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Resumo 

A qualidade microbiológica de água de consumo tem sido uma das grandes preocupações de 

fornecedores governamentais e privados. Sistemas de distribuição de água são complexos ambientes onde 

algas, bactérias, fungos e protozoários cohabitam. Muitos destes microrganismos são patogenicos ao 

homem. Uma vez no sistema de distribuição, microorganimos podem aderir às superfícies das tubulações 

e formar biofilmes. Biofilmes são comunidades microbianas nas quais seus constituintes apresentem 

características diferenciadas, por exemplo, maior resistência a fatores adversos como desidratação, altas 

temperaturas, condições oligotroficas e ação de biocidas. Fungos são conhecidos por habitarem diversos 

ambientes aquáticos. Sua presença em sistemas de distribuição de água está associada a problemas de 

bloqueio de tubulações, produção de metabólitos e mudanças em propriedades organolépticas como odor 

e turbidez, e consequentemente, os fungos estão ligados à perda da qualidade da água. Além disso, por 

conta da sua habilidade em aderir a superfícies, os fungos são capazes de crescer como biofilmes em 

diferentes materiais, inclindo as paredes das tubulações. O presente trabalho visou o estudo de biofilmes 

de fungos filamentosos em sistemas de distribuição de água. Para isto, técnicas de microscopia de 

fluorescência e fluorescent in situ hybridization (FISH) foram utilizadas pretendendo-se detectar, monitorar 

e caracterizar biofilmes de fungos filamentosos em condições reais e laboratoriais. Corantes e sondas 

fluorescentes específicos foram aplicados, i.e. Calcofluor White R2R, DAPI, FUN-1, e as sondas EUK516 

FUN1429. Microspheres Adhesion Assay, coloração com Cristal Violeta e MTT foram também utilizados. 

Adicionalmente, foi projetado um amostrador para formação de biofilmes in situ. Como resultados, foi 

observado que biofilmes de fungos filamentosos, quando comparados com sua forma planquitonica, 

possuem um comportamento diferenciado com relação à resistência contra agentes desinfectantes e a 

nívels de hidrophobicidade celular. Biofilmes de fungos filamentosos foram detectados em tubulações, 

amostradores e sistemas laboratoriais. Fungus filamentosos isolados de sistemas de água são capazes de 

formar biofilmes, apresentando caracteristicas morfológicas e fisiológicas diferenciadas. Em conclusão, 

fungos filamentosos são capazes de formar biofilmes sob diversas condições reais e laboratoriais. É 

provável que os fungos desempenhem um papel importante nas interações nos biofilmes em sistemas de 

água e, conseqüentemente, também na qualidade microbiológica da água. Assim, os fungos devem ser 

incluídos como membros consistentes dos biofilmes. Os resultados relatados neste trabalho representam 

novos conceitos na pesquisa micológica, e mais estudos na área podem levar a novas descobertas sobre a 

biologia dos fungos. 
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Abstract 

Microbial quality of drinking water has been one of the greatest concerns of governmental and privative 

water suppliers. Water distribution systems are complex environments where algae, bacterial, fungi and 

protozoa cohabit. Many of these microorganisms are pathogenic to human and are associated with loss of 

water quality. Once within a water distribution system, microorganisms can attach to pipe surface and form 

biofilms. Biofilms are microbial communities wherein theirs constituents present differentiate features 

when compared with their planktonic form, e.g. increased resistance against adverse factors such as 

dryness, high temperatures, oligotrophic conditions and biocides. Fungi are known to habit diverse aquatic 

environments. Their presence in water systems is associated with pipe blockage, produce of metabolites 

involved in organoleptic changes such as odour and turbidity, and consequently are linked with loss of 

water quality. Moreover, because of their ability to adhere to surfaces, fungi are able to grown as biofilms 

on different surfaces, including pipe walls. The present work aimed to study filamentous fungal biofilms in 

water distribution systems. For this, epifluorescence microscopy and fluorescent in situ hybridization (FISH) 

were applied intending to detect, monitor and characterise filamentous fungal biofilms in real and 

laboratorial water systems. Specific fluorescent dyes and probes were used, i.e. Calcofluor White R2R, 

DAPI, FUN-1, EUK516 and FUN1429 probes. Microspheres Adhesion Assay, Cristal Violet staining and 

MTT assay were also applied. Moreover, a device was designed for sampling fungal biofilms in situ. As 

results, was observed that filamentous fungal biofilms have differentiated behaviour concerning resistance 

against disinfectant and levels of cell hydrophobicity when compared with their planktonic form. 

Filamentous fungal biofilms were detected in replaced pipes, sampler devices and laboratorial water 

system. Moreover, filamentous fungi recovered from water systems were capable to form biofilms with 

specific morphological and physiological features. In conclusion, filamentous fungi are able to form biofilms 

under diverse real and laboratorial conditions. Fungi are likely to play an important role in microbial 

interactions within water biofilms and consequently in microbial water quality. Thus, fungi may be included 

as a consistent member of biofilms in drinking water systems. The results reported in this work represent 

new concepts in mycological research, and further studies in the area may lead to new insights in fungal 

biology.  
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 General Introduction 

 

1. General Overview 

 Access to potable water is a basic human right. Governmental and privative water agencies are 

constantly facing challenges to provide safe water free of hazards to human health, i.e. consistent with pre-

established parameters, including the microbiological ones. A water distribution system is seen as a 

complex ecosystem in which diverse microorganisms cohabit and are influenced by biotic and abiotic 

factors. Many of these microorganisms, including bacteria, protozoa, virus and fungi are pathogenic to 

human and are capable to survive after water disinfection. Moreover, microorganisms can also enter in the 

water distribution system through external pathways, e.g. mechanic failures in pipes. 

 Once there, microorganisms can attach to pipe surface and form biofilms. Biofilms are microbial 

communities developed on surfaces in which microorganisms are embedded in an extracellular polymeric 

matrix produced by themselves. Generally, the constituents of a biofilm present differentiate features when 

compared with their planktonic form, e.g. increased resistance against adverse factors such as dryness, 

high temperatures, oligotrophic conditions and biocides. Biofilms formed in water distribution systems are 

seen as a human health threat since they can harbour pathogenic microorganisms.  

 Many studies report the presence of bacteria such as Helicobacter pylori, Escherichia coli, 

Pseudomonas and Micobacterium within water biofilms. Because of their relevance as human pathogens, 

a lot of attention has been put on them and ex situ and in situ techniques have been developed and 

applied in this field. Despite awareness that biofilms are microbial communities, less attention was paid on 

others microbial constituents. Mycological studies have always detected filamentous fungi in diverse water 

systems including water distribution network, tap water, bottled water and ultra-purified water, but so far 

few studies were focused on fungal biofilm detection.  

 Fungi are well-known by their ability to decompose organic matter and to produce metabolites 

used in industry, e.g. enzymes. Fungi are eukaryotes, spore-producing organisms with absorptive nutrition 

and that usually produce filamentous branched somatic structures, known as hyphae that have ability to 

adhere to surfaces. Their presence in water systems is associated with pipe blockage, produce of 

metabolites involved in organoleptic changes such as odour and turbidity, and consequently are linked with 

loss of water quality. Additionally, some fungal species recovered from water are human pathogen and/or 

potential mycotoxin producers. Little is known about the role played by fungi in water systems and how 

their interaction with other microorganism influences biofilm formation.  

 Recently published data report studies in laboratorial biofilms formed by pathogenic fungi such as 

Aspergillus fumigatus, Candida spp., and fungi of industrial interest (i.e. enzyme producers) such as A. 
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niger. Fungal biofilm formation has also been report in historical monuments, historic window glass, 

sediments in rivers and lakes and acid mine drainage microbial communities. However, studies in water 

distribution systems have so far produced scarce published data. Thus, new insights and implementation 

of new methods are needed in this research field. 

 Fluorescence microscopy has become an essential tool in biofilm studies. Fluorescent staining, 

including fluorescent in situ hybridization (FISH), has provided great benefits in this area. Its use allows in 

situ biofilm detection and further nondestructive analyses that give information of biofilms architecture, 

metabolic activity and microbial diversity. Together with sampler device implementation, laboratorial 

methods and specific fluorescent dyes (e.g. fluorochromes and fluorescent labeled probes) may add crucial 

information about filamentous fungal water biofilms. 

 

2. Aims 

The aims of the present work are: 

1. The improvement and implementation of techniques to fungal water biofilm detection, viability and 

biomass quantification using fluorescent dyes in biofilms developed under real and laboratorial conditions; 

2. Study fungal water biofilm architecture, physiology, disinfectant resistance and hydrophobicity; 

3. The implementation of sampler devices in a water distribution system, fungal water biofilm detection 

under real conditions and in situ fungal identification using specific probes for Fluorescent in situ 

hybridization; 

4. The implementation of a flow-chamber reactor to study laboratorial fungal water biofilm formation under 

monitored conditions; 

5. Characterisation and identification of fungi recovered from water biofilms: biofilm kinetics formation and 

architecture. 

 

3. Framework 

This PhD thesis is composed by 8 chapters.  

 The Chapter 1 is composed by literature review including relevant and actual references giving a 

wide overview of key topics in biofilms, biofilms in water systems, fungi and fungal biofilms in water 

systems and common applied techniques in this research area. The following chapters are composed by 

the results achieved with laboratorial experiments using laboratorial and real water biofilms and discussion 

with current literature. 
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 The Chapter 2 reports drawbacks faced by researchers to assess filamentous fungi biomass. 

Hence, a methodology using image analyses was described intending to measure fungal biomass using a 

proper convertor factor and converting biovolume into biomass. This technique allows very little fungal 

biomass estimation and fungal biofilm biomass measurement in situ using specific fluorescent dye.  

 The Chapter 3 describes the effectiveness of sodium hypochlorite against spores and biofilms of 

Penicillium expansum. Fungal cell viability was assessed after treatment with disinfectant using FUN-1 and 

plate culture methods. Biofilms showed resistance against sodium hypochlorite and a higher resistance 

when compared with spores. FUN-1 is a rapid method to assess fungal cell viability when compared with 

plate culture method. 

 The Chapter 4 reports the use of contact angles measurement (CAM) and microsphere adhesion 

assay (MAA) to assess fungal hydrophobicity of Penicillium expansum and P. brevicompactum grown as 

solid culture, liquid culture and biofilms. Solid culture of both species were classified as hydrophobic but 

liquid culture and water biofilms showed different levels of hydrophobicity when MAA was applied. CAM 

showed to be more useful to assess hydrophobicity on solid cultures, and MAA was more proficient to 

assess directly the cells surface hydrophobicity and was useful for characterise different zones of 

hydrophobicity within the biofilm which may be involved in fungal ecological functions. 

 The Chapter 5 describes a flow-chamber reactor used to monitor fungal biofilms formation under 

monitored conditions. The model system enables simultaneous microscopy analysis of biofilms formed in 

situ and monitoring water parameters such as pH, free chlorine levels and temperature. Specific 

fluorescent dye was used for fungal biofilms detection. Fungal biofilm was observed mainly after 8 months 

on coupons. After 8 months of analyses the system was unset and the pipes and joints were removed and 

used for fungal isolation. The results indicate that time of exposure and free chlorine levels are important 

factors in fungal biofilm formation. Additionally, a total of 48 fungal isolates were recovered from biofilms 

on pipes and joints surfaces. Aspergillus spp., Cladosporium sp. and Penicillium spp. were the 

predominant fungi. 

 The Chapter 6 characterises six filamentous fungal strains recovered from biofilms formed in a 

flow-chamber reactor. Cristal Violet stain and MTT assay together with image analyses were used to 

investigate the capability of biofilm formation and to characterise its morphology and physiology. Although 

each fungus presented a different pattern of biofilm development, spore adhesion, monolayer and EPS 

production were observed in all fungal species and resemble biofilm kinetics currently described in 

literature. 
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 The Chapter 7 describes a sampler device that can be inserted directly into pipes within water 

distribution systems (WDS), hence exposing biofilms to conditions experienced in situ. Calcofluor White 

M2R staining and fluorescent in situ hybridization with morphological analyses using epifluorescent 

microscopy were used for fungal biofilm analysis. DAPI was also applied for bacterial observation. 

Filamentous fungal in biofilms were detected predominantly after 6 months on coupons exposed to raw, 

decanted water and at the entrance of the water distribution system. Algae, yeast and bacteria were also 

observed representing a high biodiversity. The sampling device, morphological examination and specific 

fluorescent dyes provided an in situ approach for monitoring filamentous fungal biofilm formation within 

WDS.   

 

Chapter 8 includes main conclusions and perspectives 

  

4. Scientific output 

Published papers in peer reviewed international journals 

Siqueira VM, Oliveira HM, Santos C, Paterson R, Gusmão N, Lima  (2011) Filamentous Fungi in drinking 

water, particularly in relation to biofilm formation. IJERPH - International Journal of Environmental 

Research and Public Health, (8): 456-469. 

Accepted paper in peer reviewed international journals 

Siqueira VM and Lima N (2011) Surface hydrophobicity of culture and water biofilm of Penicillium spp. 

Current Microbiology. 

Submitted paper in peer reviewed international journals 

Siqueira VM, Oliveira HMB, Santos C, Paterson RR, Gusmão NB, Lima N (2011) Biofilms from a Brazilian 

water distribution system are biodiverse and include filamentous fungi.  

Chapter of book 

Siqueira VM and Lima N. Efficacy of free chlorine against water biofilms and spores of Penicillium 

brevicompactum. In: Water contamination emergencies: monitoring, understanding and acting. Ulrich 

Borchers, K Clive Thompson (Org.). Cambridge: RSC Publishing, 2011, pp. 157-165. 

Poster presentations in international conferences 

Siqueira VM, Oliveira H M, Santos C, Paterson RR, Gusmão N, Lima N. Fungos nas águas de consumo: 

Qual a sua relevância? In: 26º Congresso Brasileiro de Microbiologia, Foz do Iguaçu, Paraná, Brasil, 2011. 
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image analysis. In: Microbiotec09, Trivolli Marina Hotel, Vilamoura, Portugal, 2009. 

Siqueira VM, Santos C, Lima N. Contaminantes e biofilmes fungicos presentes nos sistemas de 

distribuição de água de abastecimento publico. In: 25º Congresso Brasileiro de Microbiologia. Porto de 
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Chapter 1  

 

Literature Review  

 

1.1 Microbiology of drinking water 

Water covers seven tenths of the Earth’s surface and occupies an estimated total volume of 1.38 x 

109 km3. Most of this water occurs as oceans (96.1 % of global water); the remaining 3.9 % of water 

(including polar ice-caps) occurs mainly as polar ice and ground water. Non-polar surface freshwaters, 

including soil water, lakes, rivers and streams occupy approximately 0.0013 % of the global water (Sigee 

2005). Only c.a. 2.6 % of planet´s water is available as potential drinking water (Szewzyk et al. 2000).  

The European Union Council Directive 98/83/EC and the World Health Organization (WHO) state 

that drinking water is “free from any microorganisms and parasites and from any substances which, in 

numbers or concentrations, constitute a potential danger to human health”. Although the access to safe 

drinking water is essential to health and is one of the basic human requirements, it is estimated that 1.1 

billion people worldwide is deprived of it (WHO, 2000). Guideline limits for microbial and chemical 

parameters were created to achieve attainment of a comparable quality of drinking water in all countries 

belonging to the European Union (Council Directive 98/83/EC).  

Water quality is one great concern for water consumers and many problems in water distribution 

systems are microbial in nature. Primary and opportunistic pathogens are able to survive water treatment 

and disinfection and, consequently, they can be found trough the water distribution system, either as 

planktonic or biofilms assemblages (Wrigth et al. 2004). In developing countries, where access to clean 

water and sanitation are not the rule, the problem takes a higher dimension. Differently, in Europe and US 

is common each house be supplied with clean and treated water, what does not mean an elimination of 

potential microbial waterborne diseases. Nowadays pathogens cause contamination and diseases 

outbreaks even with modern technologies and an efficient treatment (Szewzyk et al. 2000); examples of 

waterborne outbreaks in 19 European countries were listed (WHO 2001). In US, from 1970 until 2006, a 

total of 833 outbreaks associated with drinking water were reported, resulting in 577,991 cases of illness 

and 106 deaths (Craun et al. 2010). In Brazil, from 1999 until 2008, 343 waterborne outbreaks were 

notified with 10 089 cases of illness and 8 deaths. Interestingly, in 234 of 343 outbreaks in Brazil the 

ethologic agent was not identified (www.portal.saude.gov.br). Generally the most threatening microbial 

risks are associated with ingestion of water contaminated with human or animal feces. Cabral (2010) 

published a review in which a general characterization of the most important bacterial diseases transmitted 

through water is presented. 
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 A distribution water system can be seen as a very complex environment in which diverse factors 

(e.g. pipe material, water flow, nutrients level, concentration of disinfectant,  temperature and pH) may 

interfere in the water microbiology (Berry et al. 2006). The idea of a drinking water system as an 

ecosystem becomes even more complex if all the others habitats surrounding it are considered (Szewzyk et 

al. 2000). Storage, end point and plumbing also contribute for the microbiological content (Wingender and 

Flemming 2004). 

Microorganisms in water distributions systems are not directly harmful to humans, however they 

may cause aesthetic (turbidity, odor), technical (biofouling) and health related (contamination with 

pathogenic microorganisms) problems (Monteil et al. 1999; Cabra and Pinto 2002; Flemming 2002; 

Paterson and Lima, 2005). Chlorine has been used as a popular disinfectant for controlling microbial 

growth in water but microorganisms may survive the disinfection process or may penetrate the water 

network following mechanical failures such as main breaks, faulty joints, vales or during network repairs 

and are able to attach to pipes and proliferate as biofilms (Momba et al. 2000). Biofilms are functional 

consortia of microorganisms (bacteria, fungi, algae, protozoa and viruses) and their formation on pipe walls 

are linked with microbial water problems such as increased resistance to disinfection and persistence of 

pathogens (Szewzyk et al. 2000). Water is an essential element for life, thus every effort should be made to 

achieve a drinking water quality as safe as possible.  

 

 

1.2 Biofilm – definition and basic concepts 

 

It is a wonderful time to work on microbial biofilms  

(O’Toole and Ghannoum 2003) 

  

In fact there has been an explosion of studies examining microbial biofilms in the last twenty years 

which have been accompanied by the development and improvement of the techniques that revolutionized 

our understanding of biofilms but, despite the several advantages brought about by the new techniques, a 

very simple question still remains: what is a biofilm? 

The term biofilm is self-explanatory but even for biofilm researchers its definition remains 

controversial for many reasons. For example, film semantically implies a continuous and relatively thin 

layer but many biological structures regarded as biofilms are neither continuous nor thin (Lewandowski 

and Beyenal 2007). Moreover, research on biofilms has developed into interdisciplinary work and scientists 
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involved are from different research fields what leads to individual judgments regarding the professional 

area. Consequently, it can be said that there are almost as many definitions as there are scientists working 

in biofilms field. Facing the problematic definition, Wimpenny (2000) listed the types and descriptions of 

microbial systems that are related to biofilms but as a result of these diverse definitions, still left 

divergences in the application of the terminology. 

Despite the difficulties in defining biofilm, and the diversity of pathways utilized to make a biofilm 

documented, the past decades has revealed common phenotypes conserved among biofilms. Thus, 

observing similarities among very different biofilms will likely teach us much. In this study, we use a simple 

and widely accepted definition which says that biofilms are microbial communities formed by 

microorganisms attached to a surface and enclosed in a matrix of extracellular polymeric substances 

(Costerson et al. 1995; Costerson 1999; Dolan 2002; Dolan and Costerson 2002; Stoodley et al. 2002; 

Harrison et al. 2005; Huq et al. 2008). As microbial communities, biofilms are assemblages of diverse 

species occupying the same, functional discrete, environment and have a complex level of organization 

with a distinctive structure, own activities and laws, which depend on the relationships between their 

constituents (Wimpenny 2000). 

 In general, for the development of a biofilm, the cell leaves its planktonic condition and attach to a 

surface and/or other cells within an exopolymeric matrix. In a biofilm, the structures of individual cells are 

not significantly altered, but the individuals become organized into a complex structure and display novel 

characteristics and phenotypes (Harding et al. 2009). The physical proximity of other cells promotes 

synergistic interactions and aid to microbial cells in numerous aspects of their life cycles. These benefits 

may include increased tolerance to chemical, biological and physical stresses, efficient capture of 

nutrients, enhanced cell to cell communication and colonization of host tissues (Lewis 2001; Mahmoud 

and O’Toole 2001). A typical bacterial biofilm development model can be described in five main stages: (1) 

adsorption, association or initial attachment of a single cell to a surface, (2) adhesion, (3) microcolony 

formation, (4) maturation and (5) dispersal (Figure 1.1). 

 The third stage of biofilm development in which cells form microcolonies is characterized by the 

production extracellular polymeric substances (EPS). EPS can represent 50-90% of the total organic matter 

of biofilms and are responsible for binding cells and other particulate materials together (cohesion) and to 

the surface (adhesion), i.e. providing the structural support for the biofilm maturation (Allison 2003). 

Polysaccharides are characteristic components of EPS but its chemistry is complex and in general also 

comprises proteins, nucleic acids, lipids, phospholipids and humic substances. Although polysaccharides 

have been well studied, the literature suggests a large variety, but uncharacterized, of components 
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produced by different species under different growth conditions (Sutherland 2001). Beyond mechanical 

stability, EPS protect biofilm against adverse conditions and biocides and also permit the development of 

microconsortia, concentration gradients, retention of extracellular enzymes, convective mass transport 

through channels, easy horizontal gene transfer, a matrix for exchange of signaling molecules and light 

transmission into the deeper layers of the biofilm structure (Flemming 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biofilm formation at the interface between a solid substratum and a liquid is a common 

phenomenon in natural, medical and industrial environments. In water distribution systems it is estimated 

that 95% of microbial biomass is in biofilms (Momba et al. 2000) thus biofilms are considered a main 

reservoir of pathogens and a great threat to safe drinking water. The understanding of biofilms in water 

distribution systems will provide us important knowledge in microbial ecology of water distribution systems 

and insights to deal with problems related to them.   

 

1.3 Biofilms in water distribution systems 

  

The occurrence of bacteria in drinking water has been reported since the 30´s. Adams and 

Kingsbury (1937) showed that although bacteria were present in finished water, they seemed to come 

from nowhere because they could not be detected in the point of entry. Intriguingly these bacteria were 

multiplying in the distribution system and only later with the advance of scanning electron microscope 

Figure 1.1 Illustration showing the development of bacterial biofilm as a five-stage process: (1) adsorption, 

association or initial attachment of a single cell to a surface, (2) adhesion, (3) microcolony 

formation, (4) maturation and (5) dispersal (Stoodley et al. 2002). 
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(SEM) complex communities of microorganisms were detected on pipe surfaces (Ridgway and Olson 1981; 

Schoenen and Scholer 1985). These findings make researchers realize that water disinfection was merely 

inactivating planktonic bacteria and that some bacteria were able to survive treatment process and were 

becoming adapted to the distribution system environment. Thus, monitoring for microbial water quality in 

the water distribution system may be difficult because significant microorganisms can be introduced after 

treatment. Additionally, growth of bacteria on pipe walls, i.e. biofilms, also can provide a shelter for 

microorganisms (EPA 1992). 

Nowadays the focuses of microbial water quality studies still remain on monitoring planktonic 

microorganisms, even though it is long since known that in water systems the majority of microorganisms 

live together as biofilms (Costerson et al. 1987). In a water distribution system, biofilms are composed by 

microorganisms which survived water disinfection or entered into the distribution system through mechanic 

failures. These microorganisms provide a seed which multiply in the distribution system when the right 

conditions for growth are given. These conditions include factors such as the disinfectants used and the 

maintenance of a residual concentration in the system, the resistance of microorganisms to disinfectants, 

the nature and concentration of biodegradable compounds in the treated drinking water and the material of 

pipe used in the system (Momba et al. 2000). Others factors which influence biofilm formation and 

development are listed in Table 1.1.  

 

Table 1.1 Surface, water phase and call variables in water biofilm formation and development (adapted 
from Dolan et al. 2002). 

Surface Texture or roughness, hydrophobicity, conditioning film 

Water phase Water flow/stagnation, pH, temperature, pressure, oxygen supply and demand Incident light, 
presence of residual disinfectants and nutrients availability 
 

Cell Cell surface hydrophobicity, extracellular appendages, extracellular polymeric substances, 
signaling molecules and surface-associated polysaccharides or proteins 

 

 

Investigations in water systems biofilms have shown that these communities are usually composed 

by a heterogeneous microbial assemblage. The microbial composition of a biofilm is influenced many 

factors and may vary conforming the local. Generally, microbial characterization reveals the existence of a 

diverse and complex community wherein microorganisms interact and are influenced by the surrounding 

environment as well (Keevil et al. 1995; Wimpenny et al. 2000) (Figure 1.2). Although many studies aim to 

describe biofilms structure and composition, little is known about predominant species and primer and 
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secondary colonizers, and important features for biofilm succession remain not understood (Kerr et al. 

2003). 

In fact, most of microorganisms in a biofilm are not directly harmful for human but biofilms 

represent a threat for human health since they can act as supports for stickiness, accumulation and 

persistence of others microorganisms (Paris et al. 2009). Biofilms can also act as refuge for bacteria and 

protect them against disinfectants (Berry et al. 2006). Many studies have report biofilms harbouring 

potential pathogenic bacterial such as Pseudomonas, Mycobacter, Campylobacter, Klebsiella, Aeromonas, 

Legionella spp., Helicobacter pylori and Salmonella typhimurium (Park et al. 2001; Azevedo et al. 2006; 

Lehtola et al. 2007; Helmi et al. 2008).  

 

 

 

 

 

 

 

 

 

 

 

Biofilms in water distribution systems are also related with aesthetic problems, e.g. changes in 

taste, odour and colour of water. Filamentous bacteria such as Actinomyces, Nocardia, Streptomyces and 

Arthrobacter and certain filamentous fungi have been linked with taste and odour complains (Olson and 

Nagy 1994; Paterson et al. 2007). Biofouling, i.e. undesirable accumulation of biotic deposits on a surface, 

may cause corrosion in cast iron pipes and may be induced or enhanced by microbial activity (Flemming 

2002). Therefore, for water companies and industries, biofouling can represent losses in billion extents.  

Control strategies have been applied to prevent and eliminate unwanted biofilms. Water quality 

control strategies are mainly based on the prevention of biofilm formation by regular cleaning and 

disinfecting before microorganisms attach firmly to surfaces (Simões et al. 2006). The identification of 

materials that do not promote or can even suppress biofilm formation is also applied as a preventive 

strategy (Kerr et al. 2003). In food industry, the use of enzyme-based detergents as bio-cleaners is seen a 

viable option to overcome problems caused by biofilms (Augustin et al. 2004). The use of bacteriophages 

 

Figure 1.2 Structure and microbial composition of water biofilm (Keevil et al. 1995). 
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as control strategy has also been studied (Curtin and Donlan 2006; Sillankorva et al. 2008), although 

relatively little information is available on the action of bacteriophages on biofilms and how biofilm 

composition and environmental factors influence bacteriophages actions (Sillankorva et al. 2004; 

Sutherland et al. 2004). More detailed information about biofilm control strategies can be accessed in a 

recent review given by Simões et al. 2010. 

In water distribution systems, biofilms are composed by different microbial species functioning in a 

consortium, and the existence of multiple interspecies interactions may influence biofilm initial stages and 

subsequent development. The simple production of a metabolite, for example, can interfere in biofilm 

development. Moreover, mixed species biofilms may be thicker and more stable than single species 

biofilms, what further influences their susceptibility to biocides (Elvers et al. 2002).  

 

 

1.4 Fungi and fungal biofilms in water distribution systems 

 

1.4.1 Fungi  

Fungi are a ubiquitous and diverse group of organisms belonging to the kingdom Fungi which was 

firstly considered as the fifth kingdom by Whittaker (1959). According to the most recent classification this 

kingdom comprises one subkingdom, seven phyla, ten subphyla, 35 classes, 12 subclasses, and 129 

orders (Hibbett et al. 2007). It has been estimated that 1.5 million species exist worldwide and about only 

120 000 species have been described to date (Kirk et al. 2001). Currently, novel fungi continue to be 

isolated, such as the high diverse group recently named “cryptomycota” (Jones et al. 2011). 

Despite difficulties do define the limits of the group, mycologists have defined fungi as “eukaryotic, 

spore-producing, achlorophyllous organisms with absorptive nutrition that generally reproduce both 

sexually and asexually and whose usually filamentous branched somatic structures, known as hyphae, 

typically are surrounded by cell walls” (Alexopoulus et al. 1996). Based on their lifestyle, fungi are 

characterized by heterotrophic nutrition and cosmopolitan distribution (Kendrick 1992). As a matter of 

didactic and a practical approach to classification, fungi have been divided into groups based on their 

morphology, i.e. filamentous fungi (or moulds), yeasts and mushrooms (Figure 1.3). 

As a diverse and dynamic group, fungi are involved in many activities that affect human both in a 

good or bad way. In general, a single most important role that fungi play is not specifically identified yet but 

fungi are the most important on Earth agent of decay (Alexopoulus et al. 1996) and play a predominant 

role in recycling organic matter in the environment. Fungi are often observed on decaying foodstuff on 
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which some fungi produce toxins (mycotoxins); many of them are plant and human pathogens.  In 

addition, fungi are used to produce commercial products such as antibiotics (e.g., penicillin), organic acids 

(e.g. citric acid), industrial alcohol (e.g. biofuel) and enzymes (e.g. amylases). Moreover, fungi are also 

used in food industry for the production of a diverse range of important foodstuffs such as bread, beer, 

cheese, meats, and soy sauce (Paterson and Lima 2005).  

Some fungi known as true aquatic fungi (e.g. Chytridiomycota and Zygomycota) are primarily 

adapted to aquatic environments and are known to produce spores (zoospores) morphologically adapted to 

disperse in running waters (Wurzbacher et al. 2010). Terrestrial fungi generally need a solid substrate for 

dispersal of their spores and are primarily adapted to environments such as soil, organic material and air, 

and anything in contact with air (Kirk et al. 2001). On the other hand, terrestrial fungi are often passively 

introduced into lakes, rivers and streams. Species of Aspergillus and Penicillium, well-known terrestrial 

fungi, are among the most common fungal isolates from freshwater and marine environments. Hence 

there may be no simple and exclusive division of fungi into aquatic and terrestrial types (Park 1972). 

Water distribution systems are aquatic environments where fungi can enter, survive and proliferate, 

although water networks are considered an ‘unnatural’ habitat for them (Hageskal et al. 2009). Among the 

huge diversity of fungi already isolated from water distribution systems, opportunistic pathogens, e.g., 

Cryptococcus spp. and Aspergillus fumigatus must receive special attention, mainly in locals such as 

hospital where water may serve as a transmission route for fungal infections (Anaissie and Costa 2001). 

Moreover, because of absorptive nutrition mode, secretion of extracellular enzymes and apical hyphal 

growth, fungi are especially adapted for growth on surfaces (Jones 1994), therefore forming biofilms on 

pipe walls and contributing to loss of water quality. 

 

 

 

 

 

 

 

 

 

1.4.2 Fungi in drinking water  

A drinking water distribution system provides a habitat for microorganisms wherein, even after an 

efficient disinfection, bacteria, fungi, viruses, protozoa and algae may be present. Certain microorganisms 

Figure 1.3 Fungal groups based on morphological characteristics: filamentous fungus (A) and 
mushroom (B). 

A B 
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are well known water contaminants but bacteria are probably the most frequently studied group of 

microorganisms with respect to the quality of drinking water. The main reason for the infrequent discuss 

on fungi as pathogenic microorganisms in water lays on the fact that the consumption of fungal 

contaminated drinking water does not lead to acute disease (Hageskal et al. 2009). Although significance 

of fungi in drinking water remains underestimated, fungi play an important role in water quality since a 

water distribution system is a very complex environment in which abiotic and biotic factors may interfere in 

water microbiology. Moreover, fungi are able to produce compounds associated with organoleptic 

problems, i.e. unpleased odor and taste (Paterson and Lima 2005). 

Despite fungi have not been directly associated with water contamination problems, in the last 

decade several studies have contributed to increase our knowledge on the occurrence of fungi in water 

systems (Table 1.2). In general, the results show that the recovery of fungi varies between 7.5–89 % 

positive samples, and that there is a considerable variation among the levels of fungi and in the samples. 

Moreover, fungi have been recovered from many types of water, e.g. raw water, treated water, heavily 

polluted water, distilled or ultra-pure water and bottled drinking water (Hageskal et al. 2009). The results of 

investigations show in common a wide diversity of fungi isolated and among them potentially pathogenic, 

allergenic, and toxigenic species. Aspergillus fumigatus is one of the most significant fungal pathogenic 

species causing infections in immunocompromised patients in hospitals and has been isolated from 

municipal water distribution system (Grabińska-Łoniewska et al. 2007) and hospitals (Warris et al. 2001; 

Hayette et al. 2010) indicating that water may disseminate harmful fungal species to private homes and 

hospitals (Kelley et al. 2003). 

Since potentially pathogenic fungi have emerged as a leading cause of hospital-acquired infections 

(Anaissie et al. 2003), water in hemodialysis centers has also received special attention. At hemodialysis 

units, immunocompromised patients are in constantly contact with dialysis water which comes direct in 

contact with the bloodstream with the only interposition of a semipermeable artificial membrane 

(Pontoriero et al. 2005). Studies have shown that fungi are constantly isolated from water used for 

haemodialysis procedures, alerting the need of international standards monitoring not only for bacteria, but 

also for fungi (Arvanitidou et al. 2000; Pires-Gonçalves et al 2008). 

In such a complex environment where bacteria, fungi, viruses and protozoa cohabit, fungal 

secondary metabolite can be produced as a response for these constant microbial interactions. Penicillium 

and Aspergillus are well known mycotoxin producers (Paterson and Lima 2005) and have been often 

isolated from drinking water (Table 1.2).  For example, Paterson et al. (1997) reported aflatoxin produced 

by Aspergillus flavus in water from a cold water storage tank; Kelley et al. (2003) concluded that 
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mycotoxins and other metabolites can be produced by fungi in water; Criado et al. (2005) detected citrinin 

produced by Penicillium citrinum in mineral bottled water; Paterson et al. (2007) reported the production 

of zearalenone by Fusarium graminearum. Although mycotoxins produced in water may be extremely 

diluted and represent a minor concern, their concentrations may increase and may become a hazard to 

human health especially when water is stored in cisterns, reservoirs or even in bottles, for prolonged 

periods (Hageskal et al. 2009). 

The diverse performances applied for analysis represent a critical point with respect to the study of 

fungi in water (Hageskal et al. 2009). Culture depending methods, that are time consuming and limited to 

specific culture media, are often used but yet there is no international standard method described, neither 

an acceptable or normal level of fungi established. So far the only exception is Swedish water regulation 

authority (Anon. 2003) that includes specifications on fungi.  Membrane filter techniques are mostly 

employed (Table 1.2), but the wide range of applying volumes may result in different detection limits of 

fungi in the water. In addition, different culture media, temperatures and time of incubation will 

consequently result in recovery of different genera and species. Problems related to the quantification and 

identification of filamentous fungi make more difficult the comparisons between the different studies and 

may explain much of the variation in the results obtained (Hageskal et al. 2009).  

Hageskal et al. (2009) published an extensively review with a complete overview about the study of 

fungi in drinking water and concluded that (1) fungi are relatively common in water distribution systems, 

(2) potentially pathogenic, allergenic and toxigenic species are isolated from water in high concentrations, 

(3) the main limitations of fungal water studies lie within the methodology, (4) the methods for analyzing 

fungi in drinking water should be standardized and (5) fungi may influence the water quality. 
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Table 1.2 Filamentous fungi recovered from diverse water supplies in different countries 
Country, local, year Time Water analysed Main isolation 

method 

Most frequent 

fungal isolates 

Authors 

United Kingdom, UK, 
1996 

Autumn and Spring Surface water and 
network 

Membrane filtration, 
direct plating and 
Bating 

Aspergillus, Cladosporium, Epicoccum, 
Penicillium and Trichoderma 

Kinsey et al. 
1999 

Greece, Thessaloniki, 
1998 
 

Unique collect with 
126 potable water 
samples 

Tap water (hospital and 
community) 

Membrane filtration Penicillium, Aspergillus and Acremonium Arvanitidou et al. 
1999 

Greece, haemodialysis 
units, 1998 
 

Unique collect with 
255 samples 

Municipal water supplies 
of haemodialysis centres 

Membrane filtration Penicillium and Aspergillus Arvanitidou et al. 
2000 

Norway, Oslo, 1999 6 months National Hospital 
University of Oslo 

Membrane filtration Aspergillus spp., Aspergillus fumigatus 
and Trichoderma sp. 
 

Warris et al. 
2001 

Germany, North Rhine-
Westphalia, 1998/9 

12 months Drinking water Pour-plating Acremonium, Exophiala, 
Penicillium and Phialophora 
 

Göttlich et al. 
2002 

Turkish, Istanbul, 

2005  

Unique collect with a 
total of 100 samples 

Water system of a 
hospital 

Membrane filtration Penicillium spp., Aspergillus spp. and 
Acremonium spp. 

Hapcioglu et al. 
2005 

Portugal, Braga, 
2003/4 

12 months 
 

Tap water Membrane filtration Penicillium and Acremonium Gonçalves et al. 
2006 

Brazil, Maringá, 2007 Unique collect with a 
total of 60 samples 
 

Tap and bottled mineral 
water 

Membrane filtration Yeast and filamentous fungi Yamaguchi et al. 
2007 

Norway, 14 networks, 
2002/3 

December, June and 
September 
 

Drinking water (surface 
and groundwater) 

Membrane filtration Penicillium, Trichoderma and Aspergillus Hageskal et al. 
2007 

Poland, Warsaw, 2007 2 years Municipal water supply 
system 

Membrane filtration Aspergillus nigerI, Aspergillus fumigatus Grabińska- 

Łoniewska et al. 
2007 

Brazil, São Paulo, 
2008 

3 months Water system of a 
Hemodialysis centre 

Membrane Filtration Candida parapsilosis, Fusarium spp. and 
Trichoderma spp. 

Pires-Gonçalves 
et al. 2008 
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Table 1.2 Continuation      
Pakistan, Karachi, 
2007 

Unique collect with a 
total of 30 samples 
 

Water and fruit juice Direct plating Aspergillus niger and A. clavatus Nazim et al. 
2008 

Nigeria, Calabar, 2009 3 months Borehole and sachet  
water 

Membrane Filtration Aspergillus, Rizopus, Fusarium and 
Penicillium 
 

Okpako et al. 
2009 

Portugal, Lisbon, 2009 4 months Surface water, spring 
water, and groundwater 
 

Membrane Filtration Aspergillus, Cladosporium, Penicillium Pereira et al. 
2009 

Austrália, Queensland, 
2007/8 

18 months Municipal water Membrane Filtration Cladosporium, Penicillium, Aspergillus 
and  Fusarium 

Sammon et al. 
2010 

Brazil, Recife, 
2009/10 

5 months Water treatment station 
and tap water 
 

Membrane Filtration Penicillium, Aspergillus and Phoma Oliveira 2010 

Belgium,  Liège, 2010 4 months Tap water of the 
University Hospital of 
Liège 

Membrane Filtration Aspergillus fumigatus and Fusarium spp. Hayette et al. 
2010 

Iran, Sari,  2011 1 year 4 universities hospitals Membrane Filtration Aspergillus, Cladosporium, Penicillium Hedayati et al. 
2011 
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1.4.3 Filamentous fungal biofilms  
 
 Bacterial and yeast biofilms have been greatly studied in the last twenty years (Chandra et al. 

2001; Kumamoto and Vinces 2005; De Beer and Stoodley 2006; Walker and Marsh 2007; Shi and Zhu 

2009). Consequently, there are well-defined models, criteria and phenotypes for characterizing bacterial 

and yeast biofilms. On the other hand, a lack of information about filamentous fungal (ff) biofilms still 

remains, tough ff are extremely adapted to grow on surfaces (Jones 1994).  

 Indeed, the term “biofilm” is rarely applied to ff but there have been several descriptions indicating 

that ff grow as biofilms in different medical, environmental and industrial settings (Anaissie et al 2003; 

Gutierrez-Correa and Villena 2003; Mowat et al. 2007; Mowat et al. 2008). Harding et al. (2009) proposed 

criteria for biofilm formation by ff which are grouped in (1) structural features such as complex aggregated 

growth, surface-associated growth of cells and secreted extracellular polymeric matrix and (2) altered gene 

expression resulting in phenotypic changes that include enhanced tolerance to antimicrobial compounds or 

biocides changes in enzyme or metabolite production and/or secretion physiological changes. The reports 

above mentioned demonstrate that the structural and phenotypic criteria can be fulfilled by some 

filamentous fungi.  

 Based on already published descriptions for ff and drawing from bacterial and yeast models, 

Hardling et al. (2009) proposed a preliminary model for ff biofilm formation (Figure 1.4) in which biofilm 

development follows six main steps including: 

• Propagule adsorption: deposition of spores or other propagules such as hyphal fragments or 

sporangia; 

• Active attachment to a surface: includes secretion of adhesive substances by germinating spores 

and active germlings; 

• Microcolony formation: production of a polymeric extracellular matrix that allows the growing 

colony to adhere tenaciously to the substrate;  

• Initial maturation: formation of compacted hyphal networks or mycelia and hypha–hypha adhesion 

and the formation of water channels via hydrophobic repulsion between hyphae or hyphal bundles; 

• Maturation: it is characterized by the formation of reproductive structures; 

• Dispersal or planktonic phase: involves spore dispersal or release, or the dispersal of biofilm 

fragments. 
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 An investigation in Aspergillus niger biofilms and pellets showed that these types of growth have 

two main structural differences: only biofilms exhibited surface heterogeneity and interstitial voids with well-

defined channels. Other differences include the growth direction, i.e. biofilm growth was mainly vertical, 

and a specific biomass distribution as well (Villena et al. 2010). This same work reported that structural 

differences were associated with a differential physiological behavior regarding enzymatic production. 

 Compact hyphal balls of Aspergillus fumigatus were characterized as biofilms once they presented 

production of an extracellular polymeric matrix, differential gene expression, and differential sensitivity to 

antifungal drugs (Beauvais et al. 2007; Mowat et al. 2008). Increased resistance against biocides is one 

characteristic often described for biofilms, and several studies have been carried out to evaluate the in vitro 

susceptibility of pathogenic fungal biofilms (Jabra-Rizk et al. 2004; Bonaventura et al. 2006; Seidler et al. 

2008).  

 In environmental studies, ff biofilm descriptions have been reported as well. For example, in 

historical monuments ff biofilms was described forming complex consortia with cyanobacteria and algae 

resulting in bioweathering of the substrata and thus causing biodeterioration (Grbić et al. 2010). An 

investigation in microbial communities on the surfaces and within the painting layers of mural paintings of 

a church showed that the main biofilm formers were microscopic fungi belonging to the genera 

Acremonium, Aspergillus, Cladosporium and Fusarium (Gorbushina et al. 2004).  Müller et al. (2001) also 

described microbial colonization of the surface of historic glass panels aging from 30 to 600 years and 

found a heterogeneous colonization with ff as the dominant group. Phylogenetic analysis revealed that in 

acid mine drainages biofilms the majority of the sequences belonged to fungi (Baker et al. 2009). All these 

reports have in common natural ff biofilm growing in oligotrophic environments, showing high tolerance 

 

Figure 1.4 Ff biofilm formation model: (i) adsorption, (ii) active attachment, (iii) microcolony I (germling 

and/or monolayer), (iv) microcolony II (mycelial development, hyphal layering, hyphal 

bundling), (v) development of the mature biofilm, and (vi) dispersal or planktonic phase 

(Hardling et al. 2009). 
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against adverse factors (e.g. temperature and dryness), and intimate interaction with other microorganisms 

such as bacteria and algae.   

 Understandings of ff biofilm development, dynamics and interactions require further research for a 

better clarification about this naturally occurring growth form, thereby its impact and role in medical, 

industrial and environmental areas. 

 

 

1.4.4 Filamentous fungal biofilms in water systems 

 
 Although filamentous fungi have been commonly recovered from drinking water, and are often 

listed as integrant of microbial water biofilms (Kerr et al. 2003), ff biofilms in drinking water system have 

been disregarded, and the focus of most research have been put on bacterial biofilms, especially on those 

linked with water-related illness (Huq et al. 2008). Drinking water systems are undoubtedly complex 

environments wherein bacteria, fungi, protozoa, viruses and algae cohabit and interact. Each 

Table 1.3 Study of filamentous fungal biofilms in water systems. 
Country Material age    Origin  Main methods 

applied 

Fungal 

components 

Authors 

Brazil 30-60 days Cooling water 
system 

 

SEM Filamentous fungi Lutterbach and 
França 1996 

UK - Flowing water 
processing tanks 

Modified Robbins 
Device; SEM 

 

Fusarium solani, 
Fusarium oxysporum 

and bacteria 
 

Elvers et al. 
1998 

USA 3 months Municipal water 
distribution System 

 

Light microscopic; SEM; 
direct inoculation 

Aspergillus spp. and 
Penicillium spp. 

Doggett 2000 

Portugal - Potable water up-
flow laboratorial 

reactor 
 

FISH; Calcofluor 
staining 

Eukarya and 
filamentous fungi 

Gonçalves et al. 
2006 

France 7 – 10 months Nancy’s drinking 
water network 

Flow chamber; optical 
microscopy 

 

Filamentous fungi 
biofilms 

Paris et al. 
2009 

Poland 160 days Tap water SEM Filamentous fungi Traczeweska 
and Sitarska 

2009 
 

Australia 7-26 months Municipal Water 
Distribution System 

Calcofluor, DAPI; SEM Filamentous fungi Sammon et al. 
2011 

      
Brazil - Municipal Water 

Distribution System 
 

FISH; Calcofluor 
staining; FUN-1 

Eukarya and 
filamentous fungi 

Siqueira et al. 
2011 
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microorganism plays its own roles and should not be underestimated, either as a potential threat to human 

health or as functional part of this unique ecological niche. Despite the undervalued participation of 

filamentous fungal biofilms in drinking water microbiology, a few reports have been published (Table 2.3). 

Based on these data, it would be reasonably to include filamentous fungi in biofilm illustration as an 

integrant of this microbial community (Figure 1.5). 

 

  

 

 

 

 

 

 

 

 The study of biofilms in drinking water systems is prone to errors since the main drawbacks in this 

area are related to the variation in scientific methodology (Berry et al. 2004; Hageskal et al. 2009). Others 

features such as representativeness of samples, heterogeneity of environment and sort of techniques 

applied must be taken into consideration (Figure 1.6). For example, different source of water and variable 

time of exposure are commonly find in studies of ff biofilms in water systems (Table 1.3), and comparisons 

between results become difficult.  Additionally, in water networks the collection of pipes is not easy since it 

would be necessary their removal; consequently in situ approaches are scarce. Pilot systems in laboratory 

are used instead.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Microbial heterogeneity and architectural structure of water biofilm. 

Filamentous fungi 
Amoebae 

Bacterial Microcolonies 

Water channel 

Algae 

Surface 

Figure 1.6 Drawbacks in microbial studies of water distribution systems.  

Microbiology of water 
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 Table 1.4 gives examples of common techniques and their main characteristics applied for 

detection of planktonic and biofilm in water distribution systems.  

 

 

 

1.5 Methods to study fungal biofilms 

 

 Research on biofilms is an interdisciplinary work in which researchers from different areas are 

involved. The field of interest will determine the specific approaches to be applied and may include 

microscopical, microbiological, molecular biological, (bio)-chemical and/or physical methods. The following 

scheme (Figure 1.7) summarizes research fields and techniques applied in biofilm studies. Is beyond our 

objectives give a detailed description of each technique, thus the following text describe only the 

techniques used in this work.  

 

 

 

 

 

 

 

Table 1.4 Common techniques applied for studies in microbiology of water distribution systems. 
          Techniques 

Characteristics Water samples Pipe sections In situ sampler Laboratorial 

devices 

Representativeness Variable volumes; not 

representative when 

in small volumes; only 

cultivable 

microorganisms 

Good representative of 

pipes material and water 

quality 

Good representative of 

pipes material; needs a 

long exposure time  

Represents only 

one point of the 

water network 

Availability and cost Inexpensive  Available only when are 

replaced 

Cheap and always 

available; doesn’t interfere 

in the water network 

 

Relatively 

inexpensive 

Degree of 

contamination 

Unlikely to be 

contamined during 

transport and sample 

 

Easily to be contamined 

during transport and 

sample 

 

Unlikely to be contamined 

during transport and 

sample 

 

Unlikely to be 

contamined during 

transport and 

sample 

 

Physical challenge  Heavy when in large 

volumes 

Easy to handle Easy to handle Easy to handle 



24 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESEARCH FIELDS 

BIFOULING 

Biofilms architecture 

and function 

BIOCORROSION      BIODEGRADATION 

Community composition, metabolic activity 

and regulatory systems 

ECOLOGY 

Pathogenesis and 

hygienic relevance 

BIOFILMS 

ANALYTICAL METHODS 

Molecular  

techniques 

 
DGGE 
FISH 
GFP 
Immunoassays 
PFGE 
PCR 
 

Separation 

techniques 

 
CE 
Extraction 
FFF 
GC 
LC 
SEC 
 

Detectors 

 
Atomic spectrometer 
Electrochemical 
detectors 
Mass spectrometer 
Optical detectors 
 

 

Surface and interface 

characterizing techniques 

 
AFM 
CLSM 
IR and ATR-IR- spestroscopy 
Photoacoustic spetroscopy 
Reflectance spestroscopy 
NMR 
SEM 

Spectrometry 

AAS, fluorescence spectrometry and spectrophotometry 
 

Microsensors 

Eletrochemical microsensor and Fiber-optic microsensors 
 

Figure 1.7 Research fields and analytical techniques applied in biofilm research (Denkhaus et al. 2007). 

AAS atomic absorption spectrometry, AFM atomic force microscopy, ATR attenuated total reflectance, CE 

capillary electrophoresis, CLSM confocal laser scanning microscopy, DGGE denaturing gradient gel 

electrophoresis, FFF field-flow fractionation, FISH fluorescent in situ hybridization, GC gas electrophoresis, 

GE gel electrophoresis, GFP green fluorescent protein, IR infrared, LC liquid chromatography, NMR 

nuclear magnetic resonance, PCR polymerase reaction, PFGE pulsed filed gel electrophoresis, SEC size 

exclusion chromatography, SEM scanning electron microscopy, ST XM scanning  transmission X-ray 

microscopy 
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1.5.1 Fluorescence microscopy and fluorochromes 

 

 Fluorescence is a property of some atoms and molecules to emit light at longer wavelengths after 

absorbing light of a particular and shorter wavelength. In a fluorescence microscope, the specimen is 

illuminated with light of short wavelength, e.g. ultraviolet light. Part of this light is absorbed by the 

specimen and re-emitted as fluorescence (Herman 1998). The key components of fluorescence 

microscopy include an excitation light source, wavelength selection devices (a set of well-balanced filter 

combinations), objectives and detectors. 

 Fluorescence microscopy has become an essential tool in biology science as it has attributes that 

are not readily available in other optical microscopy techniques. The use of different fluorochromes has 

made it possible to identify cells and submicroscopic cellular components with a high degree of specificity. 

The fluorescence microscope can reveal the presence of a single fluorescing molecule. In a sample, 

through the use of multiple staining, different probes can simultaneously identify several target molecules 

(Lichtman and Conchello 2005). 

 Fluorochromes (or fluorescent dyes) are molecules that are used by virtue of their fluorescent 

properties. Their efficiency as fluorescent molecules and their wavelength of absorption and emission 

depend on the more external electron orbitals in the molecule. When fluorochomes absorb light energy, 

alterations in the vibration, electronic and rotational states of the molecule can occur. This energy 

sometimes moves an electron into a different orbital, an “excited state” is set and fluorescent is emitted 

(Lichtman and Conchello 2005). Many organic molecules have intrinsic fluorescence (i.e. autofluorescence 

or primary fluorescence). Secondary fluorescence represents the emission produced after a molecule is 

combined with a primary fluorescent molecule (Altemüller and van Vliet-Lanoe 1990). Few 

autofluorescence molecules are useful for specific labeling in biological systems; synthetized compounds 

have been more often applied. 

 Fluorescent staining has provided great benefits for biofilm research. The use of fluorescent dies 

allows nondestructive analyses and gives information of several important characteristics of biofilms; 

architecture, metabolic activity and microbial diversity can be assessed in a same biofilm.  The main 

characteristics and applications of the fluorescent dyes used in this work are listed in the following topics. 

 

 

1.5.2 Calcofluor White M2R 

 Calcofluor White M2R (CW) (4,4’-bis[4-anilino-6-bis(2-ethyl)amino-s-triazin-2-ylamino]-2,2’-disulfonic 

acid) is a well-known fluorescent brightener and since the early 1940s has been used in the paper, textile, 
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and related industries as agents to whiten and to prevent “yellowing” of papers and fabrics (Zollinger 

1991). CW binds to β(1-3) and β(1-4) polysaccharides, such as found in cellulose and chitin, and when 

excited with ultraviolet (UV) fluoresces with an intense bluish/white color (Harrington and Hageage 2003). 

Absorption spectra for aqueous solutions of CW show absorption over the range 300 to 412 nm, with an 

absorbance peak at 347 nm, i.e. the maximum excitation and fluorescence occurs with UV light.  

CW is a symmetric molecule with two triazol rings and two primary alcohol functions on both sides of 

an ethylene bridge. The fluorophore shows a high affinity for chitin forming hydrogen bonds with free 

hydroxyl groups which stains fungal cell walls blue (Figure 1.8). As a selective staining, CW has been 

particularly useful in detection and morphological studies of fungi. Its use in microbiology was first reported 

by Darken (1961; 1962) as a dye useful for viewing cell walls of fungi and bacteria; in clinical mycology, its 

use was first described in the 80’s (Hageage and Harrington 1981) and since that has found extensive use 

for the rapid detection of microorganisms. 

 

 

 

 

 

 

 

 

 

 

  

 Specific chitin-binding of CW makes it a good stain to detect and quantify fungi (Ruchel et al. 2004) 

and has been successfully used for medicine in the detection of pathogenic fungi (Harrington and Hageage 

2003; Henry-Stanley et al. 2004; Luther et al. 2005) and for environmental mycological studies (Nunan et 

al. 2001; Li et al. 2004; Baschien et al. 2008). 

 Biofilms are complex communities of microorganisms that develop on surfaces. Fungi are excellent 

colonizers of surfaces (Elvers et al. 2002) and form biofilms in diverse environments. CW was used to 

detect and characterize drinking water fungal biofilm (Gonçalves et al. 2006; Paris et al. 2009; Siqueira et 

al. 2011); Candida spp. biofilms on medical devises (Chandra et al. 2001; Kuhn et al. 2002; Ahariz and 

Figure 1.8 Penicillium brevicompactum culture (A) and biofilm on pipe surface (B) after CW staining 

20 µm 
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Courtois 2010); and Aspergillus fumigatus biofilms (i.e., mycetoma) (Beauvais et al. 2007; Mowat et al. 

2008).  

  CW has been also employed to visualize the surrounding of the biofilm cells (Stewart et al. 1995) 

and was used to detect biofilms through the visualization of the EPS (extracellular polymeric substances). 

Rezende et al. (2003) evaluated the use of CW to detect biofilms formed by foodborne pathogens in five 

different surfaces. These authors made use of CW´s characteristic to binds to polysaccharides containing 

β-D-glucans produced by the bacteria and concluded that CW can be used as a nonspecific test for 

detection of biofilm. Although CW was originally described for staining of β(1-3) and β(1-4) polysaccharides 

(Maeda and Ishida 1967), Thurnheer et al. (2004) showed that CW reacted with α(1-3) and α(1-6) 

polysaccharides presented in bacterial biofilms. Paramonova et al. (2007) applied CW to measure bacterial 

biofilm thickness; within a Pseudomonas aeruginosa biofilm, cells and EPS were distinguished after CW 

staining (Shih and Huang 2002) and interactions in a mixed bacterial biofilm were studied using CW as 

well (Cowan et al. 2000). 

 

 

1.5.3 FUN-1 

 

 FUN-1 is a membrane-permeate fluorescent probe which stains nucleic acids in most cell types, 

producing diffuse green to green-yellow cytoplasmic staining in live or membrane-compromised dead cells. 

In metabolic active cells, FUN-1 (1 µM up to 50 µM) is metabolically converted into orange/red Cylindrical 

Intra Vacuolar Structures (CIVS) in less than an hour. The CIVS are approximately 0.5 - 0.7 µm in diameter 

and range from one to several µm in length. They are frequently observed moving freely in the 

intravacuolar space and have distinct orange-red fluorescence when excited by light from about 470 nm to 

590 nm (Figure 1.9). Fluorescence labeling with FUN-1 stain provides spectral and morphological 

information not available with other single-dye fluorescence-based methods for viability determination in 

yeasts and fungi (Millard et al. 1997). 

 Most microbiological studies apply culture dependent methods which have as main disadvantage 

the several time-consuming steps and don´t reliably report on the metabolic capacity of slow-growing or no 

dividing cells.  FUN-1 stain is nowadays a useful tool in mycological studies and has been often used to 

differentiate viable and non-viable fungal cells in antifungal susceptibility tests in conjunction with flow 

cytometry (Millard et al. 1997; Wenisch et al. 1997; Pina-Vaz et al. 2001) and fluorescent microscopy 

(Lass-Flörl et al. 2001; Gangwar et al. 2006; Chee et al. 2009; Pinto et al. 2009; Hua et al. 2011). FUN-1 

has also been used extensively for examining survival in microbial communities, particularly in 
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environments from where culturing is difficult or the analysis in situ is important (Stan-Lotter et al. 2003; 

Olsson-Francis and Cockell 2010; Wurzbacher et al. 2010).  

Biofilm formation is a common mechanism utilized by microorganisms to survive in different 

environments. In fact, experimental studies have shown that fungal pathogenic biofilms are less 

susceptible to antifungal drugs. FUN-1 has also been applied to assess the metabolic activity of the fungal 

cells after contact with antifungal drugs (Lass-Flörl et al. 2001; Pinto et al. 2009) and has been proved to 

be a fast and reliable method. In water biofilms, it was applied to detect viable cells within Penicillium 

brevicompactum biofilms after disinfection with sodium hypochlorite (Siqueira and Lima, 2010). Viability of 

fungal biofilms from water distribution system was detected in situ using FUN-1, without the need of 

culture dependent methods (Siqueira and Lima 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5.4 DAPI (41,6-diamidino-2-phenylindole,dihydrochloride) 
  
 The blue-fluorescent DAPI nucleic acid stain is a highly fluorescent cationic dye which specifically 

binds to adenine-thymine-rich DNA (A-T rich DNA) (Figure 1.10). DAPI is water soluble and solutions are 

stable for weeks if kept cold. The dye shows a very high stability in UV light and has an absorbance 

maximum at 340 nm and a fluorescence maximum at 488 nm. 

 DAPI has been commonly used for microscopy as a nuclear counterstain in multicolor fluorescent 

techniques and can also serve to fluorescently label cells for analysis in multicolour flow cytometry 

experiments. DAPI has been widely applied in water biofilms research (Kormas et al. 2010; Deines et al. 

2010b). 

Figure 1.9 Penicillium brevicompactum after FUN-1 staining: metabolic active mycelia with red CIVS and 

no metabolic active mycelia with fluorescent green cytoplasm. 
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1.5.5 Fluorescent in situ hybridization 

 

 The classical microbiology says that in order to study a microorganism it is necessary to isolate it 

from an original matrix or substratum. This isolation can be done only in an appropriate medium, from the 

plates showing separately grown colonies and only those microorganisms capable of growing, multiplying 

and forming visible colonies under that specific condition will be characterized. It is also known that any 

environmental change during the study can affect the whole composition of the microbial community, thus 

limiting the overview of the ecosystem considered. Additionally, the traditional methods used to assess the 

microbial communities are laborious, time-consuming and prone to statistical and methodological errors 

(Moter and Göbel 2000). 

 Although new culture media has been developed and new microorganisms are continuously 

isolated, only a small fraction of the existent microorganisms can be isolated, remaining a lack of 

knowledge which is most severe for complex multi-species microbial communities. In the last decades, the 

development of methods which avoid cultivation has become necessary. In this context, fluorescence in 

situ hybridization (FISH) is one of most used techniques.  

 FISH detects nucleic acid sequences by a fluorescently labeled probe that hybridizes specifically to 

its complementary target sequence within the intact cell (Figure 1.11). Giovannoni et al. (1988) was the 

first to use radioactively labeled rRNA-directed oligonucleotide probes for the microscopic detection of 

bacteria. DeLong et al. (1989) first used fluorescently labeled oligonucleotides for the detection of single 

microbial cells. When compared to the radioactive probes, fluorescent probes are safer, offer better 

resolution and do not need additional detection steps. Moreover, fluorescent probes can be labeled with 

Figure 1.10 Pseudomonas reactans after DAPI staining. 
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dyes of different emission wavelength thus enabling detection of several target sequences within a single 

hybridization step.  

 FISH with rRNA-targeted oligonucleotide probes has been developed for the in situ identification of 

individual microbial cells and is now a well-established technique (Amann et al. 2001). rRNAs are the main 

target molecules for FISH for reasons such as (1) they can be found in all living organisms; (2) they are 

relatively stable and occur in high copy numbers; (3) and they include both variable and highly conserved 

sequence domains (Amann et al. 1995). Hundreds rRNA-targeted oligonucleotide probes for FISH have 

been described, together with a large online database providing an encompassing overview of over 700 

published probes and their characteristics (Loy et al. 2003). 

 The choice of probes for FISH must consider specificity, sensitivity and ease of sample penetration. 

A typical oligonucleotide probe is between 15 and 30 nucleotides long and covalently linked at the 5′-end 

to a single fluorescent dye molecule. Different fluorescent dyes and their characteristics are listed in Table 

1.5. Direct fluorescent labeling is most commonly used and is also the fastest, cheapest and easiest way 

because it does not require any further detection steps after hybridization (Moter and Göbel 2000). 

 FISH procedure typically includes the following steps: (i) fixation of the specimen; (ii) preparation of 

the sample, possibly including specific pretreatment steps; (iii) hybridization with the respective probes for 

detecting the respective target sequences; (iv) washing steps to remove unbound probes; (v) mounting, 

visualization and documentation of results (Figure 1.11).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Over the last decade, sensitivity and speed have made FISH a powerful tool for phylogenetic, 

ecologic, diagnostic, and environmental studies (Kempf et al. 2000; Thurnheer et al. 2004; O’Sullivan et 

al. 2007; Bishop 2010; Wurzbacher et al. 2010). FISH not only provides insight into microbial community 

Table 1.5 Characteristic of common fluorochromes applied for FISH. 
Fluorochrome Colour Max. excitation λ 

(nm) 

Max. emission λ 

(nm) 

Alexa488 Green 493 517 

AMCA Blue 399 446 
CY3 Red 552 565 
CY5 Red 649 670 
CY7 Violet 743 767 
DAPI Blue 350 456 

Fluorescein Green 494 523 
Rodamine Red 555 580 

TAMRA Red 543 575 
Texas red Red 590 615 

TRITC Red-orange 550 580 
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structure, but can also be used in combination with confocal laser scanning microscopy (CLSM) for 

accurate reconstruction of the spatial arrangement of microbial communities in their habitat (Amann et al. 

1990). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In food industry, in order to monitor sanitation practices, FISH is becoming an important tool to 

identify specific microorganisms in mixed communities without the need for isolation in pure cultures. This 

technique allowed a rapid and accurate enumeration of Pseudomonas in dairy plants and the accurate 

validation of pasteurization treatment and the prediction of shelf life of pasteurized milk (Gunasekera et al. 

2003). Another example in the food industry is the use of FISH with group- and species-specific 

oligonucleotide probes which provided an insight to the microbial composition of Gruyere cheese surface 

(Kolloffel et al. 1999). FISH is also useful in wine production (Blasco et al. 2003; Stender et al. 2001) and 

environmental water (Ootsubo et al. 2003) 

 Diverse microorganisms form complex microbial communities and commonly attach to solid 

surfaces as biofilms in natural environments and in engineered systems. Characteristics such as 

architecture, physiological status and genetic diversity of the cells contained within biofilms are of great 

interest for clinical, industrial and environmental microbiology (Thurnheer et al. 2004). 

(iv) Washing (v) Epifluorescent mycroscopy 

Excess of probes 

 (i) Fixation (iii) Hybridization 

Sample 
Fixed sample is 

permealized 
Fluorescent 

labelled nucleotide 

Probe 

Target rRNA 

(ii) Specific 

pretreatment 

Figure 1.11 Flow diagram with main steps to perform FISH  
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The application of molecular techniques has enabled in situ monitoring of microbial biofilm 

communities and has provided information about phylogenetic affiliations, spatial distribution, functions 

and activities (Aoi 2002). FISH have contributed to the clarification of the in situ microbial community 

structure in various types of biofilm communities such as glass windows surfaces (Müller et al. 2001), acid 

mine drainage (Baker et al. 2004) bioreactor systems (Aoi 2002; Schmidt et al. 2000), water pipe lines 

surfaces (Gonçalves et al. 2006; Bragança et al. 2007; Siqueira et al. 2011), and in vitro mixed biofilms 

(Thurnheer et al. 2004). 

Although FISH has gained great acceptance in the scientific community and the undoubted 

advantages of its use, this technique has technical and conceptual problems which must be taken into 

consideration. Methodological factors, e.g. the type of fluorochrome, formamide and sodium chlorine 

concentrations, hybridization temperature and environmental factors, e.g. ecosystem type, dominant 

phylogenetic group and microbial physiological state, are linked to FISH performance (Bouvier and Del 

Giorgio 2003). Furthermore, autofluorescence of microorganisms themselves, especially fungi, can lead to 

false positive results (Moter and Göbel 2000). 

 

 

 

 

 

 

 

 

 

 

1.5.6 Samplers device 

 

 The development of microbial biofilms has been the subject of many studies; researchers aim to 

elucidate a large number of undesirable effects concomitant with the emergence of biofilms. Laboratorial 

devices are developed for investigations of different aspects of biofilms, allowing biofilm formation under 

controlled conditions of physical (flow velocity, shear stress, temperature, properties of the substratum 

etc.), chemical (composition and amount of nutrients, organic and inorganic particles, ions, etc.), and 

biological (composition of the microbial community – single or mixed – type of microorganism) parameters 

(Denkhaus et al. 2007). 

Figure 1.12 Peniciliium brevicompactum after CW staining (A) and FISH (B – FUN-1429 probe and C - 

EUK516 probe). 

A B C 
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 There are many examples of samples devices (Table 1.6) which usually share a common idea of a 

hollow structure holding removable coupons where the biofilm can grow on, and a system fed with a 

continuous liquid flow as well (Figure 1.13). However, investigations in drinking water biofilms face a major 

problem to study biofilm within the distribution system: the lack of suitable experimental systems that both 

represent conditions within real pipe networks and enable the effects of abiotic factors to be explored in a 

controlled environment. Moreover, in situ approaches in replaced pipes are not suitable for systematic 

studies since their removable cannot follow a well-defined schedule. Apart from difficulties, an ideal device 

would fulfill demands such as mimic the real conditions of the water network and yet be straight forward to 

insert and handle, be convenient for transportation and storage, maintain the integrity of biofilms and allow 

in situ analyses of the biofilms. In this context, samplers (Figure 1.14) in which biofilms could be detected 

have been designed (Sammon et al. 2011; Siqueira et al. 2011).  

Table 1.6 Comparison of samplings devices for studying drinking water biofilms (Adapted from Deines et al. 
2010a). 

Sampling device Benefits Limitations References 

 
Rotating disc 
reactor (RDR) 

 
Coupons of different materials can be 
applied; 
Constant conditions possible; 
Microscopic imaging possible 
 

 
Controlling shear difficult; 
Coupons engineered flat; 
 

 
Murga et al. 2001 
Möhle et al. 2007 

CDC biofilm 
reactor (CBR) 

Microscopic imaging possible; 
Coupons of different materials can be 
applied; Consistent biofilm samples and 
growth conditions; 
Surface treatments and 
antimicrobial agents can easily be tested 
 

Controlling shear difficult; 
Coupons engineered flat 

Goeres et al. 2005 

Biofilm annular 
reactor (BAR) 

Coupons or slides of different materials 
can be applied; Liquid/surface shear 
similar to pipe flow shear; 
Variable treatments can be easily applied 
 

Biofilm cells have to be detached from 
slides for microscopic analysis when 
used without coupons;  
Coupons engineered flat 

Batté et al. 2003a 
Batté et al. 2003b 

Propella reactor Reactors are made from water 
distribution pipe material; 
Water flow velocity can 
be controlled by the propeller  
 

Coupons fabricated from stainless steel 
or cast iron;  
Coupons engineered flat; 
Non-destructive microscopic analysis of 
biofilms not possible 
 

Parent et al. 1996 
Appenzeller et al.  
2001 

Robbins device Direct staining of biofilm bacteria for 
microscopy possible 

Use of glass, cast iron, or stainless steel 
slides; 
Turbulent flow around the mounted 
slides affects biofilm development 
 

Manz et al. 1993 
Kalmbach et al.  
1997 

Modified Robbins 
device (MRD) 

Coupons at the end of the pegs are flush 
and can be 
connected to pipelines to study in situ 
biofilm formation 
 

Flow chambers are square and not 
round; 
Coupons engineered flat;  
 

McCoy et al. 
1981 
Kharazmi et al. 
1999 
Millar et al. 2001 
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Table 1.6 Continuation 

Prévost coupon Suitable for studying biofilm formation in 
situ in pipelines 

Coupons cannot be used for 
microscopic analysis;  
Coupon material iron;  
Surface flat/curved? 
 

LeChevallier et al. 
1998 
Prévost et al. 1998 

Bioprobe monitor Coupons of different materials can be 
applied;  
Allows studying in situ biofilm 
development in a pipe system; 
Coupon surface flush with pipe wall 
 

Coupons engineered flat/curved? LeChevallier et al. 
1998 

Pipe sliding coupon 
holder 

Easily installed within a pilot-scale 
system; 
Coupons can be fixed to slides for 
microscopic analysis 
 

Turbulent flow around coupons affects 
biofilm development;  
Coupons are engineered flat;  
No continuous sampling possible 

Chang et al. 2003 

Biofilm sampler Can be used in situ in large distribution 
systems;  
Holders can easily be taken out and 
coupons be processed in the lab; 
Biofilm cell loss minimized 
 

Coupons engineered flat;  
Coupon material PVC 

Juhna et al. 2007 

PWG coupon Can be used in situ in pilot-scale WDS 
and WDS;  
Coupon surface flush with 
curved pipe wall;  
In situ analysis of both biofilm structure 
and community possible using the same 
coupon;  
Coupons can be out of most 
pipe materials 
 

Coupons can be made out of cast iron 
but cannot recreate the vast variety 
and complexity of “old” non-lined cast 
iron pipes, and cement linings which 
would have insufficient strength 

Deines et al. 2010a 

Biofilm pipe sampler Can be used in situ in WDS; 
Easy insertion, handling and removal of 
each sampler; 
The sampler can be filled with water, 
preserving the integrity of biofilms 
 

Coupons engineered flat;  
 

Siqueira et al. 2011 

Biofilm sampler Coupons of different materials can be 
applied; 
Holders can easily be taken out and 
coupons be processed in the lab; 
 

Coupons engineered flat;  
 

Sammon et al. 2010 
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Figure 1.14 Examples of samples devices used for drinking water biofilms studies in situ in water 

distribution systems. A - Coupons and apparatus for biofilm formation (Sammon et al. 

2011) and B - Sampler pipe device (Siqueira et al. 2011). 

A 

B 

C 

E 

F 

B 

D 

A 

Figure 1.13 Examples of samples devices used for drinking water biofilms studies in laboratorial 

and/or pilot scale. A - Robins Device (Manz et al. 1997), B - Rotating disc reactor (Murga 

et al. 2001), C - PropellaTM Bioreactor (Simões et al. 2008), D - CDC biofilm reactor 

(Goeres et al. 2005), E - Biofilm sampler (Juhna et al. 2007) and F - Pennine Water 

Group coupon (Deines et al. 2010). 
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Chapter 2 

 

Fungal biomass quantification by image analyses 

 

2.1 Introduction 

 The study of filamentous fungi in drinking water has received great attention in the last 

years (Göttlich et al. 2002; Gonçalves et al. 2006; Yamaguchi et al. 2007; Pereira et al. 2009; 

Oliveira 2010; Sammon et al. 2010). Researchers in this area have to deal with drawbacks 

associated to fungal quantification, mainly because of the variety of applied methodologies and 

their limitations, and the lack of international standardised methods as well (Hageskal et al. 

2009). Nonetheless, quantification of fungi in water is mostly assessed by counting total fungal 

colonies on agar plates, referred to as colony-forming units (CFU) per volume of water sample 

investigated (Mara and Horan 2006). Filamentous fungi have a diverse morphology that changes 

according to environmental growth conditions (Figure 2.1), and produce branched hyphal 

structures which are constituted by many cells. Thus, after grow on agar plates, one colony may 

not represent one single cell, consequently a precise number of fungi is never provide. 

Additionally, not all fungi are able to grow under laboratorial conditions and they can be also 

outcompeted on culture plates if overgrowth of bacteria occurs, or be inhibited if the antibacterial 

compounds used are also effective against them (International Mycological Institute 1996).  

 Other methods such as analyses of ergosterol (Ruzicka et al. 2000; Joergensen 2000; 

Montgomery et al. 2000; Kelley & Paterson 2003) and dry weight (Reeslev and Kjøller 1995) 

have been also applied in fungal biomass quantification. The development of computational 

image processing as a toll for the study of fungal culture systems came about to quantify 

morphological variation in mycelial structures in industrial fermentations (Cox et al. 1998). 

 Approaches to biofilm analysis include microscopic, microbiological, molecular biological, 

(bio)-chemical and physical methods. Analytical questions with regard to biofilms can be divided 

into information about the components, the architecture and the processes occurring within 

biofilms (Denkhaus et al. 2007).  Biovolume is defined as the product between the cell volume 

and the total number of cells; on the assumption that the microorganism is a sphere, ellipsoid or 

cylinder its volume can be estimated by measuring its radius, diameter or length. This value can 

be converted into biomass using a proper conversion factor (Kell et al. 1990; Madrid and Felice 

2005). Several methods have been used for the estimation of microorganism biovolume, 

including electronic sizing, flow cytometry and different microscopic techniques such as scanning 
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electronic microscopy, confocal laser scanning microscopy, normal light microscopy and 

epifluorescence microscopic (Bölter et al. 2002).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 The use of microscopy techniques associated with image analyses has become a 

valuable tool for research in many areas (Daniel et al. 1995; Tucker et al. 1992; Solé et al. 2008; 

Bölter et al. 2002). The fluorescent stains and epifluorescence microscopy had already found 

great acceptance in Ecology, Medical and Bioengineer research. Image analyses are widely used 

to quantify fungal hyphae growing in batch cultures (Thomas and Packer 1990) and on soil 

(Bolton et al. 1991; Morgan et al. 1991). When compared with techniques such as plate counts 

and colony forming units the microscopic methods are less prone to subjectivity and need less 

labour. The short time of analysis, a simple measurement procedure and the low operation cost 

makes fluorescent microscopy perhaps the most promising technique is this field. 

 The relationship between structure and activity of biofilms and the factors which shape 

their physical form are crucial information for use or control of biofilms in various environments. 

An increasing understanding of the morphology and kinetic formation of laboratorial biofilms 

allow us to examine the patterns of development and interaction for further understanding of 

ecological traits. Within this context, biomass of microorganism is a basic requirement for 

understanding how different factors interfere in the physical characteristics, development and 

maturation of biofilms (Stoodley et al. 1999). The aim of this work was to describe an optical 

Figure 2.1 Different morphological forms of filamentous microbes: growth commences from 
approximately spherical spores (typically < 10 µm in diameter), which, over time, 
produce simple branched hyphal structures (hyphal diameter is generally < 10 
µm). These can, in turn, develop into complex, composite architectures termed 
mycelia, while the agglomeration of biomass in submerged culture can result in the 
formation of dense, approximately spherical configurations termed “pellets”, which 
may be up to several millimetres in diameter (Barry 2010). 



51 
 

method for determining the fungal biomass in laboratorial filamentous fungal water biofilm 

developed under laboratorial conditions. Calcofluor White M2R was used as staining in 

conjunction with epifluorescent microscopy.  

 

2.2 Material and Methods 

2.2.1. Microorganism  

Penicillium brevicompactum (MUM 05.17) supplied by Micoteca da Universidade do Minho 

(MUM, Braga, Portugal),  was chosen as an example, as it is the most commonly ff isolated from 

tap water (Gonçalves et al. 2006). P. brevicompactum maintained on Malt Extract Agar (MEA: 

malt extract  20 g, peptone 5 g, agar 20 g, distilled water 1 l) plates was used throughout the 

study. Spores were washed from 5-day cultures with distilled water, counted in a Neubauer 

chamber and diluted to give 105 spores/ml. This suspension was used as inoculum. 

 

2.2.2. Biofilm formation  

The biofilm formation was made in 6-well dishes with PVC (polyvinyl chloride), PP (polypropylene) 

and PE (polyethylene) coupons (1cm x 1cm) previously sterilized, and water added with 0.1% of 

glucose under room temperature (25±2 ºC) and 120 rpm. The biofilm growth was confirmed 

when small points of mycelium were observed on the surface of the coupon and were analysed 

with 24, 48 and 72 h of growth.   

 

2.2.3. Staining and Image analysis  

Calcofluor White M2R (25 µM) was used as staining for the visualization of fungal cells walls. 

Following incubation in the dark for 15 min in room temperature, the coupons were 

microscopically observed. An Olympus BX51 epifluorescence microscope using UV light 

equipped with 40x/0.30 and 10x/0.65 objectives was used. The images were acquired with a 

colour camera Zeiss AxioCam HRc using the software CellB®. The excitation wavelength for 

Calcofluor was 346 nm and the signal acquired was blue. In each image all the hyphal length 

stained with Calcofluor was semi-automatically calculate by click and drag operation of the 

computer mouse in an enlarged image on the screen.  The software CellB® generated a 

database with all the calculated values which were processed by WordExecel (Microsoft®) where 

the final biovolume and biomass were calculated. 
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2.2.4. Biovolume 

The fungal biomass (in gram), derived from the biovolume, was calculated as “Biomass = density 

x π r2 L”, where r was the radius of fungal hyphae (in centimetre), d = 1.09 g cm-3 was 

considered to be the density of fungal hyphae (Schnürer 1993) and L was the length of fungal 

hyphae (in centimetre). The diameters of 20 intersection points of fungal hyphae were chosen for 

measurements and calculated its average.  

 

2.3 Results  

 

 Calcofluor M2R stains the cell walls of fungal hyphae and allowed the detection of living 

plus empty fungal filaments attached to coupons. The length of fungal hyphae in samples of 

water biofilms was easily measured, and the method may be applied to evaluate filamentous 

fungal biofilms development.  

 P. brevicompactum MUM 05.17 was able to form biofilms on PVC, PP and PE coupons 

under the conditions presented here. PVC coupons showed autofluorescence which may interfere 

in image analyses, thus this material is no recommended for studies that use fluorescent 

microscopy. The steps followed to assess fungal biofilm biomass are described in Figure 2.2.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Biofilm growth 

(24, 48 and 72 h) 

 

Calcofluor staining 

(15 min) 

Image acquirement 

(60 min) 

Image analyses 

(3 h) 

Biovolume 

conversion into 

biomass 

(30 min) 
Figure 2.2 Scheme showing the steps to assess biomass of filamentous fungal biofilms. 
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 The analyses were made after 24, 48 and 72 h of growth on PVC, PP and PE and 

different structural features and biomass values were found among the different aged biofilms on 

the different surfaces. This method allowed biomass measurement up to 72 h of growth, since 

the limit of the technique is generated by a superimposition of mycelia, when the biofilm can be 

characterized as a “clump” (Figure 2.4). After biofilms growth, c.a. four hours were needed to do 

all experiment, since the staining until the conversion of biovolume into biomass values. From 

each coupon an average of 20 images were generated.  

 Three coupons of each material were analysed and biomass was calculated every 24 h 

(Figure 2.5). Initial adherence and conidial germination were observed in the first 24 h on all 

coupons but a different rate of growth was observed after 48 h of development (Figure 2.3). 

Biofilms on PVC surface were greater at 48 h and 72 h reaching 53.0 ng and 107.5 ng 

respectively, i.e. two times more biomass when compared with biofilms on PP surface which had 

48.4 ng at 72 h. 
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Figure 2.3 Biofilm of P. brevicompactum grown on PVC/PP/PE 24 h (A, B and C); PVC/PP/PE 48 

h (D, E and F); PVC/PP/PE 72 h (G, H and I). 
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 A difference in biomass distribution was also evident among biofilms on the three 

materials. When compared with PP and PE, biofilms on PVC surfaces showed a higher mycelial 

density with a more organized structure (Figure 2.3 G).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

2.4 Discussion 

 Among others methods proposed to determine fungal biomass, hyphal length 

measurements, conversion to hyphal biovolumes, and further conversion to biomass constitute a 

traditional method for fungal biomass measurement in aquatic environments, plant litter systems 

(Gessner and Schwoerbel 1991), batch cultures (Thomas and Packer 1990) and soil (Morgan et 

al. 1991). The development and improvement of this method came about to reduce sample 

Figure 2.4 Superimposition of mycelia in P. brevicompactum biofilm on PVC after 96 h of growth.  

Figure 2.5 Biofilm biomass values of P. brevicompactum biofilms grown on different surfaces. 
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analyses time and observer bias. Adams and Thomas (1988) firstly described a semi-automatic 

image processing system to derive measurements of fungal filaments and reported that this 

method has greater reproducibility between operators and especially between laboratories. In the 

last two decade, with the emergence of computer, digital cameras and digital image programs, 

the problems related to subjective and prone analyses to errors were overcome (Barry 2010). 

 Görs et al. (2007) applied ergosterol as biomarker to assess biomass of fungal biofilms 

on in- and outdoor artificial surfaces. Ergosterol is a main component of fungal membranes but 

its content depends on various factors, such as culture age, growth rate, carbon and nutrient 

availability, temperature and oxygen (Charcosset and Chauvet 2001). Moreover, ergosterol is also 

found in cell membrane of some microalgae and protozoa. Thus, fungal biomass may be 

underestimated by the ergosterol method. Zhao et al. (2005) emphasized that studies relying on 

a single biomarker such as ergosterol is unwise if the objective is to monitor microbial 

communities. In water biofilms, the use of CFU per volume of water was applied to estimate 

fungal biomass (Sammon et al. 2011). Generally, the sampling method needs steps such as 

scraping and swabbing, and then there are possible effects on the integrity of a fungal cell. 

Additionally, fungi have a variety of structural morphology, including mycelial clumps, single 

hyphal elements, hyphal fragments, and spore aggregations, and a precise CFU number per 

volume of sample is difficult to be estimated.  

 The use of fluorescent microscopy and specific fluorescent dyes in association with 

image analyses gives additional information besides biomass. Our results showed that using 

image analyses it was possible to estimated fungal biomass and correlate it with biofilm 

morphology on different material. Surface material is commonly reported as one of factor that 

influence bacterial biofilm (Zhou et al. 2009; Yu et al. 2010) and fungal biofilm (Sammon et al. 

2011; Siqueira et al. 2011) formation. In this study, fungal biofilms showed different rate of 

development and thus different biomass when PVC, PP and PE coupons were used as surface for 

biofilm grow. PVC coupons showed to be the best material for fungal biofilm development, 

though it has high autoflurescence and may not be suitable for fluorescent microscopic studies.  

 CW stains all fungal cell walls, i.e. it does not discriminate live from dead cells. On the 

other hand, CW can be applied together with others fluorescent dyes which give information 

about the metabolic state of cells in a same sample (Ingham and Klein 1984). Moreover, the use 

of fluorescent dyes allows in situ analyses, and fungal biomass can be measured and correlated 

with others parameters in natural habitats. CW has been successfully used for fungal 
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quantification in diverse habitats such as fresh water lakes (Rasconi et al. 2009), seawater and 

marine sediments (Gutiérrez et al. 2010), within decomposing leaves (Daniel et al. 1995) and 

soils (Ananyeva et al. 2008). 

 Variation in convertor factor values is reported as an interferential factor in filamentous 

fungal biomass measurement using hyphal biovolume. Hyphal diameter and fungal density can 

interfere in the final biovolume calculation. Fungal grow within solid culture media has commonly 

used as reference method to calculate hyphal diameter (Gessner and Newell 2002), and 

consequently leads to errors if these same values are applied for samples on natural substrates 

(Müller et al. 2000; Pollack et al. 2008). Some studies use pre-established values available in 

published data, but since hyphae thickness is affected by several conditions (Daniel et al. 1995), 

the calculation of an average value for hyphal diameter under the ongoing experimental 

conditions was taken as the best solution for this problem during this study.  

 Although it is accurate and reliable method, biomass quantification by image analyses is 

based on laborious and tedious procedure, especially if it is necessary to analyze a large number 

of images in which high densities of cells are present. On the other hand, is a nondestructive 

method in which, if specific fluorescent dyes are used (i.e. fluorescent labeled probes and 

Fluorescent in situ hybridization), total and individual fungal biomass can be assessed together 

with microbial diversity and structural and physiological features. In conclusion, image analysis 

may be an appropriate method to measure the fungal biofilm biomass and the use of specific 

fluorescent dyes is useful especially within heterogeneous environments.  
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Chapter 3 

  

Efficacy of free chlorine against water biofilms and spores of Penicillium 

brevicompactum 

 

3.1 Introduction 

 Biofilm is a complex community of microbes (bacteria, protozoa, filamentous fungi, 

yeasts and other microorganisms), organic and inorganic material accumulated amidst a 

microbially produced organic polymeric matrix attached to a surface (O’Toole et al. 2000).  

 The structural and phenotypic changes associated with the development of a mature 

biofilm aid microbial cells in numerous aspects of their life cycles. One frequently measurable 

change in the phenotype of cells in a biofilm, when compared to their planktonic counterparts, is 

significantly increased tolerance to chemical, biological or physical stresses (Chandra et al. 2001; 

Harrison et al. 2005). Other benefits may include tenacious attachment to surfaces, colonization 

of host tissues, expression or enhancement of virulence traits, efficient capture of nutrients and 

enhanced cell-to-cell communication (Harding et al. 2009). 

 Both bacterial and yeast biofilm have been widely studied but less attention have been 

given for filamentous fungi (ff) biofilms (O’Toole et al. 1999; Huq et al. 2008). Fungi are 

especially adapted for growth on surfaces, as evidenced by their absorptive nutrition mode, their 

secretion of extracellular enzymes to digest complex molecules, and apical hyphal growth (Elvers 

et al. 2001; Villena et al. 2009). Despite the fact that the term ‘biofilm’ is rarely applied to ff, 

there are several descriptions indicative of biofilm formation in different medical, environmental 

and industrial settings (Dogget 2000; Beauvais et al. 2007; Paterson et al. 2006; Mowat et al. 

2008; 2009). 

 The occurrence of biofilms can be a source of taste, odour and visual appearance 

problems resulting in poor drink water quality (Hageskal et al. 2009). Moreover, fungi in potable 

water distribution systems may have direct effects on human health (allergenic or toxigenic 

species), contribute to the occurrence of nosocomial infections in immune-compromised 

individuals and contaminate foodstuffs during processing or preparation (Elvers et al. 2001; 

Anaissie et al. 2008). Microbially-induced corrosion, loss of indicator organism utility and the 

persistence contamination in water can be problems related with the development of biofilms (US 

EPA 1984; Geldreich 1996). Water systems worldwide have been shown to be colonized with 

pathogenic filamentous fungi (Hageskal et al. 2009). Although in recent years studies of fungi in 
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drinking water has received attention (Göttlich  et al. 2002; Hageskal et al. 2006; Gonçalves et 

al. 2006; Ribeiro et al. 2006; Yamaguchi et al. 2007; Pereira et al. 2009), detailed researches of 

ff biofilms on water are rare. 

 Water for human consumption is often disinfected before goes to the distribution system 

to ensure that potential microbial pathogens are inactivated. Chlorine, chloramines or chlorine 

dioxide are most often used because they are very effective disinfectants (US EPA 1984). In 

contrast, biofilms can protect microbes from disinfectants and allow microbes injured by 

environmental stress and disinfectants to recover and grow. Moreover, biofilms react with 

chemical disinfectants reducing their availability for inactivating pathogens in the water (Berger et 

al. 2000). As a result, biofilm can be considered one of the reasons for persistent microbial 

contamination of the water. Conventional water treatment (coagulation/flocculation, filtration, and 

chlorination) can be effective in removing microfungal contaminants from water but a possible re-

contamination can occur if supplementary chlorination of all water service reservoirs is not 

routinely carried out (Sammon et al. 2010). 

 The objective of this work was analyse the susceptibility of Penicillium brevicompactum 

biofilms and its single spores against free chlorine, the most common disinfectant used routinely 

in water treatment.  

 

3.2 Material and Methods 

3.2.1 Spores 

Penicillium brevicompactum MUM 05.17 supplied by Micoteca da Universidade do Minho (MUM, 

Braga, Portugal) was chosen as a model as it is the most commonly filamentous fungi isolated 

from Portuguese tap water (Gonçalves et al. 2006). Spores were collected from a 7-day pure 

culture in malt extract agar (MEA: malt extract  20 g, peptone 5 g, agar 20 g, distilled water 1 l) 

at 25 ºC by adding 2 ml of distilled water to plate. The spore suspension was re-suspended and 

vortexed for 1 min before quantification using a Neubauer counter chamber. The suspensions 

were standardized by dilution with water to a final concentration of 105 spores/ml.  

 

3.2.2 Biofilms  

A spore suspension of 105 spores/ml was also used to perform biofilms. The biofilms were grown 

in 6-well plates at room temperature and 120 rpm. The spore suspension was added to each 

well which contained 5 ml of glucose solution (0.1 %). Then the PVC (polyvinyl chloride), PP 
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(polypropylene) and PE (polyethylene) coupons (1 cm x 1 cm), previously autoclaved at 121 ºC 

during 15 min, were placed into the wells with the reverse face touching the well bottom and 

staying all under the water. After a time period 48, 72 and 96 h of incubation the biofilm on the 

coupons were used for free chlorine susceptibility test.  

 

3.2.3 Concentrations of Free Chlorine 

Sodium hypochlorite solutions were prepared with bleach and distilled and deionised water and 

adjusted to pH 7.0 ± 0.1 using HCl. For free chlorine determination, in the absence of iodide ion, 

free chlorine reacted instantly with DPD (N,N-diethyl-p-phenylenediamine) to produce a red 

colour, which was measured immediately with a colorimeter (Ion specific meters, Hanna 

Instruments, HI 93701, light emitting diode @ 555nm, range 0.00 to 2.5 mg/l, resolution 0.01 

mg/l). The survival of P. brevicompactum spores and biofilms were determined after exposure to 

0.015, 0.3, 0.6, 0.125, 0.25, 0.5 and 1 (v/v) of sodium hypochlorite, i.e., 0.02, 0.05, 0.25, 

1.83, 1.98, 2.13 and 2.38 mg/l of free chlorine, respectively, during 15 minutes. A 10% sodium 

hypochlorite solution was used as negative control. This dilution reflects the concentration 

currently used for surface sterilization.  

 

3.2.4 Treatment with Free Chlorine 

Spores. Pellets of 105 spores were re-suspended in 1 ml of free chlorine solution (Table 1), mixed 

by inversion to ensure full contact and then incubated at room temperature (25±1 ºC) for the 

required exposure time (15 min). The samples were mixed by inversion at least twice during 

incubation period, centrifuged and at the end the supernatants were discarded. Pellets were 

immediately washed with abundant distilled water and then centrifuged. This process was 

repeated three times. Finally, the resulting pellets were re-suspended in 1 ml distilled water. 

Positive controls were treated in similar way, with the exception that distilled water replaced the 

free chlorine solutions. In this study, free chlorine Minimum Inhibitory Concentration (MIC) was 

the lowest concentration at which at least 90 % of spores were inactivated after contact with the 

disinfectant solution (value expressed as a percentage of the colonies formed by positive control). 

For each concentration test and control, three replicates were made.  

 

Biofilms. The PVC, PE and PP coupons were washed with distilled water to remove the non-

adherent cells. Each coupon was transferred to another 6-well plate with different free chlorine 



64 
 

solutions (0.02 mg/l, 1.57 mg/l and 2.38 mg/l) and submerged. After 15 min the coupons were 

taken off and washed three times with distilled water to remove the disinfectant. All biofilms 

submitted to the different free chlorine concentrations and grown on different surfaces were done 

in triplicate. Both spores and biofilms were exposed to free chlorine solutions using the same 

conditions. 

 

3.2.5 Spores Viability test 

Culture test. Spores viability was determined by their germination capability. The samples 1 ml 

volume of the spore suspension was plated using a pour plating method. To facilitate the 

determination of the number of viable spores, three 10-fold dilutions were prepared from each 

sample. A 1 ml volume of the spore suspension from the last dilution (i.e., maximum of 102 

spores) was added to a sterile disposable Petri dish; 10 ml PDA (46±2 ºC) were then added and 

the mixture was gently swirled to evenly distribute the spores. The germination capability was 

confirmed after 72 h of incubation at 25 ºC by the visible grown of colonies. 

 

FUN-1 staining. P. brevicompactum spores without treatment were used to establish the method. 

The resulted images were used as standard for further comparison with treated spores. From 

each free chlorine concentration tested, one spore suspension was chosen for FUN-1 staining 

(Molecular Probes, The Netherlands). FUN-1 stains the dead cells with a diffuse yellow-green 

fluorescence and the metabolically active cells with red Cylindrical Intra-Vacuolar Structures 

(CIVS). For FUN-1 staining, 15 µL of the spore suspension plus 15 µL of FUN-1 solution were 

added on a glass slide, homogenised, following incubation in the dark at 30 ºC during 30 min 

and observed under an Olympus BX51 epifluorescent microscope using UV light equipped with 

40x/0.30 and 10x/0.65 objectives and a filter set (EX 450-490 nm, EM 520 nm). The images 

were acquired with a colour camera Zeiss AxioCam HRc using the software CellB®. Storage and 

handling of reagents were performed as recommended by the supplier.  

 

3.2.5 Biofilm Viability test 

Culture test. The biofilms recover was determined by plating the coupons on potato dextrose agar 

(PDA) plates. Before plating, the coupons were washed with distilled water and put on the culture 

media with the biofilm touching the culture medium surface. The development of colonies was 

observed until 72 h of plating at 25 ºC. 
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FUN-1 staining. From each free chlorine concentration tested, one coupon was chosen for FUN-1 

staining. Negative and positive controls were also submitted for in situ viability test with FUN-1 

staining (methodology already described in section 3.2.5). 

 

3.3 Results 

The results after treatment with different free chlorine concentrations against spores and biofilms 

are shown in Table 3.2 and 3.3, respectively. 

 

Table 3.1 Sodium hypochlorite concentrations and the corresponding nominal concentrations of 
free chlorine. All disinfectant data refer to soluble free chlorine concentrations.  

 

 

 

 

 

 

 

Table 3.2 Survival of P. brevicompactum biofilms determined by germination capability in solid 
culture medium after contact with different concentrations of free chlorine. 

 

 

 

 

 

 

 

 

3.3.1 Germination capability 

Spores. Low concentrations of free chlorine (0.02 and 0.05 mg/l) had no effect on the 

inactivation of P. brevicompactum spores. By the other hand, high concentrations (1.98, 2.13 

and 2.38 mg/l) reduced to zero the number of viable spores. The number of fungal colonies 

Sodium hypochlorite 

concentration (% v/v) 

Free chlorine nominal 

concentration (mg/l) 

1 2.38 
0.5 2.13 
0.25 1.98 
0.125 1.83 
0.6 0.25 
0.3 0.05 

0.015 0.02 

 Biofilms 

Free chlorine (mg/l) 

PVC PE PP 

Biofilm age 

48h 72h 96h 48h 72h 96h 48h 72h 96h 

0.07 + + + + + + + + + 

1.57 + - + - + + + + - 
2.38 + - + - - + - - - 

Positive control + + + + + + + + + 
Negative control - - - - - - - - - 

Visible grow (+); non-visible grow (-) 
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observed on dilution plates derived from each treatment were enumerated 3 days post 

inoculation. No new colonies were observed 5 days post inoculation, thereby confirming that slow 

developing spores were not overlooked in the earlier counts. A free chlorine 1.83 mg/l 

concentration can be considered the Minimum Inhibitory Concentration. Negative control 

inactivated all spores. Positive control gave an average of 2.5 x 102 spores recovered per 

millilitre. 

 

Table 3.3 Survival of P. brevicompactum spores determined by germination capability in solid 
culture medium after contact with different concentrations of free chlorine. *each 
value is the mean of three independent assays (each assay with three replicates). 
Values expressed as a percentage of the colonies formed by positive control. 

 

 

 

 

 

 

Biofilms. The lowest free chlorine concentration did not show any significant activity after 15 min 

exposures. For 0.07 mg/l of free chlorine, biofilms with 48, 72 and 96 h aged showed similar 

results with development of visible colonies after 48h of incubation. For the intermediary free 

chlorine solution (i.e., 1.57 mg/l), most of biofilms were resistant and showed visible colonies 

until 72 h of inoculation. For the highest free chlorine concentration (i.e., 2.38 mg/l), age and 

material coupons interfered in the biofilm resistance; 96 h aged biofilms on PVC and PE were 

resistant, whereas none 48 h and 72 h aged nor biofilms on PP presented colonies grown until 

72 h of incubation.  

     The effects of free chlorine solutions in the deactivation of biofilms seem to be more related 

with the delay of the development of visible grown than with the inactivation itself.  For example, 

for the 48 h aged biofilms on PVC, all free chlorine solutions tested did not inactivated the cells 

but the recovery time was different for each solution.  

 

3.3.2 FUN-1 staining  

Free chlorine (mg/l) Spores recovered* (%) 

2.38 0 
2.13 0 
1.98 0 
1.83 8.2 
0.25 23.7 
0.05 98.4 
0.02 99.5 
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Spores. After 30 min of incubation with FUN-1 viable spores from a 7-day pure culture were 

detected by conversion of FUN-1 dye into bright orange-red CIVS (Figure 3.1 A). The positive 

results allowed the comparison with treated spores. No evidence of autofluorescence was 

recovered in unstained spores. Effectiveness of free chlorine solutions against biofilms could be 

analysed by the FUN-1 staining under the conditions presented in this work.  

     For highest free chlorine concentration, the spores were inactivated and didn’t form CVIS. The 

visualization of only diffuse green to green-yellow cytoplasmic staining indicates a membrane-

compromised dead cell (Figure 3.2 B). After exposure to the lowest free chlorine concentration 

viable spores shown, in addition to diffuse green to green-yellow cytoplasmic staining, CIVS which 

had distinct orange-red fluorescence. For the intermediary free chlorine concentration both viable 

and non-viable spores were detected (Figure 3.2 A). The results could be correlated qualitatively 

with conventional plating and was less time consuming. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biofilms. Viable biofilms were detected after 30 min of incubation with FUN-1 by conversion of 

FUN-1 dye into bright orange-red CIVS (Figure 3.1 B). The results allowed the comparison with 

treated biofilms. We investigated whether FUN-1 can be used to detect viability after exposure to 

free chlorine solution. In general, the intensity of fluorescent signals was lower in the treated 

biofilms when compared with non-treated biofilms. Nevertheless, the results obtained with 

treated biofilms after FUN-1 staining were conclusive under the conditions presented in this work.  

A A B 

Figure 3.1 FUN-1 staining: the visualization of only diffuse green to green-yellow cytoplasmic 

staining indicates a membrane-compromised dead cell; in metabolically active cells 

CIVS, wich have distintic orange-red fluorescence, are produced. Spores and biofilm of 

P. brevicompactum after FUN-1 staining. Positive controls of spores (A) and biofilm (B). 

Scale bar = 50 µm. 
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     Effectiveness of free chlorine solutions against biofilms could be analysed by the FUN-1 

staining under the conditions presented in this work (Figure 3.2 C-D).  Although the results did 

not allow quantitative analyses, the qualitative results were conclusive. P. brevicompactum 

biofilms took up and converted the FUN-1 dye into bright orange-red CIVS. Free chlorine 

susceptibility test compared with conventional plating is more rapidly determined by viability 

analysis with FUN-1. The results suggest that analysis of biofilm viability with a fluorescent probe 

provides rapid and reproducible detection of cell inactivation. FUN-1 staining needs 30 min of 

incubation, whereas cultivation needs at least 48h of incubation. Instead of the better 

development of biofilms on PVC coupons, its autofluorescence affected fluorescent signals and 

the image analyses making this material not the most recommended. By the other hand, PP and 

PE coupons did not show this problem and are recommended for laboratorial biofilm 

development and fluorescence analyses.  
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Figure 3.2 Spores and biofilm of P. brevicompactum after FUN-1 staining. Spores after contact with 
1.83 mg/l (A) and 1.98 mg/l of free chlorine (B). Biofilms after contact with 1.83 mg/l 
(C) and 2.38 mg/l (D) of free chlorine. 

A 

D 

C A 
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3.4 Discussion 

 Many studies about filamentous fungi from water have been published in the last years 

but there is still a lack of information about filamentous fungi biofilms from water distribution 

system. Moreover, there are also few studies examining the effects of free chlorine on 

filamentous fungi biofilms from water, thence the results presented in this work are discussed 

mainly with studies published about bacterial biofilms. In this study, the relationship between the 

attachment of filamentous fungi to surfaces and disinfection with hypochlorite solution was 

analysed with P. brevicompactum biofilms. Biofilms on different surfaces and different aged were 

tested with crescent free chlorine solutions. Free spores were also tested. Pour plating method 

and FUN-1 staining were used for viability tests. 

      The results indicate that attachment of spores to surfaces and the development of a 

biofilm provide features for fungi to survive disinfection. Even in a 105 spores/ml suspension, 

spores were vulnerable to the lowest free chlorine concentration, whereas biofilms were resistant 

to the highest concentration. Attachment to a surface alters the way a disinfectant interacts with 

a microorganism and its efficacy may also be unsatisfactory against pathogens within flocs or 

particles, which protect them from disinfectant action (LeChevallier et al. 1988; WHO 2008). The 

free chlorine acts within the cell membrane inactivating microorganisms indicating that 

resistance against chlorine is linked with structural features provided by biofilms. The negatively 

charged exopolysaccharides are also efficient in protecting cells from positively charged biocides 

by restricting their permeation through binding. Additionally, a small portion of cells (persisters) 

could survive the common causes of cell death by the induction of quiescence in certain biofilm 

pockets. Such quiescent cells are noted for their resistance to biocides (Schwartz et al. 2003). In 

fact, microorganisms growing attached to surfaces often display a distinct phenotype that 

provides resistance to biocides (Srinivasan et al. 1995; Cochran et al. 2000; Morató et al. 2003). 

      There are previous studies showing that the characteristics of the pipe material can 

influence the formation of bacterial biofilms and the survival of pathogens in drinking water 

(Schwartz et al. 2003; Niquette et al. 2000; Norton et al. 2004; Lehtola et al. 2005). Biofilms 96 

h aged on PVC surface were more resistant when compared with same aged biofilm on PP and 

PE surfaces. According to LeChevallier et al. (1990) increase disinfection efficiency is not based 

solely on disinfection concentration, i.e., two times more disinfectant concentration does not 

result in twice inactivation. Biofilms on PVC showed a different structural composition with an 

organized mycelial development and a mature structure. Biofilms on PP and PE surfaces showed 
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cells sparsely distributed and were less resistant against chlorine inactivation suggesting that 

more than cellular density the biofilm architecture can difficult the transport of the disinfectant to 

the biofilm interface increasing the chlorine demand for cell inactivation. Lehtola et al. (2004) 

compared biofilm formation on cooper and PE surface and found that biofilms had a different 

rate of development and a different microbial community structure but that after one year 

microbial numbers in biofilms in water were similar in both materials. 

      Often household plumbing is constructed of plastic or copper, in some certain cases of 

stainless steel. Into household plumbing there are increases in the temperature and the content 

of chlorine decreases and consequently, microbial numbers increase in the water distributed 

throughout the buildings (Zacheus and Martikainen 1995, 1997). In this study, for filamentous 

fungi biofilm, PVC was the best surface for its development. In contrast, Yu et al. (2010) indicate 

some plastic materials, such as PVC, for drinking water distribution pipes, due to its low biofilm 

formation potential and little microbial diversity in biofilm. 

      In a research with filamentous fungi, Ramírez-toro et al. (2002) showed that organisms 

were able to colonize glass slides even in the presence of chlorine concentrations higher than 

those normally found in distribution systems. These authors also found that older biofilms are 

more resistance to chlorine and that attachment allowed survivals 2 to 10 times higher than 

planktonic cells. The highest concentration of chlorine used in this work was greater than the 

concentration advised by the World Health Organization (between 0.2 and 0.5 mg/l) (WHO 

2008). The antimicrobial activity of chlorine depends on the amount of hypochlorous acid which, 

in turn, depends on the pH of water, the amount of organic matter in the water and on the 

temperature of water. However, excessive treatment, i.e. hyperchlorination, has several known 

and potential negative effects on product sensory quality, in environment and human health. 

Moreover, disinfection with free chlorine can also be affected by pipe surface and biofilm age 

(LeChevallier et al. 1988). 

      The efficiency of disinfection is important to reduce microorganisms in water and to avoid 

contamination. According to Council Directive 98/83/EC, a 0.5 mg/l concentration of free 

chlorine, after an exposure of 30 min, guarantees a satisfactory disinfection. The already 

published researches about biofilms disinfection showed that this free chlorine concentration is 

not effective against bacterial biofilms.  In an overview, the water distribution network is under 

many different changes such as pH, nutrients, pipes material, temperature that influence in 

chlorine effectiveness what make disinfection a complex step of water treatment.  



71 
 

      The study of biofilms has increased in the last years and the development of new 

methodologies has a great importance. Biofilms from water distribution system are known as a 

resource of microorganisms and recontamination with a consequently reduction in water quality. 

FUN-1 staining associated with fluorescence microscopy is a non-destructive analytical technique 

which in association with others fluorescent dyes provides metabolic and morphological analyses.  

      FUN-1 has been widely applied for antifungal susceptibility tests. Balajee and Marr 

(2002) reported a flow cytometric assay relied on conidial metabolism of the viability dye FUN-1 

with spores of Aspergillus sp. Susceptibility of Candida sp. clinical isolates was also investigated 

with FUN-1 staining and the authors suggested it as an alternative and rapid method emphasize 

that the use of fluorescent viability assays can indicate the presence of a viable but not cultivable 

spores state (Pina-Vaz et al. 2001; Vanhee et al. 2008). De Vos et. al. (2006) used fluorescent 

dyes to detect fungi in hospital waters, dialysis fluids and endoscopic rinse. The results of these 

authors shown that in general, fluorescent labelling techniques detected more fungi in water than 

plate methods. 

     In this study, FUN-1 staining did not allow a quantitative analyse since a biofilm, as its 

own definition already explains, is not compose of free cells but the qualitative analyses were 

conclusive and the results corresponded with conventional plating results. The results already 

published are most about detection of yeast and spores viability and the application of FUN-1 dye 

for filamentous fungi biofilm are few or were not published yet.  

     In conclusion, we presented a simple and reproducible methodology for the study of the 

effectiveness of free chlorine against filamentous fungi biofilms from water. For this, we applied 

conventional plating and FUN-1 staining and we have shown that FUN-1 is efficient and offered 

rapid and reliable results for laboratorial biofilms and more studies are necessary to apply the 

methods in real biofilms. Furthermore, this is the first report about FUN-1 staining for 

susceptibility and viability analyse of a filamentous fungi biofilms from water. Finally, P. 

brevicompactum biofilms were capable to survive after exposure to a high free chlorine 

concentration whereas free spores were susceptible.   

 

3.5 Reference List 

Anaissie EJ, Stratton SL, Dignani MC, Lee C-K, Summerbell RC, Rex JH, Monson TP, Walsh TJ 
(2003) Pathogenic moulds (including Aspergillus species) in hospital water distribution systems: 
a 3-year prospective study and clinical implications for patients with hematologic malignancies. 
Blood, 101: 2542-2546. 



72 
 

Balajee SA and Marr KA (2002) Conidial vability assay for rapid susceptibility testing of 
Aspergillus species. Journal of Clinical Microbiology, 40(8): 2741-2745.  

Beauvais A, Schmidt C, Guadagnini S, Roux P, Perret E, Henry C, Paris S, Prévost M-C, Latgé JP 
(2007) An extracellular matrix glues together the aerial grown hyphae of Aspergillus fumigatus. 
Cellular Microbiology, 9: 1588-1600. 

Berger PS, Clark RM, Reasoner DJ. Water, Drinking. In: Encyclopedia of Microbiology. 2nd 
Edition, pp. 898-913, 2000. 

Chandra J, DM Kuhn, PK Mukherjee, J Bacteriol (2001) Biofilm formation by the fungal pathogen 
Candida albicans: development, architecture, and drug resistance. Journal of Bacteriology, 183 
(18): 5385-5394. 

Cochran WL, McFeters GA, Stewart PS (2000) Reduced susceptibility of thin Pseudomonas 
aeruginosa biofilms to hydrogen peroxide and monochloramine. Journal of Applied Microbiology, 
88(3): 22-30.  

de Vos MM and Nelis HJ (2006) Enumeration of airborne bacteria and fungi using solid phase 
cytometry. Journal of Microbiology Methods, 67: 557-565. 

Doggett MS (2000) Characterization of fungal biofilms within a municipal water distribution 
system. Applied and Environmental Microbiology, 66: 1249-1251. 

Elvers KT, Leeming K, Lappin-Scott HM (2001) J Ind Microbiol Biotechnol, Binary culture biofilms 
formation by Stenotrophomonas maltophilia and Fusarium oxysporum. Journal of Industry 
Microbiology And Biotechnology, 26: 178-183. 

Geldreich EE. In: Microbial quality of water supply in distributions systems. Lewis Publishers, 
Boca Raton, FL, 1996. 

Gonçalves AB, Paterson RRM, Lima N (2006) Survey and significance of filamentous fungi from 
tap water. International Journal of Hygienic and Environmental Health, 209: 257-264. 

Göttlich E, van der Lubbe W, Lange B, Fiedler S, Melchert I, Reifenrath M, Flemming H-C, de 
Hoog S (2002) Fungal flora in groundwater-derived public drinking water. International Journal of 
Hygienic and Environmental Health, 205(4): 269-79. 

Hageskal G, AK Knutsen, P Gaustad, GS de Hoog, I Skaar (2006) Diversity and Significance of 
Mold Species in Norwegian Drinking Water. Applied Environmental Microbiology, 72: 7586-7593. 

Hageskal G, Lima N, Skaar I (2009) The study of fungi in drinking water. Mycological Research, 
113: 165-172. 

Harding MW, Marques LRL, Howard RJ, Olson ME (2009) Can Filamentous fungi form biofilm? 
Trends in Microbiology, 17(11): 475-480. 

Harrison JJ, Turner RJ, Ceri H (2005) Biofilms - A new understanding of these microbial 
communities is driving a revolutionn that may transform the science of microbiology. American 
Scientist, 93: 508-515. 

Huq A, Whitehouse CA, Grim CJ, Alam M, Colwell RR (2008) Biofilms in water, its role and 
impact in human disease transmission. Current Opinion in Biotechnology, 19: 244-247. 



73 
 

LeChevallier MW, Cawthon CD, Lee RG (1988) Factors promoting survival of bacteria in 
chlorinated water supplies. Applied Environmental Microbiology, 54 (3): 649-654.  

LeChevallier MW, Lowry CD, Lee RG (1990) Disinfection of biofilms in a model distribution 
system. Journal of the American Water Works Association, 82(7): 87-99. 

Lehtola MJ, Miettinen IT, Keinanen MM, Kekki T, Laine O, Hirvonen A, Vartiainen T, Martikainen 
PJ (2004) Microbiology, chemistry and biofilm development in a pilot drinking water distribution 
system with copper and plastic pipes. Water Research, 38: 3769-3779. 

Lehtola MJ, Miettinen IT, Myllykangas T, Hirvonen A, Vartiainen T, Martikainen PJ (2005) Pipeline 
materials modify the effectiveness of disinfectants in drinking water distribution systems Water 
Research, 39: 1962-1971. 

Morató J, Codony F, Mir J, Mas J, Ribas F. Microbial Response to Disinfectants. In: Mara, D., 
Horan, N. (Eds.). The Handbook of Water and Wastewater Microbiology. Academic Press, 
London, pp.657-693, 2003.  

Mowat E, Lang S, Williams C, McCulloch E, Jones B, Ramage G (2008) Phase-dependent 
antifungal activity against Aspergillus fumigatus developing multicelluar filamentous biofilms. 
Journal of Antimicrobial Chemotherapy, 62: 1281-1284 

Mowat E, Williams C, Jones BL, Mcchlery S, Ramage, G (2009) The characteristics of Aspergillus 
fumigatus mycetoma development: is this a biofilm? Medical Mycology, 47(1): 1–7. 

Niquette P, Servais P, Savoir R (2000) Impacts of pipe materials on densities of fixed bacterial 
biomass in a drinking water distribution system. Water Research, 34(6): 1952-1956. 

Norton CD, LeChevallier MW, Falkinham III JO (2004) Survival of Mycobacterium avium in a 
model distribution system. Water Research, 38(6): 1457-1466. 

O'Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R (1999) Genetic approaches 
to study of biofilms. Methods in Enzymology, 310: 91-109. 

O’Toole GA, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annual 
Review in Microbiology, 54: 49-79. 

Paterson R, Gonçalves A, Lima N. In: Proceedings of the 8th International Mycological Congress. 
SAPMEA, Eastwood, Australia, p. 129, 2006. 

Pereira VJ, Basílio MC, Fernandes D, Domingues M, Paiva JM, Benoliel MJ, Crespo MT, San 
Romão MV (2009) Occurrence of filamentous fungi and yeasts in three different drinking water 
sources. Water Research, 43: 3813-3819. 

Pina-Vaz C, Sansonetty F, Rodrigues AG, Costa-de-Oliveira S, Martinez-de-Oliveira J, Fonseca AF 
(2001) Susceptibility to fluconazole of Candida clinical isolates determined by FUN-1 staining 
with flow cytometry and epifluorescence microscopy. Journal of Medical Microbiology, 50: 375-
382. 

Ramírez-Toro GI and Minnigh HÁ. In: XXVIII Congreso Interamericano de Ingeniería Sanitaria y 
Ambienta, Cancún, México, 2002. 



74 
 

Ribeiro A, Machado AP, Kozakiewicz Z, Ryan M, Luke B, Buddie AG, Venâncio A, Lima N, Kelley J 

(2006) Fungi in bottled water: a case study in a production plant. Revista Iberoamericana de 

Micologa, 23(3): 139-144. 

Sammon NB, Harrower KM, Fabbro LD, Reed RH (2010) Incidence and distribution of microfungi 
in a treated municipal water supply system in sub-tropical Australia. Environmental Research and 
Public Health, 7: 1597-1611. 

Schwartz T, Hoffmann S, Obst U (2003) Formation of natural biofilms during chlorine dioxide and 
U.V. disinfection in a public drinking water distribution system. Applied Microbiology, 95: 591-
601. 

Srinivasan R, Stewart PS, Griebe T, Chen CI, Xu X (1995) Biofilm Parameters Influencing Biocide 
Efficacy. Biotechnology Bioengineering, 46(6): 553-560.  

U.S.EPA - U.S. Environmental Protection Agency. Drinking water criteria document on 
heterotrophic bacteria. Washington, DC. 1984. 

Vanhee LME, Nelis HJ, Coenye T (2008) Rapid detection and quantification of Aspergillus 
fumigatus in environmental air samples using solid-phase cytometry. Journal of Microbiology 
Methods, 72: 12-19. 

Villena GK, Fujikawa T, Tsuyumu S, Gutiérrez-Correa M (2009) Structural analysis of biofilms and 
pellets of Aspergillus niger by confocal laser scanning microscopy and cryo scanning electron 
microscopy. Bioresource Technology, doi:10.1016/j.biortech.2009.10.036.  

WHO - World Health Organization. Guidelines for drinking water quality, vol 1. World Health 
Organization, Geneva, 2008. 

Yamaguchi MU, Rampazzo RCP, Yamada-Ogatta SF, Nakamura CV, Ueda-Nakamura T, Filho 
BPD (2007) Yeasts and filamentous fungi in bottled mineral water and tap water from municipal 
supplies. Brazilian Archives of Biology and Technology, 50(1): 1-9. 

Yu J, Kim D, Lee T (2010) Microbial diversity in biofilms on water distribution pipes of different 
materials. Water Science Technology, 61(1): 163-71. 

Zacheus OM and Martikainen PJ (1995) Occurrence of heterotrophic bacteria and fungi in cold 
and hot water distribution systems using water of different quality. Canadian Journal of 
Microbiology, 41: 1088-1094. 

Zacheus OM and Martikainen PJ (1997) Physicochemical quality of drinking and hot waters in 
Finnish buildings originated from groundwater or surface water plants. Science of the Total 
Environment, 204: 1-10. 

 

 

 

 



75 
 

 

Chapter 4  

Surface hydrophobicity of culture and water biofilm of Penicillium spp. 

 

4.1 Introduction 

 

 Hydrophobicity is related to many factors of fungal life and is crucial for fungal survival 

and adaptation (Wösten 2001). Filamentous fungi are known to produce hydrophobins which are 

small proteins localized on the outer surface of their cell walls (Wessels 1997). The hydrophobins 

form an amphipathic membrane whose hydrophobic side is exposed to the exterior whilst the 

hydrophilic surface is bound to the cell wall polysaccharides and confer water repellent properties 

(Whiteford and Spanu 2002). Hydrophobicity seems to function in cases of symbiosis between 

fungi and plants (ectomycorrhizae) or algae and/or cyanobacteria (lichens) and mediate 

attachment of hyphae to hydrophobic surfaces (Linder et al. 2005).  

 Hydrophobic interactions are of major importance in the firm adhesion of diverse 

microorganisms to water-solid interfaces (Donlan and Costerton 2002). Although the hydrophobic 

effect has been considered to be nonspecific, it is known that a large number of bacterial and 

fungal pathogens depend on hydrophobic interactions for successful colonization of a host (Doyle 

2000); fungal-bacterial biofilms can be mediated by hydrophobic and electrostatic interactions 

wherein the fungal cell acts as a surface for bacteria to be attached on (Morales and Hogan 

2010). The relation between hydrophobicity and fungal-bacterial interactions has been described 

in soil (Ritz and Young 2004; de Boer et al. 2005) and medical studies like in oral tissues, oral 

prostheses, implanted medical devices and urinary tract infections (Doyle 2000; Howard and 

Douglas 2002; Morales and Hogan 2010).  

 Although some studies about hydrophobicity in filamentous fungi (ff) have been recently 

published (Chau et al. 2009; 2010), ff have been largely excluded from hydrophobicity 

measurements. Characteristics such as dimorphic growth, variety of size and shape of hyphae 

and spores, and a complex cell wall make difficult the use of the same methods already applied 

for bacteria to ff (Hazen 1990). Moreover, the filamentous nature of fungal mycelial mats is 

difficult to handle, easily damaged and its surface may vary depending on the growth conditions 

(Doyle and Rosenberg 1990). Methods such as microbial adhesion to hydrocarbons (MATH), 
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hydrophobic interaction chromatography (HIC) and contact angle measurements (CAM) are 

widely used for cell surface hydrofobicity determination (Doyle and Rosenberg 1990; Doyle 

2000). Contact angles (CA) represent a measure of a surface interaction with a liquid and have 

been commonly used to quantify the cell surface hydrophobicity of bacteria and yeasts 

(Henriques et al. 2004; Paramonova et al. 2009; Mazumder et al. 2010; Epstein et al. 2011). In 

contrast, Hazen (1990) suggested microsphere adhesion assay (MAA) as the best method for 

measuring hydrophobicity of ff. Recently, Chau et al. (2009) presented a new method to evaluate 

mycelial hydrophobicity based on CAM method.  

 Hyphal hydrophobicity influence bacterial adhesion to fungal cell and influence fungal-

bacterial biofilm interactions (Perotto and Bonfante 1997; de Boer et al. 2001; Li and Palecek 

2008). As matter of consequence, the characterisation of hyphal hydrophobicity is important for 

understanding its function and role in fungal-bacterial biofilms like the ones have been found in 

water distribution system (Siqueira et al. 2011).  

 In this study, CAM and MAA were applied to assess hydrophobicity of Penicillium 

brevicompactum and Penicillium expansum to compare hydrophobicity between mycelium mats 

from solid culture, liquid culture and fungal water biofilms and determine if MAA is an effective 

approach to characterise the hydrophobicity on fungal surfaces developed under these 

conditions.  

 

4.2 Material and Methods  

4.2.1 Microorganisms  

 Penicillium brevicompactum (MUM 05.17) and Penicillium expansum (MUM 00.02) 

supplied by Micoteca da Universidade do Minho fungal culture collection (MUM, Braga, Portugal) 

were chosen based on their high occurrence in Portuguese tap water distribution system 

(Gonçalves et al. 2006). None of them were previously characterised as hydrophobic or 

hydrophilic. The fungi were maintained on Malt Extract Agar plates (MEA: malt extract  20 g, 

peptone 5 g, agar 20 g, distilled water 1 l) at 25 ºC.  

 

4.2.2 Formation of mycelial mats on solid culture  

 This methodology was followed as described by Chau et al. (2009). Briefly, pre-cleaned 

microscope slides (7.6 cm x 2.5 cm) were sterilized by flaming after dipping them in 96 % 

ethanol solution. Then, the slides were transferred aseptically to sterilized Petri dishes. 
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Approximately 1 ml of the MEA or Water Agar Glucose medium (WGA: agar 20 g, glucose 10 g, 

distilled water 1 l) was spread uniformly on the slide using a micropipette. The slide medium was 

then allowed to harden. Under aseptic conditions, 5 µl of fungal spore suspension from a 7 day 

growing culture was inoculated on the centre of the slide medium and incubated at 25 ºC for 7 

and 21 days. Three replicates of each fungus grown in each slide medium were used for CAM. 

 

4.2.3 Formation of mycelial mats in liquid culture  

 A suspension of 105 spores/ml was used to perform fungal liquid culture. The 

suspension was added to 2 ml Eppendorf tubes previously sterilized containing 1.5 ml of Water 

Glucose medium (WG: WGA without agar) or Malt Extract Broth (MEB: MEA without agar). 

Afterwards, the Eppendorf tubes were vortex and then were agitated gently at 23±2 ºC for 3 days. 

Three replicates of each fungus grown in each liquid culture medium were used for MAA. 

 

4.2.4 Formation of submerged water fungal biofilms  

 The biofilms were formed in 6-well plates containing 5 ml of WG or MEB medium and 

polypropylene coupons (1 cm x 1 cm), previously autoclaved at 121 ºC during 15 min, placed 

into the wells with the reverse face touching the well bottom and completely submerged under 

the liquid medium. To form fungal biofilms, a suspension of 105 spores/ml was inoculated and 

incubated at 23±2 ºC temperature and 120 rpm during 7 days. Three replicates of each fungal 

biofilm formed in each culture medium were used for CAM and MAA analyses. 

 

4.2.5 CAM 

 Viewing and acquisition of CA images were performed by the sessile drop technique 

using a CAM apparatus (model OCA 15 Plus; DataPhysics Instruments GmbH, Germany). All the 

measurements were performed at room temperature using water droplets (3 µl). Contact angles 

measurements to be consistent and stable required a steady fungal growth and the procedures 

were also made in way not change the fungal colony properties. The contact angles were 

measured at the edge, middle and centre points of mycelial mats which representing the ages of 

the fungal colony: from the youngest to the oldest zones, respectively. Contact angle 

measurement >90º is interpreted as hydrophobic property of the surface. 

 

4.2.6 MAA 
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 MAA was used to test the surface hydrophobicity of mycelia mats grown in liquid cultures 

and fungal biofilms as described by Beauvais et al. (2007). Latex beads of sulfate-modified 

polystyrene with red fluorescence and an average diameter of 0.5 µm (L9777, Sigma; EX 575 

nm/ EM 610 nm) were used. These beads have a low negative charge density with >90 % of 

their surfaces available for hydrophobic interactions (Hazen and Hazen 1987). Mycelial mats 

from liquid cultures and biofilms were washed with 0.1 M KNO3 pH 6.5 and mixed with a 109 

microspheres/ml suspension. The mixture was vortexed for 30 s and extensively washed with the 

KNO3 solution. The adhesion of the microspheres was observed under an Olympus BX51 

epifluorescent microscope using UV light (EX 470 nm, EM 505 nm).  

 Calcofluor White R2 (CW) which stains fungal cell walls was used as counterstain to 

improve morphological analysis of mycelia. The excitation/emission wavelength for CW was 

346/433 nm and the signal acquired was blue. The images were acquired with a Zeiss AxioCam 

HRc colour camera using the software CellB®. 

 

4.3 Results  

 The CAM were applied to edge, middle and centre zones of mycelial mats on solid 

culture (Figure 4.1) and in randomly points of biofilms (Figure 4.2). The contact angles values are 

summarised in Table 4.1. At 7 and 21 days the mycelial mats in both solid media did not allow 

apply the CA method at the centre zones. The high hydrophobicity observed did not consent the 

water drop to be released from the tip of the needle (Figure 4.1A). The presence of high number 

of spores in this oldest zone could be the cause of the very high hydrophobicity observed 

because after contact with the colony surface the water drop was covered by spores (Figure 

4.1B). For this same reason, CA were not determined at middle zone of 21 days aged cultures in 

MEA. In contrast, P. expansum and P. brevicompactum for 7 days solid cultures in MEA in edge 

and middle zones (Figure 4.1C and D) and for 21 days in edge zone showed hydrophobic surface 

properties (Table 4.1). In WGA, both fungi showed hydrophobic features when the CA were 

measured at 21 days as well at 7 day for the middle zone of the colony. However, at the edges of 

7 days aged colonies CA were <90º and these zones were classified as hydrophilic. 

Notwithstanding this, the whole 7 and 21 days aged colonies of P. expansum and P. 

brevicompactum were classified as hydrophobic. 

 In contrast with solid cultures, biofilms of P. expansum (Figure 4.2A) and P. 

brevicompactum (Figure 4.2B) formed in MEB with 7 days showed hydrophobicity (CA 
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91.3±2.0º) and hydrophilicity (CA 67.0±3.0º), respectively. It was impossible to measure contact 

angles of biofilms in WG medium because there was not enough fungal growth to cover an area 

on the coupon where the drop could be placed on.  

 Mycelial mats or fungal biofilms P. brevicompactum and P. expansum did not show 

different morphologies between them. In contrast and as expected, morphological differences 

were observed when mycelial mats and fungal biofilms were compared. In liquid media, the 

mycelial mats have grown typically as pellets (i.e., highly entangled masses of hyphae) ranging 

from 1.5 up to 3 mm of diameter (Figures 4.3A-C and 4.5A-C). On the other side, biofilms have 

grown covering the coupon surface heterogeneously and showing specific characteristics such as 

a low rate of growth, interstitial voids and vertical direction growth (Figures 4.4A-C and 4.6A-C). 

Fungi grown in liquid cultures were classified as hydrophilic since a little amount of microspheres 

was observed on hyphae (Figures 4.3D-F and 4.5D-F). In biofilms, a high number of 

microspheres could be seen attached to hyphae, characterizing them as hydrophobic (Figures 

4.4D-F and 4.6D-F) but in the same microscopic fields were possible to observe hyphae totally 

uncovered thus classifying them as hydrophilic (Figures 4.4I and 4.6I). This feature differs 

between biofilms and mycelial mats from liquid cultures: while within the biofilms the 

microspheres showed preferential attachment on some hyphae (Figures 4.4G-I and 4.6G-I) in 

liquid culture the distribution seems to be randomly (Figures 4.3G-I and 4.5G-I).   

 

Table 4.1 Contact angles (θw) values of mycelial mats on solid cultures. 

Fungus Colony 

zone 

Solid culture 

MEA (θw) WGA (θw) 

7 days 21 days 7 days 21 days 

P. expansum 

Centre ND ND ND ND 

Middle 129.4±1.7º ND 112.5±1.5º 110.4±1.0º 

Edge 112.6±1.3º 103.7±1.0º 66.3±1.9º 102.6±1.0º 

P. brevicompactum 

Centre ND ND ND ND 

Middle 119.4±1.5º ND 96.3±2.0º 98.3±1.2º 

Edge 118.2±2.3º 110.2±1.3º 83.7±1.0º 99.5±1.5º 

ND = not determined; The values are the mean ± standard deviation of three replicates. 
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Figure 4.1 Images of water drop on the surface of three zones of the fungal colony of P. 

expansum developed in 7 days in MEA solid culture. A: Centre zone; B: Centre zone 

with fungal spores surrounding the water drop; C: Middle zone; D: Edge zone. 

 

 

 

 

 

Figure 4.2 Images of water drop on biofilm surface developed in 7 days in MEB liquid culture. A: 

P. expansum; B: P. brevicompactum. 
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Figure 4.3 P. expansum mycelial mats in MEB. A-C: Calcofluor White R2 staining; D-F:  

Microsphere adhesion; G-I: Superimposed images. Scale bar = 200 µm. 
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Figure 4.4 P. expansum biofilm in MEB. A-C: Calcofluor White R2 staining; D-F: Microsphere 

adhesion; G-I: Superimposed images. Scale bar = 200 µm.  

Figure 4.5 P. brevicompactum mycelial mats in MEB. A-C: Calcofluor White R2 staining; D-F: 

Microsphere adhesion; G-I: Superimposed images. Scale bar = 200 µm. 
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4.4 Discussion 

 Our results showed that P. expansum and P. brevicompactum colonies have high 

hydrophobicity in 7 and 21 days old cultures in MEA.  These findings are in line with Chau et al. 

(2009) which using CAM also reported high hydrophobicity for Penicillium auranteogriseum in a 

10 day culture on Potato Dextrose Agar. Others deuteromycetes such as Cladosporium sp. 

(Smits et al. 2003) and Cladosporium cladosporioides, C. minourae and Alternaria sp. (Chau et 

al. 2009) were also characterised as hydrophobic using CAM. Additionally, fungal spores of P. 

oxalicum and P. expansum were also characterised as hydrophobic using the phase distribution 

test and the retention on polystyrene assay, respectively (Pascual et al. 2000; Amiri et al. 2005).  

 The different hydrophobicity levels found in P. expansum and P. brevicompactum 7 and 

21 days old in WGA can be due the intense colonization at the zone of inoculation (Busscher et 

al. 1984) which reflect a change in growth state from the point of inoculation to the edge of the 

colony (Wessels et al. 1991), and/or the presence of sporulation and the amount of spores 

produced (Smits et al. 2003; Cavalcante et al. 2008). Spores of Penicillium are well known to be 

very hydrophobic (Amiri et al. 2005) and colonies in solid cultures of most of this taxon, which 

D G 

H 

I 

E 

F 

A 

B 

C 

Figure 4.6 P. brevicompactum biofilm in MEB. A-C: Calcofluor White R2 staining; D-F:  

Microsphere adhesion; G-I: Superimposed images. Scale bar = 200 µm.  
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had radial growth, is easily visible the gradate increase of sporulation from the point of 

inoculation up to the edge of the colony. This features may be the main reason for high contact 

angles values obtained and, consequently, high hydrophobicity. Furthermore, in this study the 

sporulation was higher in colonies grown in MEA when compared with those grown in WGA. The 

levels of nutrients can interfere in the hydrophobicity because the higher the nutrients are the 

higher the fungal sporulation is, or the higher the nutrients are the higher the proteins excreted 

by the fungus are (Smits et al. 2003; Chau et al. 2009). Chau et al. (2009) suggested a new 

Chronos-amphiphilic class which covers fungi with shifting hydrophobicity over time and space.  

  It is know that environmental conditions such as temperature, nutrients source and 

humidity can affect the hydrophobicity (Smits et al. 2003). The hydrophobicity can also change 

with the form of growth, e.g. if the microorganism is grown on solid or in liquid media or, if it 

grows attached to a surface as biofilms. The interference of the form of growth is detected when 

we compare the results between solid culture and biofilms of the same fungus. While the 

colonies showed in general high CA values, biofilms showed <90º contact angles. Hazen (1990) 

says that the fungal cell layer formed on a surface must be uniform in depth to get a reliable 

contact angle, but uniformity may not be achievable with ff cells. Nevertheless, the limitations of 

the technique can be questioned since CA is extremely affected by surface heterogeneity, a 

characteristic linked with ff biofilms (Villena et al. 2009). 

 In aqueous environments, hydrofobins produced by ff are known to be involved in the 

mechanism of fungal hyphae to lower the surface tension and grow into the air; once escaped, 

these hyphae may further differentiate to simple or elaborate spore-bearing aerial structure which 

are covered with a hydrophobic film (Wösten and Wessels 1997; Wösten and Willey 2000). The 

greater interest among the results presented in this study, is that MAA was able to assess how 

different growth (i.e., biofilms) influences the levels of fungal cell surface hydrophobicity. Within 

biofilms, the hyphae projected out of the denser hyphae layer and exposed to the outer inner of 

the biofilm, were those which presented higher hydrophobicity. This observation is in line with the 

model for the formation of fungal aerial structures, which postulate that hyphae are cover by 

hydrophobin film with its hydrophobic side exposed to the air (Wösten et al. 1994), but with a 

particular feature: the hydrophobic hyphae are still in contact with the liquid medium. 

Nevertheless, they still seem to be projected out of the biofilm core to create a differentiated 

mycelial zone which can be associated with further interactions in aquatic environments. 
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 Villena et al. (2009) described biofilms of Aspergillus niger and reported a vertical growth 

direction, well-structured channels, a specific biomass density distribution and differential 

physiological behaviour (i.e. enzymatic production) as important characteristics of biofilms.  The 

depth and the presence of channels between groups of hyphae were also reported in Aspergillus 

fumigatus biofilms and are related with the vertically polarized growth (Beauvais et al. 2007). 

Thus, morphological and physiological behavior of ff biofilms can be correlated with different 

hydrophobicity levels. Moreover, structural and physiological functions within ff biofilms seem to 

be correlated with specific hyphae, corroborating the concept of biofilms as communities with 

complex levels of organization and cell activity (Wimpenny et al. 2000). 

 Hydrophobicity also influences the cell adherence to a wide variety of surfaces and thus 

in the biofilm formation as well (Chandra et al. 2005; Pompilio et al. 2008; Norouzi et al. 2010) 

and can render microorganisms more pathogenic (Beauvais et al. 2007; Kuntiya et al. 2005). 

Hydrophobicity can also affect microbial interaction in different environments. Fungi and bacteria 

often share habitats, whether they live together as free-living organisms in natural ecosystems or 

as intimate partners in a symbiotic relationship (Valdivia and Heitman 2007). The hyphosphere, 

i.e. the surface and direct surroundings of fungal hyphae, can be considered the hotspot of 

microbial interactions. In aquatic habitats hyphosphere-associated bacteria seem to have the 

potential to affect the fungal performance significantly (Baschien et al. 2009). Although many 

studies have described bacteria attached to fungal hyphae (de Boer et al, 2001, 2004; Hogan et 

al. 2007; Hoffman and Arnold 2010), the mechanisms for this attachment and in particular the 

role of fungal surface characteristics are greatly unknown. 

 Biofilms in water distribution system have been widely investigated in the last years (Huq 

et al. 2008; Simões et al. 2010; Wingender and Flemming 2011). Mixed-species bacterial 

biofilms are usually described (Watson et al. 2004; Braganra et al. 2007) but a lack of 

information about fungal-bacterial interaction within biofilms still remains, though fungi and 

fungal biofilms are also relevant to water quality (Paterson and Lima 2005; Hageskal et al. 2009; 

Sammon et al. 2011; Siqueira et al. 2011). Biofilms are complex communities wherein 

interspecies and intraspecies interactions occur and influence initial stages of biofilm formation 

and its subsequent development and permanence (Elvers et al. 2002). Future work should aim 

to find out if hydrophobicity is related to attachment of bacteria to fungal hyphae and how it 

interferes in fungal-bacterial interaction, specifically within water biofilms. 
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 In conclusion, the results of this work showed a relevant difference when CAM and MAA 

are applied. In this study, CAM showed to be more useful to assess hydrophobicity on solid 

cultures, i.e. the results represent the hydrophobicity of the whole colony. By the other hand, 

MAA was more reliable to assess directly the cells surface hydrophobicity and was useful for 

characterise different zones of hydrophobicity within the biofilm. Moreover, MAA is a reproducible 

and simple technique and it can be used to assess patterns of hydrophobicity and provide better 

understandings about filamentous fungal biofilm architecture.  
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Chapter 5 

 

 Monitoring filamentous fungal biofilm formation in a laboratorial flow chamber  

reactor by image analyses 
 

 

5.1 Introduction 

 

Governmental agencies and water companies are constantly concerned about water 

quality; there is an evident preoccupation to provide water free of hazards to human health. In 

this sense, the study of microbial biofilms in water distribution systems (WDS) has received great 

attention, since biofilms are widely considered a source of microbial contamination (Szewzyk et 

al. 2000; Huq et al. 2008). WDS are very complex environments in which diverse factors may 

interfere in water microbiology and biofilm formation as well (Berry et al. 2006). Abiotic factors 

such as temperature, disinfectant residuals and type (Gagnon et al. 2005), organic matter 

(Norton and LeChevallier 2000), nutrient concentrations (Chu et al. 2005), substratum (Zhou et 

al. 2009), and hydraulic characteristics (Lehtola et al. 2006; Manuel et al. 2007) influence 

biofilm formation in WDS. The idea of a WDS as an ecosystem becomes even more complex if all 

the others habitats surrounding it are considered (Szewzyk et al. 2000).  

Nowadays, the different techniques applied in this field are incredible numerous and 

include microscopic, microbiological, molecular biological, (bio)-chemical and physical 

approaches (O’Toole et al. 1999; Flemming et al. 2000). Additionally, researchers have been 

developing in vitro systems for growing and testing microbial biofilms; they are known as biofilm 

reactors. A biofilm reactor is defined as a group of compartments and their components 

determining biofilm structure and activity and it is basically composed of three main 

compartments: (1) the surface where the microorganisms are attached, (2) the biofilm and (3) 

the solution of nutrients. Batch systems, flow-cells, modified Robbins device and annular reactor 

can be listed as the most common biofilm reactors used in laboratorial experiments (Goeres et 

al. 2005).  

These systems provide conditions for biofilm development and, even though they do not 

completely reflect the conditions in real pipe networks, they are very useful for biofilm 

characterization in laboratorial experiments. For example, for the study of filamentous fungal 

water biofilms the implementation of biofilm reactor in laboratorial studies is quite important, 
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since this is a very new area in water quality research that requires evaluation and optimization of 

new techniques. Hence, a biofilm reactor was developed by our group and was applied for 

laboratorial experiments and was performed together with specific fluorescent dye for filamentous 

fungal biofilm detection. Filamentous fungi isolation was also performed to assess fungal diversity 

in biofilms within the biofilm reactor. 

 

 

5.2 Material and methods 

5.2.1 Model system 

In order to produce biofilm samples a flow chamber (Figure 5.1) was constructed to be 

operated under monitored conditions. Selected properties are shown in Table 5.1. 

 

The model system consisted of two acrylic flow chambers, silicone pipes, a circulation 

pump, an acrylic tank and connectors. The cells were mounted with flanges at each end, were 

joined by screws, and tightened by O-rings. The system was set up in two different systems 

named open flow and closed flow. The open flow was continuously fed with tap water from the 

municipal distribution network of Braga, Portugal. The closed flow was set up in continuation with 

the open flow and fed with the same tap water, but the water was kept in a recirculation system. 

Biofilm samples were collected by removing the cell. Disinfection of all system was carried out 

with sodium hypochlorine solution (10%) followed by washing with distilled and autoclaved water. 

Table 5.1 Flow chamber conditions.  

Flow chamber characteristics Closed flow Open flow 

PVC coupon area (inner surface) 2.52 cm2 2.52 cm2 

Number of cells 4 4 

Number of coupons 4 4 

Tank volume 2.15 l - 

Flow chamber volume 45 ml 45 ml 

Total volume (with pipes) 2.3 l - 

Reynolds number* 2513 (transitional 

turbulence conditions) 

≤ 2100 (laminar 

conditions) 

* At the cells modules   
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No additional disinfectant was allowed to enter into the system during all experiment. The model 

system was operated under constant conditions during a total of 8 months; analyses were 

performed at each 2 months. During this period, free chlorine levels (Ion specific meters, Hanna 

Instruments, HI 93701, light emitting diode @ 555nm, range 0.00 to 2.5 mg/l, resolution 0.01 

mg/l), pH (pH Meter 526, WTW, Multical®) and temperature of the water were also monitored. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.2 Fluorescent staining and microscopy 

  Calcofluor White M2R (CW) (25 µM) was used as staining for fungal detection. Following 

incubation in the dark for 15 min in room temperature, the coupons were microscopically 

observed. The excitation wave length for CW was 346 nm and the signal acquired was blue. An 
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Figure 5.1 General overview of model system: A – Transversal view of acrylic flow chamber with 

a removable cell; B – Acrylic flow chamber of open flow with four cells and C – Tank, 

pump and acrylic flow chamber of closed flow with four cells. Arrows represent water 

flow inside silicone pipes. 
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Olympus BX51 epifluorescence microscope using UV light equipped with 100x/1.3, 40x/0.30 

and 10x/0.65 objectives was used. The images were acquired with a colour camera Zeiss 

AxioCam HRc using the software CellB®. 

 

5.2.3 Biomass quantification 

The fungal biomass (in gram), derived from the biovolume, was calculated as “Biomass 

= density x π r2 L”, where r was the radius of fungal hyphae (in centimetre), d = 1.09 g cm-3 was 

considered to be the density of fungal hyphae (Schnürer 1993) and L was the length of fungal 

hyphae (in centimetre).  

 

5.2.4 Fungal isolation 

 After 8 months of analyses the system was unset and the pipes and joints were removed 

and used for fungal isolation. For this, three samples of five chosen points named (1) inlet open 

flow, (2) inlet tank, (3) inlet pump, (4) inlet close flow and (5) outlet closed flow were used (Figure 

5.1). The inner surface of pipes and joints were scraped using sterile blades; the scrape samples 

were placed into tubes containing 1 ml of saline solution (0.85 % NaCl), and homogenised using 

a vortex.  One hundred millilitres of each sample was spread onto Petri dishes containing the 

culture media Malt Extract Agar plates (MEA: malt extract 20 g, peptone 5 g, agar 20 g, distilled 

water 1000 ml) added with chloramphenicol (50 mg) (Biokar Diagnostics, France) and 

Neopeptone Glucose Rose Bengal Aureomycin plates (NGRBA: neopeptone 5 g, glucose 10g, 

chlortetracycline solution (1.0 g/100 ml) 14 ml, rose Bengal solution (1.0 g/150 ml) 3.5 ml, 

agar 20 g, distilled water 1000 ml). Culture plates were incubated at 25 °C during 7 days and 

colonies were counted and identified to genus level. 

 

5.3 Results 

A total of 8 coupons (4 from open flow and 4 from the close flow) were analysed at each 

2 months during a total of 8 months. Filamentous fungi were detected in all samples since the 

first analyses, but a higher number of filaments stained with CW and a more diverse morphology 

were observed mostly in the last month (Figure 5.2 – 5.5). PVC coupons showed a very high 

autofluorescence. Although the autofluorescence decreased along time, this sort of material may 

not be used for fluorescent microscopy because the autofluorescence can lead to a false negative 
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detection. Since CW has blue signal, it was possible to detect the stained structures and the 

experiment was carried out until 8 months. 

 From the fourth month of analyses, diverse algae attach to coupons were also observed 

(Figure 5.3D; Figure 5.4G and H; Figure 5.5G and H). These algae resemble the genera Chlorella 

(Figure 5.4H and 5.5G), Staurastrum (Figure 5.3D and 5.5H) and Tetraedron (Figure 5.4G) 

which are commonly find in freshwater environments (Sigee 2005). They were observed mainly 

attached to coupons exposed to the closed flow. 

 

   

  

 

 

 

 

 

 

 

 

 Fungal biomass was calculated by conversion of biovulome into biomass using a proper 

conversion factor, i.e. the density of fungal hyphae (Johan Schnürer 1993).  Biomass values are 

listed in table 5.2 and represent all detected filaments attach to coupon. The closed system 

showed a higher attached biomass, i.e. 3.49 mg/cm2  after 8 months. 

  

 

 

Table 5.2  Time course of fungal biomass on coupon surfaces over 8 months in open and closed 
flow.  

Local   Fungal biomass (mg/cm2 ) 

 2 months 4 months 6 months 8 months 
Open flow 1.86 1.23 2.3 2.89 
Closed flow 2.18 2.26 2.93 3.49 

Figure 5.2 Filamentous fungi (arrows) detection on coupon surface after 2 months of exposure 

and CW staining. A and B - open flow; C and D - closed flow. 

50 µm 50 µm 

50 µm 50 µm B A 

D C 
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Table 5.3 Fungal colony-forming units (CFU) recovered from scraped pipes and joint of model 
system after 8 months.   

Local Culture media Total per local 

MEA NGRBA 
Inlet open flow 4 0 4 
Inlet tank 6 5 11 
Inlet pump 7 1 8 
Inlet closed flow  9 6 15 
Outlet closed flow 7 3 10 
Total  33 15 48 

Figure 5.3 Filamentous fungi and algae (arrows) detected on coupon surface after 4 months of 

exposure and CW staining. Open flow: A and B. Closed flow C – G. Scale bar = 20 

µm. 

A B 

C D 

E F 
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 Free chlorine, pH and water temperature were also assessed during the experiment 

(Table 5.4). It wasn’t detected a high variance in these parameters along the 8 months of 

experiment, but a considerable change was verified in free chlorine levels when tap water (open 

flow) and tank water (closed flow) were compared, i.e. tank water showed very low free chlorine 

levels. Free chlorine was not detectable at tank water in 6th and 8th months. No significant 

changes in water temperature and pH were observed during the experiment (Table 5.4). 

 

   

  

 A total of 48 isolates were recovered from the different chosen points in the model 

systems (Table 5.3). Aspergillus spp., Cladosporium sp. and Penicillium spp. were the 

predominant fungi. A higher number of isolates was recovered at the local named inlet closed 

flow but a higher diversity was detected at the local named inlet pump (Table 5.5). 

 

 

 

 

 

 

 

Table 5.4 Free chlorine, pH and temperature during 8 months of experiment (values are the 
average of measurements during the respective period). 

 Time 
2 months 4 months 6 months 8 months 

Free chlorine (mg/L) 
       Tap water 
       Tank 

 
0.66 
0.05 

 
0.66 
0.04 

 
0.45 

- 

 
0.7 

- 
pH 
       Tap water 
       Tank 

 
6.9 
6.5 

 
7.2 
6.7 

 
6.8 
6.2 

 
7.0 
6.4 

Temperature (ºC) 
       Tap water 
       Tank 

 
16 
18 

 
16 
20 

 
15 
19 

 
16 
19 

- No detectable     
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Figure 5.4 Filamentous fungi and algae (arrows) detection on coupon surface after 6 months of 

exposure and CW staining. A and B - open flow; C, H - closed flow. 
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Figure 5.5 Filamentous Fungi and algae (arrows) detection on coupon surface after 6 months of 

exposure and CW staining. A and B - open flow; C, H - close flow. 
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Table 5.5 Fungi recovered from pipes and joints of flow-chamber. 
Fungi Local  Number 

per local 

Total Microscopy Macroscopy 

 

Alternaria sp. 

 

Inlet closed flow 

 

1 

 

1 

 

 

Aspergillus 

section Nigri  

Inlet closed flow/Inlet 

open flow/Outlet 

closed flow 

4/1/5 10  

 

spergillus 

section Flavi  

 

Inlet tank/Inlet 

pump/Inlet closed 

flow/Outlet closed 

flow 

3/3/2/3 11  

 

Aspergillus 

spp.  

 

Inlet tank/Inlet closed 

flow 

 

3/1 4  

 

Botrytis sp.  Inlet closed flow 1 1  

 

Cladosporium 

sp. 

Inlet closed 

flow/Outlet closed 

flow 

2/2 4  

 

Epicocum sp.  Inlet tank/Inlet pump 2/1 3  

 

Penicillium 

spp.    

Inlet open flow/Inlet 

tank/Inlet 

pump/Outlet closed 

flow 

3/1/3/2 9  
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Periconia sp.  Inlet closed flow 1 1  

 

  

Coelomycete  Inlet pump 1 1  

 

No 

sporulation 

Inlet tank/Inlet closed 

flow/Outlet closed 

flow 

 

1/2/1 3  

 

 

 

5.4 Discussion 

 Despite the existence of various studies about filamentous fungi in water systems 

(Hageskal et al. 2009) fungal biofilms has only recently received some attention (Siqueira et al. 

2011; Sammon et al. 2011). As a new area of research, a lack of specific and standardized 

methodologies still remains a key challenge. In this study, a flow chamber reactor was designed 

to operate under monitored conditions to study filamentous fungal biofilm formation.  

 The main drawback along the experiments was the autofluorescence of PVC coupons, 

but as CW has blue signal, it was decided to carry out the experiment. Here, PVC coupons were 

chosen because it is the same material used in most water distribution systems. The choice of 

coupons is a decisive step in biofilm studies since coupon material can interfere in biofilm 

formation and in the final analyses as well. Different coupons are applied for biofilm studies; 

glass, steel, and plastic are the most common (Murga et al. 2001; Simões et al. 2006; Pamp et 

al. 2009; Deines et al. 2010).  CW staining was a rapid and easily manipulated fluorescent dye 

for fungi detection. Despite its capability to stain others microorganisms and EPS (Gallo et al. 

1989; Biegal et al. 2002; Rasconi et al. 2009; Rezende et al. 2003), fungi could be easily 

differentiated by morphological characteristics such as thick septate hyphae. Filamentous fungi 

were detected in all time of analyses and showed a crescent attachment along time.  

 Time of exposure seems to be a very important factor for filamentous fungal biofilm 

formation (Nagy and Olson 1985). In another study of our group in which coupons were exposed 
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directly to water network, it was necessary at least 6 months to detect filamentous fungi attached 

to coupons (Siqueira et al. 2011). Similar results were reported by Sammon et al. (2011) that 

verified filamentous fungi attached to coupon surface after 7 months. Nonetheless, in real 

replaced pipes, which had been exposed to water network for years, were detected mature 

filamentous fungal biofilm straightly attached to pipe surface (Sammon et al. 2011; Siqueira et 

al. 2011). The formation of a previous biofilm was also reported as an important factor for fungal 

biofilm development. Garny et al. (2009) reported a complete change in water biofilm structure 

from a bacterial single cells biofilm to a strong fungal network, mainly after detachment events. 

These same authors pointed out that in the end of six weeks biofilms were dominated by 

filamentous growth and hypothesised that bacterial detachment favoured fungal growth within the 

remaining base biofilm. 

  The in vitro ability of microorganisms to produce biofilms is usually tested under 

optimised laboratorial conditions such as temperature, nutritional source and pH. Despite real 

conditions are more variable and biotic and abiotic factors may influence all the system, in 

laboratorial studies some parameters can be monitored and add more information about their 

influence in biofilm formation.  

 More filamentous fungi were detected on coupon surface exposed to tank water, i.e. in 

the closed flow which presented low levels of free chlorine and where the water flow was 

characterised as transitional (Reynolds number = 2513). Studies in bacterial biofilms show that 

stable and higher water flow rates produce thinner and more cohesive layers less prone to 

release bacteria into the bulk water, and thus limiting biofilm growth (Percival et al. 1999; Cloete 

et al. 2003). However, in a WDS the water flow changes from laminar to turbulent and stagnant 

(no-flow) which occurs in reservoirs or where the water consumption is low, e.g. in buildings 

(Manuel et al. 2007). In this study, free chlorine levels decreased substantially when tap water 

and tank water were compared. The higher number of filaments detected on coupons exposed to 

transitional flow, i.e. closed flow, may be due to flow water velocity in association with low levels 

of free chlorine.  

 Chlorine and chloramines are common disinfectants used in drinking water to inactivate 

microorganisms (WHO 2008), but a disinfectant residue does not protect the distribution system 

from recontamination with polluted water, microorganisms attached to particles or mechanical 

failures (Schwartz et al. 2003). Moreover, re-chlorination along a water distribution network is 

necessary in order to keep disinfectant levels enough to act against microorganisms. This is also 
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an important feature for water in household plumbing and for water kept in reservoirs in which 

chlorine levels may be influenced by temperature, light exposure and pipe material (Niquette et 

al. 2000). Additionally, it has also been reported that microbial biofilms are capable to decrease 

chlorine levels by itself (Berger et al. 2000). In agreement with others authors (Codony et al. 

2005; Gagnon et al. 2005), was observed that the presence of higher levels of chlorine in tap 

water did not prevent microbial attachment to coupon surface. Moreover, fungal spores are 

known to show high resistance against disinfectants (Okull et al. 2006). 

 Cellular forms apparently belonging to the group of microalgae were also detected. These 

microalgae are characterised by a porous morphology what probably facilitates the trapping of 

smaller cells such as bacteria and fungal spores (Lutterbach and França 1996). Furthermore, 

microalgae produce organic compounds which can be used as nutrients by bacteria (Haak and 

McFeters 1982) establishing a partnership between microorganisms and contributing for the 

formation of multispecies biofilms. The ability of fungi to form associations with algae was 

recently reported in studies involving biofilms in historic monuments (Crispim et al. 2004; Grbić 

et al. 2010). Interactions between different microorganisms play an important role in the 

development and maintenance of biofilms (Parsek and Greenberg 2005). In water distribution 

systems new insights are still needed to understand the established microbial relations between 

fungi and others microorganisms.  

 In mycological studies of drinking water there is a number of fungal species frequently 

isolated, e.g. species belonging to the genera Alternaria, Aspergillus, Cladosporium, Fusarium 

and Penicillium (Hageskal et al. 2009). Aspergillus, Cladosporium and Penicillium were the 

predominant fungi in this study. This finding is in agreement with previous studies where few 

species are predominant among all isolates (Göttlich et al. 2002; Gonçalves et al. 2006). 

Nonetheless, the precise species composition observed in different studies varies considerably, 

i.e. specific environmental characteristics of the individual distribution systems may influence 

considerably the microbial communities. Moreover, most of techniques are directed to study 

planktonic fungi, and fungal biofilms remains neglected. Sammon et al. (2011) observed a 

variance in number and diversity when fungi were recovered from water and from pipe surfaces 

and related these found to drawbacks such as disturbance of biofilms when the sampling method 

(i.e. scratching) is applied and the variable fungal morphology. Thus, direct visualisation may 

represent a reliable alternative to study fungal biofilms.   
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 In biofilm studies, microbial quantification is estimated by the standard plate count of 

colony forming unity (CFU) (Ivnitsky et al. 2007; Meier et al. 2008; Wong et al. 2010 ), one of the 

best known and oldest microbiological techniques (Harris and Kell 1985). Despite its wide use, 

several criticisms have been made of it, mainly because it necessarily involves cell reproduction, 

i.e. only cells which are capable of reproducing themselves under the given conditions are 

counted (Berlutti et al. 2003). In mycological studies, researchers have to overcome an additional 

drawback, i.e. the multicellular characteristic of filamentous fungi. Thus, methods non-culture 

dependent such as fluorescent staining and direct measurements can add important information. 

In this sense, fungal biomass was also measured using the biovolume concept for filamentous 

microorganisms (Madrid and Felice 2005), i.e. in the coupons, fungal quantification was 

assessed in situ by image analyses and further calculation of biovolume and its conversion into 

biomass (in grams).  

 The use of direct observation has advantages such as the assessment of biomass per 

area, and its structural distribution and morphology. Stahl et al. (1995) say that the most 

significant source of error in the direct microscopic method of estimating fungal biomass in soil is 

observer subjectivity which can be minimized with extensive observer training. In this study, the 

fungal biomass measured showed very low values (10-8 g) which would not be detected by others 

techniques such as ergosterol that have a limited detection (Zhao et al. 2005). Although it may 

apparently represent a small number, it must be taken in count that coupon has 2.52 cm2 of 

area, a very small area if compared to huge pipe surface area in water distribution systems. 

 In conclusion, the use of a flow chamber reactor and specific fluorescent dye allowed the 

detection of filamentous fungal biofilm. Moreover, the systems provided information in fungal 

adherence and grow under monitored conditions and fungal biofilm formation could be related 

with parameters such as free chlorine levels.  
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Chapter 6 

 

Biofilm kinetics of filamentous fungi recovered from water biofilms 

 

 

6.1 Introduction 

 Filamentous fungal have been frequently isolated from aquatic environments such as 

rivers, streams, lakes and sea (Wurzbacher et al. 2010). Water distribution systems (WDS) are 

nowadays seen as complex aquatic environments in which high diverse microorganisms cohabit 

(Szewzyk et al. 2000). Regardless of their importance for human health, little is known about 

their microbial ecology. Since WDS are large, complex highly interconnected and dynamic, with 

variable hydraulics, input sources and behavior (Deines et al. 2010), quality water supply has 

become a great challenge for governmental agencies and water industry. The focuses of 

microbial water quality studies still remain on monitoring planktonic microorganisms, despite 

scientists’ awareness that in water systems the majority of microorganisms live together as 

biofilms (Costerton et al. 1987). 

 Research in filamentous fungi biofilm in water distribution systems has only recently 

received attention. Most of previous mycological studies are focused on pathogenic fungi, e.g. 

Candida spp. (Chandra et al. 2001; Douglas 2003; Williams et al. 2011) and Aspergillus 

fumigatus (Mowat et al. 2008; Bruns et al. 2010; Müller et al. 2011). Since increased resistance 

against antimicrobials is a very well-known and clinically relevant biofilm feature, these studies 

have especially established suitable methods for antimicrobial biofilm susceptibility assay (Kuhn 

et al. 2002; Harriott and Noverr 2009; Silva et al. 2010). Recently, Ramage et al. (2011) 

reported the importance of fungal biofilm phenotype concept in medical and industrial 

mycological research. These authors described schematically Aspergillus biofilms development 

(Figure 6.1) and discussed morphological, physiological and molecular features related to both 

fungal virulence and enzymatic production.  

 On the other hand, others investigations have reported the detection of filamentous 

fungal within biofilms in different habitats such as rocks (Gorbushina 2007), fuel tanks 

(Srivastava et al. 2006) historic monuments (Gorbushina et al. 2004; Grbić et al. 2010; Lan et 

al. 2010) and acid mine drainage (Baker et al. 2009). Nonetheless, the improvement and 

standardization of suitable methods for laboratorial studies of filamentous fungi biofilms are still 

needed. 
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 The objective of this work is to investigate the capability of biofilm formation and 

characterise morphologically and physiologically the biofilms of six fungal species isolated from 

biofilms in a water system. 

 

6.2 Material and Methods 

 

6.2.1 Fungal isolates 

Aspergillus sp. 1 (section Nigri), Aspergillus sp. 2 (section Flavi), Alternaria sp., Botrytis sp., 

Cladosporium sp. and Penicillium sp., were used in this study. These strains were recovered 

from biofilms developed in a flow chamber reactor set up at Mycological Laboratory of the 

Biological Engineering Centre, University of Minho, Braga, Portugal, during a previous study. The 

fungi were maintained in MEA (MEA: malt extract  20 g, peptone 5 g, agar 20 g, distilled water 1 

l) at 25 ºC.  

 

6.2.2 Biofilm formation 

Spores of each strain were harvested from 7 days aged pure culture in MEA by adding 2 ml of 

saline solution (0.85 %) to plate. The spore suspension was re-suspended and vortexed before 

quantification. The suspensions were standardized by dilution with saline solution (0.85 %) to a 

final concentration of 105 spores/ml and using a Neubauer counter chamber. 

For biofilm kinetics, 100 µl of spore suspension and 100 µl of culture media MEBroth (MEB: 

malt extract  20 g, peptone 5 g, distilled water 1 l), R2A Broth (proteose peptone  0.5 g; 

Figure 6.1 Aspergillus fumigatus biofilm development: initial adhesion of conidia, germling 
formation, a monolayer of intertwined hyphae and mature 3-D filamentous biomass 
encased within EPS (Adapted from Ramage et al. 2011). 
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casamino acids  0.5 g;  yeast extract  0.5 g; Dextrose  0.5 g; soluble starch 0.5 g; dipotassium 

phosphate  0.3 g, magnesium sulphate 7H2O  0.05 g; sodium pyruvate  0.3 g; distilied water 1 l; 

pH 7.2) and sterilised tap water were added per well into 96-well, flat-bottomed polystyrene 

microtiter plates. Media-only blanks were also set up. The plates were incubated at 30 oC for 24 h 

and analyses were made at 4, 8, 12 and 24h.  

 

6.2.3 Biofilm kinetics 

Biofilm quantification 

Biofilm biomass was assessed using a protocol described by Mowat et al. 2007. Briefly, at each 

time interval (i.e. 4, 8, 12 and 24 h), the spent culture medium was removed from each well and 

the adherent cells were washed with phosphate-buffered saline (PBS; 0.1 M, pH 7.2). These 

were air-dried and 200 µl of 0.5% (w/v) crystal violet solution was added for 30 min. The solution 

was then removed until excess stain was removed. The biofilms were distained by adding 200 µl 

95 % ethanol to each well. The ethanol was gently pipetted to completely solubilize the crystal 

violet for 1 min, the ethanol was transferred to a clean 96-well microtitre plate and the OD570 was 

read using a microtiter plate reader (Model Synergy HT; BIO-TEK). The OD values are 

proportional to the quantity of biofilm biomass, which comprises hyphae and extracellular 

polymeric material (the greater the quantity of biological material, the higher the level of staining 

and absorbance). 

 

MTT assay 

MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) is a yellow soluble 

tetrazolium salt that is converted into a insoluble purple crystal by metabolically active cells. MTT 

(Sigma) solution was aseptically prepared by dissolving the MTT powder at a concentration of 5 

mg/ml in sterile PBS at room temperature and stored at 4 °C in a dark, screw-cap container. At 

each time point, 0.2 mL of MTT solution were added to each well and the 96-well plates were 

incubated at 37 oC during 3 h. After this period, the supernatant was then discarded and 0.2 ml 

dimethyl sulfoxide (DMSO) was added to each well to solubilize the MTT, which had been cleaved 

into an insoluble purple formazan through the metabolism of the live cells. Biofilm development 

was assayed by loading 0.2 ml of the solubilized MTT into a flat-bottom, 96-well polyvinyl chloride 

microtitre plate, and absorbance measured at OD570 nm using a microtiter plate reader (Model 

Synergy HT; BIO-TEK). 
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6.3 Results 

 Biofilm formation by Aspergillus sp. 1, Aspergillus sp. 2, Botrytis sp., Alternaria sp., 

Cladosporium sp. and Penicillium sp. grown in different culture media over 24 h was 

characterised, as revealed by both the colorimetric MTT assay and Cristal Violet (CV) biomass 

estimation. Figure 6.2 shows the mean value of absorbance level for CV staining (total biofilm), 

and Figure 6.3 shows the mean value of absorbance level for MTT staining (viable cells). 

Additionally, image analyses were used to assess morphological characteristics (Figures 6.4 – 

6.9).  

 A direct relation was observed between biomass (CV), and biofilm development (Figures 

6.2 and 6.4 – 6.9). On the other hand, it was not observed a direct relation between biomass 

(CV) and viable cells (MTT) (Figure 6.2 and 6.3). The time when adherence of spores, monolayer 

development and EPS production were observed for each fungus biofilm are described in Table 

6.1. 

   

 

 

 In water, biofilms showed a higher cell activity in the first 4 h of analyses (MTT), and 

lower along time (Figure 6.3A). In adverse conditions, spores may enter in a dormancy status 

with lower cells metabolic activity.  

Table 6.1 Time of detection of spore adherence, monolayer and EPS production in fungal 
biofilms grown in different culture media.  

Fungus Water R2A MEB 

 Ad Mn EPS Ad Mn EPS Ad Mn EPS 

Aspergillus sp. 1 - - - 4 h 8 h 24 h < 4 h 4 h 8 h 

Aspergillus sp. 2 - - - 4 h 8 h 24 h < 4 h 4 h 8 h 

Alternaria sp. 4 h 8 h 24 h 4 h 8 h 24 h < 4 h 4 h 8 h 

Botrytis sp. - 24 h - 4 h 8 h 24 h < 4 h 4 h 8 h 

Cladosporium sp. - - - 8 h 24 h * 4 h 8 h 12 h 

Penicillium sp. 24 h - - 8 h 24 h * < 4 h 4 h 8 h 

Ad: Adherence; Mn: Monolayer; EPS: extracellular polymeric substances 

- no biofilm formation; * not detected 
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Figure 6.2 Total biomass (CV) in filamentous fungal biofilm grown in different culture media:  A 

– water, B – R2A and C – MEB. The means ± standard deviations for at least three 

replicates are illustrated. 
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 Different pattern of biofilm development were observed between the culture media and 

fungi. Alternaria sp. and Botrytis sp. were the only fungi that formed biofilm in water and 
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Figure 6.3 Total viable cells (MTT) in filamentous fungal biofilm grown in different culture media:  A 

– water, B – R2A and C – MEB. The means ± standard deviations for at least three 

replicates are illustrated. 
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Penicillium sp. showed spore adherence after 24 h under this same condition (Figure 6.4 and 

6.5).  In R2A, biofilms were formed mainly after 12 h and EPS production was observed in both 

Aspergillus sp., Alternaria sp. and Botrytis sp. biofilms at 24 h (Figure 6.6 and 6.7).  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4  Aspergillus sp. 1 (A), Aspergillus sp. 2 (B), Botrytis sp. (C), Alternaria sp. (D), 
Cladosporium sp. (E) and Penicillium sp. (F) after 8 h in water. 
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F 

F 
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Figure 6.5  Aspergillus sp. 1 (A), Aspergillus sp. 2 (B), Botrytis sp. (C), Alternaria sp. (D), 
Cladosporium sp. (E) and Penicillium sp. (F) after 24 h in water. 
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 In MEB, after 8 h, the fungi formed mature biofilm (Figures 6.8 and 6.9), with the 

exception of Cladosporium sp. that showed mature biofilm in MEB after 12 h. MEB showed to be 

the best culture medium for biofilm formation, i.e. in which biofilm grew faster and showed a very 

well structured shape. 
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Figure 6.6  Aspergillus sp. 1 (A), Aspergillus sp. 2 (B), Botrytis sp. (C), Alternaria sp. (D), 

Cladosporium sp. (E) and Penicillium sp. (F) after 8 h in R2A Broth. 

Figure 6.7 Aspergillus sp. 1 (A), Aspergillus sp. 2 (B), Botrytis sp. (C), Alternaria sp. (D), 

Cladosporium sp. (E) and Penicillium sp. (F) after 24 h in R2A Broth. 
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6.4 Discussion  

 The biofilm formation pattern observed in this work resembled the kinetics of biofilm 

formation of Aspergillus fumigatus recently proposed by Ramage et al. (2011) (Figure 6.1). 

 Previously, Harding et al. (2009) proposed a model for filamentous fungal biofilms which 

includes five stages: (i) propagule adsorption, (ii) active attachment to a surface, (iii) microcolony 

formation I, (iv) microcolony formation II, (v) maturation or reproductive development and (vi) 

dispersal or planktonic phase. In this work, was not observed reproductive development, e.g. 

Figure 6.8  Aspergillus sp. 1 (A), Aspergillus sp. 2 (B), Botrytis sp. (C), Alternaria sp. (D), 

Cladosporium sp. (E) and Penicillium sp. (F) after 8 h in MEB. 
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D E F 

Figure 6.9 Aspergillus sp. 1 (A), Aspergillus sp. 2 (B), Botrytis sp. (C), Alternaria sp. (D), 

Cladosporium sp. (E) and Penicillium sp. (F) after 24 h in MEB. 
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production of sporangia and spores over 24 h of growth. However, the dispersal phase can be 

represented by hyphal fragments which also act as dispersal propagules.   

 Despite this model has been based on bacterial and yeast models, it is important to 

highlight that unique features related to fungal biology distinguish bacterial from fungal biofilm 

formation: fungi commonly have more than one planktonic form (i.e. sexual and asexual spores, 

sporangia and hyphal fragments), these dispersive forms are not unicellular and often float in 

water and air as well, and the development of specialized reproductive tissues to produce 

dispersive forms (Harding et al. 2009). Moreover, hyphae growth is characterised by two or three 

dimensions which is achieved by branching. Branch formation provides a greater regulation 

growth while bacterial unicellular growth is characterised by colonies which are formed by cells 

pilling and pushing each other apart (Prosser 1983). Thus, studies in filamentous fungal biofilm 

must take in consideration these specific fungal features which leads to a specific way of how 

biofilm analyses should be carried on.   

 Typical filamentous fungal biofilm morphology is described as a complex three 

dimensional structure with cells usually enclosed within an extracellular matrix consisting of 

polymeric substances (EPS) (Stoodley et al. 2002). Mainly after 12 h of biofilm growth, was 

observed a layer of substances surrounding fungal hyphae, i.e. EPS. EPS can represent 50-90% 

of the total organic matter of biofilms and are responsible for binding cells and other particulate 

materials together (cohesion) and to the surface (adhesion), i.e. providing the structural support 

for the biofilm maturation (Allison 2003).  

 In previous studies, the spore density in the initial spore suspension was verified as a key 

factor in the development of biofilms by filamentous fungi (Mowat et al. 2007). Singh et al. 

(2011) found that for Rhizopus oryzae, Lichtheimia corymbifera, and Rhizomucor pusillus the 

initial inoculum play a key role in germination of the adhered spores as well as structural integrity 

of the biofilms formed, a phenomenon also described in studies in Aspergillus niger (Villena & 

Gutierrez-Correa, 2006) and A. fumigatus biofilms (Ramage et al. 2011). 

 Bonaventura et al. (2006) selected an inoculum size of 105 CFU/ml, an adhesion time of 

1 h, and a biofilm formation time of 72 h as optimal experimental conditions for growing 

Trichosporon asahii biofilm on polystyrene surfaces. Our findings showed that time for spore 

adherence and further biofilm development varied for each fungus under different culture 

conditions. Nonetheless, spore characteristics such as size and surface proprieties may also 

influence biofilm kinetics.  
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  Airborne fungal spores have a hydrophobic surface which aids dispersal, prevents 

desiccation and may provide a barrier to the entry of toxicants (Laseter et al. 1968). Many 

studies report that fungal spore hydrophobicity influences their capacity to adhere to biological 

surfaces, and that spore hydrophobicity is significantly influenced by culture conditions (Singh et 

al. 2004). Fungal cultures in culture media which have high nutrient content are likely to produce 

more hydrophobic spores; the opposite is found when culture media with low nutrient content are 

used (Holder et al. 2007).  As spore hydrophobicity may interfere in spore adhesion and 

consequently in biofilm formation, attention must be paid on previous culture conditions. 

Nonetheless, surface hydrophobicity of substrate may also interfere in spore adhesion. Thus, 

optimal condition for filamentous fungal biofilm characterisation may significantly vary between 

different fungal species. 

 The colorimetric method using the dye MTT has been cogitated as an alternative to 

traditional methods for in vitro susceptibility testing of fungi (Meletiadis et al. 2000) and has been 

applied in fungal biofilms (Jahn et al. 1996; Krom et al. 2007). In this work, MTT values did not 

correlated with biofilm biomass assessed by CV, mainly in older biofilms, i.e. 24 h aged. Older 

biofilms showed a higher EPS production, which may interfere in the assessment of MTT to cell. 

Freimoser et al. (1999) demonstrated that MTT method serve as a measure for cell densities of 

the entomopathogenic fungi Neozygites parvispora and Entomophthora thripidum and 

emphasized that for this two fungi the incubation period had to be longer (i.e. 16 h) because the 

cell wall might act as an additional barrier for the uptake of MTT. Thus, MTT may not be the best 

method to evaluate cell viability in mature biofilms.  

 In conclusion, the results present here show that the filamentous fungi studied in this 

work are able to form biofilms under the applied conditions. Although each fungus presented a 

different pattern of biofilm development, spore adhesion, monolayer and EPS production were 

observed in all fungal species over 24 h of analyses. Moreover, characteristics of spores and 

culture conditions may play an important role in filamentous fungal biofilm kinetics and must be 

taken into consideration for further studies in this area. 
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Chapter 7 

 

Filamentous fungal biofilm detection and sampler implementation in a water 

distribution system, Alto do Céu, Recife, Brazil 
 

 

7.1 Introduction 

 

 Aquatic environments are vast and biodiverse. Microorganisms occupy particular niches 

in rivers, streams, lakes and sea. Filamentous fungi have been known for centuries in such 

environments. For example, in the (a) the Middle Ages aquatic fungi were recognized as parasites 

of fish, (b) mid-nineteenth century these organisms were observed on several algae and 

substrates and were referred to as phycomycetes possessing rhizoids and zoospores, and (c) 

1940’s filamentous fungi were described in running water and were referred to as Ingoldian fungi 

(Wurzbacher et al. 2010). Indeed, novel fungi continue to be isolated from aquatic environments 

in breakthrough discoveries relating to interfaces between major life forms, such as the 

“cryptomycota” (Jones et al. 2011).  

 Biofilms are functionally-organised microbial communities grown on a surface amidst a 

matrix of exopolysaccharide (EPS) produced by the inhabiting microorganisms. They are a 

microbial survival mechanism providing protection from toxic compounds, desiccation, thermal 

stress, nutrient depletion and predation (Flemming et al. 2002). A human health threat is present 

since they may harbor pathogenic microorganisms (Huq et al. 2008): hence biofilms are 

correlated with reduced microbial water quality.  Development in WDS is influenced by biotic and 

abiotic factors (e.g. levels of disinfectants, pipe material, temperature, water flow, and microbial 

interactions) which influence architecture and microbial composition (Momba et al. 2000). Virus, 

protozoa, fungi and algae may be incorporated in drinking water biofilms (Momba et al. 2000; 

Gonçalves et al. 2006; Helmi et al. 2008; Traczeweska and Sitarska 2009; Villanueva et al. 

2010) although, generally, bacteria are the dominant component. It is relevant to point out that 

Taylor et al. (2001) identified 307 fungal species recognised as emerging pathogens and biofilms 

contained one or more of these species (WHO 2003). Nevertheless, it remains the exception to 

find valid reports of filamentous fungi in biofilms. 

 Biofilm filamentous fungi in WDS have been recorded in few studies (Nagy and Olson 

1985; Doggett 2000; Kelley et al. 2003; Sammon et al. 2011; Siqueira et al. 2011). However, 
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researchers have been hampered by non-standard methodology, difficulties in quantification of 

filamentous fungal, and a lack of mycological expertise compared to that for bacteria. Screening 

aquatic environments for filamentous fungi using molecular biology is not so developed as for 

bacteria and conventional cultural techniques suffer drawbacks. For example, it is difficult to 

determine whether a conidium, conidiophore, or hyphal fragment represents a single fungus 

(Gonçalves et al. 2006). The use of ex situ techniques (e.g. swabbing or scraping) may exclude 

non-culturable microorganisms and are unsuitable for biofilm structural analysis. Specific dyes 

and fluorescent microcopy may be useful to overcome some of these problems. However, new 

methods are required to understand the role played by filamentous fungal biofilms in microbial 

water quality, as factors influencing filamentous fungal biofilm formation and interactions with 

other microorganisms remains unknown.   

  In this study, we describe a device for sampling fungal biofilms which is composed of 

hollow pipes containing flat coupons. The samplers were developed for use in “real” situations in 

water treatment stations and WDS. Replaced pipe samples were also studied. Specific 

fluorescent dyes for fungal detection were employed. This work was carried out in parallel with 

other investigations which recovered planktonic filamentous fungi along the same WDS and is 

reported elsewhere (Oliveira 2010).  

 

7.2 Materials and Methods 

 

7.2.1 Water Supply System 

The Alto do Céu WDS has been operating since 1958 and produces approximately 10% of the 

total volume distributed in the metropolitan region of Recife, Pernambuco, Brazil. The water 

treatment plant (WTP) of Alto do Céu is designed to treat 1000 l/s but it operates at a 20% 

overload occasionally. The raw water comes from three pumping stations and is treated by 

flocculation, sedimentation, filtration, and disinfection (ca. 5 ppm chlorine) before leaving the 

plant. The water is pumped to two storage reservoirs with capacities of 5000 m3 and 20000 m3. 

Only the 20000 m3 reservoir was used for the present study. The water supply at the 

metropolitan region of Recife is intermittent and follows a schedule published online by 

COMPESA (www.compesa.com.br), thus the network is subjected to variable pressure and water 

flows.  
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7.2.2 Sampler devices and replaced pipes 

Samplers consisted of PVC hollow pipes (1.5 cm diameter x 7-10 cm length). Threads were cut 

in the ends of each sampler to enable multiple samplers to be attached or a cap to be connected 

to close the device after removal (Figure 7.1). Coupons of PVC or acetate were inserted inside 

the pipe intended as surfaces for adhesion of microorganisms and biofilm formation.  

 

 

 

 

 

 

 The samplers were installed at different sampling points: (a) the WTP (raw water, 

decanted water and 20000 m3  reservoir) and (b) the entrance, middle and exit of the distribution 

network. The samplers were removed for analyses monthly for 6 months, with a final sample at 

12 months. The samplers were refilled with onsite water covered with round screwed caps and 

sent to the laboratory under refrigeration for further analyses after removal from the network. 

 A total of 10 replaced pipes samples were randomly collect during technical maintenance 

procedures in the water distribution network. At the lab, these pipes were cut into small pieces 

(c.a. 1 cm2) and storage in PBS solution at 4 ºC until analyses. The steps followed for in situ 

analyses are described in Figure 7.2. 

 

7.2.3 In situ detection 

 Calcofluor White M2R (CW) (Molecular Probes Europe, Leiden, the Netherlands) allows 

the visualization of fungal and other cell walls (e.g. algae) because of its high affinity for β(1-3) 

and β(1-4) polysaccharides found in cellulose, carboxylated polysaccharides and chitin. CW (25 

µM) was added to each sample following incubation in the dark for 15 min at room temperature. 

These samples were observed under UV light using an Olympus BX51 epifluorescent microscope 

equipped with 10x/0.65, 40x/0.30 and 100x/1.3 objectives. The images were acquired with a 

Zeiss AxioCam HRc camera with software CellB®. The excitation wavelength for CW was 346 nm 

and the signal was blue. DAPI (41,6-diamidino-2-phenylindole,dihydrochloride) (100 nM/ml) was 

A B C D 

Figure 7.1 Samplers device consisted of hollow PVC pipes and round screwed caps (A and B); 

Samplers device screwed and set up in place (C and D). 
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added directly to the coupons for 30 min and 25 ºC to visualise bacteria. The excitation 

wavelength for DAPI was 340 nm and the signal was blue. 

 Morphological characteristics such as (a) presence and regularity of septa, or septa like 

structures, (b) diameter of filaments, (c) size and shape of cells and (d) shape of sporophores 

were also assessed to assist in differentiating filamentous fungi, yeast, algae and bacteria.  

 

7.2.4 FUN-1 staining 

 FUN-1 stains the dead cells with a diffuse yellow-green fluorescence and the 

metabolically active cells with red Cylindrical Intra-Vacuolar Structures (CIVS). For FUN-1 staining 

(Molecular Probes, The Netherlands), 15 µl of FUN-1 solution were added on samples, 

homogenised, following incubation in the dark at 30 ºC during 30 min and observed under an 

Olympus BX51 epifluorescent microscope using UV light as already described. 
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Figure 7.2 Stepwise approach used to study in situ filamentous fungal water biofilms using 

fluorescent staining techniques. 
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7.2.5 Fluorescent in situ hybridization (FISH) 

 The protocol for FISH was adapted from Nuovo (1997). Briefly, the samples were dried 

for 10 min at 46 ºC, dehydrated in 70 %, 80 % and 96% (v/v) ethanol for 10 min each and air 

dried. Hybridization buffer (HB) (360 µl NaCl 5M, 40 µl Tris 1M, 300 µl formamide, 130 µl Milli-

Q water, 4 µl SDS 10%, into a 2 ml Eppendorf tube) was pipetted onto the whole surface of each 

sample. Each probe (4 µl) was added and gently homogenized with the HB. The rest of the HB 

was poured into a Petri dish containing a paper tissue. The samples were hybridized for at least 

3 hours at 46 ºC in the Petri dish already saturated with HB. After this period, the samples were 

rinsed with preheated (water bath; 48 ºC) wash buffer (WB) (1 ml Tris 1M, 3180 µl NaCl 5M, 50 

µl SDS 10%; 49 ml Milli-Q water, in a Falcon tube) and incubated for 20 min. After this period, 

the samples were gently rinse with ultrapure water and dried with compressed air.  

For eukaryotes, the universal rRNA probe specific for Eukarya EUK516 (5’-

ACCAGACTTGCCCTCC-3’, MWG Biotech, Ebersberg, Germany) labelled with the red Cy3 at the 5’ 

terminal was used. For fungi, the FUN1429 probe specific for a wide range of Eumycota (5’-

GTGATGTACTCGCTGGCC-3´, MWG Biotech, Ebersberg, Germany) labelled with Oregon-Green at 

the 5’ terminal for FISH was employed (Baschien et al. 2008). The samples were visualized 

using the Olympus BX51 epifluorescent microscope as above.  

 

7.3 Results  

7.3.1 Sampler device  

 Fungal-like structures on PVC coupon surfaces were observed after 3 months of exposure 

at the entrance to the WDS after staining with CW (Figure 7.3). None of the others samples at the 

different points of collection supported recognizable fungal-like structures after 5 months and no 

samples placed inside the reservoir showed these after 12 months of exposure.  

 Fungal-like structures were observed in the coupons at different points of the water 

network after 6 months of exposure (Figure 7.4). Filamentous structures were detected mainly in 

the samples collected from the beginning of the WDS (Figure 7.4A and B). At the middle and end 

of the WDS only dispersed fragments were observed (Figure 7.4C-F; red arrows). Once again 

these fungal-like structures appeared to be on the coupon surface. Highly fluorescing CW 

surrounding the filaments was observed (Figure 7.4A and B; green arrow).  
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 The coupons exposed to raw and decanted water demonstrated a higher colonization of 

hyphae, and reproductive structures such as spores (Figures 7.5 - 7.7). Enlargement are 

provided in Figures 8.5A’ and 8.5B’, where septate hyphae and germinating spore can be 

observed. 

  

 

 

 

 

 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 PVC coupons after 3 months of exposure and stained with CW. Yeast-like (A) and 

filamentous fungal-like (B) structures (red arrows). Scale bar = 50 µm. 

Figure 7.4 Acetate (A, C and E) and PVC (B, D and F) after 7 months of exposure at the 

beginning (A, B), middle (C, D) and end (E, F) of the WDN. Scale bar = 200 µm. 
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 Figure 7.6 demonstrates a sporing structure which resembles the condiophores 

produced by some Alternaria species. An enlargement is provided in Figure 8.6A’. Filaments 

without septa were also observed and representing non-septate fungi, or algae which are also 

stained by CW. Figure 7.7 shows a spiral shaped structure which resembles microalga. In 

particular, a microalgae that resembled Spirulina platensis, was observed (Figure 7.7). Bacterial 

cocci were detected on fungal hyphae (Figure 7.8). 

 Another demonstration of filamentous fungi is presented in Figure 7.9. Structures stained 

with CW and EUK516 also stained with FUN1429 which is specific for the subphylum of fungi, 

the Pezizomycotina.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B’’  

Figure 7.6 Acetate coupon after 12 months of exposure to decanted water and stained with CW. 

Fungal-like reproductive structure (detail A’). Scale bar = 50 µm. 

Figure 7.5 Acetate coupon after 12 months of exposure to raw water and stained with CW. 

Filamentous fungi septate hyphae (detail A’) and germinating spore (detail B’). Scale 

bar = 200 µm. 
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Figure 7.8 Visualization of bacteria (red arrows) nearby and on filamentous fungi hyphae after 

DAPI and CW staining. Scale bar = 20 µm. 

Figure 7.7 Acetate coupon after 12 months of exposure to raw water and stained with CW. Algae-

like structures (A and B). Scale bar = 20 µm (A) and 200 µm (B). 

A  B  

A B 

Figure 7.9 Detection of filamentous fungal after CW staining (A and D), and analysis with FISH with 

EUK516 (B and E) and FUN1429 (C and F) probes. Acetate (A – C) and PVC coupons (D – F). 

A  B  C  

D  E F 
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7.3.2 Replaced pipes 

 After CW staining filamentous fungal biofilms were detected in 6 of 10 replaced pipes 

samples (Figure 7.10). Well-developed hyphae tightly adhered to pipe surface and presumptive 

reproductive structures were also observed (Figure 7.10; yellow narrows). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.10 Filamentous fungal biofilms detected after CW staining in replaced pipe samples. 

Scale bar = 200 µm. 
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Since the real pipes demonstrated filamentous fungi within the biofilm, the stepwise approach, as 

defined in Figure 7.2, was continued. The FUN-1 staining for viability showed red CIVS inside of 

the fungal vacuoles (Figure 7.11) demonstrating that the fungi were viable in the biofilm. The 

CIVS are ATP-dependent which is correlated with fungal viability. 

 

 

 

 

 

 

 

 

 

7.4 Discussion 

 In this present work, filamentous fungi in biofilms were detected throughout a WDS using 

sampling devices especially developed for the purpose. Fungus-like structures on coupon 

surfaces were observed after 3 months of exposure; after 12 months filaments and microbial 

heterogeneity were detected. A fungus resembling Alternaria was observed as were unidentified 

member of the Pezizomycotina.  

The contents of the samplers were subjected to different conditions as experience in the 

WDS (e.g. levels of disinfectant, water flow, nutrient availability, pH and temperature). Bacteria, 

yeasts and algae were also attached to coupon surface representing a diverse microbial 

community. The organisms were not removed after a washing procedure and may be initiating 

the first step of biofilm development in which the deposition of spores or other fungal propagules 

occurs (Harding et al. 2009), although the microorganisms were not tightly adhered to the 

coupon surfaces.  

 Sammon et al. (2011) did not detected fungal biofilm growing on PVC, glass or concrete 

coupons, though diverse fungi were recovered from the same coupons after scraping. On the 

other hand, these authors observed hyphae on pipe sections, pipe dead ends and sediments 

Figure 7.11 Visualization of red CIVS (arrow) and green diffuse hypha after FUN-1 staining 

biofilm in real replaced pipe samples. 
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collected from the same water network to where the coupons were placed. The findings support 

the view that fungal biofilms in treated water develop slowly and are controlled predominately by 

the environmental conditions. Pipe material, pipe age, speed of water flow and presence of 

deposits also affect biofilm development in treated water (Nagy and Olson 1985; Niquette et al. 

2000; Zacheus et al. 2001; Martiny et al. 2003). Filamentous fungi were also detected on 

replaced pipes from the same water network as described in the present results, confirming that 

filamentous fungi are able to grow as biofilms on pipe surfaces. These findings corroborate 

Doggett (2000) and Sammon et al. (2011) who also detected filamentous fungal biofilms in 

replaced pipes. Nagy and Olson (1985) emphasize that older pipes support a more diverse 

community composed of diverse microorganisms including filamentous fungi.   

 The development and maintenance of the biofilms in such pipes reflect a high capability 

of adaptation and resistance as they had been (a) exposed to water flow and oligotrophic 

conditions for years, and (b) influenced by diverse abiotic factors such as temperature, pH and 

residual disinfectant. The hyphal cell wall consists of multiple layers of polysaccharides which 

render it very stable and highly absorbent. The presence of melanin may increase its stability and 

resistance to adverse conditions (Nosanchuk and Casadevall 2003), thus fungi are often found in 

anthropogenicly disturbed areas (e.g. industrial and municipal waste water) and in 

ultraoligotrophic environments such as water distillation apparatus (Wainwright 2005).  

 The most usual control strategy taken against biofilm accumulation is to maintain a 

definite concentration of disinfectant residuals. Levels of chlorine varied from 0 up to 4.6 mg/l, 

decreasing towards the end of the network (Oliveira 2010). Activity of chlorine is affected by 

many factors such as temperature, pH and organic matter (Kerr et al. 2003). Chlorine is efficient 

at controlling biofilm formation but is reduced if the biofilm is already present (Lewis 2001; 

Schwartz et al. 2003; Zhou et al. 2009). For this reason, it is important to ensure sufficient 

disinfectant along the entire water network in order to control microorganisms in bulk water and 

biofilm development on the pipe surfaces. Unexpectedly, we detected more fungi attached to 

coupon surface at the entrance to the water network, i.e. immediately after water treatment, and 

fewer at the exit of the water network (Figure 8.4); this result may reflect the necessity of a long 

exposure time for fungal biofilm development and not the effectiveness of chlorine against fungi. 

Nonetheless, fungi are able to withstand high levels of chlorination (Doggett 2000) and are more 

resistant when located in biofilms than when they are planktonic conidia (Siqueira and Lima, 

2011). Additionally, the chlorine depletion measured at the end of the water network may favour 
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the development of microbial communities (Codony et al. 2005), and consequently loss of water 

quality.  

 Based on morphological characteristics, the presence of algae was also verified during 

the experiments. Spirulina platensis (Figure 7.7) is a blue-green alga found abundantly worldwide 

in pollution-free, fresh-water environments (Kumar et al. 2011) and was observed on coupon 

surface. In general, it can be difficult to distinguish between filamentous algae and fungi in 

circumstances described herein. Some algae can form filaments made from individual cells 

which gives the appearance of septa although they are often very regularly spaced. Filamentous 

bacteria have much smaller diameters when compared to fungi what is useful for differentiating 

between the two organisms. Villanueva et al. (2010) studied river biofilms composed by algae, 

bacteria and ciliates, and found that biofilm formation was faster at higher temperatures, while 

nutrient availability influenced the mature biofilm more. The temperature at the water treatment 

station varied from 23.5 ºC up to 25 ºC (Oliveira 2010) and may also influence the levels of 

algae attached to coupons surface.  

 There are various ways in which microorganisms interact within biofilms (Burmølle et al. 

2006; Christensen et al. 2002; Nielsen et al. 2000; Tait and Sutherland 2002) but little is known 

about fungal-bacterial interactions, although fungi may have an important role in biofilms that is 

often overlooked due to the complexity of the investigations. It is well known that fungi produce 

antibiotics and mycotoxins that kill bacteria although the extent that this occurs in Nature is 

unclear. In this study we observed bacteria surrounding fungal hyphae (Figure 7.8). Fungal 

hyphae may play functions similar to those of bacterial biofilm extracellular polymers, such as 

retarding desiccation, providing sites for adhesion of other microorganisms and serving as a 

source of support and nutrition (Jones 1994). The filamentous nature of the fungi may assist in 

maintaining the structure of biofilms. Paris et al. (2009) studied the distribution and persistence 

of allochthonous particles inoculated into biofilms composed by bacteria and filamentous fungi 

and verified that adherence occurred almost exclusively on the biofilms and not directly on the 

uncolonized walls.  

Filamentous fungi were detected on coupon surfaces in the present work but do not 

represent a mature biofilm. However, their importance in forming biofilms must not be 

underestimated. The relation between fungi and bacteria is unclear and would need different 

approaches to clarify what kind of interaction occurs. Nonetheless, these current findings 

highlight the concept of natural biofilms as diverse microbial communities.  
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 Fungi are well-known producers of biologically active secondary metabolites (e.g. 

antibacterial penicillin, patulin). The role played by these compounds in natural environments is 

greatly not understood but some evidences indicate that they can act as chemical defenders 

when fungi interact with others microorganisms or as quorum sensing molecules (Rasmussen et 

al. 2005). Many of the fungi recovered from drinking water are able to produce mycotoxins 

(human toxic secondary metabolite) in water (Kelley et al. 2003; Criado et al. 2005; Paterson et 

al. 2007). Although the amount of mycotoxin in a water distribution system may be very dilute, 

their concentrations may increase and become a hazard to human health especially when water 

is stored in cisterns, reservoirs or even in bottles for prolonged periods (Hageskal et al. 2009). 

Certainly, the presence of Fusarium mycotoxins in freshwater systems is becoming recognised as 

a potential health hazard even at low concentrations (Bucheli et al. 2008; Gromadzka et al. 

2009). It is interesting that an Alternaria may have been detected in the present study as 

representatives of these are well-known mycotoxin producers. However, data is unavailable 

concerning the effects of mycotoxins in microbial interactions within filamentous fungal water 

biofilms. 

 FISH has been widely applied as a method for rapid and specific identification of 

individual microbial cells within their natural environments and have overcome some drawbacks 

of cultivation dependant methods (Amman et al. 2001; Bottari et al. 2006). However, FISH 

should not be used as the sole tool to characterize (freshwater) fungal community (Baschien et 

al. 2008) and morphology must be determined. It is particularly important that conidiophores, or 

other fungal sporing structures are searched for in biofilms as this gives direct evidence of the 

presence particular fungal taxa as described herein. Moreover, through the use of species-

specific probes it is possible to identify fungal species (Baschien et al. 2008) and potentially 

mycotoxin producers or opportunistic pathogenic may be able to be detected in the future. It is 

evident that more work is required on the contribution of filamentous fungi to water biofilms, 

although the present paper is the first that describes direct observation of fungi with a degree of 

taxonomic detail.  

 The use of samplers which allowed analyses of coupons in situ is a useful innovation 

when studying biofilms. CW was a rapid and efficient stain to detect fungi and filamentous fungi 

which could be differentiated by well-known morphologies. FISH allowed the detection of specific 

group of eukaryotic microorganism and fungi, and hence confirming their presence. Fungi are 
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likely to play an important role in microbial interactions within water biofilms and consequently in 

microbial water quality. 
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Chapter 8 

 

Conclusions and Perspectives 

 

8.1 Main conclusions 

 The choice and application of suitable methods is a main step for studies in filamentous 

fungal (ff) biofilm. Microscopic and molecular techniques, i.e. fluorescent microscopy together 

with specific fluorescent dyes (Calcofluor White R2R, DAPI, FUN-1) and probes (EUK516 and 

FUN1429), are appropriated methods which provide information about biofilm biomass, 

morphology, structure, physiology and composition. Additionally, the presented sampler device is 

appropriated for biofilm formation in situ, i.e. exposed under real conditions. 

 Diverse ff habit drinking water systems and are capable to adhere to surface and form 

biofilms. Time of exposure and disinfectant level are major factors which influence ff biofilm 

formation. In both real and laboratorial conditions, ff were capable to survive and form biofilms in 

the presence of chlorine, disinfectant commonly used in drinking water treatment stations. Thus, 

ff biofilms represent a refuge for fungi and consequently a source for contaminations in drinking 

water systems.  

 Laboratorial ff biofilms are more resistant against disinfection when compared with their 

planktonic form. Using FUN-1 staining, metabolically active cells were detected after biofilm 

exposure to high concentrations of free chlorine. Moreover, the use of FUN-1 allows the detection 

of metabolic active cells within ff biofilm in replaced pipes. FUN-1 is a rapid and reliable 

technique to access cell viability within fungal biofilms. 

 Ff water biofilms have different hydrophobicity levels when compared with solid and 

liquid fungal cultures. Microspheres adhesion assay is a reproducible and simple technique that 

can be used to directly assess patterns of cell surface hydrophobicity. Using this technique, ff 

showed different zones of hydrophobicity within the biofilm, a specific feature which can be 

associated with microbial interactions in aquatic environments. 

 Ff recovered from water systems are diverse and capable to form biofilms under specific 

laboratorial condition and exhibit patterns of development which resemble those recently 

described in literature, i.e. spore adherence, monolayer and EPS production. Nonetheless, 

among the fungal isolates studied, each one has a different pattern of behaviour which may 

influence in further implementation of techniques in this area. 
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 Biofilms formed under real conditions, i.e. on pipes and samplers surfaces exposed 

along a drinking water distribution network, are composed by fungi, algae and bacteria. Although 

the relationship between the microbial components within biofilms is not yet clarified, these 

biofilms are complex microbial communities indeed. Ff biofilms are present in replaced pipes 

collected from a water distribution network. Thus, the development and maintenance of the 

biofilms in such pipes reflect a high capability of adaptation and resistance to water flow, 

oligotrophic conditions, and diverse abiotic factors such as temperature, pH and residual 

disinfectant. 

 

8.2 Perspectives 

 The results of this work have highlighted several aspects of filamentous fungal biofilms in 

drinking water systems. Nonetheless, the information provided here is not sufficient to answer all 

questions which came about along these years of research. 

 Drinking water systems are very complex environments in which several factors influence 

their microbial composition. Variation in these factors may lead to very different approaches and 

new insights in this area. Tanking in count that water systems are everywhere, e.g. houses, 

hospitals, restaurants, industries, and in a wider view the water systems of cities, the possibilities 

of further studies using samples from different local are outstanding.  

 Many of ff such as Penicillium spp. and Aspergillus spp. recovered from water systems 

are known as mycotoxin producers. As mixed microbial communities biofilms are composed by 

diverse microorganisms which are constantly in interaction. Further studies are needed to clarify 

how mycotoxins influence these interactions. In this sense, it is necessity further implementation 

of methodologies to studies mixed species biofilms, with special focus on bacteria-fungi 

interactions.   

 The use of specific probes for Eukaryotes and Fungi provide important information about 

biofilm composition and, together with Calcofluor and morphological analyses, prove the 

presence of ff biofilms in the water systems. On the other hand, further studies for the design of 

more specific fluorescent probes, e.g. for mycotoxigenic and pathogenic fungal species such as 

Penicillium brevicompactum and Aspergillus fumigatus, will surely add estimated value for 

research in microbiology of water systems of food industries and hospitals.   
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