance, the similarity classifier would just need to find all the training instances 

                                                      
10 The Weka version of the similarity classifier is downloadable at http://ruibarbosa.eu/classifiers/. 

http://ruibarbosa.eu/classifiers/
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with at least 5 attribute values in common with the test instance, count the number of times each 

class occurs in the set of similar instances, and then choose the most frequent class. However, the 

assumption that all the attributes have the same importance when predicting the class is incorrect 

for most real life problems. More often than not, some attributes will be extremely important, while 

others will be close to irrelevant. Data mining models that do not address this issue are more 

sensitive to the presence of redundant or useless attributes in the training set – they put the burden 

of attribute selection completely on the user. That is not the case with the similarity classifier: this 

model is able to give more relevance to the most important attributes by assigning a different 

weight to each attribute, proportional to its importance in determining the instances’ class. More 

concretely, the weight of each attribute is given by the value of its correlation with the class feature, 

calculated with a heuristic devised by Hall (1999). This should be helpful, since attribute weighting 

has already been successfully applied to several types of data mining models (Kohavi et al., 1997; 

Hall, 2006). Using these weights, the classification of an out-of-sample instance becomes more 

complex. First, a threshold is defined that marks the value above which a training instance is 

considered non-similar to the out-of-sample instance. This threshold is given by: 

𝑡ℎ𝑟𝑟𝑟ℎ𝑜𝑜𝑜 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × � 𝑤𝑖

𝑛

𝑖=1

 

where 𝑑 is the number of attributes, 𝑤𝑖 is the weight of the 𝑚th attribute (i.e., the absolute value of 

the correlation between attribute 𝑚 and the class in the training set), and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is a user-defined 

parameter. In order to decide if two instances are similar, the classifier calculates the difference 

between them, by adding the weights of the attributes that have different values: 

𝑜𝑚𝑚𝑚𝑟𝑟𝑟𝑑𝑑𝑟 = � 𝑤𝑖
𝑖 𝑖𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡

 

The instances will only be similar if the 𝑜𝑚𝑚𝑚𝑟𝑟𝑟𝑑𝑑𝑟 is less than or equal to the 𝑡ℎ𝑟𝑟𝑟ℎ𝑜𝑜𝑜. This 

makes the similarity classifier much “smarter”. Let us go back to our previous scenario, where the 

instances had 10 attributes. Assume that the first attribute is a very good predictor of the class, 
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while the other 9 are not. If each attribute is assigned an equal weight of 1, and the user sets 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚 to 0.5, the similarity classifier will consider two instances similar if at least 5 of their 

attributes have the same values. This means that, even if the first attribute is different, a training 

instance will still be found similar to the out-of-sample instance if enough irrelevant attributes are 

the same. This instance will end up being used in the prediction the class of the out-of-sample 

instance, even though there is no relationship between the values of the matching attributes and the 

class. If the classifier uses correlation-based weights instead, the weight of the first attribute will be 

much bigger than that of the other 9 attributes. Depending on how the user sets the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

parameter, it is possible that two instances will only be considered similar if the value of the first 

attribute is the same; in other words, if the first attribute is different, the instances will not match 

even if they share the same values for the other 9 attributes – in practice, this is equivalent to 

excluding the 9 irrelevant attributes from the classification process. 

The interpretation of the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚 user parameter is straightforward. It may be set to any 

value between 0 and 1, and defines the percentage of the total sum of weights above which two 

instances are treated as non-similar. If it is set to 0, only the training instances that have exactly the 

same attribute values as the test instance will be found similar to it (because the 𝑡ℎ𝑟𝑟𝑟ℎ𝑜𝑜𝑜 will be 

zero, so the 𝑜𝑚𝑚𝑚𝑟𝑟𝑟𝑑𝑑𝑟 must be zero too). If it is set to 1, all the instances will match, so the 

model will always classify new instances as belonging to the most frequent class in the training set. 

While the comparison of nominal values is simple, numeric attributes require special 

treatment. We cannot simply check if two continuous values are equal because, in practical terms, it 

is very unlikely that they will be. The similarity classifier solves this problem by discretizing all the 

numeric attributes when the model is created; out-of-sample instances are also discretized prior to 

being classified. Discretization can be supervised (Fayyad & Irani, 1993) or unsupervised by simple 

binning. Once discretized, the numeric attributes are treated like regular nominal attributes. The 

similarity classifier is also capable of handling missing values: when comparing two instances, if the 
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value of an attribute is missing in at least one of them, the attribute is considered different, which 

means its weight will increase the 𝑜𝑚𝑚𝑚𝑟𝑟𝑟𝑑𝑑𝑟 between the instances, making it less likely that they 

will match. 

As previously stated, after finding all the training instances that are similar to a given test 

instance (by calculating the 𝑜𝑚𝑚𝑚𝑟𝑟𝑟𝑑𝑑𝑟 between each of them and the test instance, and checking 

if the result is less than or equal to the 𝑡ℎ𝑟𝑟𝑟ℎ𝑜𝑜𝑜), and after counting the number of times each 

class occurs in the computed set, the similarity classifier will pick the most frequent class as its 

prediction for the test instance’s class; if there is a draw between several classes, it chooses the one 

with the biggest prior probability. Algorithm 9 shows a high-level description of the methods that 

characterise the similarity classifier. 

Using their default parameters, we tested the three lazy models discussed in this section with 

various datasets. We verified that the K* and the k-nearest neighbour were, in general, slightly 

more accurate than the similarity classifier. However, the similarity classifier was several orders of 

magnitude faster than either of them, when classifying out-of-sample instances. It is important to

Method BuildModel 
Inputs: training instances, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

Discretize the numeric attributes in the training instances 
Calculate the prior probability of each class 
Assign a weight to each attribute (equal or correlation-based) 
Calculate the 𝑡ℎ𝑟𝑟𝑟ℎ𝑜𝑜𝑜 
Eliminate instances that do not help distinguish the classes 
Put the instances in an easy-to-access structure 

 
Method ClassifyInstance 
Input: test instance 
Output: class prediction 

Discretize the numeric attributes in the test instance 
Find all the training instances that are similar to the test instance (those with 𝑜𝑚𝑚𝑚𝑟𝑟𝑟𝑑𝑑𝑟 ≤  𝑡ℎ𝑟𝑟𝑟ℎ𝑜𝑜𝑜) 
Count the number of times each class occurs in the resulting set of instances 
If there is a draw regarding the most frequent class: 

return the one with the biggest prior probability 
Else: 

return the most frequent class 

Algorithm 9. Pseudocode for the similarity classifier. 
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recognize these differences, because in some data mining problems the best solution might depend 

not only on the model’s accuracy, but also its speed. 

By now, it should be clear that the main advantage that lazy models possess is that their 

training is extremely fast, because almost nothing is done when they are created. However, instance 

classification will be very slow, compared to eager models. Another disadvantage that some of them 

have, and which is shared by other types of models, is that they cannot find patterns that combine 

the values of different attributes – since they process the attributes separately, one at a time, they 

are not able to find inter-attribute relationships that might be correlated with the class. 

4.1.2 Statistical Regression Models 

Statistical regression has been used for decades to create models that fit empirical data. The 

simplest of these models is the linear regression (Montgomery & Peck, 1982). Its aim is to define 

an equation that predicts the value of a numeric class 𝑑 (the dependent variable) given the values of 

a set of attributes 𝑚1, … , 𝑚𝑛 (the independent variables): 

𝑑 = 𝑤0 + 𝑤1 × 𝑚1 + 𝑤2 × 𝑚2 + ⋯ + 𝑤𝑛 × 𝑚𝑛 

The weights 𝑤0, … , 𝑤𝑛 are calculated from the training data using one of several algorithms. The 

most common is the ordinary least squares method; considering the predicted class value for 

training instance 𝑗 is given by: 

𝑤0 + � �𝑤𝑖 × 𝑚𝑖
(𝑗)�

𝑛

𝑖=1

 

the ordinary least squares procedure will calculate the coefficients 𝑤0, … , 𝑤𝑛 by minimizing: 

� �𝑦(𝑗) − �𝑤0 + � �𝑤𝑖 × 𝑚𝑖
(𝑗)�

𝑛

𝑖=1
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2𝑡
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where 𝑡 is the total number of training instances, and the expression inside the parentheses 

represents the difference between the actual numeric class value 𝑦(𝑗) of training instance 𝑗 and the 
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predicted value for that instance (this difference is known as the 𝑗th residual). Once the weights 

have been calculated, the model can be utilized to predict the class value of out-of-sample instances 

by plugging their attribute values into the equation. 

The presence of outliers in the training data has a very negative impact on the predictive 

ability of linear regression models, because the ordinary least squares method is too sensitive to the 

outliers (they cause big residuals that skew the coefficients). The least median squared linear 

regression (Rousseeuw & Leroy, 1987) is more robust, because it is less affected by those extreme 

observations. The construction of this model is accomplished by applying standard linear regression 

to random subsamples of the training data, and picking the linear regression with the smallest 

median of squared residuals as the final model. 

The pace regression model (Wang & Witten, 2002) is another take on linear regression. To 

train it, we must select one of several estimators (PACE1, PACE2, …, PACE6). These estimators 

offer different ways to calculate the weights of the linear model; some include tricks to improve it, 

like discarding attributes that are found to be redundant. 

The statistical regression models referenced so far are all intended for data mining problems 

with numeric classes. The logistic regression model (Cessie & Houwelingen, 1992), on the other 

hand, is meant for nominal classes. Given a binary classification problem with class labels 𝑑1 and 

𝑑2, it calculates the probability of an instance with attributes 𝑚1, … , 𝑚𝑛 belonging to class 𝑑1 using 

the logistic function: 

𝑃(𝑑1|𝑚1, … , 𝑚𝑛) =  
1

1 + 𝑟−(𝑤0+𝑤1×𝑎1+𝑤2×𝑎2+⋯+𝑤𝑛×𝑎𝑛)
 

The probability that it belongs to class 𝑑2 is then easily determined with: 

𝑃(𝑑2|𝑚1, … , 𝑚𝑛) = 1 − 𝑃(𝑑1|𝑚1, … , 𝑚𝑛) 

The weight 𝑤0  is called intercept, while weights 𝑤1, … , 𝑤𝑛  are called regression coefficients. 

Several algorithms are available to calculate these weights, among which the iterative reweighted 

least-squares method. Attributes with positive regression coefficients increase the probability that 
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the instance belongs to class 𝑑1, while attributes with negative coefficients decrease that probability. 

Besides binary classes, the logistic regression model can also address multiclass problems by way of 

pairwise classification, which implies training one classifier for each pair of classes – to predict the 

class of an out-of-sample instance, all the models will classify it, and the class is chosen by majority 

vote. 

4.1.3 Tree Inducers 

Some of the most important data mining models are internally structured as trees. The C4.5 

decision tree (Quinlan, 1993) is one such model. Each leaf in this tree represents a classification, 

while the branches that connect the leaf to the root node equate to conjunctions of conditions that 

lead up to that classification. Figure 52 shows a sample C4.5 decision tree (for a binary 

classification problem); note that a2 is a numeric attribute, while a1 and a3 are nominal attributes, 

with possible values x, y, z, and t, u, respectively. 

The C4.5 algorithm makes use of the concept of entropy, as defined by information theory, to 

grow the tree from a set of training instances. The tree is constructed iteratively, one node at a 

time, using a divide-and-conquer strategy – each node represents a split in the data that separates 

the training instances into different branches, according to the values of a specific attribute. In each

 

Figure 52. Graphical representation of a C4.5 decision tree. 
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iteration, the following sequence of steps is applied to each attribute, in order to decide which one 

should be used to split the data: 

• Use the attribute to split the instances. If the attribute is nominal, this is accomplished 

by creating a branch for each of its possible labels. If it is numeric, a pair of branches is 

created using a threshold: one branch for the instances with an attribute value greater 

than the threshold, and the other for the rest. The threshold is chosen by testing several 

values, and selecting the one that produces the split with the highest information gain. 

• For each branch that was created, check which classes appear in the subset of instances 

in the branch, and calculate its information entropy: 

𝑟𝑑𝑡𝑟𝑜𝑝𝑦 = − � 𝑝(𝑑𝑙) × 𝑜𝑜𝑔2 𝑝(𝑑𝑙)
𝑙 𝑖𝑠 𝑖𝑛 𝑏𝑟𝑎𝑛𝑐ℎ

 

The probabilities in this equation are the class frequencies in the branch: 

𝑝(𝑑𝑙) =
𝑑𝑢𝑚𝑏𝑟𝑟 𝑜𝑚 𝑚𝑑𝑟𝑡𝑚𝑑𝑑𝑟𝑟 𝑚𝑑 𝑡ℎ𝑟 𝑏𝑟𝑚𝑑𝑑ℎ 𝑤𝑚𝑡ℎ 𝑑𝑜𝑚𝑟𝑟 𝑜

𝑡𝑜𝑡𝑚𝑜 𝑑𝑢𝑚𝑏𝑟𝑟 𝑜𝑚 𝑚𝑑𝑟𝑡𝑚𝑑𝑑𝑟𝑟 𝑚𝑑 𝑡ℎ𝑟 𝑏𝑟𝑚𝑑𝑑ℎ
 

• Calculate the weighted average of the entropies of the 𝑑 branches that were created. The 

weights are proportional to the number of instances in each branch: 

𝑟𝑑𝑡𝑟𝑜𝑝𝑦𝑎𝑓𝑡𝑒𝑟 = � 𝑤𝑖 × 𝑟𝑑𝑡𝑟𝑜𝑝𝑦𝑖

𝑛

𝑖=1

 

𝑤ℎ𝑟𝑟𝑟    𝑤𝑖 =
𝑑𝑢𝑚𝑏𝑟𝑟 𝑜𝑚 𝑚𝑑𝑟𝑡𝑚𝑑𝑑𝑟𝑟 𝑚𝑑 𝑏𝑟𝑚𝑑𝑑ℎ 𝑚

𝑡𝑜𝑡𝑚𝑜 𝑑𝑢𝑚𝑏𝑟𝑟 𝑜𝑚 𝑚𝑑𝑟𝑡𝑚𝑑𝑑𝑟𝑟 𝑚𝑑 𝑡ℎ𝑟 𝑑 𝑏𝑟𝑚𝑑𝑑ℎ𝑟𝑟
 

 

• Calculate the entropy in the node before branching, and use this value to determine the 

information gain when the attribute is used to split the instances: 

𝑚𝑑𝑚𝑜𝑟𝑚𝑚𝑡𝑚𝑜𝑑𝐺𝑚𝑚𝑑 = 𝑟𝑑𝑡𝑟𝑜𝑝𝑦𝑏𝑒𝑓𝑜𝑟𝑒 − 𝑟𝑑𝑡𝑟𝑜𝑝𝑦𝑎𝑓𝑡𝑒𝑟 

Once the information gain of all the attributes has been calculated, the one with the highest gain, 

i.e., the attribute that produces the split with the lowest entropy, is chosen to divide the instances. 
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This creates a new set of branches in the tree, and the corresponding nodes are expanded with the 

same algorithm. The recursion stops when all the instances in the branch are of the same class (in 

which case a leaf node is created for that class), or when none of the potential splits results in an 

information gain. 

It is possible that the described tree induction algorithm will generate a model that overfits the 

training data, i.e., an excessively big decision tree that contains the noise in that dataset. To 

overcome this problem, the tree needs to be pruned. With pre-pruning, the growth of the tree is 

stopped before it can classify all the training instances correctly; several criteria may be used to 

decide when to stop splitting the data – for example, the algorithm might create a leaf node when 

the number of instances that need to be classified is small, or when the information gain of further 

splits is negligible. With post-pruning, the tree is pruned after it has been induced. Post-pruning is 

achieved with subtree replacement or subtree raising: subtree replacement means replacing a 

subtree with a leaf node, and subtree raising means moving a subtree to a higher point in the 

decision tree, to replace an existing node. A common strategy to determine if a subtree should be 

post-pruned is to test the model’s accuracy before and after pruning it, and then deciding 

accordingly. This strategy was devised by Quinlan (1987), and is called reduced error pruning. It 

employs a very simple algorithm – first, it starts by dividing the available data into a training set 

and a validation set; then, it creates the tree with the training set, and post-prunes it with the 

following sequence of steps: 

• for each node, use the validation set to evaluate the model’s accuracy when the node is 

pruned; 

• remove the worst node (i.e., the one whose removal most improves the validation set 

accuracy); 

• repeat the algorithm until further pruning decreases the accuracy. 
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The fact that the C4.5 algorithm is able to perform its own attribute selection (because the 

entropy of the splits of irrelevant attributes will be too high for them to become a part of the tree), 

and that it is able to find patterns based on inter-attribute relationships (each root-to-leaf branch is 

one such pattern) are some the reasons why the C4.5 decision tree is one of the best data mining 

tools currently available. In contrast with models that operate like black boxes, it also presents the 

advantage that its classifications are explicit: we can easily verify why it classified a test instance a 

certain way, by looking at the corresponding branch in the tree. 

Another influential data mining algorithm is the CART (Breiman et al., 1984), short for 

classification and regression tree. It combines a decision tree inducer for nominal classes, similar to 

the C4.5 algorithm, and a mechanism to induce regression trees for numeric classes. It differs from 

the C4.5 inducer in that it only outputs binary trees, and in that, among other differences, it 

chooses the attributes to split the data according to the Gini impurity measure: 

𝑔𝑚𝑑𝑚 = 1 − � �𝑝(𝑑𝑙)�2

𝑙 𝑖𝑠 𝑖𝑛 𝑏𝑟𝑎𝑛𝑐ℎ

 

In each iteration, the classification tree inducer will pick the split with the smallest Gini index. The 

regression tree inducer, on the other hand, selects the attributes that will grow the tree by looking 

at the error generated by the corresponding splits, which it calculates with the sum of squares 

method. Leaf nodes in the regression tree contain the average class value of the training instances 

in the branch, rather than class labels. 

Another model with a similar internal structure is the best-first decision tree (Shi, 2007), 

which is always binary. Rather than using the depth-first expansion strategy of the C4.5 algorithm, 

the best-first inducer can expand any node while growing the tree. More specifically, in each 

iteration, it will select the best possible split anywhere in the tree; to compare the potential splits, it 

can either calculate the entropy (like the C4.5 model) or the Gini index (like the CART model). 
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So far, we have only referenced models whose internal structure resembles the sample tree 

depicted in Figure 52, where the branches represent conjunctions of conditions, and the leaves 

represent classifications. In an alternating decision tree (Freund & Mason, 1999) these parts have a 

different meaning. This model is a binary classifier composed of two types of nodes: the decision 

nodes, which specify conditions, and the prediction nodes, which contain values that are used in 

the classification task. Figure 53 shows an example of one of these trees, with three decision nodes 

and three attributes (a1 and a3 are nominal, and a2 is numeric). Given an out-of-sample instance of 

class 𝑑1 or 𝑑2, the model performs its classification by adding up the values of the prediction nodes 

in all the branches whose conditions are satisfied by the instance’s attributes; if the total sum is 

positive, the model predicts it belongs to class 𝑑1, otherwise it outputs class 𝑑2. Notice that, unlike 

in previously described decision trees, the instance will follow more than one path in the alternating 

tree. The tree is grown using a boosting algorithm. In each iteration, a new condition node and the 

corresponding pair of prediction nodes are added to the tree; the condition node can be appended 

to any of the prediction nodes in the tree, and is chosen according to the weighted error. 

Besides decision trees, there is one other group of data mining models that exhibit a tree-like 

internal structure. They differ from the former in that they have regression or classification models 

as leaves. For example, a naïve Bayes tree (Kohavi, 1996) is a classifier which has a naïve Bayes 

model in each leaf. This tree is induced using a variation of the C4.5 recursive partitioning 

 
Figure 53. Graphical representation of an alternating decision tree. 
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algorithm, where the splits are chosen according to the weighted sum of the utility of the 

corresponding nodes (the utility of each node is given by the 5-fold cross-validation accuracy of a 

naïve Bayes model in that node, and the weight is proportional to the number of training instances 

in it). When presented with an out-of-sample instance, the tree will classify it using the naïve Bayes 

model in the leaf of the branch that matches the attribute values of that instance. Figure 54 shows 

the basic structure of one of these trees. 

There are several other models with a similar structure to the naïve Bayes tree. These include 

the logistic model tree (Landwehr et al., 2005), a classifier with logistic regression models in its 

leaves, and the M5 model tree (Quinlan, 1992), a regression tree with linear regression models as 

leaves. This last one might be particularly useful because, just like the CART model, it applies to 

problems with numeric classes. 

 

4.1.4 Rule Inducers 

Rule inducers in general use a covering strategy to learn from the training data (as opposed to the 

top-down, divide-and-conquer method of decision tree inducers). Simply put, these models take 

one class at a time, and attempt to create a rule that covers as many instances of that class as 

possible, by iteratively adding conditions to it. While a split in a decision tree applies to all the 

classes, a new condition in a rule applies only to the class being targeted. The method for picking 

the best attribute in each iteration is also different: tree inducers perform attribute selection based 

 

Figure 54. Graphical representation of a naïve Bayes model tree. 
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on criteria such as the information gain or the Gini impurity measure, while rule learners will 

simply choose the attribute that maximizes the accuracy for the desired class. 

The RIPPER rule learner (Cohen, 1995) is an example of a model that employs a covering 

strategy. RIPPER (short for “repeated incremental pruning to produce error reduction”) is a 

propositional rule inducer that outputs a rule set; each rule in the set consists of a conjunction of 

attribute conditions (the antecedents) and the corresponding class value (the consequent). Rule 

creation is accomplished by greedily adding antecedents to a rule until it becomes 100% accurate. 

In each iteration, the condition to be added is selected by testing every possible value for each 

attribute, and picking the condition with the highest information gain, as given by: 

𝑚𝑑𝑚𝑜𝑟𝑚𝑚𝑡𝑚𝑜𝑑𝐺𝑚𝑚𝑑 = 𝑝 × �𝑜𝑜𝑔 �
𝑝
𝑡

� − 𝑜𝑜𝑔 �
𝑃
𝑇

�� 

where 𝑡 is the total number of instances covered by the new rule, 𝑝 is the number of instances that 

are correctly classified by it, 𝑇 is the total number of instances covered by the rule before adding the 

condition, and 𝑃 is the amount of those that were classified correctly. The RIPPER rule learner 

prevents overfitting of the training data by performing incremental reduced error pruning; as 

previously outlined, this involves using one subset of data to create the rule, and another to test its 

accuracy when some conditions are pruned. The strategy is called incremental because each rule is 

pruned immediately after it has been created. 

The ripple-down rule learner (Gaines & Compton, 1995) uses a different covering method. It 

starts by inducing a default rule that maps to one of the classes in the training data. Then, it 

employs incremental reduced error pruning to iteratively create exceptions to that rule. These 

exceptions are rules that map to classes other than the default. 

In addition to the covering method, there are a few other strategies for generating rules. The 

M5 decision list (Holmes et al., 1999), for example, uses the following algorithm: in each iteration, 

an M5 model tree is built, and the best leaf in the tree is turned into a rule; the training instances 

covered by this rule are removed from the dataset, and the process is repeated. The recursion stops 
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when all the training instances are covered by the rules in the list. As we mentioned in the previous 

section, M5 model trees have linear models in their leaves; hence, an M5 decision list consists of an 

ordered set of rules whose antecedents are attribute conditions and whose consequents are linear 

models, which means this model is intended for the prediction of numeric class values. 

The PART decision list (Frank & Witten, 1998) is similar to the M5 decision list, in that it 

combines the two main methods for rule induction: the covering strategy, and rule extraction from 

decision trees. In each step of the learning process, it creates a C4.5 decision tree and converts its 

best leaf into a rule. The criterion for picking the best leaf is based on the total number of instances 

covered: the more, the better. The instances covered by the new rule are eliminated from the 

training data, and the process is repeated until all the instances are covered. 

Another way to generate rules is to create a table where each column is an attribute, and each 

row is a training instance. That is more or less what the decision table majority classifier (Kohavi, 

1995b) does. This model consists of a decision table, coupled with a default rule that maps to the 

most frequent class in the training set. In order to create the table, the inducer starts by discretizing 

the numeric attributes in the training data; next, it uses a generic attribute selection algorithm that 

performs cross-validation to choose the best subset of training attributes (i.e., it selects the 

attributes that best predict the class, with the least redundancy between them). These attributes 

become the columns in the table, which is then populated with the training data – each row is a 

simple rule containing the discretized attribute values of a training instance, and the corresponding 

class. In order to classify an out-of-sample instance, the algorithm searches for all the rows that 

match the attributes of that instance, and the class is chosen by majority vote. If no match is found, 

the default rule makes the classification, meaning the most frequent class in the training set will be 

outputted. 

Finally, we present one last method for extracting rules from training data. The fuzzy lattice 

reasoning classifier (Kaburlasos et al., 2007) employs hyperbox-based rule induction to perform 
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classification. More specifically, it partitions the feature space using hyperboxes, assigns a class to 

each hyperbox, and then uses these partitions as rules to perform classification: if an out-of-sample 

instance i is inside a hyperbox labelled with class c, then the class of i is c. The classifier learns by 

progressively increasing the size of the hyperboxes: for each training instance, it calculates the 

diagonal size increase that the hyperboxes of that class require to reach the instance in the feature 

space, up to a maximum user-defined threshold, and then enlarges the hyperbox that requires the 

smallest change. Similarly, the non-nested generalised exemplars model (Martin, 1995) is a type of 

a nearest neighbour algorithm that also generalizes hyperrectangles from the training instances, 

which it converts to if-then rules to classify out-of-sample data. 

4.1.5 Perceptron Models 

The perceptron (Rosenblatt, 1958) is an algorithm that aims to find a hyperplane in the feature 

space that can separate training instances belonging to a binary class (with possible values +1 and 

−1). The equation for the hyperplane is: 

 𝑤0 + 𝑤1 × 𝑚1 + 𝑤2 × 𝑚2 + ⋯ + 𝑤𝑛 × 𝑚𝑛 = 0 

where 𝑤0, … , 𝑤𝑛  are weights and 𝑚1, … , 𝑚𝑛  are the attributes. Figure 55 presents a graphical 

representation of a perceptron with these parameters. This figure shows that the perceptron is the 

simplest type of artificial neural network, with the input layer connecting directly to the output 

layer; for binary classification, 𝑚 is a threshold activation function: 

𝑚(𝑚1, … , 𝑚𝑛) = �+1    𝑚𝑚    𝑤0 + �(𝑤𝑖 × 𝑚𝑖)
𝑛

𝑖=1

> 0

−1   𝑜𝑡ℎ𝑟𝑟𝑤𝑚𝑟𝑟                            

 

This classification function is equivalent to putting the instance in the feature space, and checking 

in which side of the hyperplane it ends up – on one side, it gets classified with class +1, and on the 

other with class −1. 
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To calculate the weights of the hyperplane that separates the two classes, the learning 

algorithm starts by setting them all to zero, or to random values. Next, the perceptron will classify 

the training instances one by one. During this process, if an instance of class +1 is misclassified, 

the values of its attributes are added to the corresponding weights; if, on the other hand, an 

instance of class −1 is misclassified, the attribute values are subtracted from the weights. This 

procedure moves the hyperplane, so that the instance ends up on the correct side of the separation, 

or at least closer to it. These steps are repeated until the perceptron is able to classify all the training 

instances successfully, or until a predefined maximum number of iterations is reached. The 

iteration limit guarantees that the learning algorithm will always terminate, even if the classes are 

not linearly separable. Note that if the algorithm is started with random weights, multiple runs may 

generate different separating hyperplanes for the same training data, which will affect the accuracy 

of the model when classifying out-of-sample instances. 

When the two classes are not linearly separable, the perceptron learning rule can create 

nonlinear decision boundaries by employing the kernel trick (Aizerman et al., 1964). This strategy 

implies mapping the training instances to a higher-dimensional space, where linear classification is 

to occur. The kernel trick introduces some changes to the learning algorithm. As previously 

described, the perceptron will classify an out-of-sample instance with attributes 𝑚1, … , 𝑚𝑛  by 

checking if the following expression is greater than zero: 

 
Figure 55. Graphical representation of a perceptron. 
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�(𝑤𝑖 × 𝑚𝑖)
𝑛

𝑖=0

 

where 𝑚0 is 1 and the weights 𝑤0, … , 𝑤𝑛 are calculated during training. Considering how the 

calculation of the weights is accomplished (by adding or subtracting the attributes of the 

misclassified instances) we can rewrite the expression as: 

� � � �𝑦(𝑗) × 𝑚𝑖
(𝑗) × 𝑚𝑖�

𝑗 𝑖𝑠 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

�
𝑛

𝑖=0

 

where 𝑦(𝑗) is +1 or −1, depending on the class of the 𝑗th misclassified training instance, and 𝑚𝑖
(𝑗) is 

the 𝑚th attribute value of that instance. The classification of a test instance using this new expression 

requires iterating through all the misclassified training instances, rather than simply using the pre-

calculated vector of weights. Nevertheless, this transformation is advantageous because it allows us 

to use the dot product in the calculation. Swapping the summation signs, we get: 

� �𝑦(𝑗) × � �𝑚𝑖
(𝑗) × 𝑚𝑖�

𝑛

𝑖=0

�
𝑗 𝑖𝑠 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

 

In mathematics, the dot product of vectors 𝑚 and 𝑏 is defined as: 

𝑚 ∙  𝑏 = �(𝑚𝑖 × 𝑏𝑖)
𝑛

𝑖=0

 

Thus, the previous expression may be simplified to: 

� �𝑦(𝑗) × �𝑚(𝑗) ∙  𝑚��
𝑗 𝑖𝑠 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

 

The kernel trick consists in replacing the dot product between the two vectors with a kernel 

function 𝑘: 

� �𝑦(𝑗) × 𝑘�𝑚(𝑗), 𝑚��
𝑗 𝑖𝑠 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

 

Now, if the two classes are not linearly separable, we can use a kernel function to map the instances 

to a higher-dimensional space, where that separation might be possible. Linear classification in the 
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new space will correspond to nonlinear classification in the original space. Several kernel functions 

are available for this purpose, among which polynomial, sigmoid and Gaussian radial basis kernels. 

Various data mining models employ the kernel trick to perform nonlinear classification. The 

voted perceptron (Freund & Schapire, 1999) is one of them. This classifier aims to improve the 

accuracy of the perceptron, by making some changes to its learning method. During training, the 

model saves all the different weight vectors calculated by the perceptron’s supervised learning 

algorithm. For each vector, it records the number of iterations it “survived” before being replaced 

with a new vector. As previously outlined, this replacement occurs whenever there is a 

misclassification. When the time comes to predict the class of an out-of-sample instance, each of 

these weight vectors is used to classify it, and the final classification is decided by weighted voting, 

with the weight of each vote being based on the survival time of the corresponding vector. 

The multilayer perceptron (Rumelhart et al., 1986), a type of feedforward artificial neural 

network, is also an improvement to the perceptron. It has at least three layers: the input layer, the 

output layer, and one or more in-between hidden layers. The information flows in just one 

direction, from the input nodes to the hidden nodes, and finally to the output nodes. These nodes 

are commonly referred to as neurons. Figure 56 depicts a multilayer perceptron with three layers; it 

has two input attributes, four hidden neurons (with nonlinear activation functions 𝑡), and two 

output neurons (with threshold activation functions 𝑚). 

 

 
Figure 56. Graphical representation of a multilayer perceptron. 
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A multilayer perceptron is capable of performing nonlinear classification because the outputs 

of its hidden neurons are calculated by nonlinear activation functions. Several functions can be 

utilized, the only requirement being that they are normalisable and differentiable. The sigmoid 

function, which returns a value between 0 and 1, is the most frequent choice. The output 𝑜 of an 

artificial neuron with a sigmoid activation function is: 

𝑜 =  
1

1 + 𝑟−(𝑤0+𝑤1×𝑖1+𝑤2×𝑖2+⋯+𝑤𝑛×𝑖𝑛)
 

where 𝑚1, … , 𝑚𝑛 are the neuron’s input values and 𝑤0, … , 𝑤𝑛 are the weights of the corresponding 

connections, or synapses. These weights, initially set to random values, are calculated during 

training using a supervised learning method, like the backpropagation algorithm. This algorithm 

consists of the following sequence of steps: 

• Feed a training instance to the artificial neural network. 

• Calculate the error in each output neuron. If neuron 𝑚 outputs 𝑜𝑖, and the expected value 

is 𝑦𝑖, then the neuron’s error 𝑟𝑖 is: 

𝑟𝑖 = 𝑜𝑖 × (1 − 𝑜𝑖) × (𝑦𝑖 − 𝑜𝑖) 

• Calculate the error in each hidden neuron. For hidden neuron 𝑞, this is given by: 

𝑟𝑞 = 𝑜𝑞 × �1 − 𝑜𝑞� × � (𝑤𝑖 × 𝑟𝑖)
𝑖 𝑖𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

 

Notice the error in the hidden neuron depends on the errors in the neurons it is forward-

connected to. Hence, the errors are being propagated backwards from the output layer. 

• Optimize the weights of the synapses. The new weight for synapse 𝑟 that connects 

neuron 𝑘 to neuron 𝑡 is: 

𝑤𝑠 = 𝑤𝑠 + 𝜂 × 𝑜𝑘 × 𝑟𝑡 

where 𝜂 is the user-defined learning rate, which speeds up or slows down the learning. 

• Repeat until all the training instances are classified correctly, or another stopping 

criterion is satisfied. 
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As is, this algorithm applies only to multilayer perceptrons where the neurons have sigmoid 

activation functions; other functions would require different formulas to calculate the errors in the 

neurons. 

The radial basis function network (Moody & Darken, 1989) is another type of feedforward 

artificial neural network. It consists of an input layer, a hidden layer and an output layer. The 

activation of the hidden neurons is calculated with radial basis functions. From a practical point of 

view, each hidden neuron in this network can be visualised as a point in the feature space. When 

fed with an out-of-sample instance to classify, the output of each hidden neuron will depend on its 

distance to the instance: the closer they are in the feature space, the stronger the activation. 

4.1.6 Miscellaneous Models 

The naïve Bayes classifier (John & Langley, 1995) is one of the best known tools in data mining. 

This statistical model is based on Bayes’ theorem of conditional probability – it calculates the 

probability of an instance with attribute values 𝑚1, … , 𝑚𝑛 belonging to nominal class 𝑑 with the 

formula: 

𝑃(𝑑|𝑚1, … , 𝑚𝑛) =  
𝑃(𝑑) × 𝑃(𝑚1, … , 𝑚𝑛|𝑑)

𝑃(𝑚1, … , 𝑚𝑛)  

The model is considered “naïve” due to its assumption that the attributes are independent from 

each other, given the class. This assumption is incorrect for most real life scenarios. Still, it makes 

the classification task much simpler, by allowing the simplification of the numerator: 

𝑃(𝑑) × 𝑃(𝑚1, … , 𝑚𝑛|𝑑) = 𝑃(𝑑) × 𝑃(𝑚1|𝑑) × 𝑃(𝑚2|𝑑) × … × 𝑃(𝑚𝑛|𝑑) 

Since the denominator does not depend on the class, it will remain the same when we calculate the 

probability of the test instance belonging to each class. Thus, we can replace it with a constant that 

ensures that these probabilities add up to 1. Considering all these simplifications, if 𝑑 is the 

number of attributes and 𝑡 is the number of classes, the naïve Bayes model will calculate the 

probably of a test instance belonging to class 𝑑𝑘 with: 
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𝑃(𝑑𝑘|𝑚1, … , 𝑚𝑛) =
𝑃(𝑑𝑘) × ∏ 𝑃(𝑚𝑖|𝑑𝑘)𝑛

𝑖=1

∑ �𝑃�𝑑𝑗� × ∏ 𝑃�𝑚𝑖�𝑑𝑗�𝑛
𝑖=1 �𝑡

𝑗=1

 

The classes’ prior probabilities 𝑃(𝑑1), … , 𝑃(𝑑𝑡) are calculated by counting the number of times they 

occur in the training set, and computing their relative frequencies. If 𝑚𝑖 is a nominal attribute, then 

𝑃(𝑚𝑖|𝑑𝑘), i.e., the probability that a given label of 𝑚𝑖 occurs with class 𝑑𝑘, is calculated the same 

way. If 𝑚𝑖 is a numeric attribute, it may also be treated the same way, if we discretize it first. 

Otherwise, it is assumed that the values of 𝑚𝑖 follow a normal distribution, and the training data is 

used to calculate the mean and the standard deviation of those values for class 𝑑𝑘. The probability 

𝑃(𝑚𝑖|𝑑𝑘)  can then be determined by looking at the probability density function of the 

corresponding normal distribution. If a numeric attribute does not seem to follow a Gaussian 

distribution, other distributions may be utilized instead. 

Once all the prior and conditional probabilities have been computed from the training set, the 

naïve Bayes model is ready to classify out-of-sample instances. Its strategy is straightforward: for an 

instance with attributes 𝑚1, … , 𝑚𝑛, it uses the formula to compute the probability that it belongs to 

each of the possible classes, i.e., 𝑃(𝑑1|𝑚1, … , 𝑚𝑛), … , 𝑃(𝑑𝑡|𝑚1, … , 𝑚𝑛), and picks the class with the 

highest probability. 

Another renowned data mining model is the support vector machine (Boser et al., 1992). 

Given a binary classification problem with classes 𝑑1 and 𝑑2, the training of a support vector 

machine entails calculating the maximum margin hyperplane that can separate the two classes in 

the feature space. The maximum margin hyperplane is the hyperplane that provides the greatest 

separation between the classes, as exemplified in Figure 57. The classification of an out-of-sample 

instance can be envisioned as putting it in the feature space, and checking in which side of the 

hyperplane it ends up. In the example in Figure 57, the represented support vector machine would 

classify the out-of-sample instance (represented in grey) as belonging to the WHITE class. 

The training instances that are closest to the maximum margin hyperplane are called support 

vectors (those in the dashed lines in Figure 57). These are the only instances that are needed to 
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define the maximum margin hyperplane. The classification of an out-of-sample instance with 

attribute values in vector 𝑚 is accomplished by calculating if the following expression is greater than 

or less than zero: 

𝑏 + � �𝛼𝑗 × 𝑦(𝑗) × 𝑘�𝑚(𝑗), 𝑚��
𝑗 𝑖𝑠 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟

 

where 𝑦(𝑗) is +1 if instance 𝑗 belongs to class 𝑑1 or −1 if it belongs to class 𝑑2, 𝑚(𝑗) is the vector 

with the attribute values of 𝑗, and 𝑏 and 𝛼 are parameters calculated by performing constrained 

quadratic optimization on the training set. Notice the support vector machine employs the kernel 

trick to do the classifications. To define linear class boundaries in the original space, the following 

kernel is utilized: 

𝑘�𝑚(𝑗), 𝑚� = 𝑚(𝑗) ∙ 𝑚 

Nonlinear classification is achieved by using a kernel function that maps the instances to a higher-

dimensional space, where the maximum margin hyperplane is to be found. The polynomial kernel 

is one possibility: 

𝑘�𝑚(𝑗), 𝑚� = (𝑚(𝑗) ∙ 𝑚 + 1)𝑑  

Support vector machines address multiclass problems by first converting them to binary 

problems. There are several ways to do this; the most common strategy is to create a support vector 

machine for each pair of classes, and then classifying out-of-sample instances by majority voting. 

 

 
Figure 57. Graphical representation of the maximum margin hyperplane for a set of instances with two attributes. 



150 Chapter 4: Intelligent Agents as Autonomous Forex Traders 

 

 

Naïve Bayes classifiers and support vector machines are some of the most important tools in 

data mining. So much so that they were picked as two of the top 10 algorithms (Wu et al., 2007), 

along with others that were previously referenced, like the C4.5 decision tree, the k-nearest 

neighbour and the CART. Some obscure models have not achieved the same status, but that does 

not mean they cannot be useful. The voting feature intervals classifier (Demiröz & Güvenir, 1997), 

for example, is one of the simplest ways to parse data. It starts by splitting each attribute in 

intervals: numeric attributes are discretized; for nominal attributes, a single point interval is created 

for each possible label. Next, it counts the number of times each class occurs with each interval in 

the training instances. Classification of a test instance is achieved by determining the intervals to 

which its attribute values belong, adding the intervals’ frequencies for each class, and selecting the 

class with the biggest sum. This strategy is not very sophisticated, but may still prove useful for 

simple data mining problems. 

The distance to average classifier, which we authored, is also extremely simple. It is somewhat 

similar to the nearest neighbour model, only it uses an eager strategy, rather than a lazy strategy. 

This means it does the bulk of the work during training, so that the classification task can be 

performed faster. The training phase is itself relatively fast, because all the model does is calculate 

the coordinates of the mean point that best represents the training instances of each class in the 

feature space. This strategy is easily explained with an example. Suppose we want to predict if the 

price of a stock will increase or decrease tomorrow. We have historical price data for six days, which 

we convert into six training instances, with three numeric attributes each: the RSI and the Williams 

%R technical indicators, and the percentage price change for the day. The class value of each 

instance is set to UP or DOWN, depending on whether the price of the stock increased or 

decreased the following day. The placement of the six instances in the feature space is depicted in 

Figure 58; instances of class UP are represented in white, while instances of class DOWN are 

represented in black. Notice the feature space is three-dimensional, because the training instances
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are composed of three attributes. The construction of the distance to average model is 

accomplished by calculating the mean point for each class in that space. The coordinates of the 

mean point of a class are given by the average attribute values of the training instances belonging to 

that class. Figure 59 shows the mean points for the UP and the DOWN classes, represented with 

stars. Once the central points of all the classes have been calculated, the model is ready to make 

predictions. Given a new instance, its classification is performed by putting it in the feature space, 

and calculating the Euclidean distance between it and the mean point of each class; the class whose 

mean point is closest is chosen as the class prediction for the instance. 

 

 

Figure 58. Training instances in the feature space. 

 

Figure 59. Mean points of the classes in the feature space. 
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Figure 60 demonstrates the classification of an out-of-sample instance (shown in grey) using 

the distance to average model. Since the instance is nearest to the central point of the UP class, the 

model will predict it belongs to that class, which in practical terms means it will predict a stock 

price increase for the following day. 

The distance to average model normalizes numeric attribute values before calculating the 

distances, so that the attributes’ contribution to the distance does not depend on their scale. It also 

supports nominal attributes, by using the training instances to compute, for each class, the 

frequency of each label. When calculating the Euclidean distance between a test instance and the 

central point of a class, the contribution of the nominal attribute will be 1 minus the frequency with 

which the label occurred with that class in the training data; thus, the higher the frequency, the 

smaller the distance. The training and the classification methods of the distance to average model 

are described in Algorithm 10. Please notice this model was presented just for demonstration 

purposes, as there are much more advanced algorithms for calculating prototypes from the training 

instances (Chang et al., 2006). 

Since the distance to average model gives the exact same importance to all the attributes when 

classifying new data, the presence of redundant or irrelevant attributes in the training instances will 

degrade its performance. Thus, the accuracy of the model will mostly depend on the user’s ability to 

 

Figure 60. Classification of an out-of-sample instance according to the normalized Euclidean distance to the mean 

points of the classes. 



Chapter 4: Intelligent Agents as Autonomous Forex Traders 153 

 

 

properly select the training attributes. Several other models that were discussed in this chapter also 

suffer from this inability to give more weight to the attributes that best predict the class. 

Regardless, even the most sophisticated data mining algorithms will perform badly, if the training 

instances do not contain enough useful information. For this reason, in addition to being able to 

pick the right model for the job, the user must also be proficient at pre-processing the raw data (to 

fix incomplete, inconsistent or noisy information), and at selecting the best training attributes. The 

preparation of the data is, in fact, the most important task when doing data mining. In the next 

section, we will present the list of attributes that we chose for transforming the raw financial data 

into training instances. These instances will be used later to train the models that make up the 

agents’ ensembles. 

 

Method BuildModel 
Input: training instances 

Calculate the prior probability of each class 
For each attribute: 

If the attribute is numeric: 
calculate the average for each class 
normalize the average values so that they lie between 0 and 1 

Else if the attribute is nominal: 
calculate the frequency of each label for each class 

 
Method ClassifyInstance 
Input: test instance 
Output: class prediction 

For each class: 
For each attribute: 

If the attribute is numeric: 
normalize the value of the attribute 
calculate the difference between the normalized value and the class’s mean value for that attribute 

Else if the attribute is nominal: 
calculate the difference between 1 and the frequency with which the label occurred with the class 

Add the square of the calculated difference to the total distance between the instance and the mean point of the class 
If there is a draw regarding the class whose central point is closest to the instance: 

return the one with greater prior probability 
Else: 

return the class whose central point is closest to the instance 

Algorithm 10. Pseudocode for the distance to average classifier. 
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4.2 Data Mining Attributes 

Successful data mining, i.e., the discovery of useful hidden patterns in raw empirical data, is far 

from an easy feat. It involves two steps: 

• selecting the attributes with which the empirical data should be converted into training 

instances; 

• choosing the algorithm that will perform the data mining, along with its training 

parameters. 

In the previous section, we briefly described the strategies employed by many different types of 

algorithms to model the training data. Understanding how these algorithms work (i.e., how they 

learn and generalize from the training instances), and how changing their parameters impacts the 

performance of the resulting models, is an important part of the data mining process. Nonetheless, 

the real skill in this process is shown when transforming the raw data into the training datasets that 

the algorithms will attempt to model. This implies selecting the nominal or numeric attributes that 

best describe the raw data, and filtering out the irrelevant or redundant information. The 

importance of this step cannot be stressed enough. If neither the attributes themselves, nor the 

relationships between them, can offer any insight into the instances’ class value, the predictions of 

the model will be worthless. A data mining algorithm will not be able to find usable patterns in the 

data if there are none to be found. The relationships it does find, when processing irrelevant 

attributes, will bear no connection to the underlying data generating process, which means the 

model will be an awful predictor of out-of-sample data. Simply put, if the attribute selection is not 

done properly, the “garbage in, garbage out” mantra will apply. 

For financial forecasting, there are several attributes that we believe might be useful, like those 

that describe the fundamentals of the financial instruments. For example, if the object of study is a 

company’s stock price, we could populate the training instances with ratios such as the P/E (price 
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to earnings) or the EPS (earnings per share), the company’s debt, revenue, projected growth, and so 

forth. For a currency pair, we could consider attributes like the differential between the interest 

rates set by the central banks overseeing the two currencies, the external debt and gross domestic 

product of the corresponding countries or zones, the growth in their money supplies, etc. Clearly, 

there are many different bits of information that would suit this problem well. However, when we 

devised the iQuant software, our plan was to make it as generic as possible, so that it could be 

applied effortlessly to different financial instruments in different markets. For this reason, we 

decided to disregard any instrument-specific attributes based on fundamentals, and use only the 

type of information that is available for all financial products: historical prices. According to the 

proponents of technical analysis, this is actually an ideal strategy. Technical analysts believe that an 

instrument’s price always fully reflects its fundamentals, so historical prices should be all that is 

needed to forecast future prices. While we do not necessarily agree with this point of view, we 

decided to follow this route, and define only time and price-based attributes to train the models. 

This might limit their accuracy, but makes it a lot easier to compare the usefulness of the proposed 

agent architecture across different markets. By only allowing generic attributes, all that is necessary 

to create an intelligent agent with the iQuant software is some historical price data, regardless of 

the type of instrument that it will trade. 

Since the iQuant software uses the Weka API to train the data mining models and to get their 

predictions, the files with the instances’ information need to be in the attribute-relation format, or 

ARFF. Figure 61 shows the content of a sample ARFF file, with some training instances. More 

specifically, this listing contains information for 6 instances, each corresponding to a trading period 

of 6 hours. The instances are comprised of 8 attributes (one nominal and 7 numeric), plus the class 

label, which describes the price movement in the trading period that followed (UP if the price 

increased, DOWN if it decreased). This example shows just a small subset of the attributes offered 

by the iQuant software to train the agents’ ensembles; the software is able to automatically extract
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the values for these and many other attributes from historical price data. In the next sections, we 

will describe all the different generic attributes available to the agents, and will also present the 

reasons why we think each of them might be useful for predicting future data. 

4.2.1 The Class Feature 

The nominal class feature is the attribute that the classification models will try to predict. It 

describes the direction of the instrument’s price throughout the next trading period, and has two 

possible values: “the price increased in the next trading period” (UP) or “the price decreased in the 

next trading period” (DOWN). Concretely, the nominal class of the training instance corresponding 

to trading period 𝑚 is: 

𝑑𝑜𝑚𝑟𝑟𝑖 = �
 UP  if   (𝑑𝑜𝑜𝑟𝑟𝑖+1– 𝑜𝑝𝑟𝑑𝑖+1) ≥ 0

𝑚𝑂𝑊𝑁  𝑜𝑡ℎ𝑟𝑟𝑤𝑚𝑟𝑟                      
 

where 𝑜𝑝𝑟𝑑𝑖+1 and 𝑑𝑜𝑜𝑟𝑟𝑖+1 are the instrument’s open and close prices in the following period. 

When a model classifies an instance of an unknown class, it is actually making a prediction 

@RELATION usdjpy_6h 
@ATTRIBUTE  CLOSINGPRICE NUMERIC 
@ATTRIBUTE  HOUR            NUMERIC 
@ATTRIBUTE  DAYOFWEEK    { Monday, Tuesday, Wednesday, Thursday, Friday, Sunday } 
@ATTRIBUTE  WR30                NUMERIC 
@ATTRIBUTE  RSI20   NUMERIC 
@ATTRIBUTE  MA10   NUMERIC 
@ATTRIBUTE  LAG1   NUMERIC 
@ATTRIBUTE  PRICECHANGE  NUMERIC 
@ATTRIBUTE  NOMCLASS  { up, down } 
 
@DATA 
116.76,    18,    Tuesday,          -73.0,    42.0,    -0.0331,     -0.2311,     0.163,        down 
116.65,    0,      Wednesday,    -77.0,    45.0,    -0.0502,     0.163,        -0.0942,     up 
116.74,    6,      Wednesday,    -74.0,    54.0,    -0.0263,     -0.0942,     0.0772,      down 
115.88,    12,   Wednesday,    -90.0,    44.0,     -0.0794,     0.0772,     -0.7707,     up 
116.28,    18,   Wednesday,    -77.0,    46.0,    -0.0218,     -0.7707,      0.3538,     down 
116.17,    0,      Thursday,        -81.0,    49.0,    -0.0587,     0.3538,     -0.0946,      down 

Figure 61. Sample ARFF file. 
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regarding what will happen to the price in the future: an UP prediction means it expects the 

opening price to be lower than or equal to the closing price in the next period, while a DOWN 

prediction means it expects it to be higher. 

In addition to classification models, we also wanted the agents to use regression models. 

Hence, we defined a numeric class with which they could be trained. The value of this attribute is 

equal to the percentage price change in the next trading period, from open to close. For the 

instance representing period 𝑚, the numeric class value is: 

𝑑𝑜𝑚𝑟𝑟𝑖 =
𝑑𝑜𝑜𝑟𝑟𝑖+1 − 𝑜𝑝𝑟𝑑𝑖+1

𝑜𝑝𝑟𝑑𝑖+1
× 100 

When predicting the class value of an out-of-sample instance, the regression model will output the 

percentage price change it expects for the subsequent period. Since the agents’ prediction modules 

require price direction forecasts, they will convert these numeric predictions into nominal labels: if 

the regression model predicts a positive change, its nominal prediction is UP, otherwise it is 

DOWN. 

4.2.2 Time-Based Attributes 

We defined a few time-based attributes, so that the agents could find relationships between 

temporal information (hour of the day, day of the week, month, etc.) and the prices of financial 

instruments. The “hour of the day” attribute, which can either be nominal or numeric, is the 

starting hour for the period represented in the instance. Its value will depend on the agent’s 

investment time frame. For example, for Forex agents trading with a 6-hour time frame, the 

possible values are: 0, 6, 12 and 18. For stock agents trading with a 24-hour time frame this 

attribute will be redundant, and thus should not be used: since all the training instances will have 

the same value for the starting hour, the data mining models cannot utilize that information to 

distinguish the classes. 
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The reason why we allowed the hour to be represented as either a nominal or a numeric 

attribute was that not all data mining algorithms support both types. By making them both 

available, we ensured that all the models would be able to process the “hour of the day” 

information, regardless of their limitations. We should point out that, for models that support both 

types, the decision to represent the hour as a nominal or a numeric attribute is not irrelevant. Even 

if they do carry the same information, some models will treat nominal and numeric attributes 

differently during training, so picking one type over the other may affect their performance. 

Several studies have reported the existence of weekday seasonality in stock prices (Harris, 

1986; Pettengill, 2003). It is unlikely that this pattern could be employed, by itself, to develop a 

profitable trading strategy, even more so because some other studies have denied the existence of 

this effect in mature markets (Prokop, 2010). Nevertheless, we decided to let the agents use the 

“day of the week” attribute. Even if it cannot directly predict the class, it is possible that there are 

relationships between this and other attributes that might correlate with the class. This attribute 

was also made available in both nominal and numeric form. Possible values for the nominal 

attribute are: Sunday, Monday, Tuesday, Wednesday, Thursday and Friday. For the numeric 

attribute, the equivalent values are: 0, 1, 2, 3, 4 and 5. 

The last time-based attributes that we defined were the numeric “day of the month” and the 

“month of the year”. It is not much of a stretch to imagine that the instruments’ prices could be 

affected by these variables. In fact, there is an old Wall Street adage that goes: “sell in May and go 

away”. This is known as the Halloween indicator; it implies that stock market returns are worse 

between May and October, compared to the period between November and April. Some studies 

have confirmed the statistical significance of this seasonality in stock prices (Jacobsen & 

Visaltanachoti, 2009), hence it makes sense that we would let the agents use this temporal 

information to find patterns. 
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4.2.3 Price-Based Attributes 

The idea that historical prices can predict future prices is controversial. Those who believe in 

efficient markets call it a fool’s errand, while technical analysts defend the opposite and swear by 

their methods. There is evidence supporting both views in academic literature. Consider the theory 

of mean reversion, which states that prices or returns have a tendency to move back towards their 

historical average. We can find studies that support this theory with empirical evidence (Balvers et 

al., 2000; Chortareas et al., 2002), as well as studies rebutting it (Kim et al., 1991; Miller et al., 

1994). We decided to side with the technical analysts on this issue, and assume that past price 

patterns will indeed reappear in the future, be it due to economic cycles, traders’ behavioural 

predictability, self-fulfilling prophecies (i.e., when many traders believe a price pattern will repeat 

itself, they will act on it, and cause it to happen themselves), or some other unknown reason. Thus, 

we added the price direction to the list of usable attributes. This nominal attribute represents the 

direction of the price in the instance’s trading period. It has two possible values: “the price 

increased in the trading period” (UP) or “the price decreased in the trading period” (DOWN). More 

concretely, the label for the instance that represents trading period 𝑚 is: 

𝑜𝑚𝑟𝑟𝑑𝑡𝑚𝑜𝑑𝑖 = �
 UP  if   (𝑑𝑜𝑜𝑟𝑟𝑖– 𝑜𝑝𝑟𝑑𝑖) ≥ 0

𝑚𝑂𝑊𝑁  𝑜𝑡ℎ𝑟𝑟𝑤𝑚𝑟𝑟             
 

where 𝑜𝑝𝑟𝑑𝑖 and 𝑑𝑜𝑜𝑟𝑟𝑖 are the opening and closing prices in that period. Note that the direction 

label of an instance is equal to the class label of the previous instance. 

The numeric version of this attribute is the percentage price change (i.e., the return) in the 

instance’s period. It is also calculated using the opening and closing prices: 

𝑑ℎ𝑚𝑑𝑔𝑟𝑖 =
𝑑𝑜𝑜𝑟𝑟𝑖 − 𝑜𝑝𝑟𝑑𝑖

𝑜𝑝𝑟𝑑𝑖
× 100 
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This attribute differences the price data; this is an important pre-processing transformation, 

because it removes the trend from the price series, and makes it easier to model (Franses, 1998). 

The instrument’s closing price in each trading period (i.e., the original data, prior to differencing) 

was also made available to the agents. For stocks, we use the closing price adjusted for dividends 

and splits (because a split completely changes the price level of the stocks, meaning the original 

historical prices will no longer be comparable with future prices). 

The ARIMA is a classical, time-tested method of modelling time series data. As outlined in 

Chapter 2, this model starts by differencing the data, and then uses lagged values (i.e., previous 

values in the series) and moving averages of these lagged values to model the series. We allowed the 

agents to use this same information by defining the “lagged percentage price change” and the 

“lagged percentage price change moving average” numeric attributes. The lagged percentage price 

change is simply the return in a trading period preceding the instance’s period: 

𝑜𝑚𝑔(𝑡)𝑖 = 𝑑ℎ𝑚𝑑𝑔𝑟𝑖−𝑡 

The first lag is the change in the penultimate period, the second lag is the change in the 

antepenultimate period, and so forth. The moving average attribute is the average return in the last 

𝑑 periods: 

𝑀𝐴(𝑑)𝑖 =
𝑑ℎ𝑚𝑑𝑔𝑟𝑖 + ∑ 𝑜𝑚𝑔(𝑡)𝑖

𝑛−1
𝑡=1

𝑑
 

As we saw in Section 2.1, the moving average attribute is a common choice in financial data 

mining studies. Going by the articles referenced in that section, technical analysis indicators are 

also a good choice. We added a couple of these indicators to our list of attributes. The first was the 

Williams %R (Williams, 1979), an oscillator that compares the closing price in the instance’s 

period with the highest and lowest prices in the last 𝑑 periods: 

𝑊𝑅(𝑑)𝑖 =
𝑑𝑜𝑜𝑟𝑟𝑖 − ℎ𝑚𝑔ℎ𝑛

ℎ𝑚𝑔ℎ𝑛 − 𝑜𝑜𝑤𝑛
× 100 
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The value of the Williams %R oscillates between -100 and 0, and is usually interpreted as follows: 

if it is below -80, the instrument is oversold, hence the price is expected to increase in the future; if 

it is above -20, the instrument is overbought, and so the price is expected to fall. Obviously, these 

are just rough guidelines that technical analysts use to interpret the values of this indicator. The 

data mining models will likely find completely different relationships between the Williams %R 

and the instrument’s price direction. 

In order to distinguish rising values from declining values, we defined the signed Williams %R 

attribute: 

𝑆𝑊𝑅(𝑑)𝑖 = �
|𝑊𝑅(𝑑)𝑖|   𝑚𝑚   𝑊𝑅(𝑑)𝑖 ≥ 𝑊𝑅(𝑑)𝑖−1

𝑊𝑅(𝑑)𝑖  𝑜𝑡ℎ𝑟𝑟𝑤𝑚𝑟𝑟                             
 

The second technical analysis indicator in our list of attributes is the relative strength index 

(Wilder, 1978). This oscillator measures the momentum of directional movement, by comparing 

upward and downward price movements. It is calculated with the following formula: 

𝑅𝑆𝐼(𝑑)𝑖 = 100 − 100 ×
1

1 + 𝑅𝑆(𝑑)𝑖
 

𝑤ℎ𝑟𝑟𝑟 

𝑅𝑆(𝑑)𝑖 =
𝑈𝑃𝑀𝐴(𝑑)𝑖

𝑚𝑂𝑊𝑁𝑀𝐴(𝑑)𝑖
 

𝑈𝑃𝑀𝐴(𝑑)𝑖 =
∑ 𝑑𝑜𝑜𝑟𝑟𝑗 − 𝑜𝑝𝑟𝑑𝑗𝑗

𝑑
, 𝑗 𝑚𝑟 𝑚 𝑝𝑟𝑟𝑚𝑜𝑜 𝑚𝑑 𝑜𝑚𝑟𝑡 𝑑 𝑚𝑑 𝑤ℎ𝑚𝑑ℎ 𝑡ℎ𝑟 𝑝𝑟𝑚𝑑𝑟 𝑚𝑑𝑑𝑟𝑟𝑚𝑟𝑟𝑜 

𝑚𝑂𝑊𝑁𝑀𝐴(𝑑)𝑖 =
∑ 𝑜𝑝𝑟𝑑𝑗 − 𝑑𝑜𝑜𝑟𝑟𝑗𝑗

𝑑
, 𝑗 𝑚𝑟 𝑚 𝑝𝑟𝑟𝑚𝑜𝑜 𝑚𝑑 𝑜𝑚𝑟𝑡 𝑑 𝑚𝑑 𝑤ℎ𝑚𝑑ℎ 𝑡ℎ𝑟 𝑝𝑟𝑚𝑑𝑟 𝑜𝑟𝑑𝑟𝑟𝑚𝑟𝑟𝑜 

This indicator oscillates between 0 and 100, with the traditional interpretation being that the 

instrument is overbought if the indicator is above 70, and oversold if it is below 30. To distinguish 

increasing values from decreasing values, we also defined the signed relative strength index 

attribute: 
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𝑆𝑅𝑆𝐼(𝑑)𝑖 = �
𝑅𝑆𝐼(𝑑)𝑖  𝑚𝑚  𝑅𝑆𝐼(𝑑)𝑖 ≥ 𝑅𝑆𝐼(𝑑)𝑖−1

−𝑅𝑆𝐼(𝑑)𝑖  𝑜𝑡ℎ𝑟𝑟𝑤𝑚𝑟𝑟                      
 

Finally, the last attribute that we implemented was the rate of change, a simple technical 

analysis indicator that shows the difference between the closing price in the instance’s period, and 

the closing price 𝑑 periods before: 

𝑅𝑂𝐶(𝑑)𝑖 =
𝑑𝑜𝑜𝑟𝑟𝑖 − 𝑑𝑜𝑜𝑟𝑟𝑖−𝑛

𝑑𝑜𝑜𝑟𝑟𝑖−𝑛
 

The rate of change indicates the continuation of the trend when it remains positive in an uptrend, 

or negative in a downtrend. If its value changes from negative to positive between periods, this is 

traditionally seen as a signal to buy the instrument; if the opposite happens, the instrument should 

be sold. 

We have now presented all the different attributes available to the agents. Their usefulness will 

depend on the financial instrument being traded. It is possible that, for some instruments, none of 

these attributes will help predict the direction of the price. Historical price data, the agents’ only 

source of information, is very erratic and noisy, so our expectations for their potential accuracy must 

be kept low. As previously mentioned, adding instrument-specific attributes extracted from other 

sources, like fundamental data or news feeds, would probably be a good idea, because it is 

conceivable that there is a relationship between this information and the instruments’ prices. We 

opted not to do it, to keep the iQuant software generic, but it is likely that some of these attributes 

would make far better predictors than historical prices – that is, at least, the opinion of value 

investors, whose strategy consist of analysing the fundamentals to find undervalued instruments. In 

addition to the fundamentals, there are numerous other features that the agents could experiment 

with, including a few strange ones like the lunar phase (Yuan et al., 2006), the weather (Hirshleifer 

& Shumway, 2003) and geomagnetic storm information (Robotti & Krivelyova, 2003), all of which 

have been shown to be related with stock prices. The common idea behind the studies that report 
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these weird relationships is that the investors’ mood is affected by those factors, and this influences 

the way they trade. Regardless, we believe those patterns are probably just fabrications arising from 

weak data mining. A recent study has reported an equally dubious relation between the moods 

expressed in Twitter feeds, and the direction of the stock market (Bollen et al., 2010). The authors 

claimed that a model trained with the “Twitter sentiment” was able to predict the daily up and 

down changes in the closing values of the Down Jones 30 Index with 86.7% accuracy. This 

outrageous claim should be a red flag to anyone with a bit of experience in the field, because that 

accuracy goes well beyond what may reasonably be expected from a financial data mining model. 

The procedural errors underlying this unbelievable result are easy to pinpoint. First of all, the 

researchers tested the model with out-of-sample data for the period between December 1st and 

December 19th, which means the reported accuracy is based on less than 20 predictions. Also, they 

experimented with several combinations of sentiment attributes and lagged index values, and 

singled out the combination with the best accuracy; with almost all other combinations, the 

accuracy they got was less than or equal to the accuracy achieved with just the lagged values. 

Because of these problems, we can conclude that the results of this study are deceiving, and useless 

in practice. Its premise was pretty doubtful to begin with, since it is hard to imagine how an 

amalgamation of tweet messages could ever predict the direction of a stock market index – we can 

envision the fluctuations of the financial markets affecting the posters’ mood, not the other way 

around. Nevertheless, it has been reported that a multi-million dollar hedge fund is being created, 

to try to exploit the patterns uncovered by that research (Jordan, 2010); this initiative will probably 

end very badly. All these studies describing strange and implausible patterns demonstrate just how 

difficult it is to derive robust and meaningful conclusions from the mining of financial data. 

Whether consciously or unconsciously, researchers always run the risk of letting their own biases 

become a part of the process. And that is worrisome, because data mining will easily “confirm” any 

preconceived idea: with enough tweaking and tampering, data mining algorithms can be made to 
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output results that corroborate the flimsiest of premises. In order to avoid this pitfall, we had to 

come up with a sound method for selecting the attributes and the models that would comprise the 

agents’ ensembles. After considering all the pros and cons, we decided on an automatic selection 

strategy, so as to remove the human element from the whole process. This strategy will be 

described in the next section. 

4.3 Unbiased Model Selection 

The creation of an accurate data mining model can be very challenging, due to various pitfalls. The 

most prevalent is data overfitting; a model is said to overfit the training data when it describes the 

noise in the data, rather than its hidden patterns. For example, if we induced a decision tree for a 

training set, and the tree ended up with a different leaf for each training instance, it would clearly 

be overfitting the data. Hence, whereas it would classify all the training instances very accurately, it 

would not be capable of generalizing from that data, and so its accuracy classifying out-of-sample 

instances would be very poor. This problem is typical of models that are too complex; that is the 

reason why the learning algorithms of most decision tree inducers and rule learners include some 

sort of pruning procedure (which is responsible for simplifying the models by eliminating 

unnecessary parts). A common strategy for detecting if a model overfits the training data is to 

evaluate its accuracy with test instances (i.e., unseen data) and then discern if it was able to learn 

the concept. However, this strategy is only helpful if the test sample is representative of the full 

population of instances that the model will need to classify in the future. 

Another problem that could undermine a data mining effort is the improper selection of 

training attributes. If the attributes in the training instances are not predictive of the class variable, 

all the models trained with these instances will be useless, because the patterns they will find will 

not be related to the data generating process. The number of training attributes is also important: if 

it is too small, the models will not be able to approximate the process; if it is too big, the noise in 
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the training data will increase, and the models will be more prone to overfitting it; too many 

attributes will also increase the chances of them finding spurious correlations. 

The last data mining pitfall, and perhaps the most dangerous, concerns the incorrect 

evaluation of a model’s predictive ability. When creating a data mining model, it is extremely 

important not to mix the training instances with the test instances, otherwise the results will be 

biased. Nevertheless, even if these datasets are kept separate, we must still be cautious when 

analysing the model’s performance with the test data. Unless the distribution of this data matches 

that of the general population, we cannot extrapolate from the test results how well it will predict 

new unseen instances. One way to mitigate this problem is to use cross-validation, rather than a 

single dataset, to test the model. This strategy will gives us more meaningful results, but we might 

still face the same issue: if the training instances do not fully represent all the new instances that the 

model will need to classify later on, the cross-validation results will not allow us to ascertain its true 

potential, because the out-of-sample data could turn out to be completely different from the 

training data. 

In addition to these pitfalls, there is one other recurrent problem in data mining studies that 

needs to be emphasised. It concerns the effect of researchers’ own biases in their work. Anyone that 

sets out to prove a point using data mining will probably “succeed” – it is basically just a question of 

massaging the data and configuring the models in a way that fits the intended conclusions. By 

doing so, we can get a model to discover the most unbelievable patterns in the training instances, 

and have it show excellent accuracy in backtesting. However, these patterns will be just a fluke, and 

the model will be useless in practical terms. Leinweber (2007) came up with a compelling example 

to demonstrate this point: he “proved” that from 1983 to 1993, the butter production in 

Bangladesh could predict the value of the S&P 500 Index very accurately. Obviously, the fact that 

these two variables were correlated during that period was just a coincidence; there was not cause 

and effect relationship, so the pattern was worthless. This goes to show that, if researchers let their 
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prior beliefs or intentions taint the data mining process, they will get biased results that seem to 

support their views, but are in fact just fabrications. 

If we couple all these different hazards with the randomness in financial markets, it becomes 

painfully clear that the creation of a model capable of making profitable price direction forecasts in 

any market conditions will be an extremely difficult task, if at all possible. One should expect to 

face issues like: 

• because financial prices are very noisy, there is a big chance that the model will overfit 

the training data; 

• the choice of training attributes is not intuitive, since no one really knows which (if any) 

combination of factors is behind an instrument’s supply and demand at any given time; 

thus, we will need to select the attributes by trial and error, i.e., by training and testing 

the model with different combinations of attributes, and then choosing the combination 

that yields the best performance; however, this strategy is prone to bias, because the 

selected set might only work well with the test instances; 

• no matter how much training data we gather, it will never be representative of all the 

new data that will be generated in the future; thus, we will always be dealing with 

insufficient information. 

Besides all of these issues, we will encounter an even bigger problem: there is no way to be certain if 

a model is any good. Testing the model’s accuracy with a validation set or cross-validation only tells 

us how well it performs with that specific data; since future data might be completely different, we 

can never know for sure if the model is a good predictor. If it is not, we will only find out after it 

starts making inaccurate predictions for out-of-sample instances; at that point, it will be too late, 

because those forecasts will already be affecting real life decisions. 

After considering all the different problems we would face, we concluded it would be too 

time-consuming and complicated to create the agents’ data mining models by hand. Thus, we 
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devised an automatic selection mechanism for that purpose. The aim of this mechanism is to define 

the ensemble of models that will compose each agent’s prediction module. In order to do so, it goes 

through all the different model types described in Section 4.1, and trains 100 models of each type 

using random parameters and attributes. The number and the settings of the attributes of each 

model are also randomized, with a few restrictions: the minimum number of attributes is 3, and the 

maximum is 8, so that the resulting models are neither too simple nor too complex. The most 

profitable model of each type is selected, based on the performance achieved with a small set of test 

data. Once all the different types have been processed, the selection mechanism ends up with 31 

models that it believes are reasonably good. The ensemble needs to be smaller than that, so that it 

can output predictions in useful time. Thus, the algorithm’s next step is to pick a subset of those 

models that is as diversified as possible. By diversified, we mean models that consistently make 

different predictions for the same instances; the reason for using this criterion is simple: if two 

models in the ensemble always output the same predictions, then one of them is redundant. Having 

a set of models that always make the same forecasts would defeat the purpose of the ensemble, 

which is to insert some redundancy in the agents’ prediction mechanisms, by allowing the best 

models to compensate for the poor performance of the worst models in different markets 

conditions. In order to select the group with the most diversified set of forecasts, the algorithm 

compares the predictions of the 31 models for the same test data, and picks those whose 

predictions differ the most from all the others. This heterogeneous set becomes the ensemble in the 

prediction module of the trading agent. 

Clearly, this selection mechanism is not immune to the pitfalls that were previously discussed. 

With all likelihood, many of the models that it selects will overfit the training data, and will use 

attributes that bear no connection with the class. Also, the algorithm picks the best model of each 

type by comparing the accuracy achieved with a small set of test instances; this is not a good 

strategy, because this dataset will not be an appropriate sample for the full population of new 
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unseen data. Because of this, numerous worthless models will inevitably end up in the agents’ 

ensembles, which may affect their profitability. But we do not expect this to be a big problem. The 

fact that some of the predictors in the ensembles will be below par simply means that the agents’ 

adaptability skills will be put to the test. As described in Chapter 3, the agents’ architecture was 

designed in a way that should mitigate problems caused by inaccurate models: 

• if a model is not a good predictor, the weight of its contribution to the forecasts of the 

ensemble will be decreased; 

• if all the models in the ensemble become bad predictors, the prediction module will stop 

making forecasts; 

• even if a model performs poorly under certain market conditions, it is possible that it will 

perform better when the trend or the volatility change, thus proving useful in the future; 

• since the models are periodically retrained with more data, bad predictors should 

eventually be replace with better versions of themselves. 

Regardless of these mitigating factors, there is no question that the inaccurate models will 

have a negative effect on the trading agents. Seeing as our automatic selection mechanism is a bit 

naïve, it is fair to say that our agents will not be as profitable as they could have been, had we used a 

better selection method – like trying to come up with the best models by hand, for example. That is 

the biggest drawback of this mechanism. Nevertheless, it has two major advantages that justify its 

usage: 

• it does not require manual tweaking of the data mining models, so we do not need to 

worry about unintentionally “over-optimizing” them and getting biased results; 

• it expedites the implementation of new trading agents, because the ensembles can be 

selected relatively fast. 

This last advantage is very important; we want to test the architecture with as many instruments as 

possible, and the automatic selection strategy will facilitate the process by cutting the time needed 
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to configure each agent. In the next section, we will start presenting the trading results of numerous 

agents whose ensembles where selected using this strategy. 

4.4 Standalone Forex Trading Agents 

Following the implementation of the USD/JPY trading agent, we used the iQuant software to 

create another 9 intelligent agents; each was configured to trade one of the currency pairs listed in 

Table 12. Just like the USD/JPY agent, these new agents were trained to open a trade every 6 

hours: the first at midnight, followed by trades at 6 AM, 12 PM and 18 PM GMT. They close 

each trade at the end of the corresponding period, before making a new prediction and opening a 

new trade; it is also possible that they will close a trade before the end of the period, because of the 

take-profit rules in their domain knowledge modules. The 6-hour investment time frame was 

chosen for two reasons: first, the historical price data that we were able to gather only goes back to 

2003, hence a relatively short time frame was needed, so that enough instances could be extracted 

from that raw data to train the models; second, by using this time frame, the times of the day when 

the agents must send orders to the market will not usually coincide with the release of any major 

reports, such as interest rate decisions or the nonfarm payrolls employment change. Currency prices 

may become very volatile around the time these reports are first published, which implies bigger 

bid-ask spreads and slippage that make it more difficult to trade profitably. 

We configured the prediction modules of the 10 Forex trading agents with the following 

settings: 

• The models in each agent’s ensemble, and corresponding parameters and attributes, were 

selected by the automatic mechanism described in the previous section. An ensemble of 

seven models was picked for the prediction module of each agent; this size is a 

reasonable compromise between speed and redundancy: the ensembles are sufficiently 

small that their predictions can be outputted fast enough (at the speed required for real 
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life trading), and are also diversified enough so as to allow the agents to adapt to changes 

in market dynamics. The training instances used by the selection mechanism were 

compiled from historical price data starting in 2003, up to December of 2006. The 

amount of data available varied from pair to pair, therefore the number of training 

instances differed: it ranged from around 3,400 for the GBP/CHF pair, to around 4,000 

for the EUR/USD pair. In order to select the best model of each type, the mechanism 

tested them with 50 instances, corresponding to the first 2.5 weeks of January of 2007. 

The final composition of the 10 ensembles is presented in the appendix. 

• The test data sliding window, depicted in Figure 13, was also set to 50 instances. This 

means that, before each forecast, the prediction modules will test their models with the 

last 50 instances, and use the results to calculate their profit factors; as previously 

described, these values will in turn be utilized to define the models’ vote weights, and to 

decide if a model should be replaced with a newer version trained with more data. 

The decision to set the sliding window to just 50 instances was based on the following reasons: 

• Most financial price series exhibit conditional heteroskedasticity (Franses, 1998); this 

signifies that the volatility is clustered, with long periods of low volatility usually being 

followed by short periods of high volatility. Since the weights of the models’ votes are 

based on their profitability with the test instances, the test dataset needs to be relatively 

small, so that these weights can change quickly when the market enters a period of high 

volatility. In other words, the shorter the test set, the faster the agents will adapt to 

changes in market conditions. 

• The sliding window method specifies that the new instance that becomes available at the 

end of each trading period will be used as a test instance, while the oldest instance in the 

test set becomes a training instance. This implies that, the shorter the test set, the faster 
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the newer instances will be utilized to train the models; hence, the shorter the test set, 

the faster the agents will be able to learn the newest patterns. 

These two reasons clarify why it is generally a good idea to define a small sliding window for the 

test data. However, if it is set too small, the weights could become erratic – the smaller the test 

dataset, the more vulnerable the weights will be to the outliers in the data, which might make them 

less reliable. Using a sliding window with 50 instances seemed like a good compromise; it meant 

that, for each prediction, the weights of the models’ votes would be based on their profitability in 

the preceding 2.5 weeks of trading. 

The agents’ empirical knowledge modules, responsible for suggesting the amount to invest in 

each trade, were configured with the following settings: 

• After retrieving the cases from the database and calculating their profit factor, if that 

profit factor is less than or equal to 0, the suggested size for the prospective trade is 0; 

that is to say, if previous similar trades were mostly unprofitable, the new trade should 

not be opened. 

• If the profit factor is between 0 and 1.5, the suggested trade size is half the user-defined 

standard amount. 

• If the profit factor is greater than or equal to 1.5, the suggested trade size is the standard 

amount; thus, the agents will only invest the maximum quantity permitted when past 

similar trades show considerable profit. 

• At least 3 cases are needed to calculate the profit factor; if the case-based reasoning 

system does not find enough similar trades in the database, it will retrieve the cases 

again, using less restrictive conditions (specifically, it will remove the last model’s 

prediction from the information to match, and then repeat the search). 

The final step in the implementation of the Forex trading agents was the configuration of 

their domain knowledge modules. This was accomplished with the following set of rules: 
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• Do not trade if it is Christmas Day, New Year’s Day or Good Friday; this rule is 

necessary to prevent the agents from trading in low liquidity days, when there are fewer 

traders in the market, and thus the prices are more prone to erratic behaviour. 

• Skip the first and the last trades of the week, i.e., the trades on Sunday at 18 PM and on 

Friday at 18 PM GMT; the reason for avoiding these trading periods is that the Forex 

market is less liquid during those times, which implies trading will be more costly (due 

to bigger bid-ask spreads and slippage) and more dangerous (because the volatility might 

increase more easily). 

• Do not open a new trade if there is already a trade open with the exact same settings 

(i.e., the same direction and size); put another way, if at the end of the trading period 

there is already a trade open providing the exposure that the agent wants for the 

following period, then it should keep that trade open, instead of closing it and opening a 

new one; this rule is very important, because it eliminates the costs associated with the 

redundant trades. 

• Close a trade if it reaches a profit equal to 2/3 of the average price range (in percentage) 

in the last 5 periods; more concretely, the take-profit target for period 𝑚 is calculated with 

the following equation (with 𝑑 set to 5): 

𝑡𝑝(𝑑)𝑖 =  100 ×
∑ �𝑚𝑚𝑚𝑖−𝑡 − 𝑚𝑚𝑑𝑖−𝑡

𝑜𝑝𝑟𝑑𝑖−𝑡
�𝑛

𝑡=1

𝑑
×

2
3

 (9) 

where 𝑚𝑚𝑑𝑖−𝑡, 𝑚𝑚𝑚𝑖−𝑡 and 𝑜𝑝𝑟𝑑𝑖−𝑡 are the minimum, maximum and opening prices in 

period 𝑚 − 𝑡. The reason for using this equation is that it allows the agents to set profit 

targets according to the most recent price volatility: the target increases when the prices 

are more volatile, and decreases when the prices are more stable. This strategy is useful 

because, as we stated before, financial price series often exhibit time-clustered volatility; 

ergo, it makes sense to raise the target when the volatility starts increasing, because we 
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expect it to remain high; conversely, it makes sense to decrease the target as the volatility 

drops. To ensure that the profit target is never too small to offset the trading costs, the 

actual value that the agents use in their take-profit orders is given by the maximum 

between 0.15% and the value calculated with Equation 9. 

Once the implementation of the Forex trading agents was concluded, we had them simulate 

trades for the period between February of 2007 and the first half of May of 2009, which 

corresponds to exactly 2,510 out-of-sample instances. Their cumulative returns throughout this 

period are displayed in Figures 62 and 63; the full simulation results are summarized in Table 13. 

Considering these results, we are inclined to conclude that the Forex market is not entirely 

efficient. All the agents achieved a positive return at the end of the simulation period, and their 

average accuracy predicting the direction of the exchange rates was well over 50%; both of these 

accomplishments would be unlikely in a completely efficient market. 

Overall, we can say that the agents’ performance was impressive; their RMD ratios in 

particular show that they were able to trade profitably without taking too much risk. At first sight, 

these results seem to vindicate the usefulness of the trading agent architecture described in Chapter

 
Figure 62. Gross cumulative returns of the CHF/JPY, EUR/CHF, EUR/GBP, EUR/JPY and EUR/USD trading 

agents. 
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3. But things are never that simple. Successful financial trading is not an easy feat, so it would be 

naïve to expect all the agents to trade profitably in real life. From a practical point of view, these 

simulation results are simply too good to be true. The pitfall here is that the statistics in Table 13 

do not account for the trading costs, the “nemesis” of short term investment strategies. Hence, 

while we can infer from the agents’ performances that they were capable of finding useful patterns 

in the price data, we cannot assert that they would be able to use those patterns to trade profitably 

in the real markets. Looking at their small returns per trade, it is clear that the trading costs would 

have a very negative impact on their profitability. 

In order to perform a more realistic evaluation of the agents’ potential, we defined a fixed cost 

per trade, and recalculated their cumulative returns. We tried to base this cost on actual real life 

trading expenses. This, however, is not straightforward, because trading commissions vary 

significantly from one intermediary to the next. Forex market makers, for example, do not charge 

an explicit commission; instead, their fees are bundled in the bid-ask spread of the currency pairs. 

The spread is the difference between the ask price, i.e., the price at which they are willing to sell 

the financial instrument, and the bid price, i.e., the price at which they are willing to buy it. Market 

makers usually increase the spreads when the market is less liquid, therefore the trading costs can

 
Figure 63. Gross cumulative returns of the GBP/CHF, GBP/JPY, GBP/USD, USD/CHF and USD/JPY trading 

agents. 
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change from one trade to the next. When liquidity is high, spreads are typically very tight; for 

instance, one of the biggest online Forex market makers offers spreads ranging from 0.9 pips for 

the EUR/USD pair, to 3.9 pips for the GBP/CHF. Unlike the market makers, Forex brokers 

charge an explicit commission per trade. They still show a spread between the bid and the ask, but 

this spread depends on the supply and demand in the market, rather than being artificially 

imposed. For this reason, brokers’ spreads in general are smaller than those offered by market 

makers. The fees they charge are relatively inexpensive; for example, at one of the biggest online 

discount brokers, the commission per trade is 0.4 pips or less (depending on the size). Since we 

wanted to account for other hidden costs, such as slippage and volatile spreads, we decided to test 

the agents with a more expensive fee of 5 pips per trade. The agents’ results in the simulation 

period, assuming these trading expenses, are presented in Figures 64 and 65, and summarized in 

Table 14. While we were expecting a substantial deterioration in their performances, the end 

results were even worse than we imagined. Out of the 10 agents, only four were profitable at the 

Table 13. Simulation results of the 10 Forex trading agents (excluding trading costs). 

Agent Return (%) Max DD (%) RMD Ratio Ret/Trade (%) Accuracy (%) Success (%) Trades 

CHF/JPY 36.7 7.2 5.09 0.0322 53.6 56.0 1,139 

EUR/CHF 16.0 4.4 3.64 0.0136 53.7 56.1 1,178 

EUR/GBP 5.4 4.7 1.14 0.0057 49.8 52.4 937 

EUR/JPY 32.0 9.6 3.32 0.0285 52.8 55.2 1,122 

EUR/USD 20.4 8.9 2.30 0.0165 53.2 57.3 1,232 

GBP/CHF 10.2 11.9 0.85 0.0096 51.5 55.1 1,060 

GBP/JPY 19.2 14.0 1.38 0.0188 53.4 55.3 1,021 

GBP/USD 29.5 3.8 7.82 0.0268 54.8 57.9 1,102 

USD/CHF 45.1 4.5 9.98 0.0383 55.6 58.8 1,176 

USD/JPY 32.7 3.8 8.57 0.0285 53.8 56.0 1,146 
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end of the simulation period, but with negligible returns and small RMD ratios. As for the other 

six, they all did very poorly. The absolute worst was the EUR/GBP trading agent, which managed 

to lose money continuously throughout the simulation. The fact that this agent was the most affect 

by the trading costs should not come as a surprise, given that it had the smallest return per trade 

before expenses (note that this type of analysis is the reason why we chose the return per trade as a 

performance metric – it gives us a way to assess the agents’ vulnerability to increases in trading 

expenses). 

 

 

 

Figure 64. Net cumulative returns of the CHF/JPY, EUR/CHF, EUR/GBP, EUR/JPY and EUR/USD trading 

agents. 

 
Figure 65. Net cumulative returns of the GBP/CHF, GBP/JPY, GBP/USD, USD/CHF and USD/JPY trading 

agents. 
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Considering all the metrics, we cannot find one single agent that performed acceptably. This 

might raise some doubts regarding the usefulness of the proposed agent architecture, at least from a 

practical point of view. However, if we look at the results more carefully, we can verify that the 

agents’ dismal track records were not entirely their fault. Let us examine what happened to the 

EUR/GBP trading agent; the drop in its percentage of profitable trades, from 52.4% to 42.8%, 

hints at the real problem. Suppose the EUR/GBP exchange rate is 0.7500; the 5 pips commission 

we defined (i.e., 0.0005) represents a cost of around 0.07%, which seems pretty inexpensive. 

However, the average EUR/GBP open-to-close price variation in the 6-hour simulation periods 

was just 0.20%. This signifies that, as soon as the agent opened a trade, it was already spending 

more than one third of what it might expect to gain with that trade. It is nearly impossible to be 

profitable in these circumstances, no matter how skilled the trader is. The drop in the agent’s 

success rate indicates that many of its trades that were profitable before expenses resulted in a loss 

once the costs were accounted for. Thus, even though the agent was “right” when it opened those

Table 14. Simulation results of the 10 Forex trading agents (including trading costs). 

Agent Return (%) Max DD (%) RMD Ratio Ret/Trade (%) Accuracy (%) Success (%) Trades 

CHF/JPY -4.0 13.6 -0.29 -0.0035 53.6 50.4 1,139 

EUR/CHF -6.9 11.0 -0.63 -0.0059 53.7 49.7 1,178 

EUR/GBP -35.5 35.5 -1.00 -0.0379 49.8 42.8 937 

EUR/JPY 6.7 14.4 0.47 0.0060 52.8 52.5 1,122 

EUR/USD -7.8 15.0 -0.52 -0.0063 53.2 52.5 1,232 

GBP/CHF -8.8 15.0 -0.59 -0.0083 51.5 52.1 1,060 

GBP/JPY 0.2 15.2 0.01 0.0002 53.4 52.7 1,021 

GBP/USD 8.1 5.7 1.41 0.0074 54.8 53.9 1,102 

USD/CHF 6.2 8.5 0.73 0.0053 55.6 52.3 1,176 

USD/JPY -1.3 13.7 -0.10 -0.0011 53.8 51.4 1,146 
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trades (i.e., its direction prediction was correct), it still lost money in them, because the variation of 

the price was too small to offset the fees. By comparing the success rates before and after 

subtracting the trading costs, we confirm that all the agents experienced the same problem. Clearly, 

configuring them to trade with a 6-hour time frame was a very bad idea, because the trading 

periods are too short, and hence the price changes from open to close are too small compared to the 

cost per trade. The implication here is that the agents’ lacklustre performances were not due to 

their architecture, but rather to that poorly thought out decision. Therefore, we can conclude two 

things: 

• going by stats in Table 13, the Forex agents are competent traders; 

• in practice, their skills are useless, because they were configured in a way that does not 

addresses all the pitfalls of real life trading. 

We should point out that, trading live, it is likely that the agents would end up paying 

considerably less than 5 pips per trade. Most discount brokers charge substantially less than that, 

and the tendency is for the costs to drop even further as the retail market matures. The smaller 

expenses would certainly improve the agents’ return and overall performance. Nevertheless, before 

allowing the agents to trade in the real market with real funds, we believe it would be imperative to 

train them with a bigger time frame. Doing so should increase the range of the price in each 

trading period (meaning a higher potential profit per trade) hence the agents would be less affected 

by the trading costs. While this would definitely be the best option, we decided to attempt to 

improve the performance of the agents without changing their time frame. The strategies we came 

up with will be presented in the next two sections. 

4.5 Diversified Forex Investment Strategy 

As we pointed out in Chapter 3, it is possible (although not very probable) that the positive gross 

returns of the USD/JPY and ADBE trading agents during the simulation period were just random 
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occurrences, or the result of specific market conditions throughout that period. We also saw that, 

even if their drawdowns were relatively small, both agents experienced significant losses whenever 

there were sudden changes in the trend or the volatility of the price. These findings indicate that 

we cannot blindly trust any agent, no matter how successful it was in backtesting, because there is 

no guarantee that it will not experience significant losses in the future. For this reason, it would be 

unwise to use just one agent to trade real funds. That would be the equivalent of “putting all the 

eggs in one basket”, which is definitely not the safest or the smartest way of investing. Fortunately, 

there is a time-proven strategy for overcoming this problem; it is known as investment 

diversification, and consists in investing in various uncorrelated financial instruments 

simultaneously, to decrease the risk of owning each of them separately. The reasoning behind this 

strategy is simple: losses incurred while trading some instruments will be compensated by gains 

obtained while trading others, and this should yield a smoother overall return with smaller 

drawdowns. By making the 10 Forex agents share the monetary resources (Barbosa & Belo, 2009c), 

we can easily implement this type of strategy. In order to do so, we just need to evenly distribute 

the trading capital between them, and ensure that all their losses and gains are credited in the same 

brokerage account. Compared with the individual results of the 10 agents, the cumulative return of 

the diversified strategy should be considerably less volatile, which makes it safer in the long run. 

Figure 66 displays a graphical representation of this diversified investment strategy; for clarity’s 

sake, only 4 agents are depicted in the figure. The agents are spread across multiple hosts, so that 

they can make predictions and open trades faster. They use the same brokerage account to interact 

with the market, and share the monetary resources in that account. There is no communication 

between the agents, so they are not aware of each other. The simulation results obtained with this 

diversified strategy, using the 10 Forex agents, are presented in Figure 67 and Table 15. The chart 

with the cumulative return shows that, disregarding the trading costs, the performance of the 

diversified strategy was close to ideal: the return curve has a pronounced positive slope, which
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indicates it was very profitable, and more importantly, this curve is very smooth, meaning the 

strategy was virtually risk free during the simulation period. We can confirm this analysis by 

looking at the stats in Table 15: the final return was 24.7%, while the maximum drawdown was an 

almost negligible 2.1%. The strategy’s RMD ratio of 12.03 was much better than what any of the 

agents achieved individually (as seen in Table 13). By averaging the performances of the 10 agents, 

the diversified strategy was not as profitable as the best agent, and not as unprofitable as the worst; 

its real advantage lies in the fact that, by allowing the losses of the worst agents to be offset by the 

gains of the others, it experienced a much smaller maximum drawdown, without sacrificing too 

much profit. This improvement is exactly what we were hoping to attain. Our results confirm that 

investment diversification is an invaluable risk management strategy. 

Much to our disappointment, when the trading costs are taken into account, the diversified 

investment strategy does not yield a positive return at the end of the simulation period. Overall, its 

performance was still better than that of the individual agents: its maximum drawdown was 

smaller, and it did a reasonable job covering up the losses of the worst agents. Nevertheless, its final 

return was negative (-4.3%), and that is all that really matters from a practical point of view. If we 

 
Figure 66. Graphical representation of an agent-based diversified Forex investment strategy. 
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compare the return curves in Figure 67, it becomes clear that the agents wasted too much money 

on commissions; the problem lies in the high number of trades: with over 11,000 being made, the 

trading costs quickly add up. Something must be done about these excessive costs, if one is to 

develop a safe and profitable trading system that is good enough to be deployed in real life. We will 

look into this in the next section. 

 

4.6 Multi-Agent Forex Trading Strategy 

When we first started designing the trading agent architecture, we specified that the agents would 

be evaluated according to their RMD ratio (a pain-to-gain measure of how much profit they make 

per unit of risk) and their return per trade (a measure of their sensitivity to the trading costs). In the 

previous section, we established that investment diversification can be employed to improve the 

 
Figure 67. Gross and net cumulative returns of the diversified Forex investment strategy. 

Table 15. Simulation results of the diversified Forex investment strategy (excluding and including trading costs). 

Strategy Ret (%) Max DD (%) RMD Ratio Ret/Trade (%) Acc (%) Success (%) Trades 

Diversified (gross) 24.7 2.1 12.03 0.0022 53.3 56.1 11,113 

Diversified (net) -4.3 6.4 -0.68 -0.0004 53.3 51.2 11,113 
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agents’ overall RMD ratio. However, net results showed that we still had to increase their return 

per trade, in order to achieve profitability. Obviously, this can be accomplished by either increasing 

the total return, without increasing the number of trades, or by decreasing the number of trades 

required to obtain the same profit. As mentioned before, expanding the investment time frame is a 

possible solution, because it should allow the agents to get more profit per trade; however, this 

would force us to retrain all the agents with different instances. The alternative would be to come 

up with a way for the agents to make the same return, but with less trades. By capitalizing on the 

specificities of the Forex market, we were able to devise a strategy that does exactly that. In 

Chapter 1 we explained that whenever an agent buys a currency pair, it is in fact buying the base 

currency and selling the quote currency; when it shorts the pair, it is actually selling the base and 

buying the quote. For example, if the EUR/USD trading agent buys $100,000 of its pair, and the 

EUR/USD price is 1.3990, its market exposure will be long €71,500 and short $100,000. If, at the 

same time, the USD/JPY agent buys $100,000 of its pair, and the USD/JPY price is 89.90, its 

exposure will be long $100,000 and short ¥8,995,000. If we combine the market exposures of the 

two agents, the result is long €71,500 and short ¥8,995,000. The exact same exposure could be 

obtained by simply buying $100,000 of the EUR/JPY pair; therefore, in this particular situation, 

two trades could be replaced with just one. The unleveraged capital required for obtaining the 

desired exposure would also be cut in half, from $200,000 to $100,000. Now suppose the 

EUR/JPY agent predicts a price decrease, and short sells its currency pair with a trade size of 

$100,000. Considering the trades of the three agents, we are faced with the following scenario: the 

EUR/USD agent expects the price of the euro to increase in comparison with the U.S. dollar, the 

USD/JPY agent expects the price of the U.S. dollar to increase compared to the Japanese yen, and 

the EUR/JPY agent expects the price of the euro to decrease versus the Japanese yen. There is an 

obvious contradiction in these forecasts. If the prices of the three pairs actually moved in the 

predicted directions, this would create a glaring triangular arbitrage opportunity; the Forex market 
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is efficient enough not to allow these short-lived profit opportunities to happen often, if ever. If we 

add the exposures of the three agents, we will verify that, even though there are three trades open, 

there is no real exposure to the market. The three trades effectively cancel each other out, so the 

sum of their returns will always be zero, regardless of the variations in the exchange rates. Hence, a 

perfect replacement for these three trades would be not to open any trades at all; this way, the 

agents would not pay any fees, and would not tie up any capital. This example demonstrates that, as 

is, the currency trading agents in our diversified investment system are making a lot of redundant 

trades. 

As outlined in the previous section, each agent will make an investment decision concerning 

its currency pair at the beginning of each trading period. There are five different possibilities for 

this decision: buy the standard, user-defined amount; buy half the standard amount; do not trade; 

short half the standard amount; and finally, short the full standard amount. This means that, for 

every period, there are 9,765,625 ways of combining the decisions of the 10 Forex agents (that is 

the total number of permutations with repetition, or 510). Most of these decision combinations can 

be transformed into a smaller set of trades that provide the exact same market exposure. We 

devised an algorithm that does that conversion, and will describe it with an example. Imagine the 

standard trade size was set to $100,000, and the agents’ decisions for a given 6-hour period were: 

o Short sell $100,000 of CHF/JPY; 

o buy $100,000 of EUR/CHF; 

o do not trade the EUR/GBP; 

o short sell $50,000 of EUR/JPY; 

o short sell $50,000 of EUR/USD; 

o buy $100,000 of GBP/CHF; 

o short sell $100,000 of GBP/JPY; 

o short sell $100,000 of GBP/USD; 
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o short sell $100,000 of USD/CHF; 

o short sell $50,000 of USD/JPY. 

If considered separately, these decisions would result in nine trades being opened, with an 

unleveraged capital requirement of $750,000. In order to minimize the number of trades, we start 

by calculating the market exposure that each of them would create: 

o -$100,000 in CHF and +$100,000 in JPY; 

o +$100,000 in EUR and -$100,000 in CHF; 

o $0 in EUR and $0 in GBP; 

o -$50,000 in EUR and +$50,000 in JPY; 

o -$50,000 in EUR and +$50,000 in USD; 

o +$100,000 in GBP and -$100,000 in CHF; 

o -$100,000 in GBP and +$100,000 in JPY; 

o -$100,000 in GBP and +$100,000 in USD; 

o -$100,000 in USD and +$100,000 in CHF; 

o -$50,000 in USD and +$50,000 in JPY. 

Next, we add up all the exposures, to calculate the total exposure per currency: 

o $0 in EUR; 

o $0 in USD; 

o $300,000 in JPY; 

o -$200,000 in CHF; 

o -$100,000 in GBP. 

Now that we have determined the overall market exposure corresponding to the decisions of the 10 

agents, we need to compute the smallest set of trades that will give them this exposure. In order to 

do so, we start by picking the currencies with the biggest positive and the biggest negative 

exposures. Here, they are the $300,000 in JPY and the -$200,000 in CHF. The smaller of the two, 
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in absolute value, is the size of the first trade; in this case, it is $200,000, hence the first trade must 

generate an exposure of $200,000 in JPY and -$200,000 in CHF; the remaining $100,000 of JPY 

exposure is saved for the next iteration of the algorithm. The trade that produces the required 

exposure is either buying $200,000 of JPY/CHF or short selling $200,000 of CHF/JPY. Thus, the 

CHF/JPY agent will be responsible for short selling $200,000 of its pair. Next, we repeat the same 

step, using the total currency exposure remaining after the previous iteration: 

o $0 in EUR; 

o $0 in USD; 

o $100,000 in JPY; 

o $0 in CHF; 

o -$100,000 in GBP. 

This exposure is obtained by either buying $100,000 of JPY/GBP, or short selling $100,000 of 

GBP/JPY. Ergo, the GBP/JPY agent will be responsible for short selling $100,000 of its pair. All 

the exposure has now been accounted for, and so no other trades are needed. This means that our 

algorithm was able to transform the nine prospective trades into just two, which provide the exact 

same overall exposure. The required unleveraged capital also decreased, from $750,000 to 

$300,000. Notice that this is just one example, out of the 9,765,625 decision combinations that 

may occur. The method that was just described, listed in Algorithm 11, will cut the number of 

trades in 99.94% of those combinations, and the capital requirement in 99.87%. Clearly, there is 

much to be gained in enabling the agents to communicate their decisions to one another before 

opening any trades, and then having them use this algorithm to decide which trades should be 

opened. By eliminating the redundant trades, they will save a lot of money on fees and other 

trading expenses, which is precisely what they require to be more profitable in real life. All we have 

to do now is create an infrastructure that allows them to communicate with each other, and reach 
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agreements before opening trades. That is to say, we must create a multi-agent system (Barbosa & 

Belo, 2010a). In order to do so, we defined a very simple negotiation protocol: 

• whenever an agent is started, it must inform all the other agents that it will become a 

part of the system; likewise, it must warn the other agents before leaving the system; 

 

Algorithm Agent_OptimizeForexTradeList 
Inputs: 

pair1,pred1,amount1,...,pairN,predN,amountN // list of prospective trades to be optimized 
Outputs: 

pairx,predx,amountx,…,pairy,predy,amounty // optimized list of trades 
 
BEGIN 

curAmount1,...,curAmountT ← 0  // initialize total currency exposures 
For pair* in pair1 … pairN   // for each prospective trade: 

If pred* = UP Then   //     if it is a long trade: 
curAmountb ← curAmountb + amount* //        add the trade size to the total exposure of the base currency 
curAmountq ← curAmountq - amount* //        subtract the trade size from the total exposure of the quote currency 

ElseIf pred* = DOWN Then  //     else if it is a short trade: 
curAmountb ← curAmountb - amount* //        subtract the trade size from the total exposure of the base currency 
curAmountq ← curAmountq + amount* //        add the trade size to the total exposure of the quote currency 

EndIf 
EndFor 
While curAmount1 + ... + curAmountT > 0             // while there is currency exposure remaining: 

curx ← biggest_positive(curAmount1,...,curAmountT)   //  get currency with biggest positive exposure 
cury ← biggest_negative(curAmount1,...,curAmountT)  //  get currency with biggest negative exposure 
If curAmountx ≥ | curAmounty | Then             //   if the positive is greater than the negative (in absolute value): 

amountP ← | curAmounty |              //    size of optimized trade is the negative exposure (absolute value) 
curAmountx ← curAmountx - amountP             //    subtract trade size from the total exposure of the first currency     
curAmounty ← 0               //    all the exposure for the second currency has been accounted for 

Else                //  else if the negative is bigger: 
amountP ← curAmountx              //    size of optimized trade is the biggest positive exposure 
curAmountx ← 0               //    all the exposure for the first currency has been accounted for     
curAmounty ← curAmounty + amountP             //    add trade size to the total exposure of the second currency 

EndIf 
firstIsBase ← is_base(curx)          
If firstIsBase = TRUE Then              // if the currency with biggest positive exposure is the base currency: 

pairP ← create_pair(curx,cury)              //    use it as the base currency in the pair of the optimized trade 
classP ← UP               //    the new optimized trade is a long trade 

Else                // else if it is the quote currency: 
pairP ← create_pair(cury,curx)              //    use it as the quote currency in the pair of the optimized trade 
classP ← DOWN               //     the new optimized trade is a short trade 

EndIf 
optimizedTrades ← add_to_list(pairP,classP,amountP) // add the new optimized trade to the list 

EndWhile 
RETURN optimizedTrades               // return list of optimized trades 

END 

Algorithm 11. Pseudocode for reducing a set of Forex trades into an optimized set with equivalent currency exposure. 
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• after an agent makes an investment decision for a given trading period, instead of 

opening the corresponding trade, it communicates this decision to all the other agents; 

• once an agent receives all the trading decisions, it uses Algorithm 11 to compute the 

smallest set of trades that can produce the desired overall exposure; if its currency pair 

appears in the computed set, it opens the corresponding trade, otherwise it just waits for 

the next period. 

This protocol is depicted in the UML sequence diagram shown in Figure 68. At any given point in 

time, all the agents know which other agents are in the system. When the time comes to open a 

new trade, they make their predictions, and cooperate with each other by communicating their 

intentions (i.e., the trades they plan on opening). Upon receiving all these decisions, each agent will 

compute the smallest set of trades that can create the corresponding market exposure; since they all 

use the same algorithm with the same inputs, they will all compute the same set. Once this is done, 

each agent just needs to check if the computed set contains a trade involving its pair. If that is the 

case, it must open that trade; otherwise, it simply waits until the next trading period, when a new 

combination of decisions will be generated. While waiting for each other’s decisions, the agents 

employ a timeout mechanism that allows them to keep operating, even if there is a problem in the 

communication infrastructure. Specifically, if the messages are taking longer than average, the 

agents will report the problem to the system administrator, and will go on trading as if they were 

alone in the system. 

Rather than using a full-fledged agent communication language like the FIPA-ACL, which 

would have been overkill for such a simple negotiation protocol, we defined our own ad-hoc XML-

based language for the agents’ interaction. This language consists of just two types of messages: 

• the status message, which the agents use to communicate their entry or exit from the 

system; 

• the decision message, which they use to communicate their trading decisions. 
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Figure 68. UML sequence diagram describing the negotiation protocol in the multi-agent Forex trading system. 
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The format of these messages is presented in Figures 69 and 70, respectively. In the status message, 

the action tag indicates whether the agent (stipulated in the instrument tag) is entering or exiting 

the system. In the decision message, the size tag is a code for the agent’s decision: 2 for buying the 

standard trade size, 1 for buying half the standard size, 0 for not trading, -1 for shorting half the 

standard size, and -2 for shorting the full standard size. 

Figure 71 shows a representation of the multi-agent Forex trading system. Compared with the 

simpler diversified investment strategy (depicted in Figure 66) this system adds the inter-agent 

communication functionality that allows the agents to minimize the number of trades made in each 

trading period – the lighter arrows represent the communication between them, while the black 

arrows represent their interactions with the market. In our implementation of the system, the 

communication between the agents (with the aforementioned XML messages) is handled by the 

ActiveMQ message broker11. Communication with the Forex market is carried out using the 

proprietary API of an online currency broker, which enables the agents to send orders to the 

market, receive currency price updates, and obtain information regarding the status of their trades. 

                                                      
11 The Apache ActiveMQ message broker is available at http://activemq.apache.org/. 

<status> 

<instrument> EUR/USD </instrument> 

<action> IN </action> 

</status> 

Figure 69. Format of the status message. 

<decision> 

< instrument > EUR/USD </instrument> 

<price> 1.3990 </price> 

<size> 2 </size> 

</decision> 

Figure 70. Format of the decision message. 

http://activemq.apache.org/
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The system is highly scalable: the agents can be moved freely between hosts, and new hosts may be 

added to support a growing number of agents. Since the iQuant software was written in Java, the 

hosts may even be running different operating systems. 

The cumulative return achieved by our multi-agent system (with the 10 Forex agents) 

throughout the simulation period is displayed in Figure 72; for comparison purposes, we also show 

the return of the simpler diversified investment strategy, in which the agents were not aware of 

each other. At first glance, it might seem like there is something wrong with these results. If the 

trading costs are not taken into account, the cumulative return of the multi-agent system should be 

exactly the same as the return of the simpler diversified strategy. After all, the only difference 

between these two strategies is that, for each trading period, the multi-agent system replaces the 

original set of trades with a smaller set that generates the exact same market exposure. If the 

exposure is the same, and there are no costs associated with the trades, then the strategies should 

have the same return. Yet, the chart reveals that the multi-agent strategy is much more profitable. 

There are two reasons for this difference. First of all, when the multi-agent system replaces a given

 

Figure 71. Graphical representation of a multi-agent Forex trading system. 
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set of trades with a smaller set, it just guarantees that the market exposure will be the same at the 

beginning of the trading period. Because we put a take-profit rule in the agents’ domain knowledge 

modules, they can close trades at any point during that period; if this happens, the market exposure 

of the two strategies will no longer be the same (because the trades are different). But the hit rate of 

the take-profit rules is not very high, so this is not the main reason for the big divergence in the 

returns. What is actually making the multi-agent system perform considerably better is the fact 

that, in addition to lowering the number of trades, it also decreases the capital requirements. What 

this means, from a practical point of view, is that the agents can use a bigger trade size when they 

are part of the system. We will explain this feature with an example. Suppose we have $100,000 

available for investing, and do not want to employ any initial leverage. If we used a single agent to 

trade, we would set its standard trade size to $100,000. On the other hand, if we used the 

diversified investment strategy with the 10 agents, we would need to divide that amount between 

them; hence, their standard trade size would be $10,000. While we might expect to do the same 

when the 10 agents are part of the multi-agent system, that would in fact be a waste of resources. 

Going through all the 9,765,625 possible decision combinations, and the corresponding optimized 

sets of trades that the agents compute, we can verify that the maximum number of trades appearing

 

Figure 72. Gross and net cumulative returns of the multi-agent Forex investment strategy. 
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in any of those sets is four. Also, the maximum volume, i.e., the maximum amount of capital 

invested simultaneously, is only six times the standard trade size (versus 10 times for the simpler 

diversified strategy). Therefore, in order to maximize the utilization of the monetary resources, the 

standard trade size for the agents in the multi-agent system should be equal to the initial capital 

divided by six, or $16,667. That is almost 67% higher than the amount set for the agents in the 

simpler strategy. The bigger trade size signifies that, using the same money and subject to the same 

leverage restrictions, the agents in the multi-agent system are able to open trades with much higher 

market exposures. This results in bigger profits, which explains why the system achieved a better 

return than the simpler strategy. 

The superiority of the multi-agent system is even more evident when we look at the returns 

after commissions. By decreasing the number of trades and the capital requirements, this system 

turned an otherwise unsuccessful investment strategy into a profitable strategy with low risk. The 

full comparison between the net results is presented in Table 16. When integrated in the multi-

agent system, the agents opened less than half the trades they made when trading isolated. 

Consequently, they spent less money on fees, which enabled the system to reach the end of the 

simulation period with a positive unleveraged return of 17.8%. This is an acceptable profit after 2.3 

years of trading, but far from exceptional; note that this unimpressive return is not necessarily a big 

issue, because in real life the system’s profit may still be improved, by configuring the agents to 

trade with leverage – the system seems to be well suited for trading with borrowed funds, given that 

both its small maximum drawdown and high RMD ratio indicate that its trading strategy is not 

very risky. All things considered, we believe these simulation results confirm the usefulness and the 

potential of the agent architecture proposed in Chapter 3. In particular, they demonstrate that it 

may actually be possible to utilize it in the development of multi-agent trading systems safe enough 

to be deployed in real life. 
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We should point out that, according to some stricter definitions, the described Forex trading 

system might be considered a simple agent-based infrastructure, rather than a true multi-agent 

system. Going by Panait and Luke’s (2005) definition, for example, it could be argued that, since 

our agents are somewhat synchronized and aware of each other’s states, they could be governed by a 

single master controller; this disqualifies our trading system from being recognized as a multi-agent 

system. We strongly disagree with this view. In our opinion, it should indeed be accepted as a 

multi-agent system, due to the following reasons: 

• it is completely decentralized, and contains intelligent agents that can learn, 

communicate and act autonomously; 

• the interaction between these self-governing entities allows them to optimize the profit 

of the system as a whole; nevertheless, if the communication mechanism fails, they are 

still able to operate on their own; 

Table 16. Comparison between the simulation results of the multi-agent system and the simpler diversified strategy 

(including trading costs). 

Strategy 
Diversified 

Multi-Agent 
Diversified 

(no inter-agent communication) 

Net Return (%) 17.8 -4.3 

Maximum Drawdown (%) 3.8 6.4 

RMD ratio 4.72 -0.68 

Return/Trade (%) 0.0033 -0.0004 

Trades 5,417 11,113 

Volume 5,150 x standard trade size 9,176 x standard trade size 

Maximum Simultaneous Trades 4 10 

Maximum Simultaneous Volume 6 x standard trade size 10 x standard trade size 

Standard Trade Size (unleveraged) initial capital / 6 initial capital / 10 
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• while it is true that the agents synchronise their actions, and are aware of each other’s 

intents, they also interact with other human and software agents of whom they have no 

information; this interaction occurs through the broker, whenever an agent opens a 

trade, because on the other side of this trade there is always a human trader or a 

computer acting in its own interest. 

While the concept is subjective, we believe the reasons we provided should be enough to qualify the 

Forex trading system as a true multi-agent system. 

One last thing we must emphasize is that the live trading performance of this system will 

greatly depend on how the agents are fine-tuned. By optimizing the way they open trades, their net 

return could be substantially higher. Figure 72 shows that more than half of the system’s gains are 

still being wasted with commissions, so a decrease of just 1 pip in the average cost per trade would 

make a huge difference in the profit. We should be able to accomplish this decrease, by making the 

agents use well-timed limit orders to open the trades, instead of market orders. However, this type 

of optimization is beyond the scope of this thesis. Before even worrying about these details, it 

would be far more important to improve the level of investment diversification in the multi-agent 

system. As is, there are not nearly enough agents in it. Even worse, some of the Forex agents are 

trading instruments whose prices are often highly correlated; for instance, the EUR/JPY and the 

USD/JPY exchange rates frequently move in tandem. Hence, prior to letting the system trade real 

funds, it would be essential to insert more agents in it, that could trade other types of financial 

instruments, possibly with different time frames. This will be the subject of the next chapter, in 

which we will describe the development of stock trading agents using the iQuant software. 
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Chapter 5 

5Intelligent Agents as Autonomous Stock Traders 

One of the key features of the trading agent architecture that we proposed is its versatility: it can be 

applied in the development of agents that trade any type of financial instrument, so long as there is 

historical data to train them. In particular, when the implementation is done exclusively with time 

and price-based attributes, all that is necessary to create new agents is some past price data, 

regardless of the instrument’s type. This characteristic makes it extremely easy to test the 

architecture in different markets. In this chapter, we will study its suitability for implementing 

stock trading systems, by creating 25 intelligent agents with the iQuant software. Each of these 

agents will be responsible for trading one of the stocks listed in Table 17; the stocks in this list were 

picked according to three criteria: 

• individually, they had to be widely traded and very liquid; 

• as a whole, they needed to constitute a broad representation of the most important 

sectors of the economy; 

• finally, we gave preference to stocks with higher beta (i.e., stocks with higher volatility 

compared to the rest of the market) because bigger price swings should help mitigate the 

negative effect of the trading costs in the agents’ performances. 
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These 25 agents will be tested with around 3.3 years’ worth of out-of-sample data. Just like in 

the previous chapter, we will demonstrate the importance of diversifying the investments, and the 

advantages of integrating the agents in a multi-agent system. 

 

Table 17. Description of the stocks traded by the intelligent agents. 

Ticker Company Exchange 

AA Alcoa Inc. NYSE 

AAPL Apple Inc. NASDAQ 

ADBE Adobe Systems Inc. NASDAQ 

BAC Bank of America Corp. NYSE 

CAL Continental Airlines Inc. NYSE 

CSCO Cisco Systems Inc. NASDAQ 

DELL Dell Inc. NASDAQ 

DIS The Walt Disney Co. NYSE 

GE General Electric Co. NYSE 

GOOG Google Inc. NASDAQ 

HD The Home Depot Inc. NYSE 

IBM International Business Machines Corp. NYSE 

INTC Intel Corp. NASDAQ 

JNJ Johnson & Johnson NYSE 

KFT Kraft Foods Inc. NYSE 

KO The Coca-Cola Co. NYSE 

MCD McDonald's Corp. NYSE 

MRK Merck & Co. Inc. NYSE 

MSFT Microsoft Corp. NASDAQ 

NVDA NVIDIA Corp. NASDAQ 

PFE Pfizer Inc. NYSE 

T AT&T Inc. NYSE 

VZ Verizon Communications Inc. NYSE 

WMT Wal-Mart Stores Inc. NYSE 

XOM Exxon Mobil Corp. NYSE 
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5.1 Standalone Stock Trading Agents 

We created 25 stock trading agents using the same method with which the Forex agents were 

implemented, with a few differences in the configuration. The most prominent difference is the 

time frame: unlike the Forex agents, which open trades every 6 hours, the stock agents were trained 

to trade just once a day. More specifically, every business day, each agent will open a trade at the 

beginning of the trading session (i.e., when the stock market opens), and close it at the end of the 

session (i.e., when the market closes); the trade may also be closed at any point during the day, if 

the take-profit rule is activated. The decision to buy or short sell the stock is made according to the 

agent’s prediction for the direction of the price, from open to close: if it predicts the closing price 

will be higher than the opening price, the agent will buy the stock at the open; otherwise, if it 

predicts the closing price will be lower, the agent will short sell the stock at the open. The main 

advantage of using this time frame is that, by not keeping any trades open in-between trading days, 

the agents are not affected by any news published while the markets are closed (which can make 

stock prices gap up or down from one day to the next). On the flip side, because this is a very short 

time frame, it might be difficult for them to output accurate predictions, due to the noise in the 

price data. 

The implementation of the prediction modules of the 25 agents was accomplished with the 

following settings: 

• The automatic model selection mechanism (described in Section 4.3) picked 11 models 

for each agent’s ensemble. Notice these ensembles are bigger than the ones of the 

currency trading agents; that is because those agents had to output forecasts very quickly 

(there is no pause between the 6-hour trading periods), so we had to keep their 

ensembles small, with just 7 models each. The stock agents do not suffer from this 

limitation, because there is a long break between the close of the market on one day, and 
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its opening the next, which means they have several hours to retrain the models and 

make the forecasts. Hence, we increased the size of the ensembles to 11 models, so that 

their prediction mechanisms would be more diversified, and hopefully more reliable. To 

train these models, the selection mechanism used all the historical price data that we 

could gather, up to October of 2005. The actual number of training instances varied, as 

some stocks have been around far longer than others; it ranged from about 300 instances 

for the GOOG agent, to over 11,000 for the IBM agent. To test and select the models, 

the mechanism used the 50 instances corresponding to the 2.5 months period between 

November of 2005 and the second week of January of 2006. The final composition of 

the 25 ensembles is shown in the appendix. 

• The sliding window for the test data, depicted in Figure 13, was also set to 50 instances. 

Consequently, the models’ replacement and vote weights for each prediction are based 

on their profitability in the previous 2.5 months. 

The empirical knowledge modules of the 25 agents were configured with the same settings as 

the Forex agents, only the threshold for suggesting the standard trade size was set to 1, instead of 

1.5. This change was meant to increase the return of the stock trading agents, by forcing them to 

take on more risk – the lower threshold implies that they will invest the maximum amount more 

often. 

Finally, the agents’ domain knowledge modules were configured with the following set of 

rules: 

• Close a trade if it reaches a profit equal to 2/3 of the average price range in the previous 

5 periods (Equation 9); this rule is similar to the one utilized by the Forex agents, only 

the minimum take-profit target was set to 0.5%, instead of 0.15%, to accommodate for 

the greater costs associated with stock trading, as well as the higher volatility of stock 

prices. 
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• Do not trade if the stock’s opening price is below $10; this rule is important because 

cheap stocks are more expensive to trade – if commissions are too costly, the agents are 

better off not trading at all. 

As already discussed in Chapter 4, in order to obtain realistic results, it is essential to account 

for the trading costs. Given that stock trading fees vary significantly, depending on the broker, 

there is no clear choice for the cost to emulate in the trading simulations. To test our agents, we 

decided to base this cost on the commissions charged by one of the biggest online discount brokers: 

$0.01 per share, with a minimum of $2 and a maximum of 1% per trade. To calculate the 

commissions, we assumed a standard trade size of $20,000. Figure 73 shows the cost of a trade (as a 

percentage of the amount invested) for different stock prices, considering this standard trade size 

and the aforementioned trading fees. This chart clarifies why we had to define a rule to prevent the 

agents from trading when the stock prices are below $10. Without this rule, the cost of a trade 

could be as high as 1%, which would make it almost impossible to trade profitably. By inserting the 

$10 cut-off rule in their domain knowledge modules, we ensured that none of the agents would 

ever pay more than 0.1% for a trade. 

 

 

Figure 73. Trade cost for different stock prices. 
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Once trained and configured, the 25 agents simulated trades in the period between February 

of 2006 and May of 2009. This corresponds to a total of 854 test instances. The simulation results 

are presented in Figures 74 to 78, and summarized in Table 18. 

 
Figure 74. Net cumulative returns of the AA, AAPL, ADBE, BAC and CAL trading agents. 

 
Figure 75. Net cumulative returns of the CSCO, DELL, DIS, GE and GOOG trading agents. 
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Figure 76. Net cumulative returns of the HD, IBM, INTC, JNJ and KFT trading agents. 

 
Figure 77. Net cumulative returns of the KO, MCD, MRK, MSFT and NVDA trading agents. 

 
Figure 78. Net cumulative returns of the PFE, T, VZ, WMT and XOM trading agents. 
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Table 18. Simulation results of the stock trading agents (including trading costs). 

Agent Return (%) Max DD (%) RMD Ratio Ret/Trade (%) Accuracy (%) Success (%) Trades 

AA 51.9 30.9 1.68 0.1457 49.2 51.4 356 

AAPL 102.6 22.0 4.67 0.2449 57.8 60.4 419 

ADBE 64.6 24.1 2.68 0.1513 51.5 54.8 427 

BAC -27.5 63.7 -0.43 -0.0680 49.6 52.8 405 

CAL 57.3 50.0 1.15 0.1354 52.0 54.1 423 

CSCO 51.5 13.9 3.71 0.1026 52.6 55.4 502 

DELL 6.1 25.8 0.24 0.0144 49.6 52.0 423 

DIS 48.8 13.6 3.58 0.1173 53.6 54.6 416 

GE 1.0 31.6 0.03 0.0023 53.0 54.4 423 

GOOG 68.3 13.3 5.15 0.1728 56.7 58.2 395 

HD 23.2 34.1 0.68 0.0472 49.4 51.8 492 

IBM 88.7 16.5 5.37 0.1677 55.2 58.6 529 

INTC -21.3 38.4 -0.55 -0.0440 50.2 51.4 484 

JNJ 29.6 13.7 2.17 0.0626 51.8 55.6 473 

KFT -8.7 25.2 -0.34 -0.0189 49.0 52.5 459 

KO -4.2 17.2 -0.25 -0.0097 50.2 52.5 436 

MCD -17.1 26.4 -0.65 -0.0418 48.4 50.1 409 

MRK 56.7 16.5 3.44 0.1297 49.2 53.3 437 

MSFT 18.9 24.1 0.78 0.0424 53.7 56.2 445 

NVDA 33.9 20.8 1.63 0.0854 55.7 57.4 397 

PFE -10.5 37.7 -0.28 -0.0219 49.0 52.5 478 

T 43.9 20.6 2.13 0.0986 50.1 52.4 445 

VZ 24.8 22.8 1.09 0.0561 51.4 53.2 442 

WMT -13.1 32.7 -0.40 -0.0313 47.7 50.8 419 

XOM 44.0 19.7 2.24 0.1082 50.1 53.3 407 
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Our primary goal since the start was always to create agents that could mimic human traders. 

Judging by the results of the 25 stock trading agents, it seems we accomplished this objective all too 

well: just like in real life, some agents had an excellent performance, others did just ok, and some 

were just plain incompetent. The great majority had disappointing accuracy, which means that, 

either daily stock prices are simply too random to be predicted (and there is nothing we can do 

about that) or the attributes that we used to train their data mining models were not good enough. 

While it is undeniable that stock prices are extremely hard to predict, we do believe that 

researching better attributes – based on fundamentals, for example – would help us improve the 

accuracy of the stock trading agents, which in turn should increase their returns. That would be one 

way to better these agents, although there is always the possibility that the higher accuracy would 

not result in bigger profits. 

Even if their overall accuracy was below par, that did not prevent 18 of the 25 agents from 

being profitable at the end of the simulation period. Looking at their RMD ratios, some of them 

actually showed a lot of promise. These include the AAPL, the IBM and the GOOG trading 

agents, among others. On the flip side, some agents were just begging to be “fired”. One of the 

worst was the BAC agent, but its losses are somewhat understandable. Figure 79 displays the 

historical prices of the BAC stock, with a separation between the data that was initially used to 

train the agent, and the data that was utilized to simulate the trades. We can verify that the 

behaviour of the price during the simulation period is far from “normal”, with a 93% free-fall drop 

(caused by the subprime mortgage crisis). While we expect the agents to be able to adapt to 

changes in the trend and in the volatility of the price, it would be unrealistic to expect them to 

make accurate predictions in such a chaotic environment. In a sense, it may even be argued that the 

BAC agent performed acceptably, as it avoided the enormous losses that one would incur with the 

buy-and-hold investment strategy; this comparison is presented in Figure 80. Unfortunately, the 

same reasoning does not explain the bad performances of other incompetent agents. For example, 
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the return of the MCD trading agent was much worse than what we could get, by simply buying 

the stock at the beginning of the simulation period, and holding it until the end, as shown in 

Figure 81. 

One obvious conclusion that one may draw from this experiment is that the agent architecture 

we proposed is not infallible, i.e., it does not guarantee that every single agent will trade profitably 

and safely, especially if the attributes used to train its data mining models are not good predictors of 

the instrument’s price direction. In spite of that, we believe the simulation results were, as a whole, 

quite positive, and supportive of the usefulness of the architecture. Most of the agents traded 

 
Figure 79. Historical BAC stock prices. 

 
Figure 80. Net cumulative return of the BAC trading agent, compared with the buy-and-hold strategy. 
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profitably during a particularly eventful period in the stock markets, and that is no small feat. Still, 

we cannot ignore the big maximum drawdowns, a red flag indicating that there is substantial risk 

associated with their individual strategies. This is yet another sign that it would be far too 

dangerous to trust a single agent to trade real funds. Luckily, our experiments with the Forex 

agents have already confirmed that we can eliminate much of the trading risk by diversifying the 

investments. We will test a new diversified strategy in the next section, based on the 25 stock 

trading agents. 

 

5.2 Diversified Stock Investment Strategy 

Black swan events, such as the subprime mortgage crisis of 2008, are relatively rare. Even so, an 

investment strategy needs to be resilient to these occurrences, in order to withstand the test of time. 

There are numerous examples of investment companies that were able to achieve high returns for 

several years in a row, only to go bust due to one of these events. According to the Hedge Fund 

Research firm (2009), 1,471 hedge funds were liquidated in 2008 alone. As we demonstrated in the 

previous chapter, one way to minimize the risk and mitigate the impact of these infrequent 

occurrences is to diversify the investments. But investment diversification is not, by itself, a 

 

Figure 81. Net cumulative return of the MCD trading agent, compared with the buy-and-hold strategy. 



206 Chapter 5: Intelligent Agents as Autonomous Stock Traders 

 

 

guarantee of safety. The S&P 500 Index, which tracks the stock prices of 500 U.S. companies, is by 

definition a very diversified benchmark; yet, it still experienced a loss of over 55% between 2007 

and 2009. This form of diversification is not the best, because the index only has exposure to one 

asset class, and all the exposure is on the long side. We implemented a diversified investment 

strategy with our 25 stock trading agents (Barbosa & Belo, 2010b) that should prove more reliable 

– even if these agents are all trading instruments of the same class, at least they can go long or short 

whenever they want. This system was created following the same method that was used with the 

Forex agents (which we described in Section 4.5). Its trading results in the simulation period are 

presented in Figure 82 and Table 19, in comparison with the performance of the simpler buy-and-

hold strategy. These results show that, as expected, grouping the agents and dividing the monetary 

resources between them gave way to a relatively safe investment strategy. Its net return of 28.5% 

after 3.3 years of trading is acceptable, but not very impressive; still, this is not a big problem, 

because the strategy’s low maximum drawdown indicates we could improve its return using 

leverage, without incurring too much risk. Overall, we can conclude that the strategy has potential. 

The chart in Figure 82 reveals that almost one third of the agents’ profit was spent on trading 

fees. While this is significant, it is not nearly as bad as what we saw with the Forex agents in 

Section 4.5 – there, the costs actually made the diversified strategy unprofitable. We believe this 

difference is partly due to the stock agents having a bigger investment time frame, which implies 

bigger price variations, and more potential profit per trade; the fact that stock prices are more 

volatile might also have helped. Despite this difference, the trading expenses are still too high, so it 

would be worth considering a further increase in the time frame. 

Compared with the buy-and-hold strategy, the agent-based stock trading strategy did really 

well: the smoothness in its cumulative return curve confirms it was much safer in the simulation 

period, and its final return was also much better. Nevertheless, during the bull market of 2006 and
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2007, the buy-and-hold strategy yielded a much bigger return. This is not surprising, because stock 

prices usually increase very rapidly during bull markets, with few breaks; in these conditions, buying 

the financial assets and never selling them is the perfect way to trade. However, when things go 

awry, this strategy will fail miserably, and suffer enormous drawdowns. For example, buying the 25 

stocks at the end of 2007 and holding for a year would have resulted in a loss of over 50% of the 

investment. As we see it, resilience in the toughest of times is the single most important 

characteristic that an investment strategy must possess. In that respect, our agent-based solution 

was vastly superior to the buy-and-hold strategy. But the fact that we prefer to put the emphasis on 

safety, rather than profit, does not preclude us from pursuing better returns. In the next chapter, we 

 
Figure 82. Gross and net cumulative returns of the diversified stock trading system, compared with the buy-and-hold 

strategy. 

Table 19. Simulation results of the diversified stock trading system, compared with the buy-and-hold strategy. 

Strategy Ret (%) Max DD (%) RMD Ratio Ret/Trade (%) Acc (%) Success (%) Trades 

Buy & Hold -9.5 51.7 -0.18 -0.3819 40.0 40.0 25 

Diversified (gross) 39.2 4.2 9.35 0.0036 51.5 54.5 10,941 

Diversified (net) 28.5 4.4 6.53 0.0026 51.5 54.0 10,941 
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will demonstrate how trading with leverage can attenuate the difference in profit between our 

solution and the buy-and-hold strategy during bull markets. 

One thing that stands out in the chart in Figure 82 is the fact that the cumulative return of our 

diversified strategy increased slowly, but steadily, regardless of whether the market was going up or 

down. This is a distinguishing characteristic of good investment strategies. Replicating this type of 

performance, where the return grows continuously without much volatility, irrespective of the 

direction of the market, is an extremely difficult task. We can easily create a strategy that works 

well in specific conditions, the difficulty is in making it perform acceptably all the time. To 

demonstrate this point, we replaced the agents in our solution with 25 trading bots; these bots were 

configured to trade using two naïve strategies: first, each bot was instructed to buy the stock if its 

price went up in the previous day, or short sell it if it went down; next, they were instructed to do 

the opposite, i.e., buy if the price went down, and short sell if it went up. During the tests, the bots 

were subjected to the same trading fees as our agents. The cumulative returns obtained with the 

two strategies are shown in Figure 83, compared with the return of the agent-based solution. Not 

surprisingly, the performance of the first naïve strategy was a complete disaster; the contrarian

 
Figure 83. Net cumulative returns of two systems with naïve trading bots, compared with the agent-based 

diversified system. 
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strategy, on the other hand, did poorly while the market was trending upward, but performed quite 

well when it started trending downward. If we restrict our analysis to the period between February 

and December of 2008, this naïve strategy will seem better than our agent-based solution. 

Obviously, this comparison is deceiving, because during that period the market moved almost 

exclusively in one direction. When evaluating an investment strategy, it is vital to look at its 

performance in different market conditions, not just when the environment is favourable – that is 

the only effective way to assess its true potential to be successful in the long run. This is the reason 

why it is so important that the test data thoroughly represents all different scenarios. Luckily, the 

3.3 years’ worth of data that was used to test our agents contains both market extremes: a powerful 

bull market, followed by a crash of historic proportions. The fact that our diversified stock trading 

solution was able to perform well in both situations is undoubtedly a great achievement. It is this 

ability that separates it from simpler strategies, that only work in specific market conditions. 

According to Table 19, the combined accuracy of the 25 agents after 10,941 trades was just 

51.5%. As previously mentioned, using better attributes to train the agents should improve this 

figure, although we would not expect a very dramatic improvement, as there is simply too much 

noise in daily stock prices. Fortunately, high accuracy is not a requirement for profitable trading. 

Despite the low precision, the agents still obtained a combined gross return of 39.2%, or 28.5% 

after fees. This implies that they were capable of predicting the most important trades, i.e., the 

ones with the biggest price variations. Since the success rate is greater than the accuracy, we can 

also conclude that the agents’ empirical and domain knowledge modules helped compensate for the 

lack of precision of the prediction modules. To verify this claim, we repeated the trading simulation 

using agents based on simpler architectures. First, we made them use only the prediction modules 

(in accordance with the architecture presented in Figure 9); next, they utilized a combination 

between the prediction and the empirical knowledge modules (as seen in Figure 30); lastly, they 

used a combination between the prediction and the domain knowledge modules (Figure 35). 
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Figure 84 and Table 20 present the simulation results obtained with the corresponding diversified 

investment strategies. These results are similar to the ones we got in Chapter 3, when we tested the 

contribution of each module to the performances of the USD/JPY and the ADBE trading agents. 

With the simpler version of the agents, which consisted of just the prediction modules, the overall 

accuracy of the diversified strategy was a meagre 51.0%; the return was 9.9%, with a comparatively 

high maximum drawdown of 11.8%. Adding the empirical knowledge module to the agents’ 

implementation cut the number of trades in half, and led to a significant increase in both the 

overall RMD ratio and the return per trade. Combining the prediction modules with the domain 

knowledge modules resulted in an even bigger improvement in both metrics, although the number 

of trades did not change much. Finally, the actual stock trading agents (which employ the three 

modules simultaneously) achieved the best performance of all, be it in terms of RMD ratio, return 

per trade, accuracy, or even percentage of profitable trades. This proves that each of the three 

modules made an important contribution to the performance of the agents. Ergo, this empirical 

evidence suggests that the internal structure that we chose for the trading agent architecture makes 

sense not only in theory, but also in practice. 

 

 
Figure 84. Net cumulative returns of the diversified stock investment system using agents based on different 

architectures. 
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On balance, after analysing the results of the diversified stock trading strategy, we arrive at the 

same conclusion that we did in the previous chapter: not all the agents based on the proposed 

architecture will be talented, but we can nonetheless use it to build promising trading systems, by 

combining enough agents (which should be as heterogeneous as possible). 

5.3 Multi-Agent Stock Trading Strategy 

In Chapter 4, we saw that there was a very good reason for integrating the Forex agents in a multi-

agent system: by communicating their decisions to one another, these agents were able to eliminate 

numerous redundant trades (and the related costs) which significantly improved their overall 

return. The need for implementing this type of system with the stock trading agents is not as 

obvious. When an agent decides to buy or short sell a stock, there is not much that the other agents 

can do with that information; hence, inter-agent communication does not seem necessary. 

However, there is a specific scenario in which it would be important for them to report their 

decisions. Suppose the 25 agents were given a certain amount of euros to trade in the stock market. 

Table 20. Simulation results of the diversified stock investment system using agents based on different architectures 

(including trading costs). 

Architecture Ret (%) Max DD (%) RMD Ratio Ret/Trade (%) Acc (%) Succ (%) Trades 

Prediction 
(Figure 9) 

9.9 11.8 0.84 0.0005 51.0 50.6 20,714 

Prediction + Empirical 
(Figure 30) 

12.4 7.5 1.66 0.0011 51.4 50.8 11,307 

Prediction + Domain 
(Figure 35) 

35.6 8.7 4.11 0.0018 51.1 53.6 20,044 

Intelligent Agents 
(Figure 40) 

28.5 4.4 6.53 0.0026 51.5 54.0 10,941 
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Since they were trained to negotiate stocks denominated in U.S. dollars, there will be currency risk 

associated with their trades. If they want to buy stocks, they first need to convert the euros to 

dollars, and only then use the dollars to buy the securities; when they sell stocks, they need to do 

the opposite, i.e., convert the dollars they receive back to euros. This implies that the profitability 

of their trades will depend not only on the changes in the stock prices, but also on the EUR/USD 

exchange rate. This currency risk is not negligible; on the contrary, it could have a very big impact 

on the return of each trade (negative or positive). For example, imagine the ADBE agent decided 

to buy €10,000 of the stock, with the EUR/USD exchange rate at 1.2000. In order to open the 

trade, it must first buy $12,000 using the €10,000, after which it can purchase the shares with the 

dollars. Now imagine the price of the ADBE stock went up 1% during the trading day, while the 

EUR/USD price increased 1.5%. In these circumstances, the value of the shares that the agent 

bought will have increased to $12,120, giving it a profit of $120. However, after selling the shares, 

the agent needs to convert those dollars back to euros. Since the EUR/USD exchange rate at the 

time of the sale increased to 1.2180, the agent will only get back around 9,950 euros, which means 

the final return for the trade is actually -0.5%. In practice, we can say the agent made two different 

trades, gaining 1% in one of them (buying the stock), but losing 1.5% in the other one (buying the 

dollar). So, even though the agent was correct when it predicted an increase in the price of the 

stock, it still lost money in the trade, due to its long U.S. dollar exposure. The implication here is 

that the agents’ success does not depend solely on their trading skills, which could be problematic 

over the longer term. To solve this issue, we devised a multi-agent system that eliminates the 

currency risk associated with stock trades. This system is composed of the 25 stock trading agents, 

and a special hedging agent, whose only objective is to guarantee that the system’s overall currency 

exposure is always zero. We defined the following negotiation protocol for the system: 

• whenever a stock agent is started, it must inform the hedging agent that it is entering the 

system; likewise, it must warn the hedging agent before exiting the system; 
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• after a stock agent makes a trading decision, it must report this decision to the hedging 

agent, and only then open the corresponding trade; 

• once the hedging agent receives the trading decisions of all the stock agents, it calculates 

the overall currency exposure that the corresponding trades will create; then, it opens its 

own trades in the Forex market, to hedge that exposure; 

• whenever a stock trade is closed, the hedging agent must be notified by the broker, so 

that it can open or close trades in the Forex market, to ensure that the system’s 

remaining currency exposure is properly hedged. 

This protocol is depicted in the UML sequence diagram in Figure 85. The process it describes 

is very simple: the stock agents communicate their decisions to the hedging agent, and then open 

the trades; the hedging agent will in turn calculate the total currency exposure generated by those 

decisions, and will hedge that exposure in the Forex market. For instance, if the hedging agent 

determines that the trades of the 25 stock agents will create a long U.S. dollar exposure, it will buy 

an equivalent amount of the EUR/USD currency pair (i.e., buy euros, sell dollars). In this situation, 

if the price of the EUR/USD increases, the stock agents will lose money due to being (unwittingly) 

long the dollar, but the profit of the Forex trades of the hedging agent will offset that loss. On the 

other hand, if the EUR/USD price drops, the stock agents will get some extra profit when they 

exchange their dollars for euros, but the hedging agent will lose an equivalent amount in its trades. 

Hence, this protocol guarantees that the return of the multi-agent system will never be affected, 

neither positively nor negatively, by variations in the exchange rates. Obviously, the solution we 

described will only be useful if some of the stocks being traded are priced in currencies other than 

the system’s base currency. 

Figure 86 displays a graphical representation of our multi-agent stock trading system; for 

clarity’s sake, only three stock agents are represented. The lighter arrows in the graphic symbolize 

the communication between these agents and the hedging agent, while the black arrows symbolize
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Figure 85. UML sequence diagram describing the negotiation protocol in the multi-agent stock trading system. 
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the interactions with the market – the stock market in the case of the stock agents, and the Forex 

market in the case of the hedging agent. Besides opening trades to offset currency exposures, the 

hedging agent is also responsible for publishing the trading decisions of all the stock agents in a 

public website – the iQuant website12 – before the start of each trading session. This functionality 

makes it possible to follow the agents’ activity in real-time. The website shows the most up-to-date 

performance information for the multi-agent stock trading system, in comparison with the 

performance of the buy-and-hold investment strategy. It also shows the individual performance of 

each stock agent, and the historical results that would be obtained with simpler agent architectures. 

The 25 trading decisions are updated daily at around 8 AM GMT, about 6 hours prior to market 

open, when the trades should occur. Once the trading session starts, it is possible to check how the 

agents’ predictions are faring throughout the day, using 15-minute delayed price data. A screenshot 

of this website is exhibited in Figure 87. 

The iQuant website plays an important role in our research, because it enables us to publicly 

forward-test the multi-agent system. Ideally, every study on financial data mining should be

                                                      
12 The URL for the iQuant website is http://ruibarbosa.eu/iquant/iquant.html. 

 

Figure 86. Graphical representation of a multi-agent stock trading system. 

http://ruibarbosa.eu/iquant/iquant.html
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complemented with a similar resource. Publishing predictions in real-time is the only sure way of 

demonstrating that reported backtesting results are not biased; the importance of this 

demonstration should not be taken lightly, because biased conclusions are a recurring problem in 

studies on this subject (we stated our doubts regarding a few of these studies in previous chapters). 

Our multi-agent system has been publishing its predictions in the iQuant website since the 

beginning of 2009; so far, its performance has been in line with that of previous years. While there 

is no guarantee that it will continue to perform well in the future, this empirical evidence suggests 

that the system might have practical value. In the next chapter, we will discuss a couple of 

improvements that should make it even more valuable from the practical standpoint. 

 
 

 

 
Figure 87. Screenshot of the iQuant website. 
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Chapter 6 

6Intelligent Agents as Autonomous Index Traders 

The trading agents described in previous chapters were all tested with just a few years’ worth of 

out-of-sample data. Since our objective is to develop systems able to trade autonomously for an 

unlimited period of time, it is important to study their performance over a longer time span. That 

will be the main subject of this chapter. We will be describing the implementation of numerous 

index trading agents, which will be tested with data corresponding to a 25-year period. Most of 

these agents will be speculating on the daily value of the NASDAQ 100 Index, a stock market 

index that encompasses the 100 largest companies in the NASDAQ stock market. The reason why 

we chose this index is that its value has fluctuated wildly since inception, and hence its historical 

data is perfect for testing the adaptability skills of the trading agents. In addition to day trading, we 

will also configure the agents to trade with a weekly time frame, to determine if that will improve 

their accuracy. Finally, we will be experimenting with two different resource allocation strategies, 

with which we will try to increase the profit of the index trading agents. More specifically, we will 

be examining the effect of compounding and leveraging on their cumulative returns. We intend to 

demonstrate that both of these strategies are well suited for improving the performances of the 

multi-agent systems that were described in Chapters 4 and 5. 
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6.1 Trading Over Extended Periods of Time 

The trading simulations that were previously described covered a relatively short period of time: the 

Forex agents were tested with just 2.3 years’ worth of data, while the stock agents were initially 

tested with data equivalent to 3.3 years (this experiment is still ongoing, and may be followed 

online in the iQuant website). These experiments allowed us to analyse the performance of the 

trading agents in extreme market conditions. Overall, the results we got indicated that they were 

more or less successful at adapting to changes in price trends. Still, we believe it would be import to 

test their ability to adjust to much longer-term changes. The NASDAQ 100 Index is the perfect 

instrument to test that, because its value has been extremely volatile since its inception in 1985, as 

we can see in Figure 88. The speculative run-up between 1998 and 2000 is known as the dot-com 

bubble. This type of price movement – an exponential increase fuelled by greed, followed by a 

significant crash magnified by fear – is not uncommon in financial markets. Since no one really 

knows when exactly a price bubble will burst, it is difficult to trade profitably when these patterns 

occur. In order to test the resilience of our trading agent architecture in this scenario, we

 
Figure 88. NASDAQ 100 Index since inception. 
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implemented an agent to day trade the NASDAQ 100 Index. We used the same procedure that 

was utilized with the stock trading agents, with the following differences: 

• Instead of 11 models, we put 31 data mining models in the agent’s ensemble, which were 

chosen by the automatic selection mechanism described in Section 4.3. To train the 

models, this mechanism used the “oldest” 50 instances, corresponding to the 2.5 months 

that followed the creation of the index in 1985; to test the models, the mechanism used 

the subsequent 50 instances. The sliding window for the test data was also set to 50 

instances. 

• The take-profit target was set to 7.5%; this target should not be hit very often, because 

daily price swings of this magnitude are rare. 

The reason why we defined such a small training set was that we wanted to save as much data 

as possible for the trading simulation. Doing so allowed us to evaluate how well the agent would 

have performed, if it started trading the index more than two decades ago, with almost no initial 

knowledge. We were particularly interested in watching its behaviour at the index’s inflection 

points. For example, in the year 2000, its data mining models should be more inclined to predict 

price increases than price decreases, because most training instances up to that point covered 

periods in which the price trended upward very vigorously. The agent’s success will be determined 

by how quickly it adapts to the dramatic crash that occurred in the following years. Figure 89 shows 

its cumulative return throughout the full simulation period. We can verify that this agent was able 

to pick up on the index’s initial uptrend very quickly; more importantly, the stock market crash in 

the year 2000 did not have a very significant impact on its return, which implies its prediction 

module adjusted to the new market conditions relatively fast, before any major losses could occur. 

We must note that this return curve is not very realistic, because it does not include the trading 

costs. It is hard to define a cost per trade to use in this simulation, because index trading has 

changed a lot since 1985. Nowadays, one can trade indices using a multitude of instruments, 
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among which exchange-traded funds, futures and contracts for a difference, all of which are 

relatively cheap. Most of these instruments did not even exist in the 1980s, or were much more 

expensive to trade at the time, so any trading simulation going that far back is bound to be 

unrealistic from a practical point of view. But the purpose of this experiment is to test the 

adaptability skills of the agent, not to obtain lifelike results. In that regard, we can conclude that 

the agent performed quite well, considering the challenging conditions it faced. It made good 

trading decisions when the index was trending upward, and also when it was trending downward, 

which is exactly the kind of behaviour we were hoping it would exhibit. To put this performance 

into perspective, we compared it with that of four simple trading bots, each of which utilized one of 

the following naïve strategies: 

• always buy, i.e., buy every day at the beginning of the session, and sell at the end; 

• always sell, i.e., short sell at the beginning, cover at the end; 

• buy if the index increased in the previous day, short sell otherwise; 

• buy if the index decreased in the previous day, short sell otherwise; 

The comparison is shown in Figure 90 and in Table 21. Clearly, the agent’s strategy was much 

better than the simpler ones. It was more accurate, opened less trades, and achieved a bigger profit 

 
Figure 89. Gross cumulative return of the NASDAQ 100 trading agent, compared with the index’s value throughout 

the simulation period. 
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with smaller risk. The results of this simulation demonstrate why it is dangerous to extrapolate 

from past performance to future returns. Consider the cumulative return of the bot that bought the 

index when its value went up in the previous day, and shorted it when it dropped. This strategy 

worked perfectly throughout the technology bull market, and so the bot did great up until 1999. 

However, this same strategy has been disastrous ever since – it became useless as soon as the market 

started collapsing. Successful long-term trading requires the ability to adapt to these changes; in 

that respect, the greater complexity of the agent’s strategy clearly paid off. 

 

 

Figure 90. Gross cumulative return of the NASDAQ 100 trading agent, compared with four naïve trading bots. 

Table 21. Simulation results of the NASDAQ 100 trading agent, compared with four naïve trading bots (excluding 

trading costs). 

Strategy Ret (%) Max DD (%) RMD Ratio Ret/Trade (%) Acc (%) Succ (%) Trades 

Always Buy 287.1 142.8 2.01 0.0483 53.4 53.4 5,939 

Always Sell -287.1 383.5 -0.75 -0.0483 46.6 46.6 5,939 

Buy If Previous UP 180.7 377.9 0.48 0.0304 52.4 52.4 5,939 

Buy If Previous DOWN -180.7 527.5 -0.34 -0.0304 47.5 47.5 5,939 

Agent 1 329.3 35.1 9.39 0.0956 54.7 54.7 3,443 
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Since the data mining models in its ensemble were selected randomly, it is possible that the 

agent’s ability to “survive” the bursting of the dot-com bubble was just a fluke. In order to verify if 

other agents would exhibit the same resilience, we implemented four new ones, using the exact 

same method. Their simulation results are displayed in Figure 91 and in Table 22, together with 

the results of the first agent that was tested (agent 1). Not surprisingly, we can see that the choice 

of models did indeed have a major impact on the performance. Compared with agent 1, agent 5 

performed better (higher RMD and higher return per trade), while agent 3 performed much worse. 

Disappointingly, agents 2, 3 and 4 all experienced significant losses when the NASDAQ 100 Index 

crashed. Still, those losses were small compared to their gains up to that point, and it looks like 

they were on their way to recovering from the drawdowns at the end of the simulation period, 

albeit very slowly. In view of these results, we may conclude that the agents built according to the 

proposed architecture will only be as good as the strategy employed to select their data mining 

models. Our random selection method allowed us to implement some profitable agents, but is 

nonetheless very limiting, in that it does not let us optimize them in any way. A sounder method 

would likely generate better agents. 

 

 

Figure 91. Gross cumulative returns of five different NASDAQ 100 trading agents. 
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6.2 Trading With Longer Time Frames 

We have previously suggested that increasing the investment time frame might improve the 

accuracy of the trading agents, because the price data will be less noisy. To test this assumption, we 

trained five agents to trade the NASDAQ 100 Index with a weekly time frame – they opened each 

trade on Monday, at the beginning of the trading session, and closed it on Friday, at the end of 

session (or during the week, if the take-profit rule was activated). We used the exact same 

procedure with which the day trading agents were implemented, only the test data sliding window 

was set to 8 instances, which encompass around 2 months’ worth of price data. The trading 

simulation results of the five agents are show in Figure 92 and in Table 23. As expected, the 

average accuracy of the agents with the longer time frame was higher than that of the day trading 

agents – 54.4% versus 54.2% – but this increase was not statistically significant. Despite the slight 

improvement, the agents’ precision was still far from impressive. We should point out that, besides 

the bigger time frame, there are other changes that we could make to try to improve their accuracy, 

such as defining better training attributes, or a better method for selecting the models. The latter is 

particularly important because, once again, we can verify that different ensembles trained with the 

same data achieved completely different results. 

Table 22. Simulation results of five different NASDAQ 100 trading agents (excluding trading costs). 

Agent Return (%) Max DD (%) RMD Ratio Ret/Trade (%) Accuracy (%) Success (%) Trades 

1 329.3 35.1 9.39 0.0956 54.7 54.7 3,443 

2 262.5 78.2 3.36 0.0756 54.4 54.4 3,472 

3 231.1 112.3 2.06 0.0639 54.1 54.1 3,615 

4 289.6 81.7 3.54 0.0820 53.4 53.4 3,531 

5 450.4 46.4 9.71 0.1309 54.5 54.5 3,441 
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Since all the return curves show a distinct upward trend, it may be said that all the agents 

accomplished their purpose. However, their performance as a whole was not very good. They all 

had very large drawdowns, with comparatively small returns, which would be even smaller if we 

subtracted the trading costs. The biggest losses occurred in 2000, when the index’s trend suddenly 

changed. Given the magnitude of this change, and the speed with which it occurred, it is easy to 

see why the longer time frame did not work in the agents’ favour. As we already know, the trading 

agents require some time to adapt to new market conditions, because their models need to be 

properly reweighted to reflect those conditions; this becomes a problem when the time frame is 

longer, because the agents are exposed to bigger price swings that might cause massive losses. In 

 
Figure 92. Gross cumulative returns of five different NASDAQ 100 agents with a weekly trading time frame. 

Table 23. Simulation results of five different NASDAQ 100 agents with a weekly trading time frame (excluding 

trading costs). 

Agent Return (%) Max DD (%) RMD Ratio Ret/Trade (%) Accuracy (%) Success (%) Trades 

1 82.1 82.4 1.00 0.1289 55.7 55.7 637 

2 150.4 50.2 3.00 0.2507 54.8 55.3 600 

3 80.1 86.9 0.92 0.1314 52.3 52.8 610 

4 88.2 53.8 1.64 0.1341 54.1 54.4 658 

5 128.8 52.3 2.46 0.2241 55.0 55.5 575 
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the year 2000, for example, the value of the NASDAQ 100 Index dropped dramatically from one 

week to the next, so the agents suffered several big losses in a row, before they could adjust to the 

new trend. One possible solution to this problem would be to define a stop-loss rule in their 

domain knowledge modules, which would cap the maximum loss per trade. This is something that 

should be considered for any agent investing real funds. We cannot, however, simulate the use of a 

stop-loss rule when the agents are trading with a weekly time frame, because the results of that 

simulation would be very deceiving: since an instrument’s price may gap up or down in-between 

trading days, there is no way to tell, in retrospect, if and at what price the stop-loss rule would be 

activated. 

In order to see if the weekly time frame was better suited for trading other indices, we created 

two new agents: one to trade the S&P 500, and the other to trade the Dow Jones 30. Their 

simulation results are shown in Figures 93 and 94, and summarized in Table 24. Both agents 

performed poorly; their returns were miniscule compared to the rise in value of the two indices, 

from beginning to end: the S&P 500 increased 340%, while the Dow Jones 30 increased 427%. 

The worst thing about their performances is that they both traded profitably up to a certain point, 

and then entered a drawdown from which they could never recover, even after many years of

 

Figure 93. Gross cumulative return of the S&P 500 agent with a weekly trading time frame. 
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trading. This implies that our agents may become unsuccessful at any time. Therefore, we need to 

be open to the idea that, in a production system, some agents might eventually need to be “fired”, 

and replaced with new agents. This is not much different from what happens in a traditional 

investment company, where traders face the same fate when they do not perform well. 

Overall, the results presented in this and in the previous section indicate that the daily time 

frame is the better option for the index trading agents: it gives them more time to adapt to trend 

changes, before any substantial losses can occur, and also provides them with a lot more profit 

opportunities (although in real life this would imply more trading expenses). Despite the 

disappointing results, longer time frames should not be disregarded – they might be better fitted for 

less volatile instruments, and will definitely be useful when developing diversified systems, because 

mixing agents with different time frames will improve the investment diversification. 

 

 
Figure 94. Gross cumulative return of the Dow Jones 30 agent with a weekly trading time frame. 

Table 24. Simulation results of index trading agents using a weekly time frame (excluding trading costs). 

Agent Return (%) Max DD (%) RMD Ratio Ret/Trade (%) Accuracy (%) Success (%) Trades 

S&P 500 33.9 39.4 0.86 0.0520 52.5 52.7 651 

Dow Jones 30 44.4 35.0 1.27 0.0794 53.0 53.0 559 
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6.3 Compounding for Better Returns 

In the trading simulations described up to this point, all the agents employed the same resource 

allocation strategy: 

• the standard trade size was set equal to the initial trading capital (or part of it, in 

diversified systems), and the agent’s return and maximum drawdown were calculated as a 

percentage of that capital; 

• regardless of its accumulated losses and gains, the amount that the agent invested in each 

trade was always the initial, or half the initial trading capital (i.e., the standard or half the 

standard trade size). 

Since the amounts invested are fixed (regardless of the losses) the agent can lose more money than 

the initial capital; put another way, its maximum drawdown may be over 100%. When the 

cumulative return falls below zero – meaning the agent has less money than what it started with – it 

is possible that the size of its trades will be bigger than the capital available, and so these trades will 

require borrowed funds (i.e., leverage). We believe that configuring the agent to vary the size of the 

trades according to the money it possesses should yield better returns. In order to do this, the agent 

must change the standard trade size parameter before each trading period, setting it to the money 

available at that point. In doing so, the amount invested will increase when the agent is trading 

successfully (meaning the gains are reinvested, or compounded), and will decrease when it suffers 

losses, which prevents it from losing more money than what it is given initially. Figures 95 and 96 

display the cumulative returns obtained by the NASDAQ 100 day trading agents 1 and 3, when 

using this resource allocation strategy, in comparison with the returns they got when using a fixed 

standard trade size. The full simulation results are summarized in Tables 25 and 26, presented in 

the next section. We draw two conclusions from these results. First of all, it is clear that 

compounding can greatly improve the profitability of the trading agents – Figure 95 shows that 
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agent 1 was able to achieve an extraordinaire return with this strategy. Secondly, this experiment 

demonstrates that compounding will only be useful if the agent’s investment strategy is not prone 

to big drawdowns. It is easy to see why: since the trade size increases as the agent accumulates more 

profit, more money will be put at risk in each consecutive trade, which means large drawdowns can 

happen really fast, and cause very big losses. An example of this drawback is shown in Figure 96: up 

to the year 2000, agent 3 was making a lot of profit by continuously reinvesting its gains; however, 

when the tech bubble burst, it lost most of that profit due to a series of big-sized unsuccessful 

trades. 

 

 
Figure 95. Gross cumulative return of the NASDAQ 100 trading agent 1, with and without compounding. 

 

Figure 96. Gross cumulative return of the NASDAQ 100 trading agent 3, with and without compounding. 
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As mentioned before, an important advantage of the compounding strategy is that the agents 

will never lose more money than what we give them, so this is a good way to limit the risk. For 

instance, agent 3 would have suffered a maximum loss of 112.3% if configured to trade with a fixed 

standard trade size (according to Table 22). Had it begun trading exactly when that drawdown 

occurred, it would have lost all the money, and possibly more if the broker did not forcefully close 

its positions. On the other hand, with compounding, the maximum drawdown that a day trading 

agent may experience is capped at 100%, because it will never invest more money than it has. This 

explains why agent 3’s maximum loss dropped from 112.3% when using a fixed trade size 

(measured as the biggest peak-to-valley drop in its cumulative return curve) to 69.8% when using a 

variable trade size (also measured as the biggest peak-to-valley drop in the cumulative return curve, 

but calculated as a percentage of the capital at the peak). We should note that, even when 

compounding, the agent can still lose more that 100% of the money, in a very specific scenario: if it 

short sells a financial instrument, and then the price soars to more than double during the day, at 

which point the broker will close the position. Trading halts may also originate similar problems, if 

the agent gets stuck with an open trade. Nevertheless, both situations are very rare. 

The results shown in this section should clarify why we put so much emphasis on risk 

management when designing the trading agent architecture. If an agent is able to make small gains 

consistently, without experiencing any major losses in-between, it will achieve extraordinary returns 

by simply compounding those gains. Thus, to create a successful trading system, we do not need it 

to have a very high average return per trade; the only requirement is that it is capable of 

accumulating small gains, without suffering any big drawdowns. Interestingly, the diversified 

multi-agent systems that were presented in Chapters 4 and 5 fit this description very well. 
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6.4 Leveraging for Better Returns 

Compounding enables us to improve the agents’ returns without increasing the risk. Trading with 

borrowed funds, on the other hand, allows us to multiply the returns, but at the expense of 

proportionally bigger drawdowns. This is yet another reason why we focused so much on risk 

management. Since leverage will greatly increase the trading risk, the agents should only be 

permitted to use borrowed funds if their investment strategies are relatively safe to begin with, 

otherwise they will inevitably end up getting a margin call. Figures 97 and 98, and Tables 25 and 

26, show the improvement to the performances of the NASDAQ 100 day trading agents 1 and 3, 

when configured to employ a maximum initial leverage of 4:1. To make them use this leverage, we 

just have to quadruple their standard trade size (i.e., set it to four times the initial capital); by doing 

so, their investment in each trading period may be up to four times the starting balance, and hence 

they can lose more money than what they started with (although that should be prevented by the 

broker’s margin call). 

 

 

Figure 97. Gross cumulative return of the NASDAQ 100 trading agent 1, with an initial maximum leverage of 1:1 

or 4:1. 
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Tables 25 and 26 reveal that, as expected, the use of 4:1 leverage quadrupled the agents’ 

returns, as well as their maximum drawdowns: agent 1 had a profit of 1,317.2% and a maximum 

accumulated loss of 140.2%, while agent 3 had a profit of 924.4% and a maximum loss of 449.3%. 

If these were live trading results, the enormous drawdowns would not be very problematic, because 

they occurred at a time when both agents had already accumulated a lot of profit. However, if they 

started trading right when those losses occurred, they would have lost all their money in just a few 

days, and would not be able to continue trading. Hence, even if they did yield amazing returns 

during the simulation period, it is clear that the index trading agents – or any other standalone 

agents, for that matter – should not be allowed to trade real funds with 4:1 leverage, because the 

potential risk is unacceptable. Such high leverage should be reserved for trading strategies that have 

proven to be extremely safe in the past, like those of the diversified multi-agent systems that we 

described previously. In the next chapter, we will present an even more diversified strategy that 

should be well suited for using both leverage and compounding. 

 
Figure 98. Gross cumulative return of the NASDAQ 100 trading agent 3, with an initial maximum leverage of 1:1 

or 4:1. 
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Table 25. Simulation results of the NASDAQ 100 trading agent 1 using different resource allocation strategies 

(excluding trading costs). 

Strategy Return (%) Max DD (%) RMD Ratio Ret/Trade (%) Accuracy (%) Success (%) Trades 

Standard 329.3 35.1 9.39 0.0956 54.7 54.7 3,443 

Compounding 1,824.7 30.9 59.09 0.5300 54.7 54.7 3,443 

4:1 Leverage 1,317.2 140.2 9.39 0.3826 54.7 54.7 3,443 

 

Table 26. Simulation results of the NASDAQ 100 trading agent 3 using different resource allocation strategies 

(excluding trading costs). 

Strategy Return (%) Max DD (%) RMD Ratio Ret/Trade (%) Accuracy (%) Success (%) Trades 

Standard 231.1 112.3 2.06 0.0639 54.1 54.1 3,615 

Compounding 601.0 69.8 8.61 0.1662 54.1 54.1 3,615 

4:1 Leverage 924.4 449.3 2.06 0.2557 54.1 54.1 3,615 
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Chapter 7 

7The Autonomous Multi-Agent Hedge Fund 

Our intelligent trading agents were designed to be, more or less, the software equivalent of human 

traders. Hence, if we put enough of them together, and integrate them into a single system, we 

should end up with the software equivalent of a hedge fund. In this AI-based fund, the agents 

would be responsible for all the investment decisions, while human intervention would be relegated 

to basic management tasks, like “firing” the least capable agents, and configuring new ones. This 

concept represents the culmination of our efforts to replace human traders with intelligent agents. 

Since the agents we created seemed skilful enough to emulate the actions of successful traders, the 

next logical step should be to incorporate them into a multi-agent system, and build an investment 

company around it. In this chapter, we will explain the reasons why the creation of one such 

company would be a good idea, by listing its many advantages over traditional trading ventures. 

Afterwards, we will describe an example of a multi-agent system that could be utilized for that 

purpose. This system is composed of the numerous trading agents that were introduced in 

Chapters 4 and 5; it contains sufficient agents and is diversified enough that we could use it to 

create a small autonomous “intelligent” hedge fund. We will test the system’s trading proficiency 

with 2.3 years’ worth of out-of-sample data, and will compare its results with the industry’s average. 
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7.1 Motivations for an Agent-Based Hedge Fund 

The main objective that was initially established for our research was the investigation of the 

potential use of intelligent agents as autonomous financial traders. For that, we designed an agent 

architecture from the ground up, hoping to define a framework that would allow us to create 

talented trading agents. Looking at the results presented in Chapters 4, 5 and 6, we believe that 

objective was achieved. Many of the agents described in those chapters were able to trade profitably 

with low risk, particularly when inserted in small diversified multi-agent trading systems. As is, 

these agents and systems could prove very useful for traditional companies in the financial field – 

for example, they could be utilized to aid human traders, or to complement pre-existing investment 

strategies. But in our opinion, they hold the potential to play an even bigger role in the industry. 

Given the way our work progressed, we can envision an entire investment company built solely 

around software agents: an autonomous “intelligent” hedge fund. A regular hedge fund is basically 

just an investment company in which traders attempt to obtain above average returns, by buying 

and short selling different types of financial instruments (stocks, derivatives, currencies, bonds, etc.) 

using leverage. Implementing a multi-agent system with the same modus operandi would be 

straightforward. This system would have significant advantages compared to traditional companies. 

First of all, as we have previously stated, intelligent trading agents offer many advantages over 

human traders: they do not receive salaries or bonus, get no vacation days, and can work 24 hours a 

day uninterrupted. Also, given that most investment analysis (be it technical or fundamental) is 

nothing more than number crunching and pattern matching, it is fair to say that intelligent agents 

should be better suited for this task than human traders. If there is indeed a scientific explanation 

behind the success of profitable human traders – i.e., their success is not due to fraud (insider 

trading, misrepresenting results, market cornering) or to luck – then there is no reason why their 

strategies cannot be taught to intelligent agents, which would then be able to trade more reliably, 
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for a fraction of the price. Finally, we must also point out that the actual performance of regular 

hedge funds is far from outstanding. In Section 1.3, we looked at the Barclay Hedge Fund Index, 

and concluded that the average hedge fund should not be capable of offering above average returns 

in the long run. This conclusion is even clearer when we focus on the returns of the hedge funds 

that specialize in investing on both the long and the short sides of the market simultaneously, 

without being market neutral (which is basically the strategy employed by our trading agents). The 

performance of these funds is viewable in the Barclay Equity Long/Short Index13, an average of the 

returns of several hundreds of funds that follow that strategy. The returns throughout the last 

decade are displayed in Figure 99. For the period between 2000 and 2009, the hedge funds 

achieved an average annual return of 7.2%, while Treasuries yielded 4.5%, and the S&P 500 

returned 1.2%. Notice these are the returns that we would get by investing the same amount at the 

beginning of each year. If one were to buy at the beginning of 2000, and kept reinvesting the 

money returned at the end of each year (i.e., compound the investment), the average annual returns

                                                      
13 Available at http://www.barclayhedge.com/research/indices/ghs/Equity_Long_Short_Index.html. 

 
Figure 99. Net annual return of the Barclay Equity Long/Short Index, the 10-Year U.S. Treasuries and the S&P 

500 Index. 

http://www.barclayhedge.com/research/indices/ghs/Equity_Long_Short_Index.html
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would be significantly different: 9.4% for the hedge funds, 5.5% for the Treasuries and 0% for the 

S&P 500. Not surprisingly, Treasuries were the safest investment of all. As for the profit, the 

hedge funds’ was not great, but they did at least provide the best return compared to the other two 

strategies. However, as we saw in Section 1.3, it is extremely likely that the values of the index are 

very inflated, due to all sorts of biases (e.g., the worst hedge funds that drop out of the index often 

do not report their losses). Ergo, it is doubtful that the average hedge fund can really outperform 

passive investment strategies. This is clearly not a very efficient industry, and so it should not be 

that difficult for a real life agent-based hedge fund to stand out. The fact that this system would 

have many advantages over traditional hedge funds (lower costs, no rogue traders, more reliability), 

in addition to the fact that the average hedge fund carries a lot of risk, and is not even that 

profitable, are the reasons why we believe the creation of an agent-based hedge fund is a 

worthwhile idea, at least in theory. In the next section, we will try to prove that this idea also makes 

sense in practice, by testing one of these systems in lifelike conditions. 

7.2 Performance Analysis 

Each of our intelligent agents emulates a human trader specialized in the trading of a specific 

financial instrument. By grouping many of these agents together – to diversify the investments and 

lower the risk – we can implement an autonomous trading system that will be able to interact in 

multiple markets without human supervision. This system holds the potential to be utilized as an 

autonomous “intelligent” hedge fund, i.e., a hedge fund where the intelligent agents are charged 

with making all the trading decisions, and the humans are merely system administrators. In order 

to create an entity that fitted this description, we merged our multi-agent currency trading system, 

described in Chapter 4, with our multi-agent stock trading system, described in Chapter 5. To do 

this, we just had to ensure that all the agents shared the same resources, meaning all their profits 

and losses ended up in the same trading account. Creating an investment company around this 
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bigger and more diversified multi-agent system would be an interesting proposition. This company 

would consist of 10 currencies traders (with a 6-hour investment time frame), and 25 stock traders 

(with a daily time frame). We tested the system by having it simulate trades throughout the period 

between February of 2007 and May of 2009. Its trading results are shown in Figure 100 and Table 

27. As expected, diversifying the investment with different types of financial instruments led to a 

substantial decrease in the trading risk: the maximum drawdown of the hedge fund system was an 

almost negligibly 2.9%, which is much less than either of its constituent multi-agent systems 

experienced on their own. As for the return, the hedge fund system yielded a profit of 20.7% at the 

end of the simulation period, corresponding to a gain of 4.1% in the last 11 months of 2007, 13.5% 

in 2008 and 3.1% in the first 5 months of 2009. Despite the low risk, this performance is not that 

great. Based on our own trading experience, we consider a good return to be somewhere between 

10% and 15% per annum in a low interest rate environment – a lower return would not justify the 

risk (versus safer investments like government bonds), while a higher return might imply too much 

risk (and would likely not be sustainable in the long run). Fortunately, there are ways to improve 

the profit of the multi-agent system, so that it matches our expectations. One characteristic that 

distinguishes hedge funds from other types of investment companies is that they are allowed to use

 

Figure 100. Net cumulative return of the intelligent hedge fund, compared with the individual multi-agent systems 

it combines. 
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leverage and to compound their returns. In the previous chapter, we saw that both of these 

strategies can dramatically improve the performance of a trading agent, so long as its investment 

strategy is not very risky to begin with. Since our hedge fund system proved to be extremely safe 

throughout the simulation period, it would be appropriate to let its agents compound the gains and 

trade with borrowed funds; this should increase the return of the system as a whole, without 

(hopefully) giving way to any dangerous drawdowns. Figure 101 shows the cumulative return 

obtained by the system in the simulation period, when the agents are permitted to use a maximum 

initial leverage of 4:1, and are configured to use variable trade sizes (to reinvest the gains). In this 

scenario, the system’s maximum drawdown, measured on a daily basis, worsened to 11.2%, but its 

final return improved to a staggering 119.7%, or 17.1% in the 2007 period, 77.8% in 2008, and 

24.8% in the first 5 months of 2009. This would be, by any standards, an outstanding performance. 

If we were to compare the statistics of the leveraged multi-agent system with those of real 

hedge funds in the same category, our system would definitely rank among the best. However, this 

comparison would be disingenuous. First of all, 2.3 years of simulated trading is far too short of a 

period to draw any definite conclusions regarding the system’s viability in the long run. On the 

bright side, this period already includes a tail event (the subprime crisis), which the system 

withstood without any problems. Still, we would need to test it over a much longer time span, in 

order to be able to conclude that it can really overcome any dramatic changes in market conditions. 

Also, we cannot compare our simulation results with those of real life traders, because the

Table 27. Simulation results of the intelligent hedge fund from February of 2007 till May of 2009, compared with 

the individual multi-agent systems (including trading costs). 

System Return (%) Max DD (%) RMD Ratio 

Forex Trading 17.8 3.8 4.72 

Stock Trading 21.9 4.4 5.00 

Hedge Fund 20.7 2.9 7.18 
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simulation environment does not account for numerous problems that may occur while trading live, 

among which: 

• What if the price moves too fast, and the agents cannot open or close trades at the 

desired price? 

• What if there is a connection problem with the broker, and the agents are unable to 

open or close trades? 

• What if the market rules change? This happened in 2008, when the U.S. Securities and 

Exchange Commission imposed a temporary ban on the short selling of hundreds of 

securities, among which the BAC and the GE stocks. 

• What if the broker goes bankrupt? Unlikely, but not unheard of. 

Any one of these issues could compromise the real life performance of the multi-agent system. 

It is possible that, on some occasions, some of these problems might actually improve its return. 

For example, if an agent buys a stock, and is later prevented from selling it due to a network 

disconnection, this could turn out to be beneficial if the price of the stock keeps going up. 

However, we are more inclined to believe that Murphy’s Law would apply in these situations. The 

implication here is that any simulated trading results must be taken with a grain of salt. While they 

 
Figure 101. Net cumulative return of the hedge fund system with compounding and an initial maximum leverage of 

4:1. 
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offer some insight regarding how well a system might perform when trading with real funds, they 

do not provide any guarantees. This uncertainty is characteristic of the investment field, and there 

is simply no way around it. Even if we had an extensive live-trading track record for the agent-

based hedge fund, we would still not be able to make any assumptions regarding its performance 

going forward, because past performance does not guarantee future returns. Despite these 

shortcomings, we believe our experiment showed some very encouraging results. By combining the 

35 agents in a single multi-agent system, we implemented a relatively safe investment strategy that 

not only survived the most extraordinary market conditions, but actually thrived with the greater 

volatility. Even if its simulation results present some limitations – they do not account for all the 

intricacies of real life trading, and cannot be used to extrapolate the future performance of the 

system – they were at least good enough to warrant giving the intelligent agents the chance to 

prove their worth in the real markets. Several of these agents were very skilful throughout the 

simulation period, which leads us to believe that the practical usefulness of their architecture 

(described in Chapter 3) will be vindicated once they are allowed to trade real funds. 

Obviously, there are still a lot of improvements that could be made to the proposed 

agent-based hedge fund, like adding more agents to it, defining better methods to train its agents, 

or even coming up with better agent architectures. It is fair to say that our experiments have barely 

scratched the surface of what can be accomplished with this type of system. So, we can conclude 

that our research has revealed, at the very least, the enormous potential that exists for the 

application of artificial intelligence and agent technology in the world of finance. 
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Chapter 8 

8Conclusions and Future Work 

For better or worse, the financial industry impacts the life of every person in the civilized world. 

Energy and food prices, currency exchange rates, government and corporate bond yields, mortgage 

rates, as well as many other variables, are all directly affected by the industry’s players. This 

influence is exerted through the participation in financial markets, of which there are various types. 

Participants in commodity futures markets, for example, set the prices of goods such as cotton, 

corn, live cattle, oil, natural gas, gold, and even frozen concentrated orange juice and pork bellies, 

among numerous other products. Bond markets, on the other hand, serve the purpose of 

facilitating the trading of government and corporate debt. Besides issuing debt, companies can also 

raise capital in the stock markets, by selling shares to entities interested in owning a stake in them. 

One other market that has a major influence on our everyday lives is the foreign exchange, where 

currency prices are set. A huge services industry has flourished around these financial markets, with 

commercial and investment banks, insurance companies, mutual funds, hedge funds, brokers, 

market makers and retail investors all trying to beat the averages, using ever more sophisticated 

strategies. Much of the activity occurring in these markets boils down to speculative trading (i.e., 

the traders attempt to anticipate price movements, and make risky transactions based on 

inconclusive evidence). This activity does not get much respect from industry outsiders, because 
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speculators are often seen as price manipulators; nevertheless, they have an important role as 

liquidity providers (meaning, there are always traders willing to buy or sell the financial products at 

all times), which is essential to keep the markets running smoothly. 

Thanks to advances in technology, it is now easier than ever to trade in these markets – we can 

place an order in an online broker, and have it forwarded to an exchange on the other side of the 

world in a fraction of a second. In addition to facilitating the interactions between the traders, 

technology is also becoming an important part of the decision process. According to various reports 

in the media, an increasing number of trading companies are putting computers in charge of 

analysing the financial data, and opening the trades. However, except for a few buzzwords, not 

much is known about their systems, or the alpha they produce (i.e., the excess return they offer over 

simpler benchmark strategies with similar risk). It is easy to understand why these companies are 

turning their attention to technology: computers excel at parsing huge amounts of data and finding 

hidden patterns in it, and are able to place trades much faster than human traders, hence they can 

be useful in every step of the trading process. The premise for our research was that, rather than 

aiding human traders, computers might actually be capable of replacing them altogether. Assuming 

that successful traders owe their success to sound reasoning and methodical behaviour, it should be 

possible to teach their investment strategies to software agents. However, this is an arguable 

assumption. The most cynical critics of speculation maintain that successful traders are more lucky 

than skilful – given the many thousands of participants in financial markets, if the returns over their 

lifetime follow a normal distribution, then some (the outliers) will inevitably emerge as big winners, 

simply because they were fortunate enough to end up on the right side of the bell curve. Those who 

believe in rational and efficient markets would also be quick to point out that financial prices always 

fully reflect all the information available, so no one should be able to beat the markets (i.e., to 

consistently obtain above average returns) unless it happens by chance. The way we see it, the 

numerous bubbles and crashes in asset prices that occurred in the last decade have already proven, 
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beyond any doubt, that financial markets are far from rational. During the downturns, many funds 

have been forced to liquidate their holdings, not because they thought that was the right thing to 

do at the time, but because they got margin calls or were flooded with redemption requests from 

panicking customers; this selling was not a rational decision – the funds had to sell their assets at 

any price, even if they believed those assets were worth more. Conversely, in the upturns, it is 

common for the “irrational exuberance” to take over the markets, as greedy investors pile their bets 

in ever growing asset bubbles. Since market participants do not always act rationally, it is entirely 

possible that some asset prices could be at odds with their intrinsic value from time to time; hence, 

there will be profit opportunities that may be exploited by those talented enough to spot them. 

This belief is at the basis of the trillion-dollar financial services industry. While we cannot 

completely disregard the idea that chance alone is what separates the best traders from the worst, 

our own experience in the markets leads us to believe that financial trading is indeed a skill, 

although it might be difficult at times to draw the line between talent and luck. 

If successful trading is a skill, then it should be possible to automate it. Much of what traders 

do is basically analyse financial data, and try to find any information that will give them an edge 

over their competitors. Artificial intelligence could be very useful for that purpose; for instance, we 

could use data mining models to find the most intricate patterns in the data, and then utilize those 

patterns to make price predictions. This usage for data mining is not a novel idea; there are 

hundreds of studies on the subject, many of which were discussed in this dissertation. For the most 

part, these studies present empirical evidence indicating that data mining algorithms may be able to 

discover profitable patterns in financial data. It is possible that some of these results could be biased 

due to improper data mining technique, such as overfitting the test data, or not using enough 

instances to test the models. It is also possible that the existence of reviewer bias towards positive 

results (meaning articles that support the usefulness of data mining are more likely to get published 

than articles with negative results) could be distorting our view of the true potential of financial 
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data mining. Regardless, the current consensus in literature is that these AI tools are well suited for 

the development of trading strategies, although it is unclear how well these strategies will work in 

the long run, or how profitable they really are when practical issues are taken into account. 

Since we wanted to put computers in charge of financial trading, it became obvious from the 

beginning that we had to use data mining models to interpret the financial data. Our objective was 

not to turn them into supporting tools for human traders; rather, we wanted to completely replace 

these traders with their software equivalent. More specifically, we wanted to devise a way to create 

intelligent agents that could trade successfully. Financial markets are the perfect setting for 

deploying agent technology: it is easy to envision an intelligent agent replacing a human trader, 

given that it can parse data much faster, and should also be more reliable, due to being emotionless 

(i.e., not affected by fear or greed); besides, a software agent is cheaper, never gets sick or 

complains, and never deliberately engages in fraudulent activities that might harm its employer. 

Hence, on paper, the creation of trading agents seemed like a good idea. There are countless 

strategies one could use to implement this type of agent; after looking at the current state of the art, 

we decided it would be best to design a new agent architecture from scratch, specifically for the 

purpose of trading financial instruments. Initially, we came up with a very simple architecture 

(Barbosa & Belo, 2009a), which employed just one data mining model to make price direction 

forecasts for the USD/JPY currency pair. Then, we implemented an agent in accordance with that 

architecture; it predicted the direction of the price with the model, and then used the predictions to 

open trades in the Forex market. We quickly realized that this agent would not be resilient enough 

to trade successfully over a long period of time, because it could not adapt to new market 

conditions, and was not able to learn from its errors; also, because it relied on just one data mining 

model that was trained with a fixed set of data, it was clear that it would probably fail if the new 

financial data was very different from the training set. In order to improve the architecture, we 

designed a prediction mechanism that used an ensemble of data mining models to derive the price 
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direction forecasts (Barbosa & Belo, 2008b). We tested several models, among which the similarity 

and the distance to average classifiers, which resulted from our research (Barbosa & Belo, 2009b). 

Upon noticing that some models were better at predicting price increases, while others were better 

at predicting price decreases, we decided to make the prediction mechanism aggregate the models’ 

forecasts by attributing a different weight to each of them, according to their profitability in the 

recent past. By doing so, the agent should be capable of adapting to different market dynamics: as 

time goes by, the predictions of the worst models become less relevant, while the most profitable 

models become more important. Next, since we wanted the architecture to give rise to agents that 

could learn new patterns over time, we modified it so that the models in the ensemble were 

periodically retrained with new data. Ergo, the prediction mechanism was no longer just a simple 

set of immutable models; by automatically updating the models, the agent was able to learn new 

patterns from the data, even as it traded. 

With the completion of the prediction module, our architecture had taken care of the problem 

of deciding when to buy or short sell a financial instrument. Nevertheless, to create an intelligent 

agent that could completely emulate the activity of a human trader, we still had to address other 

issues. For example, the agent needed to decide how much to invest in each trade – concretely, it 

should increase or decrease the investment amount, based on how safe it perceived each trade 

would be. A new module was inserted in the architecture to take care of this requirement. We got 

the idea for it when we analysed the results of the prediction module. After inspecting its forecasts 

for the out-of-sample data, we could see that the trades were more likely to be profitable when the 

predictions of the models in the ensemble were more consensual. More importantly, the amount of 

profit was also bigger when there was greater agreement in the models’ predictions. To capitalize 

on these discrepancies, we came up with the empirical knowledge module, which is basically just a 

wrapper around a case-based reasoning system. Its function was to suggest the size of future trades, 

based on the returns of similar trades in the past (i.e., trades for which the data mining models 
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made the exact same forecasts); if the similar trades were mostly profitable, the trade size was 

increased, otherwise it was decreased. We had satisfying results with the new agent; yet, it still 

required one last improvement. Just like human traders get taught some basic rules by senior 

traders, we needed a way to teach the intelligent agents directly. The obvious choice here was to 

integrate a rule-based expert system into the architecture; the module encapsulating this system was 

named domain knowledge module. With this last piece, our agent architecture had taken its final 

shape. Theoretically, it should allow the intelligent trading agents to achieve all the objectives that 

were set for them, namely the ability to adjust to changes in the environment, to keep learning as 

time goes by, and to stop trading when in adverse conditions. 

To put this architecture to the test, we utilized it to create various trading agents. To facilitate 

the process, we started by implementing a software shell – the iQuant software – that embodied the 

inner workings of the architecture, and made it easier to develop new agents (Barbosa & Belo, 

2008c). We used this software to train 10 agents meant for trading currency pairs in the Forex 

market with a 6-hour time frame. Their settings were chosen randomly by an automatic procedure; 

this is not the most appropriate way to do the configuration, but we felt it was the best option we 

had, because it enabled us to create agents much faster (compared to manually tweaking them), and 

we did not need to worry about inadvertently “over-optimizing” them, and biasing the results. 

These 10 agents were tested with a couple of years’ worth of out-of-sample data, and their overall 

performance – measured in terms of return and maximum drawdown – was found to be acceptable. 

However, their accuracy was, in general, very disappointing. This was not surprising: even if the 

markets are not completely efficient, it will still be extremely difficult to predict the movements in 

financial instruments’ prices, because there are too many uncontrollable variables affecting them 

(especially at shorter time frames, like the one the Forex agents were using). Fortunately, the low 

accuracy turned out not to be a very significant problem. The main objective of the proposed agent 

architecture is to optimize the profit, not the accuracy, because profit is the ultimate goal in 
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financial trading. Seeing that all the Forex agents were profitable (before expenses) at the end of 

the simulation period, even without being very accurate, meant that they were capable of predicting 

the most important trades, i.e., those in which the price movements were bigger. Hence, overall, it 

may be concluded that these agents fulfilled their purpose. But that is not to say that they were 

flawless; on the contrary, their returns were too volatile, which indicates that there was a lot of risk 

associated with their individual strategies. 

In order to decrease the risk, we implemented a diversified investment strategy using the 10 

Forex agents (Barbosa & Belo, 2009c). It achieved a promising gross profit and maximum 

drawdown under simulation. However, we soon realized that, in real life, the trading expenses 

would severely affect the profitability of this strategy. These expenses are bound to impact the 

performance of any trader, human or computer, because they lower the probability that the trades 

will be profitable; that is the reason why “bad” strategies (i.e., those that are no better than random 

trading) have a negative expected return. When we looked at the trading statistics of the Forex 

agents, it became clear that the adverse impact of the trading costs was exacerbated by their short 

investment time frame – since they did not allow enough time for the instruments’ prices to vary 

significantly, their potential profit per trade was too low compared to the commissions they had to 

pay, and so the risk/reward ratio of their trades was too high. Clearly, the best solution to this 

problem would be to extend the trading time frame – this would increase the range of the prices, 

thus leading to bigger potential profits for the same trading fees. Longer time frames might also 

improve the accuracy of the agents, because there will be less noise in the price data. Nonetheless, 

we decided to keep the shorter time frame, and set out to reduce the agents’ expenses by cutting the 

number of trades they were making. Given certain specificities of the Forex market, we knew the 

agents would be able to eliminate many redundant trades by simply being aware of each other’s 

decisions. This was the perfect setting for implementing a multi-agent system (Barbosa & Belo, 

2010a). In order to do that, we came up with an agent communication language and a negotiation 
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protocol which allowed them to interact; the resulting multi-agent system performed much better 

in testing than the diversified investment strategy that had no inter-agent communication, and in 

doing so proved empirically that the Forex agents were indeed talented, and may actually be useful 

in practice. 

To study the suitability of the proposed architecture for participating in other markets, we 

utilized it to develop stock trading agents. We started with the implementation of 25 agents, which 

were also integrated in a multi-agent system (Barbosa & Belo, 2010b). The main reason for 

grouping the agents in the system was to lower the trading risk, through investment diversification; 

this was an absolute necessity, because the big variance in their individual returns, as well as the 

well-known limitations of backtesting results compared to real life trading, meant that it would be 

far too risky to let any of them trade on their own. As expected, the simulation results of the multi-

agent system showed a considerable improvement over the individual performances of the 25 

trading agents, both risk-wise and profit-wise. This confirmed that proper investment 

diversification was an essential requirement, if we were to develop an investment system with the 

potential to be consistently profitable in the long run. 

Despite the encouraging results that our stock trading system got in the simulation period, the 

fickleness that characterises stock markets (or any other financial market, for that matter) makes us 

wary of drawing any decisive conclusions regarding the practical usefulness of the trading agents. 

That is the reason why we created a public website, where the predictions and the trading statistics 

of the 25 agents can be followed in real-time. This website has been available since 2009; so far, the 

performances of the agents have been consistent with their results in the simulation period. As a 

follow-up to this work, we created an even bigger multi-agent investment strategy, consisting of 60 

stock trading agents (Barbosa & Belo, 2011); their forecasts and trading decisions are also available 

online14. 

                                                      
14 The 60 stock trading agents may be followed at http://ruibarbosa.eu/iquant/iquant_all.html.  

http://ruibarbosa.eu/iquant/iquant_all.html
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Besides testing the architecture with currency and stock prices, we also tested it with index 

data. We trained several agents with this data, and had them trade over long periods of time, using 

different time frames. The results of these investment simulations were mixed: some agents traded 

profitably for the duration of the simulation, while others did not do very well. This experiment 

revealed a few shortcoming in our method for creating the agents: it showed that the proposed 

architecture was not well suited for certain instruments and time frames, and that the strategy we 

employed to do their configuration was not very effective – clearly, doing it randomly with an 

automatic mechanism was not the optimal way to achieve the best performances, because the 

resulting agents were not very optimized. 

In the final part of our interdisciplinary study, we introduced a solution that brought the fields 

of finance and agency closer together. Building on top of our previous work, we developed a multi-

agent system that could act as a real life “intelligent” hedge fund, requiring (almost) no human 

intervention. This system consists of 35 agents, trading in two different markets. It performed quite 

well in our investment simulation, but the only way to prove its usefulness would be to test it in the 

real markets for an extended period of time. The development of this multi-agent system was the 

next logical step, following our initial objective to devise a method of implementing intelligent 

agents able to act as financial traders. In regard to this objective, we believe we achieved it in a 

satisfying manner: the agent architecture we proposed did indeed allow for the creation of trading 

agents whose actions resemble those of successful human traders; in our experiments, many of these 

agents seemed capable of adapting to sudden changes in market conditions, which is the single 

most important skill when working in such uncertain environments. Furthermore, by grouping the 

agents together, we demonstrated that they can be utilized as the basis for the development of 

autonomous investment funds that have the potential to yield a reasonable return, with relatively 

low risk. Keeping in mind the dangers of extrapolating from past performance to future returns, 

and also the pitfalls in evaluating trading systems through backtesting, we believe the results of our 
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experiments were good enough to warrant given our systems the chance to trade live with real 

funds. Figure 102 shows an updated screenshot of the iQuant website as of February of 2011, that 

displays the latest performance of the stock trading system (with 25 agents); notice that a big part 

of these results were obtained with an automatic forward-testing mechanism, which anyone can 

follow live. The chart contains three time series: the gross and net cumulative returns of the system 

(using 4:1 leverage), and the return that would be obtained by buying and holding the 25 stocks. It 

is clear that the system’s performance is much better than that of the buy-and-hold strategy. 

Moreover, the series with the system’s gross cumulative return is everything one could hope for: it 

has a pronounced upward slope, with very low volatility. This curve measures the “talent” of the 

trading agents; for more than 5 years, they have been able to extract profit from the stock market 

very consistently. The net return curve, on the other hand, measures how well that talent might 

translate into real profits when trading live; we can verify that, even though the trading costs 

substantially decreased the overall return, the system’s performance is still very interesting. We 

should mention that, in practice, it may be possible to approximate the net return curve to the gross

 

Figure 102. Updated gross and net cumulative returns of the stock trading system with 25 agents using 4:1 leverage. 
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return curve by optimizing the way the agents send their orders to the market, and ensuring that 

those orders are routed through the broker with the smallest fees. In our simulation environment, 

we are assuming commission costs that are 30% higher than those currently being charged at the 

cheapest online broker; this difference alone is a big drag on the system’s net return. In any case, 

the forward-testing results indicate that the stock trading agents have been very competent thus far, 

and that their talent might yield real profits if the system is allowed to trade live. 

Taking into account the results of all the experiments that were reported in this dissertation, 

we believe we have shown, beyond any doubt, that intelligent agents have a place in financial 

markets. In the process of doing so, we made several important contributions to different fields. 

Specifically, we submit that our research contributed to the advancement of the field of artificial 

intelligence in the following ways: 

• we described a new model, the similarity classifier, that can be applied to any sort of data 

mining project; 

• we devised a modified method of handling concept drift and ensemble online learning 

that is specifically customized for financial prediction (because the models’ replacement 

and vote weights are based on their profit in the recent past); 

• the prediction accuracy of the many agents that were tested may now be utilized as a 

benchmark for future studies on financial data mining; 

• we presented a new way of integrating different AI solutions (data mining ensembles, 

case-based reasoning systems and expert systems) to create better systems that can 

exhibit more “intelligent” behaviour. 

This last point may also be considered a contribution to the field of agency, because the systems we 

came up with are completely autonomous. Researchers in this field might also appreciate our work 

due to the following reasons: 
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• we proposed several new architectures for implementing intelligent trading agents, the 

last of which resulted in autonomous agents that were reasonably competent under 

simulation; 

• we described a couple of negotiation protocols for the communication between the 

agents, and proved their importance by creating multi-agent systems that could perform 

much better than equivalent systems without inter-agent communication; 

• future studies on automated investment systems may now use our agents’ results as a 

basis for comparison; hence, researchers that develop new trading agent architectures will 

find it easier to evaluate the potential of their work; 

• although we devised our agent architecture specifically for the task of trading financial 

instruments, it is possible that it could be adapted to other practical uses also requiring a 

mix of data mining and expert knowledge; 

• we showed a novel practical application for agent technology; this is an important 

contribution, because this field has previously been criticized for the lack of deployed 

applications. 

This last item pertains to the usefulness of our work in practice, which is what ultimately validated 

our research. Since we targeted a concrete problem in the field of finance, our experiments should 

also be relevant to researchers in that field, because: 

• we demonstrated that intelligent agents have the potential to replace human traders; 

• our initial plan to develop autonomous trading agents evolved to the point where we can 

envision full-size investment funds based solely on these agents; in this regard, we 

proposed the fusion of different multi-agent systems (acting in different markets) to 

create autonomous hedge funds, a concept that should interest entrepreneurs in the 

financial services industry; 
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• the trading statistics of our multi-agent systems clarified what may reasonably be 

expected from autonomous investment systems, which is something that was not easy to 

gauge when we started our work; these results can now be used as a benchmark for 

traditional investment companies, or for other “intelligent” funds; 

• this dissertation lists all the requirements that must be fulfilled, in order to create a study 

on automated trading with real practical value; these include avoiding all sorts of biases, 

accounting for sensible trading expenses, using test data that includes periods of very low 

and very high volatility, etc.; also, we put forward that studies on this subject should 

always be accompanied with a mechanism to “forward-test” the systems over an extended 

period of time, as this is the only way to verify that the backtesting results are not biased. 

The most significant conclusion that can be drawn from our research is that the application of 

agent technology in financial markets holds enormous potential. It is important to remember that 

the performance of our agents was limited by several self-imposed restrictions. For example, our 

one-size-fits-all method for picking their settings (which we adopted to avoid pitfalls associated 

with excessive tweaking) is clearly not the best way to do the configuration; we believe that much 

better returns could be obtained if each agent was individually fine-tuned, according to the 

financial instrument it was meant to trade. This would imply manually selecting the data mining 

models in its prediction module, and picking the most appropriate investment time frame, based on 

the price volatility of the financial instrument. Also, we could try to improve the agents’ accuracy by 

using better attributes to train them. In our experiments, we only used attributes that could be 

applied to all types of financial instruments; it is likely that utilizing features that better characterise 

the investment vehicles – like interest rate differentials for currency pairs, or profit-to-earnings 

ratios for stocks – would improve the precision (although high accuracy is not a requirement for 

successful trading, it certainly would not hurt). Defining different expert rules in each agent’s 

domain knowledge module could also prove beneficial; for instance, stock trading agents could be 



254 Chapter 8: Conclusions and Future Work 

 

 

prevented from trading on ex-dividend dates, or when the corresponding companies were about to 

release their earnings; a better take-profit rule (and possibly a stop-loss rule) could also be specified 

for each agent, instead of using the same equation to calculate their profit targets. Finally, the 

tweaking of their empirical knowledge modules might also improve the overall return; we could 

allow the best performing agents to invest the maximum amount more often, by lowering the 

thresholds, and rather than having them all use the same standard trade size, we could assign bigger 

amounts to the best agents, and let them compound the gains and trade with borrowed funds. To 

improve the investment diversification, it would be important to experiment with different financial 

instruments and class attributes; for example, instead of training all the agents to predict the 

direction of the price, we could make some of them forecast the expected variance – this would 

allow us to implement option trading agents, which would trade volatility, rather than the price. 

One last thing to consider is that, just like in real life, some trading agents may eventually need to 

be “fired”, and replaced with better agents. While we could not do this in our experiments, to avoid 

survivorship bias, it is definitely something that should be considered in live trading systems. This 

all goes to show that there is still a lot of room for improvement in the agents and the multi-agent 

systems that were presented, and possibly in the agent architecture that we proposed. And that is, 

we believe, the highlight of our work: we have undoubtedly demonstrated that the usage of 

intelligent agents for the purpose of trading financial instruments holds a lot of promise. 

Specifically, our research could open the door to the development of agent-based autonomous 

hedge funds consisting of hundreds of individually fine-tuned trading agents, each with a specific 

time frame and financial instrument combination, so as to maximize the investment diversification. 

All things considered, we think the goal that was set for our research has been fulfilled. We 

clearly showed that intelligent agents belong in financial markets, and meticulously described one 

possible method for implementing them. This conclusion is likely to be of interest to the 

investment community at large. 
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10Appendix 

The table that follows contains the composition of the ensembles of all the agents mentioned in 

this dissertation. For each agent, the list of data mining models is provided. For each of these 

models (described in Section 4.1), we present the training parameters (as defined by the Weka 

API) and attributes (described in Section 4.2). This information should be enough to completely 

reproduce the experiments reported in the text. 

Agent Model Parameters Attributes Prediction 

CHFJPY 

RBFNetwork -B 2 -S 1 -R 1.3E-8 -M -1 -W 0.19 
price direction, hour (nom), day of week (num), MA(32), LAG(6), 
WILRS(7), RSI(32), ROC(32) 

Class 

SimpleCart -S 3 -M 1 -N 5 -C 1.0 
price direction, hour (num), MA(37), WILR(34), WILRS(13), 
WILRS(37), ROC(4), ROC(22) 

Class 

NaiveBayes -K % price change, close price, LAG(5), LAG(8), WILRS(39), RSIS(16) Class 

BFTree -S 6 -M 7 -N 4 -G -C 1.0 -P POSTPRUNED 
price direction, close price, hour (num), day of week (nom), MA(20), 
MA(34), WILRS(11), RSI(32) 

Class 

ADTree -B 11 -E -2 -D 
% price change, day of week (nom), WILR(6), WILRS(13), RSI(7), 
ROC(3) 

Class 

JRip -F 3 -N 0.11 -O 4 -S 3 
close price, hour (nom), day of week (num), LAG(8), WILR(4), 
WILRS(17), RSI(40) 

Class 

LibSVM 
-S 3 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40 -C 
1.0 -E 0.001 -P 0.1 -Z 

hour (num), day of week (nom), WILR(30) % Change 

EURCHF 

JRip -F 2 -N 3.35 -O 4 -S 2 
% price change, hour (num), day of week (nom), WILR(24), RSI(27), 
RSI(39), RSIS(8) 

Class 

Logistic -R 0.05 -M -1 price direction, hour (num), day of week (nom), RSI(18), RSI(28) Class 

SimpleCart -S 5 -M 2 -N 4 -C 0.67 
price direction, close price, hour (num), day of week (num), LAG(5), 
RSIS(7), ROC(20), ROC(21) 

Class 

LibSVM 
-S 3 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40 -C 
1.0 -E 0.001 -P 0.1 -Z 

% price change, RSI(9), RSI(25) % Change 

KStar -B 38 -M m price direction, MA(11), LAG(1), WILR(8), ROC(1) % Change 

RBFNetwork -B 6 -S 5 -R 1.112E-8 -M -1 -W 0.12 price direction, hour (num), WILR(17), RSI(23), ROC(3) % Change 

J48 -C 0.05 -B -M 42 -A 
price direction, hour (num), day of week (nom), LAG(1), WILR(11), 
RSI(14) 

Class 

EURGBP 

SimilarityClassifier -S 0.28 -W correlation -C unsupervised day of week (nom), RSIS(6), ROC(34) Class 

LMT -I 32 -M 34 -W 0.0 -A hour (nom), MA(18), LAG(2) Class 

LibSVM 
-S 3 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40 -C 
1.0 -E 0.001 -P 0.1 -Z -B 

day of month, day of week (num), WILR(29), WILRS(28), RSI(18), 
RSIS(8), ROC(37) 

% Change 

KStar -B 47 -M a hour (nom), day of week (num), MA(2), MA(10), LAG(4), ROC(12) Class 

NaiveBayes 
 

hour (nom), day of week (nom), price direction Class 
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LinearRegression -S 2 -R 6.92E-8 hour (nom), day of month, month, RSIS(19), ROC(7), ROC(40) % Change 

DecisionTable 
-X 2 -S "weka.attributeSelection.BestFirst -D 1 -
N 5" 

hour (nom), day of week (nom), day of month, LAG(1), ROC(28) Class 

EURJPY 

IB1 
 

price direction, hour (nom), day of week (num), MA(8), MA(12), 
RSI(15) 

Class 

LibSVM 
-S 3 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40 -C 
1.0 -E 0.001 -P 0.1 -Z 

price direction, hour (num), day of week (nom), LAG(7), WILR(25), 
ROC(7) 

% Change 

SimpleCart -S 1 -M 3 -N 3 -U -H -C 0.98 hour (num), day of week (num), MA(8) Class 

PART -B -M 7 -C 0.19 -Q 8 price direction, hour (nom), day of week (num), RSI(21), ROC(7) Class 

KStar -B 17 -M m price direction, hour (nom), day of week (num), WILR(11), ROC(7) % Change 

KStar -B 16 -M a 
price direction, hour (nom), day of week (num), MA(8), RSI(12), 
RSI(20) 

Class 

LibSVM 
-S 3 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40 -C 
1.0 -E 0.001 -P 0.1 -Z -B 

hour (num), day of week (nom), MA(7) % Change 

EURUSD 

NaiveBayes 
 

hour (nom), day of week (nom), % price change Class 

LibSVM 
-S 3 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40 -C 
1.0 -E 0.001 -P 0.1 -H -Z -B 

hour (nom), day of week (num), MA(2), RSI(11), ROC(12) % Change 

SimpleCart -S 1 -M 2 -N 6 -H -C 0.99 hour (nom), day of week (nom), LAG(2), RSI(2), ROC(2), ROC(5) Class 

LibSVM 
-S 3 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 
1.0 -E 0.0010 -P 0.1 

hour (nom), day of week (nom), MA(6), MA(4), MA(3), % price change % Change 

LeastMedSq -S 2 -G 0 
hour (nom), day of week (nom), LAG(5), LAG(4), LAG(3), LAG(2), 
LAG(1), % price change 

% Change 

KStar -B 10 -M a hour (nom), day of week (nom), price direction % Change 

RBFNetwork -B 6 -S 6 -R 5.93E-8 -M -1 -W 0.358 % price change, hour (num), day of week (nom), MA(12), ROC(4) Class 

GBPCHF 

IB1 
 

% price change, hour (num), MA(7), LAG(2), RSI(29) Class 

IB1 
 

price direction, close price, hour (num), day of week (nom), LAG(8), 
RSI(6) 

Class 

KStar -B 39 -M n price direction, hour (num), LAG(2), WILR(28), RSI(5), RSI(23) Class 

SimpleCart -S 5 -M 5 -N 5 -U -H -C 1.0 % price change, hour (num), MA(10), WILR(21) Class 

SimpleCart -S 1 -M 4 -N 6 -U -H -C 1.0 
% price change, hour (num), day of week (nom), LAG(7), WILR(27), 
RSI(34), RSIS(4), RSIS(9) 

Class 

LibSVM 
-S 3 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40 -C 
1.0 -E 0.001 -P 0.1 -H -B 

% price change, hour (nom), day of week (num), LAG(1), WILRS(29), 
RSI(18) 

% Change 

PART -B -M 6 -C 0.33 -Q 3 
price direction, close price, hour (nom), day of week (nom), WILR(21), 
ROC(19) 

Class 

GBPJPY 

IB1 
 

% price change, close price, day of week (num), MA(27), LAG(2), 
RSIS(15) 

Class 

NaiveBayes -K % price change, LAG(5), LAG(6), ROC(8), ROC(10) Class 

LibSVM 
-S 3 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40 -C 
1.0 -E 0.001 -P 0.1 -Z -B 

hour (nom), day of month, day of week (num), WILRS(10), WILRS(16) % Change 

IB1 
 

price direction, hour (nom), LAG(1), ROC(7), ROC(10), ROC(11) Class 

J48 -S -C 0.23 -M 11 -A 
price direction, hour (nom), day of week (num), LAG(6), RSI(2), 
ROC(12) 

Class 

PART -B -M 6 -C 0.32 -Q 10 
price direction, hour (num), day of week (num), MA(11), WILR(29), 
ROC(4) 

Class 
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SimpleCart -S 8 -M 4 -N 3 -U -C 1.0 % price change, close price, LAG(6) Class 

GBPUSD 

M5P -M 7 -L % price change, hour (nom), LAG(6), LAG(7) % Change 

KStar -B 27 -M d % price change, hour (nom) Class 

NaiveBayes -K hour (nom), day of week (nom), LAG(7) Class 

IB1 
 

day of week (num), MA(7), LAG(3), LAG(6), LAG(7), RSI(22), 
RSI(24), ROC(18) 

Class 

LMT -B -C -I 26 -M 20 -W 0.0 -A % price change, hour (num), day of week (nom), LAG(6), RSIS(26) Class 

NaiveBayes -K price direction, hour (nom), day of week (nom), day of month, LAG(7) Class 

Logistic -R 0.03 -M 8 
hour (num), day of week (nom), month, WILRS(19), RSI(9), RSIS(6), 
RSIS(7), RSIS(17) 

Class 

USDCHF 

RBFNetwork -B 2 -S 10 -R 3.0933E-8 -M -1 -W 0.48 hour (num), LAG(6), WILRS(6), WILRS(34) Class 

IBk 
-K 39 -W 0 -A 
"weka.core.neighboursearch.LinearNNSearch -A 
|weka.core.EuclideanDistance -R first-last|" 

hour (num), LAG(1), LAG(6), WILR(24) % Change 

PaceRegression -E pace6 hour (num), day of week (num), MA(4), LAG(4) % Change 

LibSVM 
-S 0 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40 -C 
1.0 -E 0.001 -P 0.1 

hour (nom), LAG(4), WILR(7), WILR(23) Class 

IB1 
 

close price, hour (nom), day of week (nom), LAG(6), WILR(31), 
RSIS(22), ROC(35) 

Class 

SimpleCart -S 4 -M 3 -N 3 -H -C 1.0 price direction, hour (num), WILR(14) Class 

LibSVM 
-S 3 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40 -C 
1.0 -E 0.001 -P 0.1 -Z -B 

hour (nom), day of week (num), MA(11), RSI(2), RSI(29) % Change 

USDJPY 

KStar -B 35 -M a hour (nom), day of week (nom), MA(6), price direction Class 

J48 -C 0.25 -M 2 hour (nom), day of week (nom), MA(6), price direction Class 

JRip -F 3 -N 2.0 -O 2 -S 1 -E hour (nom), day of week (nom), price direction Class 

NaiveBayes 
 

hour (nom), day of week (nom), % price change Class 

LMT -I -1 -M 15 -W 0.0 -A hour (nom), MA(6), price direction Class 

KStar -B 35 -M a hour (nom), day of week (nom), MA(6), price direction % Change 

LibSVM 
-S 3 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 
1.0 -E 0.0010 -P 0.1 

hour (num), day of week (num), MA(10), MA(2), % price change % Change 

AA 

NaiveBayes 
 

day of week (nom), MA(8) Class 

LeastMedSq -S 10 -G 0 
% price change, close price, LAG(6), LAG(7), WILR(6), RSIS(8), 
RSIS(35), ROC(25) 

% Change 

LinearRegression -S 2 -R 7.71E-8 day of month, WILR(29) % Change 

PaceRegression -E subset LAG(2), WILR(24), RSI(16) % Change 

VotedPerceptron -I 1 -E 4.211 -S 13 -M 18486 % price change, close price, month, MA(32) Class 

IB1 
 

price direction, month, day of week (num), WILR(22), WILRS(9) Class 

IBk 
-K 27 -W 13 -A 
"weka.core.neighboursearch.LinearNNSearch -A 
|weka.core.EuclideanDistance -R first-last|" 

close price, day of month, month, day of week (num), WILR(25), 
WILRS(3) 

Class 

ADTree -B 11 -E 17 -D day of month, month, day of week (num), MA(16), MA(20), MA(31) Class 

REPTree -M 13 -V 0.0012 -N 6 -S 7 -L -1 
day of month, MA(11), LAG(3), WILR(20), RSI(35), RSIS(28), 
ROC(10), ROC(25) 

Class 
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SimpleCart -S 3 -M 3 -N 6 -H -C 1.0 month, WILR(2), ROC(3) Class 

Ridor -F 4 -S 1 -N 7 -A 
% price change, day of month, MA(27), WILR(24), WILR(39), 
WILRS(25), RSI(26), ROC(19) 

Class 

AAPL 

NaiveBayes 
 

close price, MA(30), RSI(2), RSI(5), ROC(33) Class 

LinearRegression -S 1 -R 1.27E-8 price direction, day of month, LAG(6), RSIS(21) % Change 

Logistic -R 0.03 -M -1 close price, day of week (nom), RSIS(22) Class 

PaceRegression -E nested close price, month, MA(36) % Change 

RBFNetwork -B 4 -S 10 -R 8.9E-8 -M -1 -W 0.2 % price change, close price, LAG(4), RSIS(16), RSIS(32) Class 

VotedPerceptron -I 1 -E 1.21 -S 2 -M 5527 
price direction, close price, day of week (nom), MA(4), MA(13), 
WILR(14), ROC(16), ROC(28) 

Class 

IBk 
-K 3 -W 0 -E -F -A 
"weka.core.neighboursearch.LinearNNSearch -A 
|weka.core.EuclideanDistance -R first-last|" 

% price change, day of month, MA(3), MA(28), WILRS(23), RSIS(14) % Change 

FLR -R 0.58 -Y -B 
% price change, close price, month, day of week (num), LAG(1), 
LAG(4), RSI(21), RSIS(14) 

Class 

M5P -M 15 % price change, month, day of week (num), WILR(8), RSI(7), RSI(23) % Change 

SimpleCart -S 4 -M 4 -N 3 -U -H -C 0.7 
% price change, day of month, month, WILR(8), WILRS(28), RSI(29), 
ROC(28) 

Class 

NNge -G 8 -I 7 
close price, day of month, MA(37), RSI(4), RSIS(18), ROC(19), 
ROC(22), ROC(27) 

Class 

ADBE 

NaiveBayes -K close price, day of week (num), WILR(5), WILRS(12), RSI(2), RSI(8) Class 

LeastMedSq -S 8 -G 8 close price, day of month, day of week (num), ROC(7) % Change 

PaceRegression -E pace6 
% price change, day of month, month, day of week (num), LAG(5), 
LAG(8), WILRS(9), RSIS(25) 

% Change 

KStar -B 7 -M m 
price direction, day of week (num), MA(38), LAG(1), WILR(38), 
WILRS(10), ROC(6) 

Class 

FLR -R 0.589 -Y -B 
close price, day of month, month, day of week (num), WILRS(14), 
ROC(34) 

Class 

LMT -I 34 -M 16 -W 0.394 day of week (nom), MA(8), RSIS(14), RSIS(22), RSIS(25) Class 

M5P -U -M 16 -L day of week (num), RSIS(24), ROC(7) % Change 

SimpleCart -S 5 -M 2 -N 4 -U -H -C 1.0 
% price change, day of month, month, day of week (num), MA(21), 
LAG(1) 

Class 

ConjunctiveRule -N 5 -M 7.46 -P 9 -S 1 
day of month, LAG(4), WILRS(8), WILRS(21), WILRS(39), RSI(2), 
RSI(19), RSIS(11) 

% Change 

NNge -G 7 -I 4 price direction, day of week (nom), day of month, month, WILR(2) Class 

Ridor -F 3 -S 1 -N 7 -A price direction, day of week (nom), day of month, WILR(4), RSIS(25) Class 

BAC 

LeastMedSq -S 2 -G 10 day of week (num), RSI(8), RSI(33), RSIS(31), RSIS(35), ROC(32) % Change 

RBFNetwork -B 6 -S 9 -R 7.29E-8 -M -1 -W 0.26 day of week (nom), day of month, month, WILR(16), RSIS(3), ROC(2) % Change 

VotedPerceptron -I 3 -E 1.92 -S 2 -M 13170 
price direction, close price, day of week (num), LAG(3), WILRS(28), 
RSI(21) 

Class 

IBk 
-K 16 -W 13 -E -F -A 
"weka.core.neighboursearch.LinearNNSearch -A 
|weka.core.EuclideanDistance -R first-last|" 

close price, month, day of week (num), MA(6), MA(31), LAG(3), 
WILR(23) 

Class 

KStar -B 7 -M d 
price direction, close price, day of month, day of week (num), WILR(4), 
WILRS(39), RSI(20) 

% Change 
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FLR -R 0.59 -B day of week (num), WILRS(13), ROC(26) Class 

VFI -B 0.74 % price change, day of month, WILR(38), WILRS(33), RSI(2), RSI(23) Class 

LMT -B -P -I 3 -M 39 -W 0.0 
% price change, close price, day of week (nom), day of month, month, 
MA(8), WILRS(13), WILRS(17) 

Class 

M5P -U -M 49 close price, day of week (num), RSIS(37), ROC(37) % Change 

SimpleCart -S 3 -M 1 -N 4 -U -H -C 1.0 price direction, close price, day of week (nom), WILR(23), RSIS(22) Class 

ConjunctiveRule -N 4 -M 7.53 -P -1 -S 1 
day of week (num), MA(12), LAG(2), WILR(32), RSI(21), RSIS(2), 
RSIS(37), ROC(31) 

Class 

CAL 

LeastMedSq -S 5 -G 0 close price, month, MA(25), RSIS(11), ROC(25) % Change 

LibSVM 
-S 3 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40 -C 
1.0 -E 0.001 -P 0.1 -Z 

month, WILR(21), RSIS(26) % Change 

LinearRegression -S 2 -C -R 4.44E-8 
price direction, month, WILRS(25), RSI(37), RSIS(4), RSIS(11), 
RSIS(26), ROC(18) 

% Change 

VotedPerceptron -I 2 -E 3.24 -S 9 -M 10186 close price, day of month, month Class 

KStar -B 13 -M m 
price direction, close price, day of month, month, LAG(3), WILR(2), 
ROC(26), ROC(27) 

% Change 

VFI -C -B 0.59 month, MA(14), MA(18), WILRS(27), RSI(23) Class 

LMT -B -P -I 33 -M 32 -W 0.0 
price direction, day of week (nom), day of month, month, MA(3), 
WILRS(11), ROC(11) 

Class 

M5P -U -M 34 day of month, month, MA(15), WILR(38), RSI(18), RSI(28), ROC(30) % Change 

REPTree -M 2 -V 0.001 -N 4 -S 6 -L 29 % price change, day of month, MA(11), WILRS(11), WILRS(25) Class 

JRip -F 5 -N 2.26 -O 3 -S 1 -E 
price direction, close price, day of month, month, WILR(11), ROC(10), 
ROC(13) 

Class 

Ridor -F 3 -S 1 -N 8 -A 
% price change, day of month, month, day of week (num), LAG(8), 
WILR(15), WILRS(31), ROC(2) 

Class 

CSCO 

LinearRegression -S 1 -C -R 9.34E-8 
% price change, day of week (nom), day of month, MA(9), RSIS(22), 
RSIS(33), ROC(4), ROC(22) 

% Change 

IBk 
-K 18 -W 19 -F -A 
"weka.core.neighboursearch.LinearNNSearch -A 
|weka.core.EuclideanDistance -R first-last|" 

month, day of week (num), MA(34) Class 

FLR -R 0.54 -B 
close price, month, WILR(18), WILR(27), WILRS(36), RSI(25), 
RSIS(31), RSIS(38) 

Class 

VFI -B 0.62 WILR(34), WILRS(9), RSIS(12) Class 

ADTree -B 13 -E -1 price direction, day of month, day of week (num) Class 

BFTree -S 8 -M 17 -N 6 -G -C 1.0 -P POSTPRUNED MA(3), MA(6), LAG(3), WILR(19), WILR(23), WILR(33), RSI(8) Class 

J48 -L -C 0.38 -M 48 
price direction, day of week (nom), day of month, LAG(5), WILR(20), 
WILR(27) 

Class 

REPTree -M 15 -V 0.001 -N 6 -S 8 -L -1 month, WILRS(8), RSIS(7) % Change 

SimpleCart -S 1 -M 3 -N 4 -U -C 1.0 day of month, day of week (num), WILR(9), WILRS(4) Class 

ConjunctiveRule -N 5 -M 1.11 -P -1 -S 10 
% price change, day of month, month, LAG(8), WILR(17), WILR(21), 
WILRS(9) 

% Change 

PART -B -M 10 -C 0.24 -Q 3 
day of week (nom), day of month, LAG(5), WILR(24), RSI(40), 
RSIS(2) 

Class 

DELL LeastMedSq -S 7 -G 7 % price change, MA(39), WILR(3), WILR(11) % Change 
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LibSVM 
-S 3 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40 -C 
1.0 -E 0.001 -P 0.1 -H 

price direction, day of week (nom), WILR(39) % Change 

Logistic -R 0.059 -M -1 
% price change, close price, day of week (nom), MA(4), MA(27), 
WILR(26), RSI(27) 

Class 

RBFNetwork -B 4 -S 10 -R 7.1E-8 -M -1 -W 0.31 % price change, month, WILR(15), RSI(37), ROC(30) % Change 

VotedPerceptron -I 1 -E 2.8 -S 1 -M 19270 
price direction, close price, day of month, WILR(22), WILRS(8), 
RSI(26) 

Class 

KStar -B 1 -M a % price change, close price, day of month, WILRS(23), RSI(33) Class 

BFTree 
-S 5 -M 16 -N 8 -H -G -C 1.0 -P 
POSTPRUNED 

price direction, day of week (nom), month, MA(2), WILRS(29) Class 

LMT -I 20 -M 23 -W 0.73 price direction, month, MA(15), WILR(21), RSI(30), RSI(34) Class 

REPTree -M 3 -V 0.001 -N 4 -S 5 -L -1 day of week (nom), day of month, MA(6), MA(30), RSIS(14) % Change 

SimpleCart -S 6 -M 1 -N 3 -U -C 0.81 close price, month, day of week (num), WILR(27) Class 

JRip -F 5 -N 5.75 -O 4 -S 5 price direction, close price, day of week (nom), day of month, ROC(13) Class 

DIS 

NaiveBayes -K close price, day of month, day of week (num) Class 

Logistic -R 0.03 -M 5 
day of week (nom), day of month, month, LAG(1), WILR(17), RSI(7), 
ROC(35) 

Class 

VotedPerceptron -I 2 -E 4.53 -S 4 -M 12972 day of week (nom), RSI(22), ROC(13) Class 

IBk 
-K 1 -W 4 -E -I -A 
"weka.core.neighboursearch.LinearNNSearch -A 
|weka.core.EuclideanDistance -R first-last|" 

price direction, month, LAG(6), LAG(8), WILRS(19), WILRS(28), 
ROC(37) 

Class 

KStar -B 47 -E -M m price direction, close price, MA(23), LAG(7), WILR(14), RSI(34) Class 

BFTree -S 7 -M 13 -N 4 -H -C 0.69 -P POSTPRUNED % price change, close price, ROC(18), ROC(25), ROC(27) Class 

J48 -L -R -N 3 -Q 1 -B -M 15 -A 
% price change, day of week (nom), day of month, month, LAG(3), 
ROC(40) 

Class 

NBTree 
 

price direction, close price, day of month, day of week (num) Class 

REPTree -M 2 -V 6.21E-4 -N 2 -S 8 -L -1 
close price, day of week (nom), day of month, LAG(7), ROC(17), 
ROC(22) 

Class 

PART -B -M 7 -C 0.25 -Q 7 day of week (num), RSI(7), RSI(35) Class 

Ridor -F 4 -S 1 -N 3 -A 
% price change, day of week (num), MA(19), LAG(2), LAG(8), 
WILRS(31), RSI(30), RSI(33) 

Class 

GE 

NaiveBayes -K 
close price, day of week (nom), day of month, MA(18), LAG(6), 
RSIS(5), ROC(20) 

Class 

KStar -B 36 -M n 
price direction, day of month, day of week (num), MA(4), LAG(7), 
ROC(39) 

% Change 

REPTree -M 3 -V 0.002 -N 4 -S 4 -L -1 close price, MA(36), LAG(5), RSIS(40) Class 

IBk 
-K 13 -W 20 -F -A 
"weka.core.neighboursearch.LinearNNSearch -A 
|weka.core.EuclideanDistance -R first-last|" 

price direction, day of month, day of week (num), WILR(29), RSI(39) Class 

ADTree -B 12 -E -1 close price, day of month, day of week (num), WILR(5), ROC(24) Class 

Ridor -F 5 -S 1 -N 8 -A % price change, month, day of week (num), WILRS(36) Class 

LMT -B -C -I 6 -M 32 -W 0.73 WILRS(23), WILRS(25), RSIS(28) Class 

M5P -U -M 24 -L 
close price, day of month, month, day of week (num), MA(7), LAG(5), 
WILR(6), RSI(27) 

% Change 



Appendix 277 

 

 

PaceRegression -E olsc -S 2.0 close price, LAG(1), LAG(3), RSI(16), RSI(19), RSIS(27) % Change 

VFI -C -B 0.732 day of month, day of week (num), LAG(1), WILR(6) Class 

JRip -F 2 -N 2.87 -O 3 -S 8 -E close price, month, LAG(2), RSIS(7) Class 

GOOG 

LeastMedSq -S 8 -G 7 WILRS(14), RSI(18), RSI(35) % Change 

LibSVM 
-S 3 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40 -C 
1.0 -E 0.001 -P 0.1 -B 

day of week (nom), month, WILR(19) % Change 

LinearRegression -S 2 -C -R 9.1E-8 MA(35), LAG(5), ROC(6) % Change 

PaceRegression -E pace6 % price change, month, MA(25), LAG(5), RSIS(33) % Change 

KStar -B 26 -E -M n 
price direction, close price, month, day of week (num), MA(30), MA(34), 
WILR(27), RSIS(17) 

Class 

BFTree -S 4 -M 6 -N 5 -H -C 0.78 -P POSTPRUNED price direction, RSIS(13), ROC(30) Class 

LMT -B -C -P -I 6 -M 20 -W 0.0 close price, WILRS(16), RSI(5), RSI(20), RSI(39) Class 

M5P -M 39 -L close price, month, MA(9), LAG(5), RSI(30), ROC(23) % Change 

ConjunctiveRule -N 2 -M 6.75 -P -1 -S 3 
price direction, close price, day of week (nom), day of month, WILR(3), 
WILRS(29), RSI(23), RSIS(17) 

% Change 

JRip -F 2 -N 7.365 -O 4 -S 9 -E -P % price change, day of week (nom), day of month, LAG(2) Class 

M5Rules -M 7 LAG(5), WILRS(29), RSIS(29) % Change 

HD 

NaiveBayes -K 
% price change, close price, day of month, month, LAG(6), RSI(36), 
RSIS(35), RSIS(39) 

Class 

LinearRegression -S 1 -R 7.45E-9 day of month, month, RSI(22), RSIS(10), ROC(11), ROC(40) % Change 

PaceRegression -E pace4 % price change, month, LAG(1), LAG(8), RSIS(10), ROC(31) % Change 

RBFNetwork -B 6 -S 6 -R 5.44E-8 -M -1 -W 0.28 price direction, close price, day of month, LAG(8), WILRS(35) Class 

IB1 
 

close price, RSIS(4) Class 

IBk 
-K 38 -W 0 -E -I -A 
"weka.core.neighboursearch.LinearNNSearch -A 
|weka.core.EuclideanDistance -R first-last|" 

month, WILR(20), RSIS(12), ROC(14) % Change 

SimpleCart -S 6 -M 2 -N 6 -U -H -C 0.64 close price, WILR(4), RSIS(12) Class 

ConjunctiveRule -N 2 -M 7.93 -P -1 -S 6 price direction, close price, day of month, month, LAG(6) Class 

M5Rules -U -M 1 % price change, RSI(16), RSIS(7), ROC(19), ROC(40) % Change 

PART -M 4 -C 0.44 -Q 2 
price direction, day of week (nom), month, LAG(8), RSI(6), RSI(10), 
ROC(15) 

Class 

Ridor -F 2 -S 1 -N 7 -A -M % price change, day of week (nom), day of month, month, LAG(7) Class 

IBM 

LeastMedSq -S 10 -G 2 price direction, day of month, MA(30), WILR(33), ROC(6), ROC(27) % Change 

Logistic -R 0.09 -M -1 close price, day of week (num), WILR(10), WILR(20) Class 

PaceRegression -E olsc -S 2.0 close price, month, day of week (num), WILR(18), ROC(9) % Change 

VotedPerceptron -I 3 -E 2.98 -S 9 -M 19838 
close price, day of month, LAG(3), LAG(7), WILR(14), WILR(31), 
RSI(36) 

Class 

IBk 
-K 34 -W 8 -I -A 
"weka.core.neighboursearch.LinearNNSearch -A 
|weka.core.EuclideanDistance -R first-last|" 

LAG(4), WILR(11), RSI(37), ROC(7), ROC(19) Class 

KStar -B 41 -M d MA(7), MA(26), WILR(5), WILRS(17), ROC(18), ROC(33) Class 

ADTree -B 9 -E -1 -D WILRS(11), RSI(6), RSI(13), ROC(16) Class 
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BFTree -S 2 -M 8 -N 8 -C 1.0 -P POSTPRUNED 
day of week (nom), month, WILRS(5), WILRS(19), WILRS(24), 
RSIS(36), ROC(24) 

Class 

REPTree -M 3 -V 0.001 -N 5 -S 9 -L -1 MA(39), RSIS(32), ROC(18) Class 

ConjunctiveRule -N 5 -M 3.43 -P 2 -S 4 
close price, day of week (nom), day of month, WILRS(9), WILRS(28), 
RSIS(3), RSIS(37) 

% Change 

Ridor -F 6 -S 1 -N 5 -A -M RSI(5), RSI(24), RSI(31), RSIS(7) Class 

INTC 

LibSVM 
-S 0 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40 -C 
1.0 -E 0.001 -P 0.1 

LAG(7), WILR(14), RSIS(22), ROC(11) Class 

VotedPerceptron -I 1 -E 3.11 -S 16 -M 9886 close price, day of month, MA(34), WILR(27), WILRS(30), ROC(35) Class 

KStar -B 28 -M m day of month, LAG(4), RSI(15) % Change 

ADTree -B 19 -E -2 -D 
close price, day of week (nom), day of month, MA(10), WILRS(36), 
RSIS(21) 

Class 

J48 -L -S -R -N 3 -Q 1 -M 18 close price, day of month, month, MA(21), WILRS(9) Class 

BFTree -S 6 -M 20 -N 6 -G -C 0.77 -P POSTPRUNED price direction, day of month, month, day of week (num), WILR(27) Class 

IBk 
-K 2 -W 13 -E -I -A 
"weka.core.neighboursearch.LinearNNSearch -A 
|weka.core.EuclideanDistance -R first-last|" 

close price, day of week (nom), month, LAG(7), WILRS(12), RSIS(18) Class 

REPTree -M 7 -V 0.001 -N 3 -S 10 -L 29 
close price, day of month, month, day of week (num), WILRS(5), 
WILRS(7), RSI(36) 

Class 

IB1 
 

% price change, month, RSIS(28) Class 

JRip -F 5 -N 8.62 -O 4 -S 6 
price direction, close price, day of week (nom), day of month, month, 
RSIS(23), ROC(15) 

Class 

M5Rules -U -M 3 close price, month, MA(17), LAG(1), WILR(9), RSI(18) % Change 

JNJ 

PaceRegression -E nested 
day of month, day of week (num), MA(11), MA(26), MA(36), 
WILRS(9), RSIS(31) 

% Change 

RBFNetwork -B 5 -S 7 -R 1.9E-8 -M -1 -W 0.24 close price, day of month, RSIS(34) Class 

IB1 
 

price direction, close price, day of week (num), RSI(34), ROC(17) Class 

FLR -R 0.58 -Y -B close price, day of month, LAG(1), WILR(12), WILR(32), ROC(36) Class 

M5P -U -M 35 
% price change, close price, day of week (num), MA(16), MA(17), 
WILR(26), RSIS(26) 

% Change 

REPTree -M 11 -V 0.001 -N 4 -S 8 -L -1 % price change, close price, day of week (num) Class 

SimpleCart -S 6 -M 2 -N 4 -U -C 0.74 
price direction, close price, day of week (nom), month, MA(38), 
WILR(3), WILR(21), RSI(8) 

Class 

Ridor -F 2 -S 1 -N 6 price direction, close price, RSIS(10), ROC(18) Class 

MultilayerPerceptro
n 

-L 0.37 -M 0.6 -N 481 -V 0 -S 10 -E 20 -H t -C 
% price change, day of week (nom), month, MA(3), WILRS(17), 
RSIS(3) 

Class 

SimilarityClassifier -S 0.32 -W correlation -C unsupervised 
% price change, close price, day of week (nom), MA(4), MA(19), 
RSI(11), RSI(36) 

Class 

DistanceToAverage 
% price change, close price, day of month, 
LAG(7), WILRS(14), RSI(4), RSI(14), RSIS(31) 

Class 

KFT 

NaiveBayes -K % price change, month, WILRS(24), RSI(8), RSIS(15) Class 

LinearRegression -S 0 -R 3.1E-8 
price direction, day of week (nom), LAG(5), LAG(8), WILRS(15), 
RSI(10), ROC(2) 

% Change 

Logistic -R 0.071 -M -1 
day of month, month, WILR(10), WILR(21), WILRS(26), RSI(15), 
RSI(28), ROC(1) 

Class 
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PaceRegression -E eb day of week (num), MA(15), WILRS(40) % Change 

IB1 
 

price direction, day of month, month, LAG(2), WILR(40), WILRS(37), 
RSIS(2) 

Class 

KStar -B 30 -M a price direction, month, ROC(30) Class 

BFTree -S 4 -M 2 -N 8 -H -C 0.55 -P POSTPRUNED 
price direction, close price, day of month, MA(13), WILR(31), 
WILRS(12), ROC(2) 

Class 

LMT -B -C -I -1 -M 17 -W 0.523 -A 
price direction, day of month, day of week (num), MA(21), WILRS(25), 
WILRS(26), RSIS(32), ROC(29) 

Class 

NBTree 
 

price direction, close price, day of week (nom), day of month, month, 
MA(40), WILRS(38), RSIS(15) 

Class 

REPTree -M 2 -V 0.001 -N 2 -S 6 -L 28 
% price change, day of week (nom), day of month, month, LAG(7), 
RSI(8), ROC(4) 

Class 

JRip -F 5 -N 4.56 -O 4 -S 8 % price change, day of week (nom), WILRS(24), RSIS(18) Class 

KO 

JRip -F 3 -N 6.6 -O 5 -S 9 
% price change, close price, day of month, month, day of week (num), 
MA(24), WILR(13) 

Class 

LeastMedSq -S 4 -G 4 % price change, day of month, month, LAG(4), WILR(34), RSI(6) % Change 

LibSVM 
-S 3 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40 -C 
1.0 -E 0.001 -P 0.1 -H -Z 

% price change, day of month, month, day of week (num), LAG(3), 
LAG(5), WILRS(40), RSIS(26) 

% Change 

LinearRegression -S 1 -C -R 4.75E-8 
price direction, day of month, day of week (num), MA(16), WILR(6), 
WILRS(8), RSI(7), ROC(2) 

% Change 

PaceRegression -E pace6 day of month, month, MA(10), LAG(3), LAG(4), WILR(20), ROC(5) % Change 

BFTree -S 6 -M 11 -N 7 -R -C 1.0 -P POSTPRUNED 
% price change, close price, day of week (nom), month, MA(9), MA(12), 
WILRS(2), RSIS(26) 

Class 

IB1 
 

day of month, month, WILR(16), WILR(26), WILRS(39), 
WILRS(40), RSI(6) 

Class 

M5P -U -M 8 -L day of week (num), MA(14), RSI(2), RSI(18) % Change 

Logistic -R 0.07 -M 6 
price direction, close price, day of month, day of week (num), MA(10), 
WILR(25), RSI(16) 

Class 

M5Rules -M 14 
% price change, day of week (nom), MA(6), LAG(8), WILRS(14), 
RSI(2), RSIS(8) 

% Change 

IBk 
-K 35 -W 8 -F -A 
"weka.core.neighboursearch.LinearNNSearch -A 
|weka.core.EuclideanDistance -R first-last|" 

month, WILRS(40), RSI(12), RSI(16), RSI(32), RSIS(23), ROC(6) Class 

MCD 

NaiveBayes -K day of month, WILR(23), WILR(25), WILRS(16), RSI(6), ROC(3) Class 

LibSVM 
-S 3 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40 -C 
1.0 -E 0.001 -P 0.1 -B 

day of month, month, MA(10) % Change 

LinearRegression -S 1 -C -R 8.38E-8 
day of month, month, day of week (num), MA(9), LAG(8), RSI(33), 
RSIS(37), ROC(18) 

% Change 

Logistic -R 0.063 -M 3 
% price change, day of month, day of week (num), MA(31), LAG(5), 
WILRS(33), RSI(40) 

Class 

PaceRegression -E pace2 month, MA(4), MA(30), RSIS(15) % Change 

ADTree -B 14 -E 89 -D 
% price change, day of week (nom), day of month, month, MA(23), 
MA(28), RSIS(35), ROC(22) 

Class 

BFTree 
-S 7 -M 9 -N 4 -H -G -C 1.0 -P 
POSTPRUNED 

WILRS(15), RSI(26), ROC(6) Class 
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LMT -B -P -I 30 -M 30 -W 0.62 
price direction, day of month, day of week (num), MA(22), MA(40), 
RSIS(29), ROC(3) 

Class 

M5P -U -M 44 -L 
% price change, day of week (nom), day of month, month, WILRS(23), 
RSIS(15) 

% Change 

M5Rules -M 4 
price direction, day of month, month, day of week (num), MA(10), 
LAG(3), LAG(4), WILRS(37) 

% Change 

NNge -G 5 -I 3 day of week (nom), LAG(1), RSI(5) Class 

MRK 

Logistic -R 0.015 -M -1 
close price, day of month, day of week (num), MA(10), LAG(1), 
WILR(18), RSIS(13), ROC(24) 

Class 

VotedPerceptron -I 3 -E 1.645 -S 9 -M 9583 
price direction, day of month, month, day of week (num), LAG(1), 
WILR(40) 

Class 

IB1 
 

% price change, day of week (nom), day of month, month, WILRS(38) Class 

KStar -B 26 -M m close price, day of month, month, WILRS(17) Class 

VFI -B 0.867 close price, month, WILR(21), WILRS(39), ROC(1) Class 

ADTree -B 14 -E 61 
% price change, close price, day of week (nom), LAG(1), RSI(2), 
RSIS(20), RSIS(34) 

Class 

J48 -L -S -C 0.43 -M 9 
close price, day of week (nom), day of month, month, LAG(7), 
WILRS(33) 

Class 

REPTree -M 2 -V 6.482E-4 -N 2 -S 3 -L 26 
price direction, close price, day of month, day of week (num), RSI(30), 
RSIS(14) 

Class 

SimpleCart -S 4 -M 1 -N 4 -C 1.0 close price, RSI(31) Class 

JRip -F 5 -N 1.2 -O 2 -S 3 -E day of month, month, day of week (num), RSIS(20), ROC(25) Class 

M5Rules -M 5 close price, MA(5), MA(6), MA(11), WILR(37) % Change 

MSFT 

NaiveBayes -K 
% price change, close price, day of month, month, MA(19), WILRS(18), 
RSIS(35), ROC(11) 

Class 

LeastMedSq -S 4 -G 7 price direction, day of week (num), MA(10), RSI(36), RSIS(9) % Change 

LibSVM 
-S 3 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40 -C 
1.0 -E 0.001 -P 0.1 -H -B 

% price change, day of week (num), MA(19), WILR(9), WILR(12), 
WILR(33), ROC(14) 

% Change 

PaceRegression -E subset % price change, close price, WILRS(30), RSI(15) % Change 

VFI -B 0.504 
% price change, MA(23), WILR(29), RSI(30), RSIS(16), RSIS(26), 
ROC(2) 

Class 

PART -B -M 6 -C 0.33 -Q 7 
price direction, close price, day of month, WILR(4), WILR(13), 
WILRS(7), RSI(21) 

Class 

KStar -B 45 -M m 
price direction, close price, day of week (nom), LAG(4), LAG(7), 
WILR(25), RSI(37), ROC(3) 

Class 

SimpleCart -S 4 -M 3 -N 6 -H -C 0.502 
price direction, day of month, day of week (num), MA(8), WILR(4), 
WILR(18), WILR(31), RSI(10) 

Class 

REPTree -M 13 -V 0.002 -N 6 -S 7 -L -1 
% price change, day of month, MA(36), WILRS(25), RSIS(14), 
RSIS(31), ROC(4) 

Class 

JRip -F 4 -N 3.86 -O 4 -S 5 -E 
day of month, month, day of week (num), LAG(5), WILR(3), ROC(18), 
ROC(24), ROC(30) 

Class 

ConjunctiveRule -N 2 -M 7.92 -P -1 -S 3 
price direction, close price, month, day of week (num), LAG(2), 
WILRS(6), RSIS(19), ROC(35) 

Class 

NVDA LeastMedSq -S 7 -G 1 
price direction, close price, day of week (nom), WILR(33), WILR(37), 
ROC(8), ROC(25), ROC(38) 

% Change 
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Logistic -R 0.013 -M -1 % price change, day of month, WILR(31), WILRS(21), ROC(38) Class 

VotedPerceptron -I 1 -E 4.29 -S 19 -M 1110 price direction, day of month, WILR(9), WILR(36) Class 

PaceRegression -E aic 
% price change, close price, day of week (num), MA(16), WILRS(3), 
WILRS(11), RSIS(38) 

% Change 

Ridor -F 5 -S 1 -N 4 % price change, MA(16), RSIS(40) Class 

JRip -F 3 -N 2.29 -O 5 -S 2 month, day of week (num), WILR(3), WILR(26), RSIS(14), ROC(9) Class 

REPTree -M 2 -V 5.47E-4 -N 6 -S 4 -L 17 price direction, month, day of week (num), LAG(3), ROC(5), ROC(29) Class 

ConjunctiveRule -N 3 -M 6.86 -P -1 -S 3 
close price, day of month, day of week (num), LAG(2), RSI(2), 
RSIS(20), ROC(27) 

Class 

M5Rules -M 5 
% price change, day of month, day of week (num), LAG(7), RSI(9), 
RSI(22), RSI(34), ROC(4) 

% Change 

SimpleCart -S 2 -M 5 -N 4 -U -H -C 0.73 
close price, day of week (nom), month, MA(18), WILRS(32), 
WILRS(34), ROC(34) 

Class 

LMT -P -I 36 -M 8 -W 0.81 price direction, month, day of week (num), WILRS(15), WILRS(24) Class 

PFE 

NaiveBayes 
 

price direction, month, MA(29), MA(35), LAG(8), RSI(31), RSIS(39) Class 

Logistic -R 0.04 -M 14 
price direction, close price, day of week (num), MA(5), WILR(11), 
WILRS(38), ROC(4) 

Class 

RBFNetwork -B 4 -S 7 -R 2.25E-8 -M -1 -W 0.14 
% price change, day of week (nom), month, MA(2), WILRS(25), 
RSI(19), RSIS(27), ROC(32) 

% Change 

VotedPerceptron -I 2 -E 0.75 -S 2 -M 7723 
% price change, day of week (nom), MA(14), LAG(5), LAG(7), 
WILR(12) 

Class 

KStar -B 15 -M n 
price direction, day of month, month, day of week (num), LAG(3), 
WILR(28) 

Class 

FLR -R 0.59 -B day of month, MA(39), RSI(21) Class 

VFI -B 0.84 
price direction, close price, day of month, MA(11), WILRS(35), 
RSI(18), RSIS(7) 

Class 

J48 -C 0.39 -B -M 4 -A 
price direction, day of month, day of week (num), MA(13), WILR(3), 
WILR(39), ROC(27) 

Class 

SimpleCart -S 1 -M 5 -N 3 -U -C 0.7 
% price change, close price, day of week (nom), month, MA(20), 
WILRS(24), RSI(32), RSIS(28) 

Class 

ConjunctiveRule -N 5 -M 2.59 -P -1 -S 8 % price change, close price, day of week (num), RSI(25) Class 

PART -M 6 -C 0.16 -Q 1 
price direction, close price, day of month, month, day of week (num), 
WILRS(3) 

Class 

T 

LeastMedSq -S 10 -G 4 % price change, day of week (nom), MA(22) % Change 

LibSVM 
-S 3 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40 -C 
1.0 -E 0.001 -P 0.1 -Z 

% price change, close price, MA(29), WILRS(7), RSI(11) % Change 

IB1 
 

price direction, WILRS(11), WILRS(37) Class 

IBk 
-K 30 -W 11 -E -F -A 
"weka.core.neighboursearch.LinearNNSearch -A 
|weka.core.EuclideanDistance -R first-last|" 

price direction, day of week (nom), month Class 

KStar -B 17 -M a day of week (num), WILR(13), ROC(5) Class 

BFTree -S 3 -M 2 -N 4 -C 1.0 -P PREPRUNED 
% price change, close price, day of week (num), MA(6), MA(19), 
MA(29), WILRS(33) 

Class 

J48 -C 0.355 -B -M 5 day of week (nom), month, WILR(26), RSIS(8) Class 
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SimpleCart -S 10 -M 4 -N 3 -U -H -C 1.0 
close price, month, day of week (num), LAG(2), WILR(37), 
WILRS(40), RSI(7) 

Class 

M5Rules -U -M 10 % price change, day of week (nom), MA(23), RSI(2), RSI(30), RSIS(27) % Change 

NNge -G 7 -I 4 day of week (nom), day of month, LAG(7), WILR(36) Class 

PART -M 7 -C 0.152 -Q 4 % price change, close price, day of month, month, MA(36), RSIS(15) Class 

VZ 

Logistic -R 6.44E-4 -M -1 
price direction, close price, LAG(5), LAG(8), WILRS(24), RSI(39), 
RSIS(23) 

Class 

VotedPerceptron -I 3 -E 2.37 -S 18 -M 1259 
% price change, day of month, day of week (num), MA(27), LAG(5), 
WILR(5), RSI(14), RSIS(32) 

Class 

IB1 
 

MA(25), LAG(5), WILRS(37), RSI(34) Class 

IBk 
-K 49 -W 10 -E -I -A 
"weka.core.neighboursearch.LinearNNSearch -A 
|weka.core.EuclideanDistance -R first-last|" 

price direction, day of month, month, WILR(20), WILR(38), 
WILRS(12) 

Class 

KStar -B 2 -M n day of week (nom), MA(34), ROC(28) Class 

ADTree -B 18 -E 7 
% price change, close price, day of month, day of week (num), 
WILR(35), WILRS(8), WILRS(23), RSIS(33) 

Class 

J48 -S -C 0.48 -M 39 
price direction, close price, day of week (num), LAG(7), WILR(20), 
WILRS(28), ROC(8) 

Class 

M5P -M 6 close price, MA(18), WILR(9), WILRS(39), RSI(23), ROC(38) % Change 

NBTree 
 

price direction, close price, day of month, MA(14), LAG(3), 
WILRS(14), RSI(10), ROC(28) 

Class 

REPTree -M 2 -V 0.001 -N 5 -S 5 -L 24 
% price change, close price, day of week (num), MA(2), MA(7), 
WILRS(6), WILRS(14), RSI(5) 

Class 

PART -B -M 10 -C 0.23 -Q 7 % price change, close price, WILR(8) Class 

WMT 

LeastMedSq -S 8 -G 4 day of week (nom), day of month, WILR(16) % Change 

IB1 
 

% price change, close price, day of week (nom), MA(15), LAG(4), 
RSIS(9), RSIS(14), RSIS(26) 

Class 

IBk 
-K 1 -W 12 -E -F -A 
"weka.core.neighboursearch.LinearNNSearch -A 
|weka.core.EuclideanDistance -R first-last|" 

day of month, RSIS(32), RSIS(37) Class 

ADTree -B 16 -E -2 close price, day of week (num), WILR(16), RSI(24), RSIS(6), ROC(7) Class 

M5P -M 43 -L 
% price change, close price, day of month, day of week (num), MA(7), 
WILR(20), RSI(22), RSIS(15) 

% Change 

REPTree -M 2 -V 0.001 -N 6 -S 10 -L -1 close price, WILRS(18), RSI(5) Class 

SimpleCart -S 3 -M 3 -N 6 -U -H -C 1.0 close price, day of month, ROC(5) Class 

ConjunctiveRule -N 5 -M 3.12 -P 3 -S 3 price direction, day of month, RSIS(35) % Change 

JRip -F 5 -N 9.39 -O 1 -S 7 price direction, close price, day of month, RSIS(25), ROC(9) Class 

M5Rules -U -M 14 
% price change, day of month, month, MA(26), WILR(2), WILRS(22), 
WILRS(32), ROC(7) 

% Change 

Ridor -F 5 -S 1 -N 10 -A 
% price change, close price, day of month, WILRS(11), WILRS(31), 
RSI(14), RSI(34), RSIS(23) 

Class 

XOM 

LinearRegression -S 1 -C -R 5.34E-8 month, WILR(28), RSI(30), ROC(1) % Change 

Logistic -R 0.1 -M 5 day of week (nom), day of month, WILR(27), ROC(9), ROC(19) Class 

RBFNetwork -B 4 -S 1 -R 5.58E-8 -M -1 -W 0.09 
month, WILR(16), WILR(30), WILRS(14), RSIS(35), ROC(5), 
ROC(19) 

% Change 
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KStar -B 4 -M a 
close price, day of week (nom), day of month, month, LAG(4), 
WILRS(31), RSI(17) 

Class 

ADTree -B 18 -E -1 -D close price, day of week (nom), WILR(25), RSIS(6), ROC(17) Class 

BFTree -S 5 -M 10 -N 7 -G -A -C 1.0 -P PREPRUNED 
price direction, day of month, day of week (num), MA(7), LAG(4), 
WILRS(25) 

Class 

J48 -S -R -N 3 -Q 1 -B -M 27 price direction, day of week (nom), WILR(24), WILR(35) Class 

ConjunctiveRule -N 3 -M 5.55 -P -1 -S 7 close price, month, WILRS(15), ROC(26) % Change 

DecisionTable 
-X 5 -I -R -S 
"weka.attributeSelection.RandomSearch -F 25.0" 

price direction, close price, day of week (nom), day of month, month, 
MA(17), MA(22), WILR(35) 

Class 

PART -B -M 10 -C 0.21 -Q 4 
close price, day of week (nom), day of month, month, LAG(5), 
WILR(40), WILRS(9), RSIS(10) 

Class 

Ridor -F 2 -S 1 -N 5 -A 
price direction, close price, day of month, month, MA(12), WILR(32), 
WILRS(9), ROC(33) 

Class 
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